TWI390739B - 有機光敏裝置 - Google Patents

有機光敏裝置 Download PDF

Info

Publication number
TWI390739B
TWI390739B TW094127141A TW94127141A TWI390739B TW I390739 B TWI390739 B TW I390739B TW 094127141 A TW094127141 A TW 094127141A TW 94127141 A TW94127141 A TW 94127141A TW I390739 B TWI390739 B TW I390739B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
nanoparticles
organic
photoactive region
Prior art date
Application number
TW094127141A
Other languages
English (en)
Other versions
TW200611419A (en
Inventor
Stephen R Forrest
Barry P Rand
Original Assignee
Univ Princeton
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Princeton filed Critical Univ Princeton
Publication of TW200611419A publication Critical patent/TW200611419A/zh
Application granted granted Critical
Publication of TWI390739B publication Critical patent/TWI390739B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Description

有機光敏裝置
本發明大體而言係關於有機光敏光電裝置。更具體言之,本發明係為具有奈米粒子之有機光敏光電裝置。
光電裝置依賴於材料之光學及電子特性以電子地產生或偵測電磁輻射或自周圍的電磁輻射產生電流。
光敏光電裝置將電磁輻射轉換成電流。太陽能電池(亦稱為光電(PV)裝置)為一種類型之光敏光電裝置,其特定用於產生電能。可自除太陽光之外的光源產生電能的PV裝置可用於驅動功率消耗負載以提供(例如)照明、加熱、或給諸如計算器、無線電設備、電腦或遠端監控或通信設備之電子電路或裝置提供動力。此等功率產生應用亦常常涉及電池組或其它能量儲存裝置之充電,使得當來自太陽或其它光源之直接照明不可用時操作可繼續進行,或使PV裝置之功率輸出與特定應用的要求均衡。如本文所使用,術語"電阻性負載"係關於任何功率消耗或儲存電路、裝置、設備或系統。
另一種類型之光敏光電裝置為光電導體電池。在此功能中,訊號偵測電路監控該裝置之電阻以偵測歸因於光吸收之改變。
另一種類型之光敏光電裝置為光偵測器。在操作中,光偵測器與一可量測在光偵測器曝露於電磁輻射時所產生的電流的電流偵測電路結合使用且其可具有一所施加的偏壓。如本文所描述之偵測電路能夠將一偏壓提供至光偵測器並量測光偵測器對電磁輻射之電子回應。
可根據是否存在如以下所界定之整流結且亦可根據是否使用一外部施加之電壓(亦稱為偏壓)來操作裝置而將此等三類光敏光電裝置特徵化。光電導體電池不具有整流結且通常使用一偏壓進行操作。PV裝置具有至少一整流結且不使用偏壓進行操作。光偵測器具有至少一整流結且通常但並非總是使用偏壓進行操作。通常,光電電池向電路、裝置或設備提供功率,但是並不提供訊號或電流以控制偵測電路或資訊自偵測電路之輸出。相反,光偵測器或光電導體則提供訊號或電流以控制偵測電路或資訊自偵測電路之輸出,但是不會向電路、裝置或設備提供功率。
傳統上,光敏光電裝置已由許多無機半導體構造而成,例如,結晶矽、多晶矽及非晶矽、砷化鎵、碲化鎘及其它物質。本文中,術語"半導體"表示當由熱或電磁激勵來誘導電荷載流子時可傳導電流的材料。術語"光電導"大體而言係關於其中電磁輻射能被吸收且藉此被轉換成電荷載流子之激勵能從而使得該等載流子可在材料中傳導(意即,傳送)電荷的過程。本文使用術語"光電導體"及"光電導材料"以表示因具有吸收電磁輻射來產生電荷載流子之特性而被選擇的半導體材料。
PV裝置的特徵在於效率,其可以該效率將入射太陽能轉換成有用的電能。利用結晶矽或非晶矽之裝置在商業應用中佔優勢,且一些已達成了23%或更大之效率。然而歸因於在生產大的晶體而沒有顯著效率降級缺陷中所固有的問題,製造有效的基於結晶的裝置(尤是具有大的表面面積的裝置)很難且很貴。另一方面,高效率的非晶矽裝置仍遭受穩定性之問題。當前市售非晶矽電池具有4%與8%之間的穩定化效率。更近的努力已集中於使用有機光電電池以達成可接受的光電轉換效率及經濟的生產成本。
為在標準照明條件(意即,1000 W/m2 的標準測試條件、AM1.5光譜照明)下產生最大電能、為使光電流乘光電壓之乘積最大,可最優化PV裝置。在標準照明條件下此電池之功率轉換效率取決於以下三個參數:(1)零偏壓下之電流,意即短路電流IS C ,(2)開路條件下之光電壓,意即開路電壓VO C ,及(3)占空因數ff
當跨過一負載連接PV裝置且該等PV裝置由光照射時,其產生一光生電流。當在無限負載的情況下照射PV裝置時,該PV裝置產生其最大可能之電壓:V開路或VO C 。當在其電觸點短接的情況下照射時,該PV裝置可產生其最大可能的電流I短路或IS C 。當PV裝置實際上用於產生功率時,將其連接至一有限電阻性負載且由電流與電壓之乘積(I×V)給出功率輸出。由PV裝置產生之最大總功率固有地不能夠超過乘積IS C ×VO C 。當為最大功率提取而最優化負載值時,電流及電壓分別具有值Im a x 及Vm a x
PV裝置之品質因數為占空因數ff,其被界定為:ff={Im a x Vm a x }/{Is c Vo c } (1)其中,ff 總是小於1,因為在實際使用中從未同時獲得IS C 及VO C 。儘管如此,當ff 接近1時,裝置具有較少串聯電阻或內阻且因此在最優條件下將更大百分數之IS C 與VO C 乘積傳遞至負載。其中Pi n c 為傳到裝置上的功率,裝置的功率效率ηp 可藉由下式來計算:ηpff *(Is c *Vo c )/Pi n c 當具有適當能量之電磁輻射入射於半導體有機材料(例如,有機分子晶體(OMC)材料、或聚合物)上時,可吸收光子以產生分子激勵態。將此象徵性地表示為S0 +hv→S0 。此處,S0 及S0 分別表示分子基態及分子激勵態。將此能量吸收與電子自HOMO能級(其可為π-鍵)中之束縛態至LUMO能級(其可為π- 鍵)的增進(promotion)相關聯,或均等地,將此能量吸收與電洞自LUMO能級至HOMO能級的增進相關聯。在有機薄膜光電導體中,一般認為所產生之分子狀態為激子,意即,作為準粒子傳送之束縛態的電子-電洞對。激子在成雙的再組合之前可具有可估計的壽命,其係關於原始之電子與電洞彼此再組合的過程,其相逆於與來自其它對的電洞或電子再組合。為了產生光電流,一般在兩個相異的接觸有機薄膜之間的施體-受體介面處電子-電洞對變得獨立。若電荷不獨立,則其可在成雙的再組合過程(亦稱為淬滅)中輻射地藉由發射能量低於入射光的光或非輻射地藉由產生熱而再組合。此等結果中之任一者均不是光敏光電裝置中所要的。
電場或觸點處之不均勻性可導致激子淬滅而不是在施體-受體介面處解離,從而導致沒有對電流之淨貢獻。因此,需要保持光生激子遠離觸點。此具有限制激子擴散至接合面附近之區域的效果,從而使得相關聯之電場具有增加之機會來隔離因解離接合面附近之激子而被釋放的電荷載流子。
為了產生佔據實質容量之內部所產生的電場,通常的方法為並置具有經適當選擇之傳導特性(尤其關於其分子量子能量狀態之分佈)的材料的兩個層。將此等兩種材料之介面稱為光電異質接面。在傳統的半導體理論中,已將用於形成PV異質接面之材料表示為通常屬於n型或p型。此處n型表示大多數載流子類型為電子。可將此視為具有許多呈相對自由之能量狀態的電子的材料。P型表示大多數載流子類型為電洞。該材料具有許多呈相對自由之能量狀態的電洞。背景之類型(意即,並非光生之大多數載流子濃度)主要取決於由缺陷或雜質引起之無意識的摻雜。雜質之類型及濃度判定了在最高佔據分子軌域(HOMO)能級與最低未佔據分子軌域(LUMO)能級之間的間隙(稱為HOMO-LUMO間隙)內的費米能量值或能級值。該費米能量表現由能量值所表示之分子量子能量狀態的統計性佔據的特徵,其佔據之可能性等於1/2。接近LUMO能級的費米能量指示電子為主要載流子。接近HOMO能級的費米能量指示電洞為主要載流子。因此,費米能量為傳統半導體之主要特徵化特性且原型PV異質接面傳統地為p-n介面。
術語"整流"尤其表示介面具有不對稱的傳導特徵,意即,介面支持電子電荷較佳在一個方向上之傳送。整流通常與在經適當選擇之材料之間的異質接面處發生之內置電場相關聯。
如本文所使用且如熟習此項技術者通常所理解,若第一能級更接近真空能級,則第一"最高佔據分子軌域"(HOMO)或"最低未佔據分子軌域"(LUMO)能級"大於"或"高於"第二HOMO或LUMO能級。由於游離電位(IP)是作為相對於真空能級的負能量來量測,因此較高HOMO能級對應於一具有較小絕對值的IP(負性較小的IP)。類似地,較高LUMO能級對應於一具有較小絕對值的電子親合性(EA)(負性較小的EA)。在真空能級處於頂部的習知能級圖表上,一種材料的LUMO能級高於相同材料的HOMO能級。與"較低"HOMO或LUMO能級相比,"較高"HOMO或LUMO能級出現在更接近此圖表的頂部之處。
在有機材料的內容中,術語"施體"及"受體"表示兩種接觸但不同的有機材料之HOMO及LUMO能級的相對位置。此與此等術語在無機內容中之使用相反,在無機內容中,"施體"及"受體"可表示可用於分別製造無機n及p型層的摻雜劑之類型。在有機內容中,若一種與另一種材料接觸的材料之LUMO能級較低,則該材料為受體。否則,其為施體。在不存在外部偏壓的情況下,處於施體-受體接合處的電子移入受體材料而電洞移入施體材料是積極有利的。
有機半導體中之重要特性為載流子遷移率。遷移率量測電荷載流子可回應於電場而移動穿過傳導材料的容易性。在有機光敏裝置的內容中,包括歸因於高電子遷移率而優先藉由電子來傳導之材料的層可稱為電子傳送層,或ETL。一包括歸因於高電洞遷移率而優先藉由電洞來傳導之材料的層可稱為電洞傳送層,或HTL。受體材料較佳但非必須為ETL,且施體材料較佳但非必須為HTL。
習知之無機半導體PV電池使用p-n接合以建立一內場。早期有機薄膜電池(諸如由Tang報導之Appl.Phys Lett. 48,183(1986))所包含的異質接面類似於在習知之無機PV電池中所使用的異質接面。然而,吾人現已認識到,除了建立p-n類型之接合外,異質接面之能級偏移亦起重要作用。
歸因於有機材料中之光生過程的基礎性質,吾人認為有機D-A異質接面處之能級偏移對有機PV裝置之操作很重要。當對有機材料進行光學激勵時,即產生區域化Frenkel或電荷轉移激子。為了發生電偵測或電流產生,必須將束縛激子解離成其組成部分的電子及電洞。可由內置電場誘導該過程,但是一般在有機裝置中所發現之電場(F~106 V/cm)處的效率很低。有機材料中之最有效的激子解離在施體-受體(D-A)介面處發生。在該介面處,具有低游離電位之施體材料與具有高電子親合性之受體材料一起形成一異質接面。取決於施體及受體材料之能級的對齊,激子在該介面處之解離可變得積極地有利,從而導致在受體材料中產生自由電子極化子且在施體材料中產生自由電洞極化子。
當與傳統的基於矽之裝置相比較時,有機PV電池具有許多潛在優勢。有機PV電池重量輕,在材料使用方面經濟,且可被安置於諸如可撓性塑料箔片之低成本基板上。然而,一些有機PV裝置一般具有相對低的外部量子效率,約為1%或更少。吾人認為此部分地歸因於固有光電導過程之二階性質。即,載流子產生需要激子產生、擴散及游離或收集。存在與此等過程中的每一者相關聯的效率η。可如下使用下標:P表示功率效率;EXT表示外部量子效率;A表示光子吸收;ED表示激子擴散;CC表示電荷收集;且INT表示內部量子效率。使用此符號表示法:ηpE X T =ηΛE DC C
激子之擴散長度(LD)一般遠小於(LD~50)光學吸收長度(~500),從而需要在使用具有多個介面或高度折疊介面之厚且因此有阻力的電池或具有低光學吸收效率的薄電池之間權衡。
一般地,當光被吸收以在有機薄膜中形成激子時,可形成單重態激子。藉由系統間過渡之機制,該單重態激子可衰變成三重態激子。在此過程中能量損失,此將導致裝置之效率更低。若自系統間過渡無能量損失,則將需要使用能產生三重態激子的材料,因為三重態激子較單重態激子一般具有更長的壽命,且因此具有更長的擴散長度。
經由在光活性區域中使用有機金屬材料,本發明之裝置可有效地利用三重態激子。吾人已發現,單重態-三重態混合對於有機金屬化合物而言可如此堅固從而使得吸收涉及自單重態基態直接至三重態激勵態的激勵過程,從而消除了與自單重態激勵態至三重態激勵態之轉換相關聯的損失。相比於單重態激子,三重態激子之更長的壽命及擴散長度可允許使用更厚的光活性區域,因為三重態激子可擴散更大的距離以到達施體-受體異質接面,而無需犧牲裝置效率。
本發明大體而言係關於有機光敏光電裝置。更具體言之,本發明係為具有一光活性有機區域之有機光敏光電裝置,該光活性有機區域包含展示電漿共振之囊封奈米粒子。入射光場之增強可經由表面電漿極化共振來達成。此增強增加了入射光之吸收,從而導致裝置更加有效。
本發明提供了一種有機光敏光電裝置。本發明有機裝置之具體態様可用於(例如)自入射電磁輻射(例如PV裝置)產生可用電流或可用於偵測入射電磁輻射。本發明之之具體態様可包含陽極、陰極及位於該陽極與該陰極之間的光活性區域。該光活性區域為光敏裝置之吸收電磁輻射以產生激子的部分,其中該等激子可經分離以產生電流。有機光敏光電裝置亦可包括至少透明電極以允許該裝置吸收入射輻射。美國專利第6,657,378號、第6,580,027號及第6,352,777號中描述了若干PV裝置材料及組態,該等專利以全文引用的方式倂入本文。
圖1顯示了有機光敏光電裝置100。不必將該等圖按比例繪製。裝置100可包括基板110、陽極115、陽極平滑層120、施體層125、受體層130、阻斷層135及陰極140。陰極140可為具有第一傳導層及第二傳導層之複合陰極。可藉由按順序沉積所描述之層來製造裝置100。電荷分離可主要發生在施體層125與受體層130之間的有機異質接面處。藉由相互接觸而形成異質接面的兩種材料之間的HOMO-LUMO能級差來判定異質接面處的內置電位。施體與受體材料之間的HOMO-LUMO間隙偏移在施體/受體介面處產生電場,其促進在該介面之激子擴散長度內所產生的激子的電荷分離。
圖1中所說明之層的特定排列僅為例示性,且並不意欲具有限制性。舉例而言,可忽略其中一些層(諸如阻斷層)。可添加其它層(諸如反射層或額外之受體及施體層)。可改變諸層之次序。可使用除彼等特定描述之排列以外的排列。
基板可為能提供所要之結構特性的任何適當之基板。基板可具有可撓性或剛性、具有平面性或非平面性。基板可為透明、半透明或不透明。塑膠及玻璃為較佳之剛性基板材料之實例。塑膠及金屬箔片為較佳之可撓性基板材料之實例。可選擇基板之材料及厚度以獲得所要的結構特性及光學特性。
以引用方式倂入本文的美國專利第6,352,777號提供了可用於光敏光電裝置的電極或觸點之實例。當用於本文中時,術語"電極"及"觸點"係關於能提供一用於將光生電流傳遞至外部電路或將偏壓提供給裝置之媒介的層。意即,電極或觸點提供有機光敏光電裝置之活性區域與用於將電荷載流子傳送至外部電路或自外部電流傳送電荷載流子之電線、引線、跡線或其它構件之間的介面。在光敏光電裝置中,需要允許來自裝置外部之最大量的周圍電磁輻射進入光電導活性內部區域。意即,電磁輻射必須到達一或多個光電導層,在此處其可藉由光電導吸收而被轉換成電。此通常指示其中至少一電觸點應最小地吸收且最小地反射入射電磁輻射。意即,該觸點應大體上透明。相對之電極可為反射性材料使得已穿過電池而不被吸收之光經由該電池而被反射回來。如本文所使用,當一材料層或不同材料之若干層的一序列允許相關波長下的至少50%之周圍電磁輻射透射穿過該層或該等層時,將該層或該等層稱為"透明的"。類似地,將允許相關波長下的周圍電磁輻射之一些但少於50%透射的層稱為"半透明的"。
如本文所使用,"頂部"意謂離基板最遠,而"底部"意謂最靠近基板。舉例而言,對於具有兩個電極之裝置而言,底部電極為離基板最近之電極,且其一般為所製造的第一電極。底部電極具有兩個表面:一最靠近基板的底部表面及一離基板較遠的頂部表面。在將第一層描述為"安置於"第二層上時,安置該第一層以使其離基板較遠。除非指定第一層"實體接觸"第二層,否則可在第一層與第二層之間存在其它層。舉例而言,可將陰極描述為"安置於"陽極上,即使其間存在多個有機層。
電極較佳地包含金屬或"金屬替代物"。此處,術語"金屬"用於包括包含基本純金屬(例如Mg)與金屬合金二者之材料,該等金屬合金為包含兩種或兩種以上基本純金屬的材料(例如Mg與Ag一起,表示為Mg:Ag)。此處,術語"金屬替代物"係關於一種材料:其在標準定義內並非為金屬,但是其在某些適當的應用中具有所要的類金屬特性。通常針對電極及電荷轉移層所使用之金屬替代物將包括經摻雜之寬能帶隙半導體,例如,諸如氧化銦錫(ITO)、氧化鎵銦錫(GITO)及氧化鋅銦錫(ZITO)之透明的傳導氧化物。詳言之,ITO為具有約3.2 eV之光學能帶隙的經高度摻雜的簡並n+半導體,從而使其對於大於約3900之波長而言為透明的。另一適當之金屬替代物為透明的傳導性聚合物聚苯胺(PANI)及其化學關係物。金屬替代物可進一步選自廣泛範圍之非金屬材料,其中術語"非金屬"意謂包括廣泛範圍之材料,其限制條件為該材料不含呈其化學上未結合之形式的金屬。當金屬以其化學上未結合之形式而存在時,單獨地或與一或多種其它金屬組合成為合金,則該金屬可替代地被稱為以其金屬形式存在或為"游離金屬"。因此,有時可將本發明之金屬替代物電極稱為"不含金屬",其中術語"不含金屬"表達上意謂包括一種不含呈其化學上未結合形式之金屬的材料。游離金屬一般具有由許多價電子產生之某種形式的金屬鍵結,該等價電子可貫穿金屬晶格而在電子導帶中自由移動。儘管金屬替代物可包含金屬組份,但是在若干基上其為"非金屬"、其既非為純游離金屬也非為游離金屬之合金。當金屬以其金屬形式而存在時,電子導帶易於提供(在其它金屬特性中)高的電傳導性以及高的對光學輻射的反射性。
本發明之實施例可包括(作為光敏光電裝置之一或多個透明電極)一高度透明的、非金屬的、低電阻的陰極(諸如Parthasarathy等人之美國專利第6,420,031號中所揭示("Parthasarathy '031"))或一高度有效的、低電阻的金屬/非金屬複合陰極(諸如Forrest等人之美國專利第5,703,436號中所揭示("Forrest '436")),該等專利之全部內容以引用的方式併入本文。較佳地,在一製造過程中製造每一類型之陰極,該製造過程包括以下步驟:將一ITO層濺鍍沉積至有機材料(諸如銅酞菁(CuPc))上以形成一高度透明的、非金屬的、低電阻的陰極或將ITO層濺鍍沉積至一薄Mg:Ag層上以形成一高度有效的、低電阻的金屬/非金屬複合陰極。
本文中,以以下方式使用術語"陰極"。在周圍輻射下且與一電阻性負載連接且無外部施加之電壓的非堆疊之PV裝置或堆疊之PV裝置的單一單元(例如,PV裝置)中,電子自光電導材料移動至陰極。類似地,在本文中使用術語"陽極"使得在照明下的PV裝置中,電洞自光電導材料移動至陽極,其相當於電子以相反方式移動。應注意,當在本文中使用該等術語時,陽極及陰極可為電極或電荷轉移層。
有機光敏裝置將包含至少一光活性區域,在該光活性區域中光被吸收以形成激勵態或"激子",該激子隨後可解離成一電子及一電洞。激子之解離一般將在因受體層及施體層之並置而形成的異質接面處發生。例如,在圖1之裝置中,"光活性區域"可包括施體層125及受體層130。
受體材料可包含(例如)苝、萘、芙或奈米管。受體材料之一實例為3,4,9,10-苝四羧酸雙-苯幷咪唑(PTCBI)。或者,受體層可包含如美國專利第6,580,027號中所描述的芙材料,該專利之全部內容以引用方式併入本文。一層有機施體類型材料相鄰於該受體層。受體層及施體層之邊界形成可產生一內部產生之電場的異質接面。施體層之材料可為酞菁或卟啉或其衍生物或過渡金屬錯合物,諸如銅酞菁(CuPc)。可使用其它合適之受體及施體材料。
在本發明之一較佳實施例中,該等堆疊之有機層包括一或多個激子阻斷層(EBL),如Peumans等人之美國專利第6,097,147號Applied Physics Letters 2000 ,76,2650-52及於1999年11月26日申請之同在申請中的申請案第09/449,801號中所述,該等兩個專利以引用的方式併入本文。已藉由包括一EBL以將光生激子限制至解離介面附近的區域並阻止光敏有機/電極介面處之寄生激子淬滅達成了較高的內部及外部量子效率。除了限制激子可擴散的體積之外,EBL亦可充當一阻斷在電極之沉積期間所引入的物質的擴散障壁。在某些情況下,可將EBL製得足夠厚以填充可否則使有機PV裝置變得無功能的針孔或短接缺陷。EBL因此可幫助保護易碎之有機層免於在將電極沉積至有機材料上時所產生的損壞。
咸信EBL因具有一大體上大於相鄰有機半導體之LUMO-HOMO能隙的LUMO-HOMO能隙而獲得其激子阻斷特性,由此而阻斷激子。因此,歸因於能量考慮,禁止被限制之激子存在於EBL中。儘管對於EBL而言需要阻斷激子,但是對於EBL而言並不需要阻斷所有電荷。然而,歸因於相鄰能級之性質,EBL可阻斷電荷載流子之一標誌。藉由設計,EBL將存在於兩個其它層(通常為一有機光敏半導體層及一電極或電荷轉移層)之間。在上下文中,相鄰的電極或電荷轉移層將為陰極或陽極。因此,將選擇裝置中之給定位置中的EBL之材料,使得載流子之所要標誌將不會在至電極或電荷轉移層之其傳送過程中受到阻礙。合適的能級對準可確保不存在對電荷傳送之障壁,從而阻止了串聯電阻的增大。舉例而言,對於用作陰極端EBL之材料而言,需要具有與相鄰ETL材料之LUMO能級緊密匹配的LUMO能級使得對電子之任何非吾人所要之障壁得以最小化。
應瞭解,材料之激子阻斷性質並非為其HOMO-LUMO能隙之固有特性。一給定材料是否將充當激子阻斷劑取決於相鄰有機光敏材料之相對的HOMO及LUMO能級。因此,不可能將一類化合物孤立地識別為激子阻斷劑而不考慮其中可使用該等化合物之裝置環境。然而,使用本文之教示,一般的熟習此項技術者可在將一給定材料與一所選組之材料一起使用來構造一有機PV裝置時識別該給定材料是否將充當一激子阻斷層。
在本發明之一較佳實施例中,EBL位於受體層與陰極之間。EBL之較佳材料包含:2,9-二甲基-4,7-二苯基-1,10-菲啉(亦稱為浴銅靈或BCP),其被認為具有約3.5 eV之LUMO-HOMO能級間隔;或雙(2-甲基-8-羥基喹啉)-苯酚鋁(III)(Alq2 OPH)。BCP為一可容易地將電子自受體層傳送至陰極的有效激子阻斷劑。
可以適當之摻雜劑摻雜該EBL層,該摻雜劑包括(但不限於)3,4,9,10-苝四羧酸二酐(PTCDA)、3,4,9,10-苝四羧酸二醯亞胺(PTCDI)、3,4,9,10-苝四羧酸-雙-苯幷咪唑(PTCBI)、1,4,5,8-萘四羧酸二酐(NTCDA)及其衍生物。吾人認為如在本裝置中所沉積之BCP為非晶的。當前顯然為非晶的BCP激子阻斷層可展示膜再結晶,其在高的光強度下速度尤其快。所得之對多晶材料的形態改變導致具有諸如短路、空隙或電極材料之侵入的可能缺陷的較低品質之膜。因此,已發現,摻雜一些藉由適當的、相對大的且穩定的分子而展示此效果的EBL材料(諸如BCP)可穩定EBL結構以阻止效能降級性形態改變。應進一步瞭解,將在一給定裝置中傳送電子之EBL與一具有接近EBL之LUMO能級的LUMO能級之材料摻雜將有助於確保不會形成可產生空間電荷聚集並降低效能的電子陷阱。另外,應瞭解,相對低的摻雜密度可在孤立的摻雜劑位置處使激子產生最小化。因為周圍的EBL材料有效地阻止了該等激子擴散,所以該等吸收減小了裝置光轉換效率。
代表性實施例亦可包含透明電荷轉移層或電荷重組層。如本文所描述,因為電荷轉移層常常(但並非必須)為無機層(通常為金屬)且一般選擇其不具有光電導活性之事實,所以電荷轉移層可區別於受體層與施體層。本文中使用術語"電荷轉移層"以涉及類似於但不同於電極之層,因為電荷轉移層僅將電荷載流子自一光電裝置之一分段傳遞至相鄰分段。本文中使用術語"電荷重組層"以涉及類似於但不同於電極之層,因為電荷重組層允許重組級聯光敏裝置之間的電子與電洞且亦可增強一或多個活性層附近之內部光場強度。可由半透明的金屬奈米叢集、奈米粒子或奈米棒構造電荷重組層,如美國專利第6,657,378號所描述,該專利之全部內容以引用的方式併入本文。
在本發明之另一較佳實施例中,陽極平滑層位於陽極與施體層之間。用於此層之較佳材料包含3,4-聚伸乙基二氧噻吩:聚苯乙烯磺酸鹽(PEDOT:PSS)之膜。在陽極(ITO)與施體層(CuPc)之間引入PEDOT:PSS層可導致極大地改良製造產率。此歸因於經旋塗的PEDOT:PSS膜平面化ITO之能力,否則該ITO之粗糙表面可經由薄分子層而導致短路。
在本發明之進一步實施例中,可在沉積下一層之前用電漿來處理一或多個該等層。舉例而言,可用適度的氬或氧電漿來處理該等層。因為此處理可減少串聯電阻,所以其為有利的。特別有利的是:在沉積下一層之前使PEDOT:PSS層經受適度之電漿處理。
通過非限制性實例提供了圖1中所說明之經簡單分層的結構,且應瞭解,可結合廣泛多種之其它結構來使用本發明之實施例。所描述之特定材料及結構本質上為例示性材料及結構,且可使用其它材料及結構。可藉由以不同方式組合所描述之各個層來達成功能性裝置,或可基於設計、效能及成本因數完全省略若干層。亦可包括未特定描述之其它層。可使用除了經特定描述之彼等材料之外的材料。儘管本文所提供之許多實例將多個層描述為包含單一材料,但是應瞭解,可使用若干材料之組合,諸如主體與摻雜劑之混合物或(更通常地)混合物。並且,該等層可具有各種子層。給予本文中各層之名稱並不意欲具有嚴格限制性。非為光活性區域之一部分的有機層(意即,通常不吸收對光電流作出重要貢獻之光子的有機層)可被稱為"非光活性層"。非光活性層之實例包括EBL及陽極平滑層。亦可使用其它類型的非光活性層。
用於光敏裝置之光活性層中的較佳有機材料包括環金屬化之有機金屬化合物。如本文所使用之術語"有機金屬"為如由一般的熟習此項技術者通常所理解且如(例如)"Inorganic Chemistry"(第二版)中由Gary L.Miessler及Donald A.Tarr,Prentice-Hall(1998)所給予的那樣。因此,術語有機金屬係關於具有一經由碳-金屬鍵而鍵結至金屬的有機基之化合物。此類本身並不包括配位化合物,其為僅具有來自雜原子之施體鍵的物質,諸如胺、鹵化物、類鹵化物(CN,等)及其類似物之金屬錯合物。實務上,除了至有機物質之一或多個碳-金屬鍵之外,有機金屬化合物通常包含來自雜原子之一或多個施體鍵。至有機物質之碳-金屬鍵係關於金屬與有機基(諸如苯基、烷基、烯基等)之碳原子之間的直接鍵,但是並非關於至諸如CN或CO之碳的"無機碳"之金屬鍵。術語環金屬化係關於包含一個雙齒有機金屬配位基使得在鍵結至金屬時即形成一包括該金屬作為其中一個環員之環結構的化合物。
可使用真空沉積、旋塗、有機氣相沉積、噴墨印刷及此項技術中已知之其它方法來製造有機層。
本發明之實施例之有機光敏光電裝置可充當PV、光偵測器或光電導體。只要本發明之有機光敏光電裝置充當PV裝置,即可選擇用於光電導有機層中之材料及其厚度(例如)以最優化該裝置之外部量子效率。只要本發明之有機光敏光電裝置充當光偵測器或光電導體,即可選擇用於光電導有機層中之材料及其厚度(例如)以使該裝置對所要之光譜區域的敏感性最大化。
可藉由考慮可在層厚度之選擇中使用的若干準則來達成此結果。因為據信大多數激子解離將在介面處發生,所以需要激子擴散長度LD 大於或比得上層厚度L。若LD 小於L,則許多激子可在解離之前重組。進一步需要總的光電導層厚度為約電磁輻射吸收長度1/α(其中,α為吸收係數),使得可吸收入射於PV裝置上的幾乎所有輻射以產生激子。此外,光電導層厚度應盡可能薄以避免歸因於有機半導體之高的體電阻率而產生過量串聯電阻。
因此,此等競爭準則固有地需要在選擇光敏光電電池之光電導有機層的厚度時進行權衡。因此,一方面,需要一可比得上或大於吸收長度的厚度(對於單一電池裝置而言)以便吸收最大量之入射輻射。另一方面,隨著光電導層厚度增大,增加了兩種不良的影響。一種影響為:歸因於有機半導體之高的串聯電阻,增加之有機層厚度增加了裝置電阻並降低了效率。另一不良的影響為:增加光電導層厚度會增加將遠離電荷分離介面處之有效場而產生激子的可能性,從而導致成雙之重組的可能性提高且再次使效率降低。因此,需要一裝置組態,其以可為整個裝置產生高的外部量子效率之方式在此等競爭影響之間平衡。
有機光敏光電裝置可充當光偵測器。在此實施例中,該裝置可為多層式有機裝置,例如如2003年11月26日申請之美國申請案第10/723,953號中所描述,該申請案之全部內容以引用的方式併入本文。在此種狀況下,一般施加一外部電場以促進對分離之電荷的提取。
可使用一集中器或捕集組態以增加有機光敏光電裝置之效率,其中強迫光子多次穿過薄吸收區域。美國專利第6,333,458號及第6,440,769號(該等專利之全部內容以引用的方式併入本文)藉由使用結構性設計解決了此問題,該等結構性設計藉由為高吸收及為與可增加收集效率之光學集中器一起使用而最優化光學幾何結構來增強光敏光電裝置之光轉換效率。光敏裝置之該等幾何結構藉由將入射輻射捕集於反射腔或波導結構內,且藉此藉由光敏材料之多次反射來再循環光從而大體上增加穿過材料之光徑。因此,美國專利第6,333,458號及第6,440,769號中所揭示之幾何結構在不導致體電阻實質增加的情況下提高了裝置之外部量子效率。被包括於該等裝置之幾何結構中的為:第一反射層;一透明絕緣層,其應在所有的維度中均長於入射光之光學相干長度以防止光學微腔干擾效應;一與該透明絕緣層相鄰之透明第一電極層;一與該透明電極相鄰之光敏異質結構;及一亦具有反射性之第二電極。
可使用塗層將光能集中於裝置之所要區域內。以全文引用方式倂入本文的美國專利申請案第10/857,747號提供了該塗層之實例。
在級聯雙層太陽能電池中,各個子電池可足夠薄以允許較大百分數之激子解離,同時該裝置足夠厚以實現高吸收效率。圖2展示了一級聯有機PV電池橫截面之示意圖200及高解析度穿透式電子顯微圖290。該等兩個電池210及220藉由氧化銦錫(ITO)陽極230及Ag陰極240而得以接觸,並藉由Ag奈米粒子層250而得以隔離。如本文中所用,術語"奈米粒子"係指一擬合於一有機裝置之有機層內及/或之間的粒子。一較佳之奈米粒子尺寸為約300或更小,儘管該等奈米粒子可囊封於其它可增加此尺寸之材料內。標註各裝置之施體(D)層及受體(A)層之增強距離及擴散長度,。在該顯微圖中可見Ag叢集,且在該示意圖中展示了該等Ag叢集(填充圓)。該示意圖展示了在該級聯電池中電流產生之表示。當光吸收時,在光電電池210及220中均形成激子。在於DA介面270或280處解離之後,將PV子電池210中之電洞及PV子電池220中之電子收集至相鄰電極230及240處。為防止電荷在該等電池內之聚集,PV子電池210中之電子及PV子電池220中之電洞擴散至其可重組之金屬奈米粒子層250。初始電荷對奈米粒子之吸引主要係影像電荷效應的結果。一旦該金屬粒子獨自帶電,則自由反電荷之庫侖吸引力可導致在Ag表面250處之快速重組。
此串接式級聯電池結構係有利的,因為與單一雙層電池情況相比其可導致開路電壓(V OC )增加。假設η P J SC V OC FF/P inc (其中,JS C 為短路電流密度,FF 為占空因數,且Pi n c 為入射光功率密度),此可導致ηP 增加(假設其它參數保持不變)。因此,當由PV子電池210或PV子電池220中所產生之兩個電流中之較小者來限制該裝置內的電流時,對實現級聯電池之挑戰在於平衡來自各電池之光電流。此可藉由改變各個裝置層之厚度或材料組合物來實現,但由於光學干擾效應而變得複雜。串聯式級聯電池亦可包含多個電連接之子電池,包括兩個以上之子電池,其中每個子電池均包含一受體層及一施體層。如熟習此項技術者將明白,可使用子電池之其它配置。
除了充當一有效載流子重組層以防止電池充電之外,奈米粒子亦可增強入射電場,該入射電場又可增加附近有機薄膜中之吸收。圖2之圖式中的陰影區260表示電場受到Ag奈米粒子250影響之區域。場增強由在該等奈米粒子表面上經光學激勵之表面電漿極化(SPP)共振而產生。如本文所用且如熟習此項技術者通常所瞭解,"表面電漿極化子共振"係指入射光子至粒子表面之電漿振盪的耦合,其中"電漿振盪"係指該粒子中傳導電子之集體激勵。SPP共振起源於與帶正電荷背景相抵之負傳導電子之位移(歸因於一施加電場)。此導致奈米粒子表面處之極化電荷,其導致一恢復力並因此導致一共振固有頻率。金屬奈米粒子之此特性亦可應用於Schottky與經染料敏化之PV電池兩者,其中該光活性區域與該奈米粒子層接觸。
奈米粒子或奈米粒子之聚集體的SPP共振位置可受到不規則粒子形狀、不同嵌入介電媒介及基板效應與粒子間耦合的影響。利用此等各種效應,一奈米粒子或奈米粒子陣列之共振可調諧至可見光及紅外線光譜內之波長。
因為SPP共振增強了局部電磁場,所以該奈米粒子及該光活性區域不需要直接接觸而實現該SPP共振之益處。在本發明之一實施例中,囊封奈米粒子在被安置於兩個電極之間的活性有機區域內分散。該等奈米粒子可遍及該區域隨機地或均勻地分佈。奈米粒子之其它配置亦可行且對於特定應用可為有利的。在本發明之一較佳實施例中,該光活性區域包含一或多個PV電池。在此實施例中,可將該等囊封奈米粒子安置於相鄰PV電池之間的平面層中。該光活性區域可包含其它合適之有機材料,包括經染料敏化之材料。將該等奈米粒子分散於該光活性區域內可由於該等粒子表面上之SPP共振而增強入射於周圍區域上之電場。該等奈米粒子較佳包含一種金屬,Ag、Cu及Au尤為較佳。此等材料之使用提供了SPP共振,其導致增加可見波長下之吸收。奈米粒子亦可包含經摻雜之簡並半導體或其它半導體材料。
當下列表達式得以最小化時,產生共振波長:[ε1 (ω)+2εm (ω)]2 +ε2 (ω)2 =常數其中ε1 (ω)及ε2 (ω)用於該金屬,且εm (ω)用於嵌入媒介。此可簡化為:ε1 (ω)=-2εm (ω)假設ε2 (ω)或ε2 /ω較小,其對於(例如)自3.0至3.5 eV之共振區域中的Ag而言通常為真實的。圖3展示了Ag之真實介電函數310及虛擬介電函數320作為光子能量函數。將塊狀Ag展示為實線且亦展示了10 nm(虛線)及5 nm(點線)直徑之Ag叢集。圖4展示了嵌入媒介對Ag之2R =5 nm奈米粒子的SPP共振之影響,其中已考慮到該介電函數中的變化。虛線表示一具有軸比為b/a=0.6之粒子的共振波長。插圖展示了該模擬之幾何形狀。
奈米粒子之形狀為另一可尤其影響SPP共振之因素。舉例而言,對於橢圓形奈米粒子而言,該SPP可分為兩種模式,一種模式對應於該球狀體之長軸a,而另一模式對應於該球狀體之短軸b。在圖5中,展示了真空中一橢圓形奈米粒子之SPP峰位置。如本文所用,術語"軸比"係指最短軸與最長軸之比率,意即,b/a。對於值較小之軸比而言,在兩個共振峰之間的波長間距達到值300 nm,且對於b/a=1而言,該SPP位置對應於λ p =338 nm下真空中球形奈米粒子的SPP位置。舉例而言,圖5中之虛線展示了為0.6之軸比導致λ b =334 nm及λ a =360 nm下之SPP模式。偶極模式之此分裂可概括為任何非球形粒子形狀之情況,其歸因於不對稱奈米粒子中電荷的所得分佈。在本發明之較佳實施例中,該等奈米粒子具有一不大於約300之最小軸及一不小於約0.1之軸比。對於更多球形粒子(意即,彼等軸比約為1之球形粒子),平均面對面分離較佳不大於約100。較大粒子尺寸及/或較小平均分離減少了可用於吸收之有機材料的量,此可減少由於SPP共振致使入射光場之增強。然而,出於某些目的,可使用除彼等特定描述之尺寸以外的其它尺寸。另一較佳點為該等奈米粒子為非球形粒子,並以最長軸平行於一介面而安置。咸信該配置可增加對由該等奈米粒子之偶極相互作用及SPP共振產生之入射光場的增強。對於非球形粒子(彼等軸比小於1之粒子)而言,粒子間耦合在局部光場增強中影響較小。因此,非球形粒子之平均面對面分離較佳不大於約300。出於某些目的,可使用其它配置及分離。在某些狀況下,囊封奈米粒子可包含顯著體積百分比之活性區域。
對於PV電池應用而言,有利地引入與該等光活性材料之吸收光譜重疊之太陽光譜全範圍的光場增強。現將討論吸光度之譜依賴性。
圖6展示了在具有與不具有奈米粒子之石英上的三種薄膜之經代表性量測的吸收光譜。1 nm厚Ag層中之奈米粒子具有約2R=5 nm之平均直徑及約d=10 nm之中心對中心間距。10厚之Ag島狀薄膜的曲線610具有一由於該等奈米粒子之表面電漿激勵而定中心於λp =440 nm之波長處的100 nm的峰(半幅全寬)。該峰位置及強度可指示粒子形狀及尺寸之分佈以及藉由減少粒子間距來擴大光學響應之奈米粒子之間的偶極耦合。亦展示了7 nm厚之CuPc膜(曲線620)及一沉積在1 nm覆蓋厚度之Ag島狀膜(曲線630)頂部上之7 nm CuPc膜的吸收。儘管沒有改變λc =625 nm及690 nm下之CuPc峰的位置,但由於周圍CuPc介電之存在,Ag奈米粒子層之電漿峰紅移了30 nm而至λp =470 nm。然而,最顯著特徵為波長λ>470 nm下CuPc吸收之增加。此寬頻帶、非共振之增強可導致級聯PV電池之效率較預期僅藉由組合若干堆疊式CuPc/PTCBI雙層之效率而達成的效率增加約15%。
增強可在表面電漿頻率ωp 以下發生。在ωp 以下,由於粒子間偶極相互作用,隨機分佈之奈米粒子的集合可在電場中產生"熱點",而該奈米粒子膜之吸收則係歸因於在該等粒子表面上所形成之偶極電漿模式。
圖7展示了Ag圓柱體之平面陣列在由CuPc介電環繞之石英基板上的代表性場分佈,其具有直徑2R=5 nm及均勻之面對面間距δ=5 nm。該等粒子位於一石英基板(n=1.46,z=0)上並被嵌入於一介電媒介(CuPc)中。等高線標記表示所計算之強度增強且間隔為0.5。由箭頭指示極化向量,且傳播在+z方向上。該場分佈係針對λ=690 nm之激勵波長及平行於奈米粒子鏈之極化。該等等高線指示電場之強度增強(I/I0 ),其中I為局部場強度,且I0 為入射場強度。此等強度分別與||2 及| 0 |2 成比例,其中為局部場幅度,且 0 為入射場幅度。在該等圓柱體之空隙中可發現十二倍之強度增強。場強度之偶極性質係明顯的,可在該球體之"陰影"中發現場衰減。
嵌入媒介對SPP共振位置以及增強之光譜帶寬的影響對於太陽能電池之應用而言尤為重要,其中增強廣泛範圍之波長係吾人所關心的。圖8展示了在一單一、2R=5 nm之球形粒子表面上整合的入射場的強度增強。共振峰由於該嵌入媒介之介電常數增加而紅移。當n自1增加至2時,該共振峰變得更強,而在該SPP峰之長波長側處的增強平臺的範圍則被減小。將粒子嵌入一種具有=2+0.5i(一對於強烈吸收之有機薄膜而言典型的值)之材料中導致該偶極SPP峰被與非吸收型介電比較高一級的量值所抑制。
圖9展示了一球形(2R=5 nm)及b/a=0.5橢圓奈米粒子區域之光譜,該橢圓奈米粒子區域等於被嵌入一具有=2+0.5i之介電中的球形奈米粒子。兩種粒子均具有相同區域,且兩者均被嵌入一具有=2+0.5i之介電中。該等橢圓奈米粒子之吸收(點線)於λ=470 nm處達到峰值,且其自λ=392 nm處球形奈米粒子之吸收被紅移。入射光之極化平行於該橢圓形粒子之長軸,且因此將彼模式激勵。該橢圓形粒子具有一延伸超過大多數有機PV材料之吸收的經紅移之增強尾部,從而使得此粒子形狀更好地適用於有機PV電池。
一級聯有機PV電池中之電荷重組層可由一具有各種尺寸、形狀及間距之熱蒸發、隨機奈米粒子陣列組成。圖10展示了在一具有=2+0.5i之媒介中位於球形Ag奈米粒子1010、1020及橢圓形奈米粒子1030、1040之陣列中心處的強度增強。對於δ>10 nm而言,該增強隨間距而單調減少,對於δ<10 nm而言,由於相鄰奈米粒子之間的偶極耦合之非線性增加而使該增強快速增加。對於δ10 nm而言,SPP共振位置紅移,而對於較大的δ而言,該SPP共振則收斂至單一粒子波長。
圖11展示了對於球形(實線)陣列1110、1130與1150及橢圓形(點線)陣列1120、1140與1160而言δ=10 nm之1110與1120、δ=5 nm之1130與1140及δ=2.5 nm之1150與1160的光譜響應。實線指示5 nm直徑叢集之一陣列,而點線指示具有相同區域之軸比為0.5的橢圓形粒子。展示了δ=10 nm(空心正方形)、5 nm(填充圓)及2.5 nm(空心三角形)之面對面間距。在每一狀況下,該橢圓形陣列比球形情況具有一大的最大增強。當δ減少時,耦合效應強於形狀效應。由於粒子間耦合而使此等結構之增強平臺較寬。又,存在剛好在SPP共振以下之波長下的一衰減區域。在λ<350-400 nm處之太陽光譜強度較弱,且因此與在長波長下發生之改良比較此不會顯著影響裝置效能。
其上存在自一級聯有機PV電池之重組層的增強的距離係吾人所關心的。圖12展示了在具有(三角形)及不具有(正方形)10Ag叢集層之石英上不同厚度之CuPc於λ=690 nm波長下的經量測之吸光度A。圖12中展示了直接沈積於石英基板上及Ag島狀膜上之具有不同厚度的CuPc膜在λ=690 nm之非共振波長下的經量測之吸光度值。在此波長下,可忽視由於Ag奈米粒子之吸收,從而提供CuPc吸收中之變化的直接比較。當t10 nm時,被吸收至該Ag島狀物1210上之CuPc膜的吸光度較整潔膜1220之吸光度增加得更快。t較大時,吸收不再增強。圖13展示了具有及不具有Ag層之CuPc膜的吸光度量測差異(△A)對照CuPc厚度(t)。
該等奈米-尺寸之Ag奈米粒子膜擁有接近零之散射及反射效率。自該偶極模式之散射損耗可變得僅大於2R30 nm之粒子的吸收損耗。
圖14展示了一具有=2+0.5i之薄膜介電區域(包括彼粒子陣列內之區域)的有效厚度,該薄膜介電區域圍繞一粒子陣列而在彼陣列之"增強區"內,。對於非常小的δ而言,該等奈米粒子空隙中之增強較大,儘管其主要限制於此小區域。球形陣列1410及橢圓形陣列1420之增強在約δ=25 nm處達到峰值,其分別延伸至約7及9 nm之距離。
在1 sun(100 mW/cm2 )模擬AM1.5G(大氣質量1.5全球)照明下,一由經串聯分層並由一薄Ag奈米粒子重組層分隔之兩個CuPc/PTCBI DA異質接面組成的級聯PV電池具有約(2.5±0.1)%之功率效率(r/p),而單一CuPc/PTCBI子電池之ηp 為(1.1±0.1)%。級聯電池之Voc約為單一電池值的兩倍。Js c 之增加可佔至2.5%之ηp 增加的約15%。使用以下公式發現Js c 其中,S(λ)為模擬AM1.5G太陽發光光譜,q為電子電荷,c為光速且h為普朗克常量。
圖15展示了在具有級聯結構之Ag奈米粒子層1510及不具有級聯結構之Ag奈米粒子層1520的情況下所計算的ηE Q E (λ):150 nm ITO/10 nm CuPc/13 nm PTCBI/1 nm Ag/13 nm CuPc/30 nm PTCBI/100 nm Ag。空心圓展示了前端電池(PV 1,其最接近陽極)之ηE Q E 而填充正方形展示了後端電池(PV 2,其最靠近陰極)之ηE Q E 。亦展示了對PV 1(實線)及PV 2(虛線)之CuPc及PTCBI層的ηE Q E 之貢獻。該後端電池厚於該前端電池以補償由於該前端電池中之吸收以及寄生光干涉效應而導致的場強度之減少。在不具有Ag奈米粒子1520之結構中,PV 1(空心圓)及PV 2(填充正方形)之ηE Q E (λ)形式上相似,儘管PV 1由於其在大部分光活性區域中具有較高之ηE Q E 而具有較大之Js c 。此電流不平衡在PV 2中將Js c 限制為較小電流。對於PV 1及PV 2而言,對ηE Q E (λ)之主要貢獻係來自CuPc層,因為CuPc之擴散長度(=(100±30))大於PTCBI之擴散長度(=(30±3))。對於增強狀況而言使短路電流密度平衡,儘管PV 1及PV 2之ηE Q E (λ)具有不同形狀。由於該等奈米粒子之場增強,所以對自PV 1之PTCBI層及自PV 2之CuPc層的ηE Q E 存在較大貢獻。
在該CuPc/PTCBI架構中,此等材料之小LD 允許薄層沈積於該等前端及後端電池中,且因此DA介面位於該增強區內。對於具有大LD 之材料(諸如C6 0 )而言,若層厚度約為LD (如為雙層式有機PV電池的最佳層厚度),則該電流架構並不允許該DA介面處之顯著增強。對於此等材料而言,可由D與A材料之共蒸發薄膜製得級聯裝置,其中激子解離不受LD 限制。在該種狀況下,可使該等PV子電池保持較薄以保持高的FF,同時來自該奈米粒子電荷重組層之增強增加了電池中的吸收。
與入射光強度比較,在一金屬奈米粒子鏈之鄰近場中的光場強度可增加高達一百倍。此增強涵蓋一寬光譜範圍,且可延伸至高達100之距離,從而允許在經放置而與該等奈米粒子接觸或靠近奈米粒子之薄有機膜中的吸收增加。該增強可導致級聯雙層式有機PV電池中較高之功率效率。
CuPc/PTCBI PV電池中相對較小之擴散長度允許薄層在產生電流之DA介面處具有增強之吸收。對於LD >100之材料而言,在該等Ag奈米粒子處之浮滅激子可限制經由增加之吸收效率而改良的電位。一防止激子淬滅與效率增益競爭之方法係將該等金屬奈米粒子囊封於一薄絕緣層內。此等囊封奈米粒子可接著在該等有機膜中到處分散,從而增強吸收而不會使該電池之電效率降級。該等囊封奈米粒子可包含顯著百分比之有機膜體積。
可使用以下方法來產生囊封奈米粒子:如Ung等人之J.Phys.Chem.B (2001,105,3441-52)及Salgueirio-Maceira等人之J.Phys.Chem.B (2003,107,10990-10994)中所描述的逐層式自組裝;同樣描述於其中之Turkevich方法及如Liz-Marzn與Mulvaney之J.Phys.Chem.B (2003,107,7312-26)中所描述的其它方法,上述三者均以引用的方式全部倂入本文中。如熟習此項技術者所瞭解,可使用其它產生及囊封奈米粒子之方法。
此等囊封奈米粒子之使用可允許調節粒子與粒子之耦合效應、主體材料之宏觀特性及其它效應。在本發明之一實施例中,將該等奈米粒子囊封於一絕緣材料內。在本發明之一較佳實施例中,將該等奈米粒子囊封於一氧化物內。該絕緣層尤其較佳不小於約10,且不大於約100。在約10以下,量子效應可變得非平凡,且在約100以上,該等奈米粒子之分離可開始抑制SPP共振效應。該等奈米粒子可不必與該有機光活性區域實體接觸。在本發明之另一實施例中,可將該等奈米粒子貫穿一"活性區"而安置。如本文所用,"活性區"為一略大於"光活性區域"之區域。具體言之,該"活性區"為一來自其之奈米粒子可對光活性區域內之吸收具有顯著正效應的區域。一般地,該"活性區"包括含有該光活性區域之有機材料,同時亦包含光活性區域之約100內的有機材料。該活性區可包含非光活性材料,且可最通常包含(例如)與該光活性區域相鄰安置之阻斷層。
一旦根據多種方法中之任何一種方法製造囊封奈米粒子,便可藉由任何合適之方法將該等囊封奈米粒子倂入一裝置中。在一較佳實施例中,該等奈米粒子藉由在沈積之前先懸浮於溶液中而被倂入一經溶液沈積之有機層中。亦可使用其它方法,諸如使囊封粒子與一藉由蒸發而沈積之有機層共沈積。在該沈積過程期間,該等奈米粒子(其中該等粒子為非球形粒子)之定向可藉由機械途徑來控制,諸如旋塗及/或藉由施加一個場(諸如磁場或電場)。在若干實施例中,該等奈米粒子可現場製造。
儘管關於特定實例及較佳實施例而描述了本發明,但應瞭解,本發明並不限於此等實例及實施例。因此,熟習此項技術者將顯而易見,如主張之本發明可因此包括自本文所描述之特定實例及較佳實施例之變化。
100...有機光敏光電裝置
110...基板
115...陽極
120...陽極平滑層
125...施體層
130...受體層
135...阻斷層
140...陰極
200...示意圖
210...電池
220...電池
230...ITO陽極
240...Ag陰極
250...Ag奈米粒子層
260...陰影區
270...DA介面
280...DA介面
290...電子顯微圖
310...真實介電常數
320...擬介電常數
610...曲線
620...曲線
630...曲線
1010...球形Ag奈米粒子
1020...球形Ag奈米粒子
1030...橢圓形奈米粒子
1040...橢圓形奈米粒子
1110...球形陣列
1120...橢圓形陣列
1130...球形陣列
1140...橢圓形陣列
1150...球形陣列
1160...橢圓形陣列
1210...Ag島狀物
1220...整潔膜
1410...球形陣列
1420...橢圓形陣列
1510...具有級聯結構之Ag奈米粒子層
1520...不具有級聯結構之Ag奈米粒子層
圖1展示了一有機PV裝置。
圖2展示了一級聯有機光電電池之橫截面的示意圖及透射電子顯微圖。
圖3展示了計算為光子能量函數之Ag的真實(ε1 )及虛擬(ε2 )介電函數。
圖4展示了作為嵌入媒介之介電函數εm 的函數的5 nm球形Ag粒子之模擬表面電漿極化(SPP)共振波長。
圖5展示了真空中Ag粒子模擬SPP共振波長對照軸比。
圖6展示了1 nm Ag(點曲線)、7 nm CuPc(虛曲線)及在沉積於石英基板上之1 nm Ag(實曲線)上的7 nm CuPc薄膜的吸收光譜。
圖7展示了在λ=690 nm下一具有直徑2R=5 nm及中心與中心間距d=10 nm之Ag粒子鏈的計算強度增強(I/I0 )之等高線圖。
圖8展示了作為不同嵌入媒介之波長的函數的5 nm直徑之Ag粒子表面上的平均計算強度增強(I/I0 )。
圖9展示了在一5 nm直徑之球形及橢圓形粒子(軸比為0.5)表面上模擬的吸收(虛線)及平均強度增強(I/I0 )(實線)。
圖10展示了(a)在粒子之一lD鏈之中心處的最大計算強度增強(I/I0 )對照δ;及(b)模擬表面電漿極化(SPP)峰值波長,其作為5 nm直徑之球形(實線)及橢圓形粒子(虛線)之一lD鏈的表面至表面間隔(δ)的函數。
圖11展示了在被嵌入=2+0.5i媒介中的粒子之一1D鏈之軸線處所計算的強度增強(I/I0 )對照波長。
圖12展示了在具有(三角形)及不具有(正方形)10Ag叢集層之石英上不同厚度之CuPc於λ=690 nm波長下的經量測之吸光度A。在本文中描述了對資料之擬合(實曲線)。
圖13展示了具有及不具有Ag層之CuPc膜的吸光度量測差異(△A)對照CuPc厚度(t)。
圖14展示了被嵌入=2+0.5i媒介中的5 nm直徑之球形(實線)及橢圓形(軸比=0.5)粒子(虛線)的1D鏈的有效增強長度,其作為該鏈中面對面間距的函數。
圖15展示了一(a)存在及(b)不存在Ag叢集之CuPc/PTCBI級聯PV電池的所計算之外部量子效率(ηE Q E )光譜。
200...示意圖
210...電池
220...電池
230...ITO陽極
240...Ag陰極
250...Ag奈米粒子層
260...陰影區
270...DA介面
280...DA介面
290...電子顯微圖

Claims (23)

  1. 一種有機光敏裝置,其包含:第一電極;第二電極;包含第一施體層及第一受體層之光活性區域,其中各該第一施體層及第一受體層為一有機材料,其經安置於該第一電極與該第二電極之間並電連接至該第一電極與該第二電極;及由核心及絕緣囊封層所構成之複數個囊封奈米粒子,其中該核心包含金屬、經摻雜之簡並半導體或半導體材料,該等囊封奈米粒子分散於該光活性區域內,其中該等奈米粒子具有電漿共振且當該裝置暴露於電磁輻射時,該光活性區域藉由吸收電磁輻射產生激子,其中囊封該等奈米粒子之該絕緣材料避免激子淬滅於該等奈米粒子。
  2. 如請求項1之裝置,其中該等奈米粒子被囊封於氧化物中。
  3. 如請求項1之裝置,其中該光活性區域包含第一子電池,該第一子電池包含:該第一施體層;及與該第一施體層直接實體接觸之該第一受體層。
  4. 如請求項3之裝置,其中該光活性區域進一步包含第二子電池,該第二子電池進一步包含:第二施體層,及 與該第一施體層間接實體接觸之第二受體層,其中該第二子電池經安置於該第一子電池與該第二電極之間。
  5. 如請求項3之裝置,其中該等奈米粒子經安置於該第一受體層與該第一施體層內。
  6. 如請求項4之裝置,其中該等奈米粒子經安置於該第一子電池與該第二子電池之間。
  7. 如請求項1之裝置,其中該等奈米粒子為非球形粒子。
  8. 如請求項7之裝置,其中該光活性區域為平面的,藉此界定一平面,且該非球形粒子具有最長軸及最短軸,其中每一非球形奈米粒子之最長軸大約平行於該光活性區域之平面。
  9. 如請求項7之裝置,其中每一非球形奈米粒子具有軸比率不小於約0.1。
  10. 如請求項1之裝置,其中奈米粒子之間的平均面對面分離不大於約300 Å。
  11. 如請求項8之裝置,其中每一非球形奈米粒子之最短軸不大於約300 Å。
  12. 如請求項1之裝置,其中該絕緣材料之厚度不小於約10 Å。
  13. 如請求項1之裝置,其中該絕緣材料之厚度不大於約100 Å。
  14. 如請求項1之裝置,其中該金屬為Ag。
  15. 如請求項1之裝置,其中該金屬為Au。
  16. 如請求項1之裝置,其中該金屬為Cu。
  17. 如請求項1之裝置,其中該光活性區域包含塊狀異質接面。
  18. 如請求項1之裝置,其中該光活性區域包含經染料敏化之材料。
  19. 一種有機光敏裝置,其包含:第一電極;第二電極;活性區,其經安置於該第一電極與該第二電極之間並被電連接至該第一電極與該第二電極,該活性區進一步包含:光活性區域,其經安置於該活性區內且安置於該第一電極與該第二電極之間並被電連接至該第一電極與該第二電極,該光活性區域包含第一施體層及第一受體層,其中各該第一施體層及第一受體層為一有機材料;及經安置於該光活性區域之100Å內的額外有機材料;及由核心及絕緣囊封層所構成之之複數個囊封奈米粒子,其中該核心包含金屬、經摻雜之簡並半導體或半導體材料,該等囊封奈米粒子分散於該光活性區域內,其中該等奈米粒子具有電漿共振且當該裝置暴露於電磁輻射時,該光活性區域藉由吸收電磁輻射產生激子,且該囊封該等奈米粒子之該絕緣材料避免激子淬滅於該等奈米粒子。
  20. 如請求項19之裝置,其中該活性區進一步包含安置相鄰於該光活性區域的有機激子阻斷層。
  21. 一種用於製造有機光敏裝置之方法,該方法包含:獲得由核心及絕緣囊封層所構成之囊封奈米粒子,其中該核心包含金屬、經摻雜之簡並半導體或半導體材料;製造第一電極;製造包含第一施體層及第一受體層之有機光活性區域;及製造第二電極,其中各該第一施體層及第一受體層為一有機材料,其經安置於該第一電極與該第二電極之間並電連接至該第一電極與該第二電極,其中該等囊封奈米粒子分散於該光活性區域內。
  22. 如請求項21之方法,其進一步包含一種藉由溶液程序來沈積該光活性區域的方法,其中該等奈米粒子經分散於包含該等有機光活性材料之該溶液內。
  23. 如請求項21之方法,其中該等囊封粒子與有機光活性材料藉由蒸發共沈積。
TW094127141A 2004-08-11 2005-08-10 有機光敏裝置 TWI390739B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/915,410 US8592680B2 (en) 2004-08-11 2004-08-11 Organic photosensitive devices

Publications (2)

Publication Number Publication Date
TW200611419A TW200611419A (en) 2006-04-01
TWI390739B true TWI390739B (zh) 2013-03-21

Family

ID=35517542

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094127141A TWI390739B (zh) 2004-08-11 2005-08-10 有機光敏裝置

Country Status (14)

Country Link
US (1) US8592680B2 (zh)
EP (2) EP1782471B1 (zh)
JP (1) JP5452865B2 (zh)
KR (1) KR101129145B1 (zh)
CN (2) CN100583488C (zh)
AR (1) AR051005A1 (zh)
AU (1) AU2005280394A1 (zh)
BR (1) BRPI0513651A (zh)
CA (1) CA2577147C (zh)
DE (2) DE602005004925T2 (zh)
ES (2) ES2338493T3 (zh)
HK (2) HK1111519A1 (zh)
TW (1) TWI390739B (zh)
WO (1) WO2006026070A2 (zh)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339725B2 (ja) 2004-11-24 2013-11-13 ザ、トラスティーズ オブ プリンストン ユニバーシティ フェナントロリン励起子阻止層を有する有機感光性オプトエレクトロニックデバイス
US7365389B1 (en) 2004-12-10 2008-04-29 Spansion Llc Memory cell having enhanced high-K dielectric
TW200622357A (en) * 2004-12-28 2006-07-01 Hon Hai Prec Ind Co Ltd Display panel and liquid crystal display device
US7492001B2 (en) * 2005-03-23 2009-02-17 Spansion Llc High K stack for non-volatile memory
US20070290195A1 (en) * 2005-08-22 2007-12-20 Stephen Forrest Increased open-circuit-voltage organic photosensitive devices
US7482195B2 (en) * 2005-09-30 2009-01-27 The Trustees Of Princeton University High mobility high efficiency organic films based on pure organic materials
US8013240B2 (en) * 2005-11-02 2011-09-06 The Trustees Of Princeton University Organic photovoltaic cells utilizing ultrathin sensitizing layer
US7947897B2 (en) * 2005-11-02 2011-05-24 The Trustees Of Princeton University Organic photovoltaic cells utilizing ultrathin sensitizing layer
US8017863B2 (en) * 2005-11-02 2011-09-13 The Regents Of The University Of Michigan Polymer wrapped carbon nanotube near-infrared photoactive devices
US7982130B2 (en) * 2008-05-01 2011-07-19 The Regents Of The University Of Michigan Polymer wrapped carbon nanotube near-infrared photovoltaic devices
WO2007112088A2 (en) * 2006-03-24 2007-10-04 Qd Vision, Inc. Hyperspectral imaging device
EP2261980B1 (en) * 2006-04-11 2013-06-12 Merck Patent GmbH Tandem photovoltaic cells
KR20080112250A (ko) * 2006-04-13 2008-12-24 시바 홀딩 인코포레이티드 광전지
US8164087B2 (en) 2006-06-12 2012-04-24 Alcatel Lucent Organic semiconductor compositions with nanoparticles
US20070289626A1 (en) * 2006-06-20 2007-12-20 Konarka Technologies, Inc. Photovoltaic cells
US7897429B2 (en) * 2006-11-20 2011-03-01 The Trustees Of Princeton University Organic hybrid planar-nanocrystalline bulk heterojunctions
US7638356B2 (en) * 2006-07-11 2009-12-29 The Trustees Of Princeton University Controlled growth of larger heterojunction interface area for organic photosensitive devices
US11031567B2 (en) 2006-07-11 2021-06-08 The Regents Of The University Of Michigan Efficient solar cells using all-organic nanocrystalline networks
US8987589B2 (en) 2006-07-14 2015-03-24 The Regents Of The University Of Michigan Architectures and criteria for the design of high efficiency organic photovoltaic cells
RU2331140C1 (ru) * 2007-01-09 2008-08-10 Валентин Николаевич Самойлов Гетероэлектрический фотоэлемент
WO2009002551A1 (en) * 2007-06-26 2008-12-31 Qd Vision, Inc. Photovoltaic devices including quantum dot down-conversion materials useful for solar cells and materials including quantum dots
US7847364B2 (en) * 2007-07-02 2010-12-07 Alcatel-Lucent Usa Inc. Flexible photo-detectors
WO2009013282A1 (de) * 2007-07-23 2009-01-29 Basf Se Photovoltaische tandem-zelle
EP2181466B1 (en) 2007-08-24 2021-03-10 The Regents of the University of Michigan Growth of ordered crystalline organic films
JP5388046B2 (ja) * 2007-09-03 2014-01-15 ローム株式会社 光検出器
US8088484B2 (en) 2007-09-03 2012-01-03 Rohm Co. Ltd. Metallic structure and photodetector
KR100884536B1 (ko) * 2007-09-28 2009-02-18 삼성모바일디스플레이주식회사 유기 발광 소자
CA2606661C (en) * 2007-09-28 2015-05-19 The Regents Of The University Of Michigan Organic photosensitive optoelectronic devices with near-infrared sensitivity
US20110049367A1 (en) * 2008-03-19 2011-03-03 Stephen Forrest Organic thin films for infrared detection
WO2009126056A1 (ru) 2008-04-09 2009-10-15 Общество С Ограниченной Ответственностью "Новые Энергетические Технологии" Преобразователь электромагнитного излучения
DE102008035559A1 (de) * 2008-07-30 2010-02-11 Rupert Goihl Elektrolumineszenz oder Photovoltaikquelle
US20100065112A1 (en) 2008-09-15 2010-03-18 Thompson Mark E Organic Photosensitive Devices Comprising a Squaraine Containing Organoheterojunction and Methods of Making Same
KR20110065483A (ko) * 2008-09-30 2011-06-15 제이엑스 닛코닛세키 에네루기 가부시키가이샤 직렬식 태양 전지
KR101007653B1 (ko) * 2008-10-08 2011-01-13 한국과학기술원 유기 발광 다이오드 디바이스
US20100236614A1 (en) * 2009-02-06 2010-09-23 Los Alamos National Security, Llc Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon
TWI382552B (zh) * 2009-02-13 2013-01-11 Nexpower Technology Corp 具有不透明高反射粒子之薄膜太陽能電池與其製作方法
WO2010106534A1 (en) * 2009-03-16 2010-09-23 Brightview Systems Ltd. Measurement of thin film photovoltaic solar panels
JP5877149B2 (ja) * 2009-03-17 2016-03-02 メルク パテント ゲーエムベーハー 色素増感光電池のための金属基板
KR20100106779A (ko) * 2009-03-24 2010-10-04 한양대학교 산학협력단 태양 전지 및 그 제조 방법
AU2010235273A1 (en) * 2009-04-06 2011-11-10 Ensol As Photovoltaic cell
US20100288356A1 (en) * 2009-05-12 2010-11-18 The Regents Of The University Of Michigan Photoactive compositions containing plasmon-resonating nanoparticles
JP5035472B2 (ja) * 2009-07-06 2012-09-26 トヨタ自動車株式会社 光電変換素子
JP5554529B2 (ja) * 2009-08-31 2014-07-23 キヤノン電子株式会社 光電変換デバイス及び太陽電池
KR101074290B1 (ko) * 2009-09-04 2011-10-18 한국철강 주식회사 광기전력 장치 및 광기전력 장치의 제조 방법
GB0920918D0 (en) * 2009-11-27 2010-01-13 Isis Innovation Device
US20110203649A1 (en) * 2010-02-19 2011-08-25 Basf Se Use of indanthrene compounds in organic photovoltaics
KR20230058180A (ko) * 2010-04-08 2023-05-02 더 리젠츠 오브 더 유니버시티 오브 미시간 열적 어닐링 과정 및 용매 증기 어닐링 과정에 의해 제조된 향상된 벌크 이종접합 소자
WO2012029559A1 (ja) * 2010-09-01 2012-03-08 コニカミノルタホールディングス株式会社 有機光電変換素子
JP2012074569A (ja) 2010-09-29 2012-04-12 Jx Nippon Oil & Energy Corp 光電変換素子
JP5947799B2 (ja) 2010-10-15 2016-07-06 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン 光起電デバイスにおける感光層のエピタキシャル成長制御用材料
JP5571525B2 (ja) * 2010-10-20 2014-08-13 ローム株式会社 有機薄膜太陽電池およびその製造方法
JP2012129278A (ja) * 2010-12-14 2012-07-05 Konica Minolta Holdings Inc 有機光電変換素子、その製造方法及び太陽電池
MX339751B (es) 2011-01-26 2016-06-08 Massachusetts Inst Technology Celdas fotovoltaicas transparentes.
JP5681607B2 (ja) * 2011-03-28 2015-03-11 株式会社東芝 光電変換素子
JP6125758B2 (ja) 2011-03-31 2017-05-10 住友化学株式会社 光学素子
JP6018774B2 (ja) 2011-03-31 2016-11-02 住友化学株式会社 金属系粒子集合体
JP6085095B2 (ja) 2011-03-31 2017-02-22 住友化学株式会社 光学素子
JP5969877B2 (ja) 2011-10-03 2016-08-17 住友化学株式会社 量子ドット発光素子
JP6373552B2 (ja) * 2011-10-26 2018-08-15 住友化学株式会社 光電変換素子
KR101463154B1 (ko) * 2012-02-21 2014-11-20 한국과학기술원 금 나노 막대를 포함하는 유기 태양 전지 소자
JP5908305B2 (ja) * 2012-02-28 2016-04-26 住友化学株式会社 光電変換素子
KR20140148430A (ko) 2012-03-27 2014-12-31 스미또모 가가꾸 가부시키가이샤 무기층 발광 소자
WO2013171520A1 (en) 2012-05-18 2013-11-21 Isis Innovation Limited Optoelectronic device comprising perovskites
GB201208793D0 (en) 2012-05-18 2012-07-04 Isis Innovation Optoelectronic device
ES2568623T3 (es) 2012-05-18 2016-05-03 Isis Innovation Limited Dispositivo optoeléctrico que comprende material de armazón poroso y perovskitas
EP3413365B1 (en) 2012-09-18 2022-06-29 Oxford University Innovation Limited Optoelectronic device
KR101646727B1 (ko) * 2013-10-10 2016-08-08 한양대학교 산학협력단 태양 전지 및 그 제조 방법
WO2015084645A1 (en) * 2013-12-03 2015-06-11 Struya Sol Corporation Photovoltaic devices based on organo-metallic molecules
FR3029434B1 (fr) * 2014-12-03 2016-12-30 Commissariat Energie Atomique Procede pour recouvrir une couche d'oxyde transparent conducteur d'une couche continue de materiau conducteur
KR101629584B1 (ko) * 2014-12-22 2016-06-13 가천대학교 산학협력단 표면 플라즈몬 공명 현상을 발생시키는 구리 나노입자를 포함한 광전 소자 및 이의 제조 방법
KR102605375B1 (ko) * 2016-06-29 2023-11-22 삼성전자주식회사 유기 광전 소자 및 이미지 센서
CN107093642A (zh) * 2017-05-05 2017-08-25 中国科学院长春光学精密机械与物理研究所 一种近红外探测器
US11145822B2 (en) 2017-10-20 2021-10-12 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor, and electronic device including the same
CN108847445B (zh) * 2018-06-06 2023-04-18 太原理工大学 基于表面等离激元共振的有机光电倍增探测器及制作方法
US20220344541A1 (en) 2019-09-13 2022-10-27 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Optically Active Quantum Dot Defined By Gates

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703436A (en) 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US7144627B2 (en) * 1997-03-12 2006-12-05 William Marsh Rice University Multi-layer nanoshells comprising a metallic or conducting shell
US6344272B1 (en) * 1997-03-12 2002-02-05 Wm. Marsh Rice University Metal nanoshells
US6852252B2 (en) * 1997-03-12 2005-02-08 William Marsh Rice University Use of metalnanoshells to impede the photo-oxidation of conjugated polymer
US6420031B1 (en) 1997-11-03 2002-07-16 The Trustees Of Princeton University Highly transparent non-metallic cathodes
US6352777B1 (en) 1998-08-19 2002-03-05 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
TW479373B (en) * 1998-08-19 2002-03-11 Univ Princeton Organic photosensitive optoelectronic device
US6451415B1 (en) * 1998-08-19 2002-09-17 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
WO2000022682A2 (en) * 1998-10-09 2000-04-20 The Trustees Of Columbia University In The City Of New York Solid-state photoelectric device
US6441945B1 (en) * 1999-08-13 2002-08-27 California Of Technology Optoelectronic device and method utilizing nanometer-scale particles
US6440769B2 (en) 1999-11-26 2002-08-27 The Trustees Of Princeton University Photovoltaic device with optical concentrator and method of making the same
US6333458B1 (en) 1999-11-26 2001-12-25 The Trustees Of Princeton University Highly efficient multiple reflection photosensitive optoelectronic device with optical concentrator
US6657378B2 (en) 2001-09-06 2003-12-02 The Trustees Of Princeton University Organic photovoltaic devices
US6580027B2 (en) 2001-06-11 2003-06-17 Trustees Of Princeton University Solar cells using fullerenes
JP4088711B2 (ja) * 2002-09-13 2008-05-21 ソニー株式会社 光電変換素子及びその製造方法、並びに光センサ及び太陽電池
US6972431B2 (en) 2003-11-26 2005-12-06 Trustees Of Princeton University Multilayer organic photodetectors with improved performance
US7196835B2 (en) 2004-06-01 2007-03-27 The Trustees Of Princeton University Aperiodic dielectric multilayer stack

Also Published As

Publication number Publication date
KR20070059082A (ko) 2007-06-11
EP1928039B1 (en) 2010-02-10
EP1928039A1 (en) 2008-06-04
CN100583488C (zh) 2010-01-20
HK1144733A1 (en) 2011-03-04
TW200611419A (en) 2006-04-01
US8592680B2 (en) 2013-11-26
CN101728486A (zh) 2010-06-09
HK1111519A1 (en) 2008-08-08
WO2006026070A3 (en) 2006-05-26
CN101023540A (zh) 2007-08-22
ES2338493T3 (es) 2010-05-07
EP1782471B1 (en) 2008-02-20
CN101728486B (zh) 2013-08-07
DE602005004925D1 (de) 2008-04-03
AR051005A1 (es) 2006-12-13
KR101129145B1 (ko) 2012-03-28
DE602005004925T2 (de) 2009-02-12
CA2577147A1 (en) 2006-03-09
WO2006026070A2 (en) 2006-03-09
US20060032529A1 (en) 2006-02-16
ES2301078T3 (es) 2008-06-16
JP2008510305A (ja) 2008-04-03
JP5452865B2 (ja) 2014-03-26
DE602005019335D1 (de) 2010-03-25
AU2005280394A1 (en) 2006-03-09
BRPI0513651A (pt) 2008-05-13
EP1782471A2 (en) 2007-05-09
CA2577147C (en) 2014-09-30

Similar Documents

Publication Publication Date Title
TWI390739B (zh) 有機光敏裝置
TWI411147B (zh) 堆疊之有機光敏感性裝置
TWI430453B (zh) 有機光敏裝置
TWI518056B (zh) 包括含方酸(squaraine)之有機異質接面的有機感光裝置及其製造方法
TWI402981B (zh) 具有互逆載體激子阻擋層之有機雙異質結構光伏打電池
JP5270157B2 (ja) 積層型有機感光性デバイス
JP2004523129A (ja) 有機光起電力素子
US7326955B2 (en) Stacked organic photosensitive devices
MX2007001690A (en) Organic photosensitive devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees