TWI390826B - 直流/直流轉換器及其方法 - Google Patents

直流/直流轉換器及其方法 Download PDF

Info

Publication number
TWI390826B
TWI390826B TW097115125A TW97115125A TWI390826B TW I390826 B TWI390826 B TW I390826B TW 097115125 A TW097115125 A TW 097115125A TW 97115125 A TW97115125 A TW 97115125A TW I390826 B TWI390826 B TW I390826B
Authority
TW
Taiwan
Prior art keywords
mosfet
converter
flywheel
voltage
diode
Prior art date
Application number
TW097115125A
Other languages
English (en)
Other versions
TW200901612A (en
Inventor
Richard K Williams
Original Assignee
Advanced Analogic Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Analogic Tech Inc filed Critical Advanced Analogic Tech Inc
Publication of TW200901612A publication Critical patent/TW200901612A/zh
Application granted granted Critical
Publication of TWI390826B publication Critical patent/TWI390826B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

直流/直流轉換器及其方法
此申請案主張2007年4月25日申請的臨時申請案第60/926,097號之優先權,其全部內容係以引用的形式併入本文。
此申請案係關於與其同時申請的申請案第[律師檔案號AATI-29-DS-US]號,標題"具有同步飛輪MOSFET的升壓和上下切換調節器(Boost And Up-Down Switching Regulator With Synchronous Freewheeling MOSFET)",其全部內容係以引用的形式併入本文內。
通常需要電壓調節來防止供電各種微電子組件之供應電壓變化,諸如數位IC、半導體記憶體、顯示模組、硬碟機、射頻電路、微處理器、數位信號處理器及類比IC,尤其係在電池供電的應用中,諸如行動電話、筆記型電腦及消費產品。
由於一產品之電池或直流輸入電壓時常必須步升至一更高直流電壓或步降至一更低直流電壓,故將此類調節器稱為直流至直流轉換器。在一電池的電壓係大於所需負載電壓的任何時候使用步降轉換器(通常稱為降壓轉換器)。步降轉換器可能包含電感切換調節器、電容充電幫浦及線性調節器。反之,在一電池的電壓係低於供電負載所需之電壓的任何時候需要步升轉換器(通常稱為升壓轉換器)。步升轉換器可能包含電感切換調節器或電容充電幫浦。
在前述電壓調節器中,電感切換轉換器可在最寬的電流、輸入電壓及輸出電壓範圍獲得出色效能。一直流/直流電感切換轉換器之操作係基於簡單原理,即在一電感器(線圈或變壓器)內的電流無法立即改變以及一電感器將會產生一相反電壓以抵抗其電流的任何變化。
一以電感器為主的直流/直流切換轉換器之基本原理係將一直流供應電壓切換或"斬斷"成脈衝或叢發,以及使用包含一電感器及一電容器的一低通濾波器來過濾該等叢發以產生一表現良好的時變電壓,即將一直流電壓變成一交流電壓。藉由使用在一高頻下切換的一或多個電晶體以重複磁化及消磁一電感器,可使用該電感器來步升或步降轉換器的輸入電壓,從而產生一不同於其輸入電壓的輸出電壓。在使用磁學向上或向下改變交流電壓之後,接著將輸出電壓整流回到一直流電壓並加以過濾以移除任何漣波。
直流/直流轉換器一般係使用具有一低接通狀態電阻的MOSFET(通常稱為"功率MOSFET")來實施。使用來自轉換器的輸出電壓之回授來控制該等切換條件,可維持一恆定、良好調節的輸出電壓,儘管轉換器的輸入電壓或其輸出電流快速變化。
為了移除由該等MOSFET之切換動作所產生的任何交流雜訊或漣波,橫跨該切換調節器電路之輸出端子放置一輸出電容器。該電感器及該輸出電容器一起形成一"低通"濾波器,其能夠在大多數MOSFET的切換雜訊到達負載之前將其移除。切換頻率(一般為1 MHz或以上)必須相對於該 濾波器的"LC"槽之共振頻率"較高"。經橫跨多個切換循環平均化後,該切換電感器表現如同具有一緩慢變化平均電流的一可程式化電流源。
由於該平均電感器電流受偏壓成為"接通"或"關閉"開關的MOSFET控制,在該等MOSFET內的功率消耗理論上較小並可獲得在80%至90%範圍內的較高轉換器效率。明確而言,在使用一"高"閘極偏壓將一功率MOSFET偏壓成為一接通狀態開關時,其展現具有一低RDS(on) 電阻一線性I-V汲極特性,一般在200毫歐或以下。例如在0.5 A下,此一裝置將會展現僅100 mV的一最大電壓降ID .RDS(on) ,儘管其較高的汲極電流。在其接通狀態傳導時間期間的其功率消耗係ID 2 .RDS (on)。在該給定範例中,在電晶體傳導時所消耗之功率係(0.5 A)2 .(0.2 Ω)=50 mW。
因而一功率MOSFET使其閘極偏壓至其源極,即使得VGS =0。甚至使一施加汲極電壓VDS 等於一轉換器的電池輸入電壓Vbatt ,一功率MOSFET的汲極電流IDS 仍極小,一般完全低於一微安並一般在奈安之範圍內。電流IDSS 主要包含接面洩漏。
由於該些原因,在一直流/直流轉換器內用作一開關的一功率MOSFET較具效率,由於在其關閉條件下,其在高壓下展現低電流,而在其接通狀態下,其在一低電壓降下展現高電流。除了切換瞬態外,在功率MOSFET中的ID .VDS 乘積保持較小,故在開關中的功率消耗保持較低。
在切換調節中的一關鍵組件係轉換或"整流"斬波器之合 成交流輸出回至一直流電壓所需之整流器功能。為了確保負載從未看見一電壓極性反向,會在切換電感器與負載之串聯路徑中放置一整流器二極體,藉此阻隔較大交流信號與負載。該整流器可能拓撲地位於高側路徑內,即在功率或電池輸入之正端子與輸出之正端子之間,或在低側路徑上,即在"接地"返回路徑內。該整流器之另一功能係用以控制能量流動之方向,使得電流僅從轉換器流動至負載而不會反轉方向。
在一類切換調節器中,該整流器功能運用一P-N接面二極體或一肖特基(Schottky)二極體。肖特基二極體優於P-N接面,因為其比P-N接面展現一更低正向電壓降,一般係400 mV而不是700 mV,並因此消耗更少功率。在正向傳導期間,一P-N二極體以少數載子之形式來儲存電荷。該些少數載子必須在二極體能夠以其反向偏壓極性來阻隔電流之前加以移除(即萃取)或自然再結合。
因為一肖特基二極體包含一金屬半導體介面而非一P-N接面,理想上其不會利用少數載子來傳導並因此比一P-N接面二極體儲存更少電荷。由於更少的儲存電荷,肖特基二極體能夠更快地回應橫跨其端子之電壓之極性變化並以更高頻率操作。不幸的係,肖特基二極體具有數個主要缺點,其中之一係其展現一明顯且不必要的關閉狀態洩漏電流,尤其係在高溫下。由此,在一肖特基二極體的相對較高關閉狀態洩漏電流與其相對較低正向偏壓電壓降之間不幸地存在一基本折衷。
而且,在傳導期間其電壓降越低,其在其關閉狀態下便變得越洩漏。洩漏電流還展現電流的一正電壓係數,故隨著洩漏電流增加,功率消耗也會增加,從而引起肖特基二極體更多洩漏並消耗更多功率,甚至引起更多加熱。在此正回授下,局部加熱可引起一熱點變得更熱並"拱起"更多洩漏,直至該點到達一較高電流密度以致於裝置失效,即一稱為熱散逸的程序。
一肖特基二極體之另一缺點係難以使用習知晶圓製程及製造來整合其於一IC內。在IC程序中通常無法獲得具有用於形成肖特基二極體之最佳屬性的金屬。一些常用金屬展現過高的電壓阻障,即過高的電壓降,而其他常用金屬展現過低的阻障電位,即其允許過多洩漏電流。
儘管該些限制,但現今的許多切換調節器相依使用P-N二極體或肖特基二極體用於整流。作為一兩端裝置,一整流器不需要一閘極信號來控制其傳導時間。除了暫態電荷儲存所引起的電流外,整流器自然防止反向電流,故能量無法從輸出電容及電性負載流回至轉換器及其電感器內。
為了減少電壓降及傳導損失,有時會在切換調節器中使用功率MOSFET來取代肖特基整流器二極體。一MOSFET作為一整流器之操作時常係藉由並聯於一肖特基二極體放置MOSFET並在該二極體傳導的任何時候接通該MOSFET(即與二極體的傳導同步)來完成。在此一應用中,有時將MOSFET稱為一"同步整流器"。
由於一同步整流器MOSFET可大小調整以具有一較低接 通電阻以及比一肖特基二極體更低的一電壓降,在肖特基二極體正在傳導時電流會從二極體轉移至MOSFET通道,從而減少"整流器"內的整體功率消耗。大多數功率MOSFET包括一寄生源極至汲極二極體。在一切換調節器中,此本質P-N二極體之定向必須係與肖特基相同的極性,即陰極至陰極、陽極至陽極。由於矽P-N二極體與肖特基二極體的並聯組合在同步整流器MOSFET接通之前僅持續短暫間隔(稱為"先斷後合"間隔)載送電流,故在該等二極體內的平均功率消耗較低並時常完全排除肖特基二極體。
假定電晶體切換事件比較調節器之振盪週期相對較快,則在切換期間的功率損失可視為忽略不計或替代性處理為一固定功率損失。總體上,在一低電壓切換調節器內所損失的功率可藉由考量傳導及閘極驅動損失來加以估計。然而在多百萬赫茲切換頻率下,切換波形分析變得更加重要且MOSFET的汲極電壓、汲極電流及閘極電壓必須與時間成一函數關係來加以分析。
然而不同於一肖特基或P-N接面二極體,一同步整流器MOSFET允許電流雙向流動且必須在其閘極信號上的精確時序下操作以防止一反向電流流動(一不必要的傳導類型,其會降低效率)增加功率消耗及加熱並可能損壞裝置。藉由減慢該等切換速率並增加接通延遲,可時常在直流/直流切換調節器中用效率來換取改良強健性。
應用上述原理,目前以電感器為主的直流/直流切換調 節器係採用各式各樣電路、電感器及轉換器拓撲來加以實施。廣義而言,其可分成兩個主要拓撲:非隔離式與隔離式轉換器。
最常見的隔離式轉換器包括返馳轉換器與正向轉換器,並要求一變壓器或耦合電感器。在更高功率下,還使用全橋轉換器。隔離式轉換器能夠取決於變壓器之初級至次級繞組比來步升或步降該輸入電壓。具有多個繞組之變壓器可同時產生多個輸出,包括同時高於及低於輸入的電壓。變壓器的缺點係其比較單繞組電感器較大並受不必要的雜散電感影響。
非隔離式轉換器包括步降降壓轉換器、步升升壓轉換器及升降壓轉換器。降壓及升壓轉換器較具效率且大小緊密,特別係在可使用2.2 μH或以下之電感器的百萬赫茲頻率範圍內操作時。此類拓撲每線圈產生一單一調節輸出電壓,並要求一專用控制迴路與一分離PWM控制器用於各輸出以恆定地調整該等MOSFET開關的接通時間以便調節輸出電壓。
在可攜式及電池供電應用中,同步整流係常用以改良效率。運用同步整流的一步升升壓轉換器係稱為一同步升壓轉換器。運用同步整流的一步降降壓轉換器係稱為一同步降壓轉換器。
非同步對同步降壓轉換器操作
如圖1A所說明,一先前技術降壓轉換器1包括一P通道或N通道功率MOSFET2、一電感器3、一輸出電容器4、一 肖特基整流器二極體5及一脈波寬度調變(PWM)控制器6。電感器3、MOSFET 2及整流器5共用一共同節點,此處稱為"Vx "節點(有時稱為Lx 節點),其展現一電壓Vx 。一二極體7係寄生於MOSFET 2並在降壓轉換器1之常規操作過程中保持反向偏壓並關閉。
透過功率MOSFET 2之切換動作,該Vx 節點"軌對軌"切換,展現一電位,其在MOSFET 2係接通(並傳導一電流IL(on) )時大約Vbatt 至MOSFET 2係關閉(在一電流IL(off) 透過整流器二極體5再循環時)略微低於接地之間交替。Vx 的波形係圖1B之圖表10中所說明,其中MOSFET 2正在傳導(曲線11)時的Vx 係由表達式(Vbatt -I‧RDS(on) )給出且MOSFET 2係關閉(曲線14)時的Vx 係由-Vf 給出。
在時間t=12,在一持續時間ton 之後,電感器3驅動電壓Vx 為負,並取決於轉換器1之設計及布局,在此點Vx 可能經歷某電壓過衝與不必要的振盪或振鈴13。在一間隔toff 之後,在時間15,MOSFET 2接通,並在二極體5從任一儲存電荷回復之後,Vx 展現一正轉變15,然後整個循環重複。
在一同步降壓轉換器中,整流二極體5係由一第二功率MOSFET來取代。如圖2A所示,一同步降壓轉換器20包括一高側功率MOSFET開關22、一電感器23、一輸出電容器24及一低側同步整流器MOSFET 21,該低側同步整流器MOSFET具有一本質並聯二極體25。MOSFET 22及21之閘極係由先斷後合(BBM)電路27來驅動並回應橫跨輸出電容器24存在的來自該轉換器的輸出的一回授電壓VFB 由一 PWM控制器26來加以控制。需要BBM操作來透過MOSFET 21及22來防止在Vbatt 與接地之間的一短路。
在同步調節器20中用於Vx 之波形係說明於圖2B之圖表30中,其中透過高側功率MOSFET 22之切換動作,該Vx 節點軌對軌切換,展現一電位,其在該MOSFET係接通(並傳導電流IL(on) )時大約Vbatt 與至MOSFET 22係關閉時(在一電流IL(off) 透過MOSFET 21再循環時)略微低於接地之間交替。Vx 係在圖表30中說明為在MOSFET 22正在傳導(曲線31)時等於Vbatt -I.RDS1(on)
在時間t=32,在一持續時間ton 之後,電感器23驅動Vx 為負,並取決於轉換器20之設計及布局,可能在安定至一電壓一Vf 之前經歷某電壓過衝與不必要的振盪或振鈴33。在時間t=34,在一先斷後合時間間隔tBBM (由BBM電路27所決定)之後,Vx 係由傳導同步整流器MOSFET 21減少至一量值(-I.RDS2(on) ),從而比較在P-N二極體25內的消耗減少功率損失。
在一時間t=35,正好在高側MOSFET 22係接通之前,同步整流器MOSFET 21係關閉且Vx 返回至-Vf (曲線36),即橫跨二極體25的正向電壓降。在一間隔toff 之後,MOSFET 22接通,並在P-N二極體25從任一電荷儲存回復之後,Vx 展現一正轉變37。取決於P-N二極體25之回復,Vx 可能展現一過電壓尖峰38。在尖峰38及隨後振鈴之後,Vx 穩定在(Vbatt -I.RDS1(on) ),然後整個循環重複。
高側MOSFET 22可能係一N通道或P通道MOSFET。接地 同步整流器MOSFET 21係更方便地實施為一N通道MOSFET。在轉換器22之正常操作期間保持關閉及反向偏壓的二極體28係高側MOSFET 22固有的一P-N二極體。由於二極體28不在正常操作下傳導,故以虛線顯示其。同步整流器MOSFET 21固有的二極體25在高側MOSFET 22係關閉的任何時候變得正向偏壓,但僅在MOSFET 21係關閉時載送一實質電流。一肖特基二極體可並聯於MOSFET 21來包括,但由於串聯電感而可能無法足夠快地操作以從正向偏壓二極體25轉移電流。
若能量從電池或電源流入該直流/直流轉換器之時間之百分比(即在高側MOSFET開關22係接通且電感器23正在磁化時的時間之百分比)係定義為該轉換器之工作因數D,則該轉換器之輸出至輸入電壓比係與該工作因數成比例,即
雖然此等式描述一較寬轉換比範圍,但一降壓轉換器在不需要極快裝置及電路回應時間之情況下無法平滑地接近零或一的一電壓比。考量該些因素,一降壓轉換器之工作因數係在實務中限於5%至95%之範圍。
強制性二極體回復操作及影響
二極體回復係切換調節器中功率損失與電性雜訊的一主要來源。在圖2B之圖表30中,高dV/dt電壓瞬態37與電壓過衝38因為在二極體25內的儲存電荷而出現。此現象更清楚地解釋於圖2C之圖表40中,其中針對時間繪製整流器電 流Irect 與電壓Vx 。在時間t1 之前,如插圖41內所示,高側MOSFET 22係關閉且低側同步整流器MOSFET 21係接通,從而載送一電流Irect ,其與流過電感器23之電流IL 相同,即Irect =IL (曲線50)。在此間隔期間,Vx (橫跨同步整流器MOSFET 21之電壓)係等於Irect .RDS2(on) (曲線60)。
在時間t1 ,MOSFET 21關閉且P-N接面二極體25必須親自載送電感器電流IL 。由此,Vx 在絕對量值上增加至一Vf (曲線61)。在此先斷後合間隔期間,在P-N接面二極體25內儲存電荷。此條件(如插圖42內所說明)持續直至時間t2 ,此時高側MOSFET 22再次接通。
如插圖43內所示,MOSFET 22一接通,其便由於一較大汲極電壓與在其飽和區域內作為一控制電流源操作的一較小閘極電壓而偏壓,從而在電流上傾斜上升。隨著在MOSFET 22內的電流傾斜上升,其在電感器23內供應一遞增百分比的電流,從而減少在整流器二極體25內的電流負擔,如由Irect 電流內線性下降(曲線51)所證明。在此傾斜上升期間,橫跨正向偏壓二極體25之電壓之絕對值逐漸遞減一數量△Vx (曲線62),但二極體25保持反向偏壓且Vx 仍低於接地。
若在P-N二極體25內過去不存在任何電荷,則在時間t2 ,此時電流Irect 到達零,二極體25將會關閉且Irect 將從不變負。但因為在P-N二極體25內的儲存電荷,在二極體25內的電流斜坡(曲線51)反轉極性並實際上變負,電流流入二極體25之陰極內。隨著在該二極體內的電荷空乏並再結 合,橫跨二極體25的電壓接近零(曲線63)。
在時間t6 ,橫跨整流器二極體25之電壓反轉極性且二極體反向回復電流到達其峰值(點52)。Vx 接著由於一較高dV/dt旋轉率而快速上升(曲線64),由一高側MOSFET 22而供電,該高側MOSFET係現在偏壓至一全接通條件,具有一接通狀態電阻RDS1(on) ,如插圖44示意性所表示。在此間隔期間,高側MOSFET 22必須同時供應透過電感器23之電流與二極體25內的反向回復電流。在二極體25內的一反向電流意味著即使該二極體係反向偏壓且理論上應關閉,電流仍正在流入該P-N接面二極體之陰極內。藉由在反向偏壓時暫時傳導一負電流(曲線53),二極體25在間隔△trr =t9 -t6 期間產生一能量損失Err 且由以下給出
Err 可以係相當大的。1 A或以上的反向電流可伴隨超過4 W的瞬間功率(Irr(peak) .Vbatt )損失而出現。由於此反向電流係透過Vbatt 連接高側MOSFET 22來供應,故能量損失類似於貫通電流損失,且使用一三角近似貢獻一平均功率損失(2 W).△trr /T。
而且,因為在曲線63之區域內的較高dV/dt,Vx 過衝電池輸入電壓Vbatt 。此過衝之原因係示意性表示於圖2D之等效電路100內,其中電池係表示為電壓源101,電感器表示為電流源103,充電輸出電容器表示為電壓源104,具有汲極電流I1 之高側MOSFET表示為控制電流源102,而回復二 極體105表示為一接面電容107且一少數載子擴散電容表示為P-N接面二極體106。
插圖108循跡在時間上,I1 隨著高側MOSFET 102之汲極電壓VDS1 而變化,其中VDS1 =(Vbatt -Vx )。例如,在時間t2 ,該高側MOSFET係關閉且電流I1 係零。隨著在其飽和區域內操作之高側MOSFET之閘極電壓在量值上從VG (t3 )增加至VG (t7 )(括弧109),電流I1 之量值會增加而無明顯的汲極電壓VDS1 變化。例如,在時間t6 ,Vx =0且汲極電壓具有一電壓VDS1 =Vbatt (點112)。因為二極體105仍包含儲存電荷且不會讓Vx 變化,故在此時間週期期間的電壓幾乎恆定。然而超過時間t7 ,該二極體"釋放",然後電壓快速變化(曲線111)。
再次參考圖2C,在時間t8 ,電壓過衝可能到達一峰值電壓Vpeak (點65)。若Vpeak 之量值係比Vbatt 大600 mV或以上,則其將會瞬時正向偏壓高側二極體28,從而儲存電荷並引起雜訊及進一步的振盪(曲線66)。
最後,在時間t9 ,如圖2C中插圖67所示,該Vx 電壓穩定在Vbatt (曲線67),整流器電流Irect 係零(曲線54),然後二極體25之反向回復完成。再次參考圖2D之插圖108,在點113,高側MOSFET 102之閘極到達一偏壓VG (t8 )且MOSFET 102進入其線性區域(曲線110),不再表現為一控制電流源。在線性區域110內,汲極電流I1 與閘極電壓VDS1 不會實質上變化。
總而言之,二極體回復在一同步降壓轉換器中作為先斷 後合操作之一後果而出現,在該先斷後合操作中,高側及低側MOSFET兩者係瞬時關閉。儲存於該二極體內的電荷在電池輸入與接地之間(即橫跨轉換器的功率輸入)導致電流尖峰。其還引起增加的功率消耗、效率之損失、高dV/dt旋轉率、電壓過衝、雜訊及不必要振鈴及振盪。此類振盪還可能限制切換調節器之最大操作頻率。
閘極驅動捐失
在一降壓轉換器中的另一功率損失來源產生自MOSFET閘極電容之充電及放電。閘極驅動損失之起源係示意性表示於圖3A之降壓轉換器120內,其中一P通道MOSFET 122包括一汲極至閘極電容CDG (電容器126)、閘極至源極電容CGS (電容器128)及汲極至源極電容CDS (電容器127)。為了接通及關閉MOSFET 122,閘極驅動器125必須供應瞬態閘極驅動電流iG (t)以在所需頻率下充電並放電閘極連接CDG 及CGS 電容器126及128。所示全部MOSFET電容器係電壓可變的。
汲極至閘極電容器126之量值尤其重要,由於其在實際操作中比其較小信號等效值顯得更大。在輸入電容上的此放大效應(在雙極放大器中最初稱為"米勒(Miller)"效應)係在轉換器120內電壓增益的一後果。此電壓增益Av (t)在MOSFET 122係飽和並表現如同一可程式化電流源時在操作條件期間出現。該CDG輸入電容係與此增益成比例縮放,該增益在一切換瞬態期間變化。
即使MOSFET 122內的寄生電容引起閘極驅動及切換損 失,驅動MOSFET的電容所需之功率仍顯現在閘極驅動器125內,而非在該MOSFET自身內且必須由電池輸入源Vbatt 來供應。將該高側MOSFET從一共同源極組態P通道裝置變成一源極隨耦器N通道裝置不會排除米勒回授效應。
在圖3B之降壓轉換器140中,例如,一高側N通道MOSFET 142包括一汲極至閘極電容CDG (電容器146)、一閘極至源極電容CGS (電容器148)及一汲極至源極電容CDS (電容器147)。為了接通及關閉MOSFET 142,一源極參考閘極驅動器145必須供應瞬態閘極驅動電流iG (t),以在所需頻率下充電並放電閘極連接的CDG 及CGS (電容器146及148)。所示全部MOSFET的電容器係電壓可變的。
即使在一固定電位Vbatt 下偏壓N通道MOSFET 142之汲極,閘極驅動器145仍必須與電壓Vx 一起浮動,使得閘極電位VG 在一切換瞬態期間相對汲極電位VD 而變化。因此,輸入電容之量值仍由米勒效應放大且必須由閘極驅動器145來加以驅動。驅動額外電容所需之功率係從靴帶式電客器149來遞送,該靴帶式電容器在Vx 接地的任何時候透過正向偏壓靴帶式二極體150最終從Vbatt 供應。
因此閘極驅動損失在一降壓轉換器中驅動高側MOSFET時出現,不論該裝置是否係一N通道源極隨耦器裝置或一P通道共同源極組態裝置。不是計算在一電壓可變電容器內的功率損失,一功率MOSFET之閘極驅動要求之一更精確測量係圖3C所示之閘極電荷曲線160。該圖表說明該MOSFET之閘極至源極電壓VGS 對驅動閘極至該電壓所需 之總閘極電荷QG 之一曲線圖。考量變化偏壓條件、前述米勒效應及非線性電容,該閘極電荷測量方法在決定閘極驅動損失時比電容計算更有用。
該閘極電荷曲線係使用一功率MOSFET來產生,其閘極係由一恆定電流源IG 來加以驅動。為了適當模型化閘極至汲極回授效應,該MOSFET驅動一負載,其包含一電阻器或由Vbatt 供電的電流源。該裝置特徵在於,開始於一關閉MOSFET及零閘極偏壓(點161)且在一開始時間,卻開啟驅動MOSFET的閘極之電流源。隨著閘極VGS 電壓上升至其臨界值並超過,則在VGS (on)該電晶體具有足夠的跨導以載送負載電流且汲極電壓開始下降(曲線163)。
在該dVDS /dt轉變期間,閘極至汲極電容CDG 必須由來自該等汲極及閘極端子的相等且相反電荷來充電。由於恆定閘極電流正在充電CGD ,沒有任何電荷留下來充電閘極至源極電容器CGS ,由此閘極電位變得恆定(曲線164)。在閘極電壓內的此台地表示滿足電荷中性所需之電荷並定量測量汲極至閘極回授,即在整個瞬態上的米勒效應(Miller effect)。一旦汲極電壓下降至半恆定值,該MOSFET便進入其線性區域,其中VDS =ID .RDS1 且閘極電壓VGS 繼續其向上轉變。
由於在測量中的閘極電流係一恆定量值IG ,故圖表160之橫座標可藉由線性關係QG =IG .t從時間"t"變成閘極電荷QG 。如圖表160中所示,可針對閘極電荷繪製汲極電壓VDS (t)與閘極電壓VGS (t)。如所說明,需要一獨特且特定數 量的閘極電荷QG 來驅動閘極至一特定閘極電壓162與汲極電壓165。由於保存電荷,故該圖表之形狀並不取決於進行測量之速度。若IG 增加,則時間t成比例減少而圖表160保持不變。
在由於閘極電壓VGSα =0"關閉"與閘極在電位VGSβ 下"完全接通"之間切換的功率MOSFET之有效輸入電容係由以下給出 其中Q 係MOSFET從關閉轉變成接通(即QG(on) ),接著透過其飽和區域△QDG 並藉由一數量△QD (lin)進入其線性區域所需之所有電荷之和,或作為
由於保存電荷,用以驅動MOSFET的閘極至一電壓VGSβ 之等效電容Ceq 係路徑獨立的,意味著偏壓該裝置至一完全接通條件所需之功率獨立於驅動技術。然而閘極驅動功率損失係取決於汲極偏壓Vbatt ,其決定台地△QDG 之寬度。該Vbatt 電壓越高,VDS 之量值便越大且閘極台地△QDG 越寬。
本質上,在圖表160內的△QDG 台地(曲線164)表示在一大規模MOSFET切換瞬態中所測量的在輸入電容上的較小信號米勒回授效應,並精確說明在瞬態中所損失之總能量。即使使用一電壓源來在切換期間供電間極,能量及功率損失仍保持相同。僅藉由最小化引起△QDG 之汲極電壓轉變, 可在任一給定功率MOSFET中減少損失。不幸的係,由於Vbatt 係輸入至一直流/直流轉換器,故其不可用作一變數來控制閘極驅動損失。
實際功率損失取決於切換損失之間隔相對於整體週期之相對關係。然而,主要損失包含I2 .RDS 傳導損失與QG .VG 閘極驅動損失,如以下所給出
在一直流/直流轉換器中,工作因數D係受回授控制以維持一固定輸出至輸入轉換比。對於一固定電壓輸入電壓、輸出電壓及負載電流,僅頻率決定該兩個損失分量之加權。在低頻下,閘極驅動損失占主要地位。在高頻下,切換損失佔主要地位。
更糟糕的係,MOSFET裝置操作要求在該些損失之間的一不可避免折衷。此本質折衷可藉由交換縱座標與橫座標軸將圖表160轉換成圖表170來更清楚地理解,如圖3D所示。如所示,正如在QG 隨VGS 遞增而成比例遞增的圖表160中,該QG 閘極電荷曲線包括關閉部分161、飽和部分164及線性區域162。在相同圖表170上,RDS 接通電阻曲線展現對於閘極驅動的一雙曲線相依性,隨偏壓遞增而遞減。在飽和之邊緣處,接通電阻RDS 快速遞減(曲線171)至線性操作(曲線172)並在大約一閘極偏壓VGSβ 達到一最小值(曲線173)。
接通電阻與閘極電荷之折衷係說明為其乘積QG .RDS ,由 圖表160中虛曲線所示。由於兩項貢獻於損失,故最小化該QG .RDS 乘積表示最大轉換器效率與最小功率損失。在區域174內,因為接通電阻171正在下降,故該QG .RDS 乘積遞減。在區域176內,因為QG 正在遞增,故該QG .RDS 乘積遞增。在中間,一最佳偏壓條件175存在於該QG .RDS 乘積係最小化的地方。在一真實轉換器中,無法在此最佳條件下維持該VGS ,由於VGS 隨電池輸入電壓而變化。本質上,該QG .RDS 乘積係用於一給定技術及裝置設計的一優值。
在不重新設計裝置及程序的情況下,在其操作中減少閘極驅動損失的唯一構件係在裝置操作期間限制最大VDS 。不幸的係,該等降壓及同步降壓轉換器在切換期間橫跨高側MOSFET強加完全電池輸入電壓Vbatt ,從而最大化△QDG 及相關聯閘極驅動損失。
對比之下,同步整流器MOSFET不會由於任何明顯汲極偏壓而在傳導與非傳導之間變化,故其閘極驅動損失不會由於米勒效應與一過多△QDG 台地而惡化。
降壓轉換器的問題
如上所述,一降壓轉換器因為在其整流器內的功率消耗而展現較差效率與過多加熱。肖特基二極體遭受過多洩漏及熱散逸的影響。同步整流排除在習知非同步降壓轉換器中的整流器傳導損失及加熱問題,但無法排除一降壓轉換器之所有問題。
例如,在高側及低側功率MOSFET中防止貫通傳導所需之先斷後合操作在兩裝置瞬時關閉時要求一無感時間。在 該間隔期間,並聯於同步整流器MOSFET之一P-N二極體必須載送全部電感器電流並在這樣做時儲存電荷。此儲存電荷導致強制性二極體回復,引起橫跨轉換器的輸入的一電流路徑,並引起較高dV/dt旋轉率、電壓過衝、振盪及雜訊,與在一非同步降壓轉換器中相同。
而且,排除該二極體並非一選項。圖4A之電路200說明一移除整流器二極體的降壓轉換器,其包含一具有一本質並聯二極體205的高側MOSFET 202、一電感器203及一輸出電容器204。不同於在一降壓或同步降壓轉換器中,在該節點Vx 與接地之間不存在任何二極體。操作電路200之所得切換波形係顯示於圖4B之圖表210內,其中一旦MOSFET 202係接通,該等汲極及電感器電流便會線性傾斜上升211,而橫跨MOSFET 202之電壓僅為IL (t).RDS(on) ,意味著Vx Vbatt ,如由曲線215所示。
在一時間t1 ,在MOSFET 202係關閉時,Vx 立即展現一變負電壓瞬態(曲線216),以便維持一恆定電感器電流(點212)。不使用任何整流器的情況下,在節點Vx 處的電壓無限制地變負,低於接地,直至橫跨關閉狀態MOSFET 202的VDS1 超過二極體205之突崩崩潰BVDSS1 ,從而驅動其進入崩潰。該負Vx 電壓輕微過衝並振鈴(曲線217),直至其安定在一電壓Vx =(Vbatt -BVDSS1 )。若MOSFET 202較脆弱,即不強健,則其將會立即展現突返I-V特性並自我毀壞。若MOSFET 202較強健,則其將會持續崩潰電壓BVDSS1 ,直至該電流在時間t2 傾斜下降至零(曲線213),此時 MOSFET 202停止傳導。在那時,電感器203表現如同一導線而非一電流源且Vx 從點218向上跳越至電容器電壓Vout ,如由曲線219所示。
此類裝置係稱為一堅固功率MOSFET。堅固MOSFET係藉由在MOSFET內的矽半導體或導體材料由於過熱而熔化之前其可吸收之能量Ej 之量值來評定。一熱失效並不視為一堅固度失效。依此方式的功率裝置操作係稱為未箝位電感切換或UIS,且在用於汽車應用的許多螺線管及馬達驅動中較常見。因為能量係從電感器203傾卸至二極體205內,故UIS操作具有極差的能量效率。故從降壓轉換器中移除整流器二極體並非一可行選項。
不幸的係,留下整流器二極體還會產生問題,尤其在輕負載條件下,其中其引起電感器電流變得斷續。此現象係說明於圖5A之圖表225內。對於在一較高電流IL(high) 下操作的一降壓轉換器,電感器電流以一連續向上及向下斜坡交替,從而達到均完全超過零的一最大電流(點227)與一最小值(點226)。在更低電感器電流IL(mid) 下,峰值電流(點229)完全超過零,但最小值(點228)接近零。
低於此最小值的任一電感器電流IL 會引起電感器電流變得不連續。在此情況下,電感器電流具有一正峰值電流(點231),但具有在點230及232截斷至零的一最小值,二極體傳導時間現在係限制總週期T的一較小百分比且基本上在一不同於MOSFET 236之關閉時間的頻率及工作因數下傳導。不連續傳導會在轉換器的輸出中增加漣波及雜訊。
在一輕負載下操作的一同步降壓轉換器(例如圖5B之電路235)中,還必須注意在電流到達零且IL 反轉極性之前關閉低側MOSFET 237。若該同步整流器MOSFET保持接通過長,則電感器電流將會反轉方向,如由曲線233所示。一電流反向意味著在電感器239內的電流將會從負載242流回並流入該調節器內,從而在離開負載241及輸出電容器240之錯誤方向上移動能量並進入轉換器電路內,在此期間效率受到影響。
因此電路235將會隨著在該循環之部分內流動的電流IL(forward) 與持續其他部分流動的IL(reverse) 而振盪。一些電性負載241在交流條件下不會正常操作。但因為在Vx 上的雜訊並因為不存在任何容易的方式在電感器239內精確測量低量值電流,故同步整流器MOSFET 237之感測及關閉較麻煩。若MOSFET 237關閉過晚,電感器電流會反轉並損失能量。若其提早關閉,二極體238必須載送電流持續一更長時間並儲存更多電荷。其還在該同步整流器關閉時展現振盪,從而降低效率並產生雜訊。
而且,在極輕負載下,高側MOSFET的接通時間變得過短,以致於整個轉換器被迫以一可變頻率操作,幾乎沒有任何電感器電流流動,即幾乎關閉。幾乎關閉使其難以對負載電流突變作出反應並可能導致較差瞬態調節,尤其在輕負載操作中。
概述
先前技術降壓及同步升壓切換調節器同時遭受其電路拓 撲固有的眾多限制,從而不利地影響效率、雜訊、穩定性等。所需的係一替代性步降拓撲,其改善或排除問題,諸如整流器切換及傳導損失、貫通傳導、儲存電荷及二極體回復、較高dV/dt及電壓過壓、較高閘極驅動損失、電流反向。
依據此發明之一直流/直流轉換器可稱為一飛輪步降轉換器。該轉換器包含一高側MOSFET、一電感器及一輸出電容,全部均在一輸入端子與一供應電壓端子之間串聯連接。一飛輪箝位係並聯連接該電感器,該飛輪箝位包含一飛輪二極體與飛輪MOSFET。該飛輪MOSFET係連接耦合至在該電感器與該輸出電容器之間的一節點之其陽極及耦合至在該節點的其陰極。一先斷後合(BBM)電路係連接以分別驅動該等高側及飛輪MOSFET之閘極;及一脈衝寬度調變電路係連接以驅動該BBM電路。該轉換器之一輸出端子係耦合至在該電感器與該輸出電容器之間的一節點。一負載係從該轉換器之輸出端子來加以供應。一般而言,一回授電路係連接於該輸出端子與該脈衝寬度調變電路之一輸入端子之間。視需要地,一箝位二極體可連接於該供應電壓端子與在該高側MOSFET與該電感器之間的一節點之間。該箝位二極體使其陽極連接至該供應電壓端子並使其陰極連接至在該高側MOSFET與該電感器之間的一節點。在許多具體實施例中,該供應電壓端子係在接地下偏壓。接地係一電路接地,其可能係實際接地或任何其他電壓; 在Vbatt 與接地之間的電位差表示輸入直流電壓。
此發明之轉換器按如下操作:在一第一操作階段中,該高側MOSFET係接通並從該輸入端子向該電感器傳導一電流;該飛輪MOSFET係關閉且飛輪二極體係反向偏壓,使得沒有任何電流流過該飛輪箝位。在該第一階段期間,該電感器受到磁化。在一第二操作階段中,該高側MOSFET係關閉;一電流開始透過該飛輪二極體循環並因此在該電感器之輸入端子處的電壓下降至一位準,其等於低於該轉換器之輸出電壓一正向偏壓二極體降。該第二階段可稱為第一先斷後合(BBM)間隔,因為該高側MOSFET已經關閉,但該飛輪MOSFET仍未接通。在一第三操作階段中該飛輪MOSFET接通並從該飛輪二極體轉移電流,從而減少橫跨該電感器的電壓降至該飛輪MOSFET之接通電阻與透過其之電流之數學乘積。由於此電壓乘積一般極小,在該第三階段期間,在該電感器之輸入端子處的電壓係大約等於該轉換器之輸出電壓。在該第四操作階段期間,該飛輪MOSFET係再次關閉,然後在該電感器之輸入端子處的電壓上升至一位準,其等於低於該轉換器之輸出電壓一正向偏壓二極體降。該第四階段可稱為第二先斷後合(BBM)間隔,因為該飛輪MOSFET已經關閉,但該高側MOSFET仍未再次接通。由於在該等第二、第三及第四階段期間該電感器之輸入端子處的電壓靠近該轉換器之輸出電壓,在該些階段期間相對較少的電流會流動至負載。在該第四階段之後,該高側MOSFET係再次接通,然後重複該循環。
此發明之飛輪步降轉換器之好處眾多。例如,該轉換器比習知降壓或同步降壓轉換器經歷更平順的二極體回復及更少電壓過衝及雜訊。供應至該飛輪二極體之二極體回復電流不會流動至接地,而是流動至該輸出電容器及該負載。故在一飛輪步降轉換器中,甚至該二極體回復電流供應能量至該負載,藉此改良轉換器效率。而且該飛輪步降轉換器還在輕負載操作期間提供獨特好處。在此條件下,在該負載正汲取過少電流以在一目標值處維持該輸出電壓時,該飛輪步降轉換器可在一條件下操作持續延長持續時間,藉此該高側MOSFET保持關閉且電感器繼續在該飛輪箝位內再循環電流而不影響在該負載或在該輸出電容器內的電流之極性。藉由維持大於平均負載電流之一電感器電流,在負載瞬態期間的調節得到明顯改良。
圖6說明依據此發明所製造之飛輪步降轉換器與切換電壓調節器之一具體實施例。如所示,轉換器250包含一高側功率MOSFET 251;一電感器252;一輸出電容器253;一飛輪箝位256,其包含一二極體258與一飛輪功率MOSFET 257;先斷後合(BBM)電路261及一脈衝寬度調變(PWM)控制器260。使用來自轉換器250之輸出端子之回授VFB ,PWM控制器260之操作控制MOSFET 251及257之接通時間以調節一指定輸出電壓VOUT 。用於直流/直流轉換器之回授電路在此項技術中為人所熟知並描述於(例如)申請案第11/890,818號,標題為"包括向下電感切換預調節器 與電容切換後轉換器之高效率直流/直流電壓轉換器(High-Efficiency DC/DC Voltage Converter Including Down Inductive Switching Pre-Regulator And Capacitive Switching Post-Converter)"及第11/890,956號,標題為"包括向上電感切換預調節器與電容切換後轉換器之高效率直流/直流電壓轉換器(High-Efficiency DC/DC Voltage Converter Including Up Inductive Switching Pre-Regulator And Capacitive Switching Post-Converter)"中,各申請案係於2007年8月8日申請且其全部內容係以引用的方式併入本文。
輸出電壓VOUT 係在輸入電壓、負載電流及溫度之一指定範圍內加以調節。在此方面,轉換器250係一切換電壓調節器。所有切換電壓調節器均可視為電壓轉換器(但反之並不一定真實)。並不試圖區別一切換調節器與一切換轉換器。
在轉換器250內,高側MOSFET 251可能係P通道或N通道MOSFET,根據BBM電路261適當改變閘極驅動電路。二極體255係可選的並可能係MOSFET 251所固有的,假定其陰極係連接至正輸入Vbatt 。如此,二極體255在轉換器250之正常操作期間保持反向。
飛輪MOSFET 257可能係一P通道或N通道MOSFET,根據BBM電路261適當改變閘極驅動電路。在一較佳具體實施例中,飛輪二極體258係存在且並聯於飛輪MOSFET 257,假定其陽極係連接至輸出VOUT 。二極體258可能係 MOSFET 257所固有的。其共同包含一飛輪箝位256,其在其正在傳導時載送一電流Ifw
在轉換器250之正常操作期間,飛輪二極體258在反向偏壓與正向偏壓之間交替,視高側MOSFET 251之傳導條件而定。在一較佳具體實施例中,飛輪MOSFET 257具有一足夠低的接通電阻,使得在MOSFET 257處於其低電阻"接通"狀態時,其透過MOSFET 257之通道來轉移在飛輪二極體258內流動之電流之一明顯部分並比MOSFET不在傳導時橫跨箝位256導致一更低電壓降。
二極體254係可選的且不需要用於該飛輪步降轉換器之操作。在正常操作期間使其陰極連接至該Vx 節點,二極體254保持反向偏壓且不傳導。二極體254之存在可能單片整合MOSFET 251之一人為產物。
如所述,輸出電壓VOUT 係由相對於該切換週期高側MOSFET 251之接通時間來控制,藉此其遵循先前關於一降壓轉換器所述之相同電壓變換等式,即 其中T係在PWM 260內的一時脈或斜坡產生器之週期而Vin 係標注Vbatt 的輸入,其可能由電池供電或由任一其他電源、直流/直流轉換器、交流/直流轉接器或在用以實施轉換器250之該等組件之指定操作電壓範圍內的電源之輸出來供電。
由於ton <T,故飛輪轉換器250之輸出電壓必然低於其輸 入電壓,故該調節器嚴格而言係一步降轉換器,具有限制在Vbatt 與接地之間的一正輸出。對於高達數百萬赫茲的PWM時脈頻率,MOSFET切換之速度限制實際限制工作因數在5%與95%之間。超過該頻率,工作因數範圍會因為控制迴路內的傳播延遲而變窄。
PWM控制器260不限於固定頻率,而還可使用變化頻率操作,例如具有固定接通時間及可變關閉時間或在PWM與可變頻率模式之間交替。其還可藉由充電輸出電容器253至某最大電壓,接著讓其衰減至某最小值並重複循環來在滯後模式下操作。可變頻率或滯後操作雖然消耗更少電流來操作,但一般比較固定頻率PWM操作展現一增加輸出漣波。
飛輪步降轉換器操作
如先前所述,使用來自調節器之輸出之回授VFB ,PWM控制電路260之操作控制MOSFET 251及257之接通時間以調節一指定輸出電壓VOUT
該飛輪步降轉換器之操作之原理係使用高側MOSFET 251之接通時間來控制電感器252內的電流以及藉由使用並聯於電感器252之一低電阻飛輪MOSFET 257分流電感器電流IL 來控制在電感器252之Vx 節點處的電壓瞬態,該飛輪MOSFET與高側MOSFET 251異相傳導。用於該飛輪步降轉換器之操作之序列係說明於圖7A至7D內,波形係如圖8A至8D所示。
第一操作階段係由圖7A中電路所示,其中高側MOSFET 251係接通並傳導一電流IHS =IL ,飛輪MOSFET 257係關閉且飛輪二極體258係反向偏壓,使得透過飛輪箝位256之電流(Ifw )係等於零。在高側MOSFET 251正在傳導時,Vx (如由圖8A中曲線281所示)係等於Vx =(Vbatt -IL .RDS1 ),幾乎等於Vbatt 。由於沒有任何飛輪電流,則IHS =Ix =IL =IOUT 。電感器電流IL 以一值291開始循環並傾斜上升至一值292,如圖8B所示。電感器電流IL 還等於該高側MOSFET電流IHS (分別係值296及297),如圖8C所示。
在此循環期間,輸出電壓Vout 係由饋送電容器253之電感器電流IL 控制。每循環遞送至輸出電容器253之電荷dQ(庫侖)則為 而且由於dVc =dQc /C,則輸出電容器的電壓dVc 的增加變化係由以下給出
由此,MOSFET 251之接通時間ton 決定在任一循環內遞送至負載及輸出電容器之電荷量。如圖8D之圖表300中所示,橫跨電感器252的電感器之電壓(曲線301)係由VL =((Vbatt -IL .RDS1 )-Vout )(Vbatt -Vout )給出,其中RDS1 係高側MOSFET 251之接通電阻。
圖7B之電路266說明飛輪步降轉換器250之操作中的第二階段。如圖8A所示,緊接在MOSFET 251在時間ton 關閉之後,Vx 立即下降至一位準,其等於低於輸出一正向偏壓二極體降Vf 或(Vout -Vf )。如圖8D所示,此轉變(曲線302)反轉 橫跨電感器252之電壓VL 之極性,但不會如在一習知降壓轉換器中驅動Vx 低於接地。
由於飛輪二極體258藉由在MOSFET 251及257兩者均關閉的任何時候(例如在先斷後合間隔期間)載送透過電感器252之電流來用作一自定時電壓箝位及電流分流器,在飛輪MOSFET 257內的傳導之時序係不太關鍵。在此階段期間,在高側MOSFET 251內的電流IHS (在圖8C內的電流297),其在量值上等於在電感器252內的電感器電流IL (圖8B中電流292)係"交遞"至飛輪箝位256(圖8C中電流298)。
更詳細而言,一旦MOSFET 251係關閉且IHS =Ix =0,飛輪箝位256便載送透過電感器252的全部電流,故IL Ifw 。因此,因為在輸出端子處的電流(IOUT )係大約等於零而在該Vx 節點處的電流(Ix )也大約等於零,故電感器252無法強迫電壓Vout 或Vx 在此週期期間變化。因為分流透過電感器252之電流,故電感器252無法供應電流至任一其他電路元件或強迫在該輸出端子或Vx 接針上的電壓移動。如圖8A所示,此條件持續由BBM電路261所決定之持續時間tBBM 的一BBM間隔283。
在該第三操作階段中,如圖7C所示,在BBM間隔283之後,飛輪MOSFET 257接通並從二極體258轉移電流,從而將橫跨傳導飛輪箝位256之電壓降304從-Vf 減低至-IL ‧RDS2 ,其中RDS2 係MOSFET 257之接通電阻。在此時間期間,Vx 係大約等於VOUT 。在PWM控制下,MOSFET 257係在一第四操作階段中關閉持續一持續時間tBBM ,如圖7D 所示,在此時間期間,二極體258載送電感器電流IL
在時間T(該時脈之週期),該循環重複,使高側MOSFET 251接通,Vx 從~Vout 跳越至~Vbatt ,橫跨電感器252之極性返回至一正值,且飛輪箝位256"轉交"其電流Ifw (點299)回至高側MOSFET 251(點296),如圖8C所示。
比較飛輪轉換器250之操作與一習知降壓或同步降壓轉換器之操作,一些顯著差異較明顯。該Vx 節點從未超出該等供應軌,而是(忽略MOSFET接通電阻)在輸入電壓Vbatt 與輸出電壓VOUT (非接地)之間轉變。更小的電壓範圍(Vbatt -Vout )減少閘極電荷及閘極驅動損失並降低在強制性二極體回復期間在二極體258上的應力。
而且,不同於在一降壓轉換器中,在飛輪轉換器250中,電感器252遞送其電流IL 至該輸出端子並僅在高側MOSFET 251係接通並傳導時遞送至電容器253。在該飛輪級期間,在高側MOSFET係關閉(上面第二、第三及第四階段)時,電感器電流繼續維持並不會與負載相互作用,從而避免負載中極性反向及雜訊的問題。
減少二極體回復應力及損失
圖8D中圖表300說明橫跨電感器252之電壓VL 。在所揭示飛輪步降轉換器中,VL 也係橫跨飛輪二極體258與飛輪MOSFET 257之電壓。圖8D所示之波形因此在導致強制性二極體回復之任一瞬態(即在一先斷後合(BBM)間隔之後的一較大電壓瞬態)期間較有意義。
此情況在BBM間隔305之後立即出現,在時間T,電感器 電壓VL 在一瞬態306內飛升並在一正向電流已經正在二極體258內流動之後橫跨P-N二極體258立即強加一反向偏壓~Vbatt 。如此,在該第四操作階段結束時預期某二極體回復應力。
圖9A之圖表340擴展此操作區域,說明針對時間所繪製之二極體回復電流波形IPN 。IPN 之波形係類似於在一習知降壓轉換器中在強制性二極體回復期間的電流之波形,開始於透過二極體258的一正向偏壓電流(曲線341)、一固定dI/dt區域(曲線342),其中高側MOSFET 251往回接通、一峰值反向電流(點343)及隨著儲存電荷消耗最後反向電流衰減(曲線344)。甚至假定用於先前技術降壓及所揭示飛輪轉換器之相同電流波形,對應電壓波形仍實質上不同,即在二極體回復期間不同電路拓撲的一後果。
如圖9B之等效電路圖所示,在二極體回復期間一習知降壓或同步降壓轉換器380包含一控制電流源381,其表示在Vbatt 下連接至正端子385之高側MOSFET;在反向回復下的接地連接二極體386(其中二極體386係表示為一P-N二極體387與一電容器388之並聯組合);一固定電流源382,其表示電感器電流IL ;一電壓源383,其表示充電至一電壓Vc =Vout 的轉換器的輸出電容器;及一負載384。
在二極體回復之前的正向偏壓條件下,二極體387正在傳導且一正向偏壓Vf 橫跨二極體387發展。由於二極體387之陽極接地,故在正向偏壓下,電壓Vx 係低於接地,如由圖表340中曲線346所示。
在回復386下的二極體386係表示為一電容器388與一P-N二極體387之一並聯組合。電容器388表示沒有任何少數載子電荷儲存的電壓相依接面電容Cj (Vx )。P-N二極體387表示在正向偏壓期間或緊接其後相關聯於一P-N接面二極體內儲存少數載子之擴散電容。總電流Irect 包括傳導電流以及在空乏及擴散電容兩者內的任何電流,或者
該位移電流(Cj .dVj /dt)充電或放電該接面電容,從而引起空間電荷或空乏區域隨著接面電壓加寬或變窄。再結合電流描述少數載子之正常再結合,視半導體材料之少數載子壽命而定。萃取電流描述擴散至空乏區域內並運輸至接面之另一側的少數載子,即變成多數載子。
此等式之複雜化係接面偏壓影響電流且電流影響接面偏壓,由於該接面包含一類型內部回授。即係此效應甚至在從由曲線347所示之裝置移除少數載子時仍保持橫跨接面的電壓稍微恆定。最後,隨著移除最後少數載子,在一較高dV/dt旋轉率下,電壓Vx(rect) 從-Vf 快速上升至Vbatt 。該電壓過衝(點349),振鈴(曲線350)並最終安定在Vx =Vbatt
該降壓拓撲之一明顯態樣係在整流器二極體386之反向回復期間高側電流源381與回復二極體386基本上短路電源385。該回復出現,幾乎全部電池輸入電壓供應該電流,即用於二極體回復的一極苛刻偏壓條件。對比之下,圖9C之飛輪步降轉換器展現更溫和的回復條件。
如圖9C之等效電路圖所示,在二極體回復期間一飛輪降壓轉換器400包含一控制電流源401,其表示在Vbatt 下連接至正端子405之高側MOSFET;在反向回復下的輸出連接二極體406(表示為一P-N二極體407與一電容器408之一並聯組合);一固定電流源402,其表示電感器電流IL ;一電壓源403,其表示充電至一電壓Vc =Vout 的轉換器之輸出電容器;及一負載404。
在二極體回復之前的正向偏壓條件下,二極體407正在傳導且橫跨其發展一正向偏壓Vf 。但由於二極體407之陽極不接地而是連結至輸出電壓,在正向偏壓下,電壓Vx 如同其在一降壓轉換器而不低於接地(曲線346),但其係低於該輸出電壓一正向電壓降(即,Vx =(Vout -Vf )),如由圖表340中曲線360所示。
如在降壓轉換器之情況下,接面電容408與擴散電容在二極體406回復時保持該Vx 電壓半恆定(曲線361),但隨後驅動二極體回復之淨偏壓係僅(Vbatt -Vout )且並不如同其在降壓轉換器內係完全輸入電壓。隨著更低施加電壓,二極體回復係更平順的,具有一更低旋轉率(曲線362)、更少過衝(點363)及最小振鈴(曲線364)。
除了更平順的回復及更少過衝外的另一好處係由高側MOSFET 401供應至二極體406之二極體回復電流Ifw 不會流動至接地,而是至輸出電容器403與負載404。故在一飛輪步降轉換器中,甚至二極體回復電流供應能量至負載,藉此改良轉換器效率。
減少閘極驅動損失
該飛輪步降轉換器之另一好處係其減少閘極電荷及閘極驅動損失。因為Vx 僅在一最大值(+Vbatt -IL .RDS1 )與一最小值(+Vout -Vf )之間變化,橫跨高側MOSFET 251之汲極至源極電壓擺動△VDS1 係大約(Vbatt -Vout )。此更低電壓擺動之好處係減少米勒效應及更低的閘極電荷損失。此好處係說明於圖10A中,其中圖表440包括兩個閘極電荷曲線,即用於一飛輪步降轉換器之一曲線QG (B)與用於一習知降壓轉換器之一曲線QG (A)。
如所示,用於一降壓轉換器之閘極電荷曲線QG (A)包含一關閉區域、在點449結束的一△QGD 台地區域及超過該台地區域,一線性區域450,一對應汲極至源極電壓曲線具有區域441、442及443。在該汲極至源極電壓曲線之截止區域441內,VDS 係等於Vbatt 。在該汲極至源極電壓曲線之線性區域443內,VDS 係等於IL .RDS1
對比之下,用於一飛輪步降轉換器之閘極電荷曲線QG (B)包含截止區域、在點447結束的△QGD 台地區域及超過該台地區域,線性區域448,一對應汲極至源極電壓曲線具有區域444、445及446。在該汲極至源極電壓曲線之截止區域444內,VDS 係等於(Vbatt -Vout ),即在該等輸入及輸出電壓之間的差。在該汲極至源極電壓曲線之線性區域443內,VDS 係等於IL .RDS1 ,與一習知降壓轉換器相同。
由於在一飛輪步降轉換器內汲極電壓在一更小範圍上擺動,故該△QGD 台地之寬度成比例減少。此好處係更清楚地 說明在圖10B中,其針對在x軸上的閘極偏壓VGS 繪製在y軸上的MOSFET的閘極電荷(曲線466及467)、接通電阻(曲線465)及QG.RDS 乘法乘積(曲線468及469)。如圖表450中所示,直至在截止區域內的點462,在兩個轉換器內的高側MOSFET展現相同的閘極電荷461。超過點462,比較該飛輪步降轉換器的更小米勒效應電荷463,回授效應引起該降壓轉換器展現量值464的額外電荷△QGD 。對於更高閘極偏壓,兩個MOSFET展現具有相等斜率的線性遞增閘極電荷446及447。
為了進行一更精確比較,在該兩個應用電路內的MOSFET線性區域閘極電荷446及447可藉由電阻465來加以正規化,產生用於飛輪及降壓拓撲的優值曲線468及469。該降壓轉換器的優值曲線469具有一最小值QG .RDS1 ,其明顯高於該飛輪步降轉換器的優值曲線468。取決於該MOSFET的構造與該轉換器的輸入及輸出電壓,比較在相似小條件操作的先前技術降壓轉換器,該飛輪步降轉換器可將閘極驅動損失容易地減少多達80%。
排除不連續性並反轉電感器電流
該飛輪步降轉換器還在輕負載操作期間提供獨特好處,如圖11A之等效電路圖500所說明。如所示,在輕負載條件期間,在負載508正在汲取很少電流以在一目標值下維持Vout ,該飛輪步降轉換器可在一條件下操作持續延長持續時間,藉‘此高側MOSFET 505保持關閉(並因此顯示為一開啟電路)且電感器504繼續在飛輪箝位501內再循環其電流 而不影響負載508或輸出電容器507內的電流之極性。
在MOSFET 505係截止且Ix =0的時間期間,該負載係與該電池輸入切斷且在電感器504內的電流IL 主要透過接通狀態MOSFET 502來傳導,從而分流正向偏壓二極體503。由於IL =Ifw ,沒有任何電感器電流流入包含電容器507與負載508的輸出506內,即I1 =0。由於I1 為零,故負載電路506本質上與轉換器500之其他部分切斷,且輸出電容器507在需要時向負載508供應電流Iout
在電感電流再循環之延長週期期間,沒有任何能量從該電感器或電池傳送至輸出電路506,且輸出電壓Vout 將會隨著電容器507放電而逐漸遞減。此輸出電壓Vout 遞減係由圖11B之圖表515中的曲線516來說明。由曲線518所示之電壓Vx 循跡自飛輪MOSFET傳導期間起的輸出電壓,V x =V out -I L R DS 2
在此時間期間,電感器及飛輪MOSFET電流Ifw =IL 僅在量值上略微遞減(圖表520之曲線523)。若輸出電壓Vout 下垂過低,則此條件可由一比較器或各種其他構件所偵測到。如圖表515中所說明,當Vout 在點517到達一限制Vout(min) 時,控制電路偵測到該輸出電壓正在超出指定調節。
一旦偵測到此條件,飛輪MOSFET 502便關閉且高側MOSFET 505瞬時接通,驅動Vx 至由曲線521表示的一電壓,刷新電容器507並使Vout 至在其指定電壓範圍Vout(max) 之較高末端的一電壓(曲線518)。
在此間隔期間,遞送電感器電流至負載508及輸出電容 器507,藉此I3 =IL ,並因此Ifw =0。一旦Vout 到達由曲線518所表示的條件,高側MOSFET 505便關閉,飛輪MOSFET 502係接通,且該轉換器返回至等效電路圖500所示之其飛輪狀態,一飛輪電流Ifw 等於電感器電流IL
由於在輸出電路506內不存在任何實質電感,故對於一電阻性負載508,電流Iout 與輸出電壓Vc =Vout 以一時間常數τout =RC呈指數衰減而沒有任何用以反向極性之構件。類似地,由於僅存在接面電容,故飛輪分流器及電壓箝位501連續地傳導電感器電流IL ,其以一時間常數τFW =L/R呈指數衰減。由於在此隔離飛輪電路內沒有明顯電容存在,不存在任何電感器電流IL 可反向極性之構件。
即使存在足夠寄生及接面電容以形成一LC槽並引起振盪,且即使該電感器電路確實最後反向方向,其仍不影響轉換器的效率。在輕負載操作中,正如在正常操作中,在該電感器電路正在飛輪的任何時候,I1 =0且13 =0,使得該飛輪電路不會影響在高側MOSFET 505或輸出電路506內的電流或電壓。
或者,在IL 接近反向其方向的一條件的任何時候,可偵測到極性且可關閉飛輪MOSFET 502。但由於在任一情況下I3 =0,電流IL 之極性不會影響輸出電路506且與轉換器的輕負載操作無關。
理論上,若IL 在一反向方向上流動,則其可在MOSFET 505往回接通時引起一電流尖峰。一用以防止此電流尖峰之構件係等待直至IL 在其正常方向上往回振盪,即從該Vx 節點至該Vout 節點,之後再次接通MOSFET 505。然而即使IL 在反向方向上流動,其量值仍將會較小且所得電流尖峰將可忽略不計。
飛輪步降轉換器MOSFET閘極驅動考量
作為一實際問題,在一飛輪步降轉換器內的該等高側及飛輪MOSFET可包含N通道及P通道裝置之任一組合。
在一全P通道具體實施例中,如圖12A所示,飛輪步降轉換器530包含一高側P通道MOSFET 531、一飛輪P通道MOSFET 532、一電感器533及一輸出電容器534。並聯於飛輪MOSFET 537之一飛輪二極體536在高側MOSFET 531係關閉的任何時候變得正向偏壓並傳導,並反之在高側MOSFET 531係接通的任何時候保持反向偏壓且不傳導。
如示意圖530所說明,高側MOSFET 531係由一CMOS閘極緩衝器535來驅動,該CMOS閘極緩衝器係由輸入電壓Vbatt 來供電。在緩衝器535之輸出係在Vbatt 時,則MOSFET 531之閘極至源極電壓VGS1 係等於零且MOSFET 531係關閉。在緩衝器535之輸出係在接地時,MOSFET 531之閘極偏壓VGS2 係等於一Vbatt 且MOSFET 531係完全接通並傳導。高側MOSFET 531之接通電阻不取決於Vout 的值。並聯於MOSFET 531之二極體539保持反向偏壓且不傳導。(如本文所使用,VGS1 指定較高閘極電壓而VGS2 指定由一閘極緩衝器提供至一給定MOSFET之較低閘極電壓,除非上下文另有指示。)
也在電路530中,飛輪MOSFET 532包含一P通道電晶體 537,其具有並聯連接電感器533之一本質P-N二極體536。由該轉換器的輸入電壓Vbatt 供電,閘極驅動緩衝器538使用一軌對軌信號來驅動MOSFET 537。在緩衝器538之輸出係處於Vbatt 時,則MOSFET 537之閘極偏壓VGS1 係等於Vbatt -Vout >0,即一正閘極偏壓。由於MOSFET 537係一P通道MOSFET,故一正閘極偏壓關閉其。在緩衝器538之輸出係在接地且Vx Vout 時,MOSFET 537之閘極偏壓VGS2 係等於-Vout 且MOSFET 537係接通並傳導。
飛輪P通道MOSFET 537之接通電阻取決於電壓Vout 。若Vout 接近Vbatt ,則在一接地閘極下,外加在MOSFET 537上的VGS 之量值係較大且其電阻係較低。反之,若Vout 接近接地,則由於VGS2 =-Vout ,MOSFET 537不完全增強且其接通電阻將會較高。對於極低輸出電壓轉換器,例如Vout =0.9 V,該閘極驅動可能不足以接通飛輪MOSFET 537。
在圖12B所示之一互補隨耦器具體實施例中,一飛輪步降轉換器560包含一高側N通道MOSFET 561、一飛輪P通道MOSFET 567、一電感器563及一輸出電容器564。並聯於飛輪MOSFET 567之一飛輪二極體566在高側MOSFET 561係關閉的任何時候變得正向偏壓並傳導,並反之在該高側MOSFET係接通的任何時候保持反向偏壓且不傳導。
如示意圖560所說明,高側MOSFET 561係由一靴帶式供電CMOS閘極緩衝器565來驅動,該靴帶式供電CMOS閘極緩衝器係由在MOSFET 561係關閉的任何時候充電至一電 壓Vboot 之靴帶式電容器570來供電。在該時間期間,Vx 係大約等於Vout 且Vboot 充電至一電壓(Vbatt -Vout -Vf ),其中Vf 係橫跨一靴帶式二極體571的正向電壓降。在緩衝器565之輸出較高時,其輸出係偏壓至一電壓(Vx +Vboot ),則使得VGS1 =Vboot 且MOSFET 561係接通。高側MOSFET 561之接通電阻取決於Vout 的值。若Vout 係較低,即更接近接地,則Vboot 係較大且MOSFET 561係在其接通狀態下完全增強。反之,若Vout 係較高,更接近電池電位,則Vboot 可能不足以完全增強N通道MOSFET 561。
為了關閉高側N通道561,其閘極必須偏壓至一等於Vx 或比其更負的一電位。如所示,在緩衝器565之輸出係較低時,則因為緩衝器565係參考該浮動Vx 節點,則閘極偏壓VGS1 =0且N通道MOSFET 561係關閉且不傳導。並聯於MOSFET 561之二極體569保持反向偏壓且不傳導。
在轉換器560中,如在轉換器530中,飛輪MOSFET 562包含一P通道電晶體567,其具有並聯於電感器563之本質P-N二極體566。也由Vbatt 供電,閘極緩衝器568使用等於全電池電壓範圍的一偏壓範圍來驅動MOSFET 567。在緩衝器568之輸出係在Vbatt 時,則VGS1 0,即關閉P通道MOSFET 567的一零閘極偏壓。在緩衝器568之輸出係接地且Vx Vout 時,則閘極偏壓VGS2 =-Vbatt 且MOSFET 567係接通並傳導。
P通道567之接通電阻取決於電壓Vout 。若Vout 接近Vbatt ,則在一接地閘極下,外加在MOSFFT 567上的VGS 之量值係 較大且其電阻係較低。反之,若Vout 接近接地,則由於VGS2 =-Vout ,該裝置不完全增強且其接通電阻將會較高。對於極低輸出電壓轉換器,例如Vout =0.9 V,閘極驅動可能不足以接通飛輪MOSFET 567。
圖12C及12D所示之飛輪步降轉換器600及630之互補MOSFET實施方案運用由閘極緩衝器605及635軌對軌驅動的P通道高側MOSFET 601及631。高側MOSFET 601及631之接通電阻不取決於輸出電壓Vout
在轉換器600及630內的該等N通道飛輪MOSFET 607及637在其閘極驅動上不同。在轉換器600中,如圖12C所示,N通道飛輪MOSFET 607係由一Vbatt 供電閘極緩衝器608來軌對軌驅動。接地MOSFET 607之閘極會關閉其。在緩衝器608之輸出係偏壓至Vbatt 時,MOSFET 607表現如同一隨耦器並展現一較低電阻,假定Vout 不過於靠近Vbatt 。若Vout 過於靠近Vbatt ,則閘極偏壓可能不足以在MOSFET 607內提供一較低接通電阻。
用於一N通道飛輪MOSFET之一閘極驅動之一改良具體實施例係顯示於圖12D中,其中一閘極緩衝器638係由一電荷幫浦電容器640來充電,該電荷幫浦電容器係藉由在高側MOSFET 631係接通並傳導的任何時候接通一低側MOSFET 643來充電至幾乎完全電池電壓Vbatt 。在此時間期間,一二極體642正向偏壓並充電電容器640至一電壓VCP =(Vbatt -Vf ),其中Vf 係橫跨二極體642的正向電壓降。在此時間期間,MOSFET 644係關閉且二極體645係反向偏 壓。
為了接通飛輪MOSFET 637,電荷幫浦MOSFET 643係與高側MOSFET 631一致關閉。MOSFET 644係接通,使電荷幫浦電容器640及閘極緩衝器638之負端子參考輸出電壓Vout 。隨即,電容器640之正端子採取一電位(VCP +Vout ),使得在飛輪N通道MOSFET 637上的閘極偏壓接著由關係VGS =VCP Vbatt 給出。由於閘極緩衝器638與N通道飛輪MOSFET 637均參考Vout ,則MOSFET 637之接通電阻係獨立於Vout 之值。類似於高側P通道MOSFET 631,飛輪N通道MOSFET 637因此具有一較低接通電阻,其不取決於Vout 之值。
在此方面,轉換器630表示包含本文所揭示之步降飛輪轉換器及電壓調節器的閘極驅動及功率MOSFET拓撲之一較佳具體實施例。
下表概述該飛輪步降切換調節器之效能好處並將其與較不有利的先前降壓及同步降壓轉換器進行比較。
雖然已描述此發明之特定具體實施例,但該些具體實施例係說明性而非限制性。根據本文描述,習知此項技術者將會瞭解許多額外及替代性具體實施例。
1‧‧‧降壓轉換器
2‧‧‧P通道或N通道功率MOSFET
3‧‧‧電感器
4‧‧‧輸出電容器
5‧‧‧肖特基整流器二極體
6‧‧‧脈衝寬度調變(PWM)控制器
7‧‧‧二極體
10‧‧‧圖表
11‧‧‧曲線
13‧‧‧振鈴
14‧‧‧曲線
20‧‧‧同步降壓轉換器
21‧‧‧低測同步整流器MOSFET
22‧‧‧高側功率MOSFET開關
23‧‧‧電感器
24‧‧‧輸出電容器
25‧‧‧本質並聯二極體
26‧‧‧PWM控制器
27‧‧‧先斷後合(BBM)電路
28‧‧‧二極體
30‧‧‧圖表
31‧‧‧曲線
33‧‧‧振鈴
36‧‧‧曲線
38‧‧‧過電壓尖峰
40‧‧‧圖表
41‧‧‧插圖
42‧‧‧插圖
43‧‧‧插圖
44‧‧‧插圖
50‧‧‧曲線
51‧‧‧曲線
52‧‧‧點
53‧‧‧曲線
54‧‧‧曲線
60‧‧‧曲線
61‧‧‧曲線
62‧‧‧曲線
63‧‧‧曲線
64‧‧‧曲線
65‧‧‧點
66‧‧‧曲線
67‧‧‧插圖/曲線
100‧‧‧等效電路
101‧‧‧電壓源
102‧‧‧控制電流源
103‧‧‧電流源
104‧‧‧電壓源
105‧‧‧回復二極體
106‧‧‧P-N接面二極體
107‧‧‧接面電容
108‧‧‧插圖
110‧‧‧線/線性區域
111‧‧‧曲線
112‧‧‧點
113‧‧‧點
120‧‧‧降壓轉換器
122‧‧‧P通道MOSFET
125‧‧‧閘極驅動器
126‧‧‧電容器
127‧‧‧電容器
128‧‧‧電容器
140‧‧‧降壓轉換器
142‧‧‧高側N通道MOSFET
145‧‧‧源極參考閘極驅動器
146‧‧‧電容器
147‧‧‧電容器
148‧‧‧電容器
149‧‧‧靴帶式電容器
150‧‧‧正向偏壓靴帶式二極體
160‧‧‧閘極電荷曲線/圖表
161‧‧‧關閉部分
162‧‧‧閘極電壓/線性區域
163‧‧‧曲線
164‧‧‧曲線/飽和部分
165‧‧‧汲極電壓
170‧‧‧圖表
171‧‧‧曲線/接通電阻
172‧‧‧曲線
173‧‧‧曲線
174‧‧‧區域
175‧‧‧最佳偏壓條件
176‧‧‧區域
200‧‧‧電路
202‧‧‧高側MOSFET
203‧‧‧電感器
204‧‧‧輸出電容器
205‧‧‧本質並聯二極體
210‧‧‧圖表
212‧‧‧點
213‧‧‧曲線
215‧‧‧曲線
216‧‧‧曲線
217‧‧‧曲線
218‧‧‧點
219‧‧‧曲線
225‧‧‧圖表
226‧‧‧點
227‧‧‧點
228‧‧‧點
229‧‧‧點
230‧‧‧點
231‧‧‧點
232‧‧‧點
233‧‧‧曲線
235‧‧‧電路
236‧‧‧MOSFET
237‧‧‧低側MOSFET
238‧‧‧二極體
239‧‧‧電感器
240‧‧‧輸出電容器
241‧‧‧負載
242‧‧‧負載
250‧‧‧轉換器
251‧‧‧高側功率MOSFET
252‧‧‧電感器
253‧‧‧輸出電容器
254‧‧‧二極體
255‧‧‧二極體
256‧‧‧飛輪箝位
257‧‧‧飛輪功率MOSFET
258‧‧‧二極體
260‧‧‧脈衝寬度調變(PWM)控制器
261‧‧‧先斷後合(BBM)電路
262‧‧‧負載
265‧‧‧飛輪箝位
266‧‧‧電路
281‧‧‧曲線
283‧‧‧BBM間隔
291‧‧‧值
292‧‧‧值/電流
296‧‧‧值/點
297‧‧‧值/電路
298‧‧‧電流
299‧‧‧點
300‧‧‧圖表
301‧‧‧曲線
302‧‧‧曲線
304‧‧‧電壓降
305‧‧‧BBM間隔
340‧‧‧圖表
341‧‧‧曲線
342‧‧‧曲線
343‧‧‧點
344‧‧‧曲線
346‧‧‧曲線
347‧‧‧曲線
349‧‧‧點
350‧‧‧曲線
360‧‧‧曲線
361‧‧‧曲線
362‧‧‧曲線
363‧‧‧點
364‧‧‧曲線
380‧‧‧降壓或同步降壓轉換器
381‧‧‧控制電流源
382‧‧‧固定電流源
383‧‧‧電壓源
384‧‧‧負載
385‧‧‧正端子/電源
386‧‧‧二極體
387‧‧‧P-N二極體
388‧‧‧電容器
400‧‧‧飛輪降壓轉換器
401‧‧‧控制電流源/高側MOSFET
402‧‧‧固定電流源
403‧‧‧電壓源
404‧‧‧負載
405‧‧‧正端子
406‧‧‧二極體
407‧‧‧P-N二極體
408‧‧‧電容器/接面電容
440‧‧‧圖表
441‧‧‧區域
442‧‧‧區域
443‧‧‧區域
444‧‧‧區域
445‧‧‧區域
446‧‧‧區域
447‧‧‧點
448‧‧‧線性區域
449‧‧‧點
450‧‧‧線性區域
461‧‧‧閘極電荷
462‧‧‧點
463‧‧‧電荷
464‧‧‧量值
465‧‧‧曲線/電阻
466‧‧‧曲線/閘極電荷
467‧‧‧曲線/閘極電荷
468‧‧‧曲線
469‧‧‧曲線
515‧‧‧圖表
516‧‧‧曲線
517‧‧‧點
518‧‧‧曲線
520‧‧‧圖表
521‧‧‧曲線
523‧‧‧曲線
500‧‧‧等效電路圖
501‧‧‧飛輪箝位
502‧‧‧接通狀態MOSFET
503‧‧‧正向偏壓二極體
504‧‧‧電感器
505‧‧‧高側MOSFET
506‧‧‧輸出
507‧‧‧輸出電容器
508‧‧‧負載
530‧‧‧飛輪步降轉換器
531‧‧‧高側P通道
532‧‧‧飛輪P通道MOSFET
533‧‧‧電感器
534‧‧‧輸出電容器
535‧‧‧CMOS閘極緩衝器
536‧‧‧飛輪二極體/本質P-N二極體
537‧‧‧飛輪MOSFET/P通道電晶體
538‧‧‧緩衝器
539‧‧‧二極體
560‧‧‧飛輪步降轉換器
561‧‧‧高側N通道MOSFET
562‧‧‧飛輪MOSFET
563‧‧‧電感器
564‧‧‧輸出電容器
565‧‧‧靴帶式供電CMOS閘極緩衝器
566‧‧‧本質P-N二極體
567‧‧‧飛輪P通道MOSFET
568‧‧‧閘極緩衝器
569‧‧‧二極體
570‧‧‧靴帶式電容器
571‧‧‧靴帶式二極體
600‧‧‧飛輪步降轉換器
601‧‧‧P通道高側MOSFET
605‧‧‧閘極緩衝器
607‧‧‧N通道飛輪MOSFET
608‧‧‧閘極緩衝器
630‧‧‧飛輪步降轉換器
631‧‧‧P通道高側MOSFET
635‧‧‧閘極緩衝器
637‧‧‧N通道飛輪MOSFET
638‧‧‧閘極緩衝器
640‧‧‧電荷幫浦電容器
642‧‧‧二極體
643‧‧‧低側MOSFET/電荷幫浦MOSFET
644‧‧‧MOSFET
645‧‧‧二極體
Vx ‧‧‧節點/電壓
圖1A係一習知先前技術降壓切換調節器(A)示意圖之一電路圖。
圖1B係顯示在降壓切換調節器內切換波形之一圖表。
圖2A係一習知先前技術同步降壓切換調節器之一電路圖。
圖2B係顯示在同步降壓切換調節器內切換波形之一圖表。
圖2C係顯示在二極體強制性反向回復波形期間波形之一圖表。
圖2D係強制性二極體回復條件之一等效電路圖。
圖3A係顯示在共同源極組態功率MOSFET中貢獻於閘極驅動相關切換損失之組件的一電路圖。
圖3B係顯示在源極隨耦器組態功率MOSFET中貢獻於閘極驅動相關切換損失之組件的一電路圖。
圖3C係顯示VGS 及VDS 與閘極電荷成一函數關係的一圖表。
圖3D係顯示在接通電阻與閘極電荷之間折衷的一圖表。
圖4A係顯示在一無整流器降壓轉換器中未箝位電感切換的一電路圖。
圖4B係在圖4A之降壓轉換器中波形之一圖表。
圖5A係顯示在輕負載操作期間在降壓轉換器中不連續傳導之一圖表。
圖5B係顯示在一同步降壓轉換器中電流反向之一電路圖。
圖6係依據本發明之一飛輪步降轉換器之一電路圖。
圖7A至7D係描述一飛輪步降轉換器之操作模式之電路圖,該等操作模式包括電感器正在磁化(圖7A)、整流器二極體正在飛輪(圖7B)、MOSFET正在飛輪(圖7C)及整流器二極體正在飛輪(圖7D)。
圖8A至8D係顯示一飛輪步降轉換器之波形之圖表,包括在電感器節點處的電壓Vx (圖8A)、電感器電流IL (圖8B)、在高側MOSFET與飛輪箝位之間的電流"交遞"(圖8C)及橫跨電感器的電壓VL (圖8D)。
圖9A顯示在一飛輪步降轉換器中在強制性二極體回復期間重疊電流及電壓波形。
圖9B係用於一習知降壓轉換器之一等效電路圖。
圖9C係用於一飛輪步降轉換器之一等效電路圖。
圖10A係顯示在一習知降壓及飛輪步降轉換器中在閘極及汲極電壓與閘極電荷成一函數關係之間一比較的一圖表。
圖10B係在習知降壓及飛輪步降轉換器中接通電阻/閘極電荷折衷之一圖表。
圖11A係在輕負載條件下一飛輪步降轉換器之一等效電路圖。
圖11B係說明在輕負載操作期間在一飛輪步降轉換器中電壓及電流波形之一圖表。
圖12A係具有一P通道高側MOSFET與一P通道飛輪MOSFET之一飛輪步降轉換器之一電路圖。
圖12B係具有一N通道高側MOSFET隨耦器與一P通道飛輪MOSFET之一飛輪步降轉換器之一電路圖。
圖12C係具有一P通道高側與一具有一固定軌驅動之N通道飛輪MOSFET之一飛輪步降轉換器之一電路圖。
圖12D係具有一P通道高側MOSFET與一具有一電荷幫浦浮動驅動之N通道飛輪MOSFET之一飛輪步降轉換器之一電路圖。
250‧‧‧轉換器
251‧‧‧高側功率MOSFET
252‧‧‧電感器
253‧‧‧輸出電容器
254‧‧‧二極體
255‧‧‧二極體
256‧‧‧飛輪箝位
257‧‧‧飛輪功率MOSFET
258‧‧‧二極體
260‧‧‧脈衝寬度調變(PWM)控制器
261‧‧‧先斷後合(BBM)電路
Vx ‧‧‧節點/電壓

Claims (22)

  1. 一種直流/直流轉換器,其包含:一高側MOSFET、一電感器及一輸出電容器,該輸出電容器係串聯連接於一輸入端子與一供應電壓端子之間;一包含一飛輪MOSFET之飛輪箝位,該飛輪MOSFET係並聯連接該電感器,因而於該飛輪MOSFET接通時使該電感器之一第一端子與一第二端子短路;先斷後合BBM電路,其係分別連接以驅動該等高側及飛輪MOSFET之閘極;一脈衝寬度調變電路,其係連接以驅動該BBM電路;以及一輸出端子,其係耦合至在該電感器與該輸出電容器之間的一節點。
  2. 如請求項1之直流/直流轉換器,其進一步包含一飛輪二極體,其係並聯於該飛輪MOSFET。
  3. 如請求項2之直流/直流轉換器,其中該飛輪二極體包含在該飛輪MOSFET內的一本質二極體。
  4. 如請求項2之直流/直流轉換器,其中該飛輪二極體係在方向上連接以阻隔在該輸入端子與該供應電壓端子之間的一電流流動。
  5. 如請求項1之直流/直流轉換器,其中該BBM電路包含一BBM緩衝器,其具有一輸出端子連接以分別驅動該等高側及飛輪MOSFET之該等閘極,該BBM緩衝器之一第一 供應端子係連接至該輸入端子,該BBM緩衝器之一第二供應端子係連接至該供應電壓端子。
  6. 如請求項5之直流/直流轉換器,其中該等高側及飛輪MOSFET之各MOSFET包含一P通道MOSFET。
  7. 如請求項5之直流/直流轉換器,其中該高側MOSFET包含一P通道MOSFET而該飛輪MOSFET包含一N通道MOSFET。
  8. 如請求項1之直流/直流轉換器,其中該BBM電路包含一第一BBM緩衝器,其具有一輸出端子連接以驅動該高側MOSFET之該閘極,該第一BBM緩衝器之一第一供應端子係透過一第二二極體連接至該輸入端子,該第一BBM緩衝器之一第二供應端子係耦合至在該高側MOSFET與該電感器之間的一共同節點,一靴帶式電容器係連接於該第一BBM緩衝器之該等第一及第二供應端子之間。
  9. 如請求項8之直流/直流轉換器,其中該高側MOSFET包含一N通道MOSFET。
  10. 如請求項8之直流/直流轉換器,其中該BBM電路包含一第二BBM緩衝器,其具有一輸出端子連接以驅動該飛輪MOSFET之該閘極,該第二BBM緩衝器之一第一供應端子係連接至該輸入端子,該第二BBM緩衝器之一第二供應端子係連接至該供應電壓端子。
  11. 如請求項10之直流/直流轉換器,其中該飛輪MOSFET包含一P通道MOSFET。
  12. 如請求項1之直流/直流轉換器,其中該BBM電路包含一 第一BBM緩衝器,其具有一輸出端子連接以驅動該飛輪MOSFET之該閘極,該第一BBM緩衝器之一第一供應端子係透過一第二二極體連接至該輸入端子,該第一BBM緩衝器之一第二供應端子係透過一第三MOSFET連接至該供應電壓端子並透過一第四MOSFET連接至在該電感器與該輸出電容器之間的一共同節點,一靴帶式電容器係連接於該第一BBM緩衝器之該等第一及第二供應端子之間。
  13. 如請求項12之直流/直流轉換器,其中該飛輪MOSFET包含一N通道MOSFET。
  14. 如請求項12之直流/直流轉換器,其中該BBM電路包含一第二BBM緩衝器,其具有一輸出端子連接以驅動該高側MOSFET之該閘極,該第二BBM緩衝器之一第一供應端子係連接至該輸入端子,該第二BBM緩衝器之一第二供應端子係連接至該供應電壓端子。
  15. 如請求項14之直流/直流轉換器,其中該高側MOSFET包含一P通道MOSFET。
  16. 如請求項1之直流/直流轉換器,其進一步包含一回授電路,其從該輸出端子延伸至該脈衝寬度調變電路之一輸入端子。
  17. 一種轉換一第一直流電壓至一第二直流電壓之方法,其包含:提供一電路,其包含一第一開關,其係串聯連接於該轉換器之一輸入端子與一電感器之一第一端子之間;及 一第二開關,其係耦合於該第一端子與該電感器之一第二端子之間;連接該第一直流電壓至該轉換器之該輸入端子;閉合該第一開關以便磁化該電感器;在該第一開關係閉合時維持該第二開關開啟;開啟該第一開關;在開啟該第一開關之後,閉合該第二開關以便使該電感器之該第一與第二端子短路,並允許一飛輪電流流過該第二開關與該電感器;以及在該轉換器之一輸出端子處獲取該第二直流電壓,該輸出端子係耦合至該電感器之該第二端子。
  18. 如請求項17之方法,其進一步包含並聯於該第二開關連接一二極體。
  19. 如請求項18之方法,其包含允許一第一BBM間隔以在開啟該第一開關之後閉合該第二開關之前經過。
  20. 如請求項18之方法,其包含開啟該第二開關。
  21. 如請求項20之方法,其包含在開啟該第二開關之後重新閉合該第一開關。
  22. 如請求項21之方法,其包含允許一第二BBM間隔以在開啟該第二開關之後重新閉合該第一開關之前經過。
TW097115125A 2007-04-25 2008-04-24 直流/直流轉換器及其方法 TWI390826B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US92609707P 2007-04-25 2007-04-25
US12/148,570 US8035364B2 (en) 2007-04-25 2008-04-21 Step-down switching regulator with freewheeling diode

Publications (2)

Publication Number Publication Date
TW200901612A TW200901612A (en) 2009-01-01
TWI390826B true TWI390826B (zh) 2013-03-21

Family

ID=39926262

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097115125A TWI390826B (zh) 2007-04-25 2008-04-24 直流/直流轉換器及其方法

Country Status (7)

Country Link
US (1) US8035364B2 (zh)
EP (1) EP2143194B1 (zh)
JP (1) JP5137269B2 (zh)
KR (1) KR101229462B1 (zh)
CN (1) CN101755380B (zh)
TW (1) TWI390826B (zh)
WO (1) WO2008133859A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674491B (zh) * 2018-10-26 2019-10-11 瑞昱半導體股份有限公司 穩壓裝置及其控制方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069711B2 (ja) * 2009-03-09 2012-11-07 三菱電機株式会社 Mosfetモデルのパラメータ抽出方法
CN102549903A (zh) * 2009-06-27 2012-07-04 美高森美公司 边界模式耦合电感器升压功率转换器
US8115460B2 (en) * 2010-01-23 2012-02-14 Moshe Kalechshtein Power conversion with zero voltage switching
JP5079055B2 (ja) * 2010-06-28 2012-11-21 三菱電機株式会社 電力変換装置
US8350414B2 (en) * 2010-08-11 2013-01-08 Xantrex Technology Inc. Semiconductor assisted DC load break contactor
TWI418129B (zh) * 2010-12-24 2013-12-01 Hanergy Technologies Inc 電荷幫浦裝置及其穩壓方法
CN102104335B (zh) * 2011-01-07 2013-03-20 深圳市九洲电器有限公司 电源三端稳压器
JP5760715B2 (ja) * 2011-06-03 2015-08-12 富士通株式会社 Dc−dcコンバータ、及び、電子装置
EP2745368B1 (en) 2011-08-19 2019-04-10 Marvell World Trade Ltd. Start-up circuit
TWI444965B (zh) * 2011-12-30 2014-07-11 Au Optronics Corp 閘極高電壓產生器及顯示模組
TWI478475B (zh) * 2012-03-28 2015-03-21 Univ Nat Cheng Kung 換流裝置及其換流方法
CN104205624B (zh) 2012-03-30 2018-05-15 英特尔公司 具有电解电容器的低频转换器
JP6046988B2 (ja) * 2012-11-19 2016-12-21 ローム株式会社 スイッチ駆動回路
CN103856071B (zh) * 2012-12-07 2017-06-16 上海亿思特电气股份有限公司 高压变频器的功率单元控制电路
TWI462441B (zh) * 2013-03-14 2014-11-21 Richtek Technology Corp 電源轉換電路及相關的控制電路
TWI496400B (zh) * 2013-07-29 2015-08-11 Anpec Electronics Corp 電壓轉換電路與使用其的電子系統
CN103427624B (zh) * 2013-08-21 2015-09-09 电子科技大学 用于集成式降压型dc/dc开关变换器的抗振铃电路
TWI506940B (zh) * 2013-11-01 2015-11-01 Hep Tech Co Ltd A fly - back AC / DC converter and its conversion method
US9859793B2 (en) 2014-01-07 2018-01-02 Endura Technologies LLC Switched power stage with inductor bypass and a method for controlling same
JP6261349B2 (ja) * 2014-01-22 2018-01-17 エスアイアイ・セミコンダクタ株式会社 ボルテージレギュレータ
US9496787B2 (en) * 2014-08-13 2016-11-15 Endura Technologies LLC Switched power stage and a method for controlling the latter
KR102240284B1 (ko) 2014-10-23 2021-04-15 삼성디스플레이 주식회사 Dc-dc 컨버터 및 이를 포함하는 표시 장치
US9461543B2 (en) * 2014-12-01 2016-10-04 Endura Technologies LLC DC-DC converter with digital current sensing
DE202015103339U1 (de) * 2015-06-25 2016-09-30 Weidmüller Interface GmbH & Co. KG Schaltungsanordnung für einen sicheren digitalen Schaltausgang
CN105913874B (zh) * 2016-04-20 2019-11-29 合肥格易集成电路有限公司 一种电压检测电路和flash存储器
CN105895159B (zh) * 2016-04-20 2020-01-21 北京兆易创新科技股份有限公司 一种电压检测电路和flash存储器
JP6160762B1 (ja) 2016-12-07 2017-07-12 富士通株式会社 保護回路、増幅器及びスイッチング電源装置
EP3471248B1 (en) * 2017-10-16 2020-04-08 The Swatch Group Research and Development Ltd Energy harvesting circuit with an oscillating structure
JP6805202B2 (ja) * 2018-04-20 2020-12-23 株式会社京三製作所 Dc/dcコンバータ、及びdc/dcコンバータの制御方法
CN108900083B (zh) 2018-06-05 2020-09-18 华为技术有限公司 功率转换器及相关系统
CN110829835B (zh) * 2018-08-14 2022-02-25 万国半导体(开曼)股份有限公司 用于降压衍生开关模式电源的三象限电桥
US10686367B1 (en) * 2019-03-04 2020-06-16 Psemi Corporation Apparatus and method for efficient shutdown of adiabatic charge pumps
CN114041262B (zh) * 2019-06-14 2024-03-26 罗姆股份有限公司 开关电源装置
US10862472B1 (en) 2019-07-11 2020-12-08 Infineon Technologies Ag System and method of charging a buffer capacitor
CN111158039B (zh) * 2020-01-02 2022-01-04 苏州瑞派宁科技有限公司 信号采样、重建方法及装置
US11101729B1 (en) 2020-03-27 2021-08-24 Vitesco Technologies USA, LLC Protection circuit for high inductive loads
CN111404236B (zh) * 2020-04-24 2022-05-13 深圳硕日新能源科技有限公司 一种光伏充电控制器的充电电路及光伏充电控制器
NL2026072B1 (en) * 2020-07-15 2022-03-18 Prodrive Tech Bv Voltage waveform generator for plasma assisted processing apparatuses
KR102282679B1 (ko) * 2021-02-03 2021-07-28 (주)그린파워 다이렉트 전기차 충전기
TWI825778B (zh) * 2021-06-21 2023-12-11 美商茂力科技股份有限公司 傳導電感式穩壓器
CN114285307B (zh) * 2021-12-31 2022-09-02 麦田能源有限公司 Dc-ac变换器及系统
CN117526717B (zh) * 2024-01-03 2024-04-19 杰华特微电子股份有限公司 一种用于开关电源的频率调节电路、调节方法及开关电源

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262930A (en) 1992-06-12 1993-11-16 The Center For Innovative Technology Zero-voltage transition PWM converters
US5705919A (en) * 1996-09-30 1998-01-06 Linear Technology Corporation Low drop-out switching regulator architecture
US6051963A (en) * 1998-10-09 2000-04-18 Linear Technology Corporation Methods and apparatus for actively snubbing waveforms in switching regulators
US6349044B1 (en) * 1999-09-09 2002-02-19 Virginia Tech Intellectual Properties, Inc. Zero voltage zero current three level dc-dc converter
US6271651B1 (en) * 2000-04-20 2001-08-07 Volterra Semiconductor Corporation Inductor shorting switch for a switching voltage regulator
US6509721B1 (en) * 2001-08-27 2003-01-21 Koninklijke Philips Electronics N.V. Buck regulator with ability to handle rapid reduction of load current
WO2004047277A1 (en) * 2002-11-15 2004-06-03 Philips Intellectual Property & Standards Gmbh Power converter
JP2006014559A (ja) * 2004-06-29 2006-01-12 Murata Mfg Co Ltd Dc−dcコンバータ
CN2796237Y (zh) * 2005-04-26 2006-07-12 美国芯源系统股份有限公司 开关电源
US7652457B2 (en) * 2005-09-30 2010-01-26 St-Ericsson Sa Switching regulator circuit including an inductor shunt switch
US20070229047A1 (en) * 2006-03-31 2007-10-04 James Sigamani Tapped inductor buck dc-dc converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674491B (zh) * 2018-10-26 2019-10-11 瑞昱半導體股份有限公司 穩壓裝置及其控制方法

Also Published As

Publication number Publication date
TW200901612A (en) 2009-01-01
KR101229462B1 (ko) 2013-02-05
KR20100022959A (ko) 2010-03-03
WO2008133859A2 (en) 2008-11-06
CN101755380B (zh) 2014-05-28
EP2143194B1 (en) 2015-10-21
WO2008133859A3 (en) 2008-12-24
JP2010525786A (ja) 2010-07-22
EP2143194A4 (en) 2011-03-16
US8035364B2 (en) 2011-10-11
US20080291711A1 (en) 2008-11-27
JP5137269B2 (ja) 2013-02-06
EP2143194A2 (en) 2010-01-13
CN101755380A (zh) 2010-06-23

Similar Documents

Publication Publication Date Title
TWI390826B (zh) 直流/直流轉換器及其方法
KR101324806B1 (ko) 동기식 프리휠링 mosfet를 구비한 부스트 및 업다운 스위칭 레귤레이터
US7746042B2 (en) Low-noise DC/DC converter with controlled diode conduction
JP5362721B2 (ja) 二極性マルチ出力dc/dcコンバータ及び電圧レギュレータ
US20020141209A1 (en) Control circuit for synchronous rectifiers in DC/DC converters to reduce body diode conduction losses
US7564704B2 (en) Method of forming a power supply controller and structure therefor
Umegami et al. A novel high-efficiency gate drive circuit for normally off-type GaN FET
TW200919920A (en) Time-multiplexed multi-output DC/DC converters and voltage regulators
CN114629358A (zh) 具有有源钳位器的同步整流栅极驱动器
Chen et al. Integrated current sensing circuit suitable for step-down dc-dc converters
JP2003244946A (ja) 同期整流回路及び電源装置
CN108352785B (zh) 用于电力转换器中的谐振能量最小化的方法及设备
JP4328417B2 (ja) 電源回路
JP2005027417A (ja) 同期整流回路及び電源装置
KR20070065818A (ko) 파워 컨버터에서의 영전압 스위칭(zvs)
JP2004173433A (ja) 降圧チョッパー回路