TWI389165B - 鑽石上半導體裝置及其形成方法 - Google Patents

鑽石上半導體裝置及其形成方法 Download PDF

Info

Publication number
TWI389165B
TWI389165B TW094115397A TW94115397A TWI389165B TW I389165 B TWI389165 B TW I389165B TW 094115397 A TW094115397 A TW 094115397A TW 94115397 A TW94115397 A TW 94115397A TW I389165 B TWI389165 B TW I389165B
Authority
TW
Taiwan
Prior art keywords
diamond
layer
model
semiconductor
substrate
Prior art date
Application number
TW094115397A
Other languages
English (en)
Other versions
TW200609998A (en
Inventor
Chien Min Sung
Original Assignee
Chien Min Sung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chien Min Sung filed Critical Chien Min Sung
Publication of TW200609998A publication Critical patent/TW200609998A/zh
Application granted granted Critical
Publication of TWI389165B publication Critical patent/TWI389165B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0405Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising semiconducting carbon, e.g. diamond, diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3146Carbon layers, e.g. diamond-like layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3148Silicon Carbide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76256Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques using silicon etch back techniques, e.g. BESOI, ELTRAN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02362Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment formation of intermediate layers, e.g. capping layers or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

鑽石上半導體裝置及其形成方法
本發明有關於一種包含諸如鑽石或類鑽石之物質的超級硬材料之半導體裝置以及此種裝置之製造方法。更詳而言之,本發明有關一種氣相沉積之使用以製造包含鑽石材料的半導體裝置。
鑽石以及類鑽石物質具有許多特性,例如耐磨性、熱導性、電子阻抗性、聲波傳送以及侵蝕鈍性,這使得它們常被利用於各種工業應用中。為此,鑽石以及類鑽石物質包含至各種用途之各種工具中,例如鋸條、鑽頭以及諸如表面聲波濾波器之電子組件。將鑽石或類鑽石之材料納入工具中之方法可包含如化學氣相沉積(CVD)以及物理氣相沉積(PVD)之習知程序。
已使用了各種與沉積鑽石或類鑽石材料於基板上有關的CVD技術。典型的CVD技術使用氣體反應物沉積鑽石或類鑽石材料於層或薄膜中。這些氣體通常包含小量的(亦即,少於約5%)含碳材料,如稀釋於氫中之甲烷。對於熟悉該項技藝者而言包含設備與條件的各種特定CVD程序為已知者。
於使用CVD技術形成鑽石或類鑽石於基板上時,可首先將複數個鑽石顆粒或“種子”置於基板表面上。可使用CVD本身來完成此種種子的放置,如施加電壓偏壓、以微 米尺寸鑽石磨光或該技藝中已知的其他方法。這些種子扮演鑽石核心以當碳氣相沉積於基板上時促進鑽石層從基板向外之生長。因此,鑽石層生長側顆粒大小變得越來越粗糙,且最終需藉由機械手段研磨以及磨光成平滑的拋光,以適用於許多工業應用。惟,由於鑽石以及類鑽石的物質係已知最硬材料之一,此種機械研磨以及磨光很困難且冗長。再者,磨光的成本長超過製造鑽石薄膜本身的成本。此外,機械磨光不可避免地會使鑽石表面產生微小裂縫或變異,此裂縫對某些應用是有害的。
半導體工業近來致力於製造鑽石上半導體裝置。這些裝置允許下層基板與任何數量的有用半導體裝置之間電性絕緣。典型地,這些絕緣層上覆矽(SOI)可包含之絕緣層,具有不良熱導性、高熱膨脹不匹配程度以及/或矽或其他半導體材料晶膜生長困難的問題。針對部分這些問題,已某程度地成功使用鑽石作為絕緣層。惟,仍持續需要改良這種裝置以降低製造成本、增進性能等等。
因此,仍不斷地尋求一種具有改良性能以及降低的製造成本之SOI裝置以及包含SOI裝置之鑽石製造方法。
有鑒於此,本發明提供一種鑽石上半導體(SOD)裝置以及這種裝置之製造方法以解決許多上述的困難。就其本身而論,本發明之裝置以及方法能夠提供具有改良之絕緣特性的SOD裝置,並且特別適用於絕緣半導體裝置以及 類似者中。
於本發明之一態樣中,SOD裝置可包含基板,具有無力(adynamic)鑽石層於其上。無力層之裝置表面可於遠離基板之方位。此外,可將半導體層耦合至該鑽石層之裝置表面。半導體層可直接形成於裝置表面上或形成於中間層上。
於另一態樣中,可使用諸如氮化鋁、氮化鉻、矽、碳化矽、氮化矽、碳化鎢、氮化鎵、類鑽石碳以及其複合物之中間層耦合該半導體層。
於一詳細態樣中,該裝置表面具有從約1nm至約1μm的表面粗糙度(Ra)。
大體而言,根據本發明之製造SOD裝置之方法首先係設置模型,該模型具有介面表面配置成與鑽石SOD裝置之裝置表面的預期配置相反匹配。接著使用氣相沉積技術將無力鑽石層生長於模型之鑽石介面表面上。當進行鑽石生長時,無力鑽石層得到相對於裝置表面之生長表面,其接著連接至基板或支撐層。亦可將半導體層耦合至裝置表面。
於一實施例中,可移除模型的至少一部分。於一些情況中,可將模型薄化以形成半導體層以及/或中間層。故,模型之材料可選擇適用於納入最終SOD裝置之材料。取而代之,可完全移除模型,並且可於暴露的鑽石裝置表面形成半導體層,以及非必要地中間層。
於另一替代態樣中,製造SOD裝置之方法可包含設置 具有介面表面之模型。可使用氣相沉積技術將無力鑽石層生長於介面表面上,該無力鑽石層具有相對於介面表面之生長表面。亦可將半導體層耦合至無力鑽石層之生長表面。
已概略地描述本發明之較重要的特徵,以更易於明瞭下列本發明之詳細說明,以及更佳體會本發明之貢獻。本發明之其他特徵將從本發明之下列詳細說明中以及附圖與申請專利範圍更為清楚,或可從本發明之實施中習得。
於揭露並描述本發明之前,應瞭解到本發明不限於在此揭露的特定結構、製造步驟或材料,但可延伸至該技藝中具通常知識者視為其等效者。同樣應瞭解到在此所採用之術語僅用於描述特定實施例,而非限制。
請注意到,此說明書以及申請專利範圍中用到的“一”或“該”可包含複數個指示對象,除非文中有另作明確地說明。因此,例如“一中間層”之指示可包含一或多個此種層,“一碳源”之指示可包含一或多個此種碳源,以及“一CVD技術”之指示可包含一或多個此種技術。
定義
在本發明之說明以及請求申請專利範圍中,根據下列定義使用下列之術語。
如在此所使用,“超級硬的”或“超級研磨作用的”可互 相替換,且可指任何結晶、多結晶材料或具有約8或更大莫氏硬度(Moh’s hardness)之該些材料之混合。在某些態樣中,莫氏硬度可約9.5或更大。此種材料包含但不限於鑽石、多晶鑽石(PCD)、立方氮化硼、多晶立方氮化硼(PCBN),以及熟悉該項技藝者已知的其他超級硬材料。超級硬材料可以多種形式納入本發明,包含粒、礫、薄膜、層等等。
如在此所使用,“基板”係指非鑽石表面,其可連接各種材料形成鑽石上基板(SOD)裝置。此基板可為達成特定結果需要之任何形狀、厚度或材料,並包含但不限於金屬、合金、陶瓷以及其結合物。更進一步,於某些態樣中,基板可為現有之半導體裝置或晶圓,或能與連接至適當裝置之材料。於一些額外態樣中,基板可為一旦與無力的(adynamic)鑽石層結合後具有足夠完整性以當一旦該層與製造其之模型分離時防止其改變形狀。
如此所用,“含金屬的(metallic)”係指任何種類的材料或合成物,其中材料的絕大部分為金屬。因此,包含非金屬部分大於金屬部分之各種氧化、氮化以及碳化合成物以及任何其他材料或合成物不應視為“非含金屬的”。於實施本發明中視為特別有用之各種金屬的範例包含但不限於:鋁、鎢、鉬、鉭、鋯、釩、鉻、銅以及上述之合金。
如此所用,“陶瓷的”係指非鑽石非金屬材料,其為硬、耐熱、耐侵蝕,以及可被磨光而具有少於約1微米之表面粗糙度(Ra)。此外,如此所使用,“陶瓷”材料可包含 至少一元件,選自由Al、Si、Li、Zn以及Ga組成之族群。對於熟悉該項技藝者而言,包含上述元件之氧化物、氮化物以及各種其他合成物皆知為陶瓷。於此使用視為“陶瓷”之額外的材料,如玻璃,對於熟悉該項技藝者而言為已知。於本發明中有用之特定陶瓷範例包含但不限於,Si、SiO2 、Si3 N4 、Al2 O3 、AlN、BN、TiN、ZrN、GaAs、GaP、LiTaO3 、LiNbO3 、ZnO、如碳酸氫納玻璃之玻璃等等。
如此所用,“介面表面”係指模型或暫時模型或表達模型材料之其他材料層之表面,其上沉積用於製造鑽石層之材料。此種材料包含鑽石或其他超級研磨作用的粒子,以及用於促進使用CVD技術之鑽石層生長之周圍材料,如鑽石成核促進物。此介面表面可為模型之直接表面或可包含從其上形成之薄材料層暴露出之表面,其中該薄材料層不會顯著地影響原來模型表面之表面輪廓以及粗糙度。此種薄層可包含成核促進材料、壓電材料以及可形成足夠薄以保持原有平滑模型表面實質上相同表面之任何其他材料。
如在此有關於模型之使用,“外部表面”係指未與鑽石層直接接觸之模型表面。
如此所用,“無力的(adynamic)”係指無法獨立保持其形狀以及/或強度之一種層。例如,在無模型或支撐層的情況下,無力的鑽石層將傾向於捲曲或變形,當移除掉模型或支撐表面時。雖然有各種原因可能導致層之無力特性,於一態樣中,此原因為層之極薄度。
如此所用,“成核(nucleation)促進物”係指增加使 用CVD程式從複數個鑽石核心形成鑽石層之品質的材料。於一態樣中,該成核促進物可藉由降低鑽石核心之移動或固定鑽石核心來增加鑽石層的品質。成核促進者之範例包含但不限於金屬以及各種含金屬合成物,以及碳化物及碳化物形成之材料。
如此有關於成核促進者層以及中間層之使用,“薄”係指該層之厚度或深度夠小而不實質上干擾從介面表面之意圖的配置至裝置表面配置之轉移。於一態樣中,成核促進者之厚度可小於0.1微米。於另一態樣中,厚度可小於10奈米。於另一態樣中,厚度可小於約5奈米。
如此所用,“裝置表面”係指接觸半導體或其他電子裝置之鑽石層表面。
如此所用,“鑽石層”係指任何結構,無論形狀為何,包含含鑽石材料且可納入SOD裝置中。因此,例如,部分或完全覆蓋一表面之鑽石層係包含於這些名詞之意義中。此外,諸如金屬、丙烯酸或合成物之包含鑽石粒子於其中之材料層係包含於此些名詞中。
如此所用,“含鑽石材料”係指任何之數個材料,其包含碳原子與以至少某程度之sp3 鍵所結合之碳的至少一部分結合。含鑽石材料可包含但不限於自然或人工鑽石、多晶鑽石、類鑽石的碳、非晶形鑽石等等。本發明之鑽石層最常以類鑽石的碳以及/或非晶形鑽石所形成。
如此所用,“氣相沉積的”係指使用氣相沉積技術形成之材料。
如此所用,“氣相沉積”係指透過蒸氣階段沉積材料於基板上之程序。氣相沉積程式可包含任何程序,例如但不限於化學氣相沉積(CVD)以及物理氣相沉積(PVD)。熟悉該項技藝者可對各氣相沉積方法實施各種各樣的變更。氣相沉積方法之範例包含熱燈絲CVD、射頻(rf)-CVD、雷射CVD(LCVD)、金屬有機CVD(MOCVD)、噴濺、熱蒸發PVD、離子化金屬PVD(IMPVD)、電子束PVD(EBPVD)、反應性PDV等等。
如此所用,“化學氣相沉積”或“CVD”係指化學性沉積蒸氣型態之鑽石或其他粒子至一表面上之任何方法。該技藝中各種CVD為已知。
如此所用,“CVD被動材料”係指一種材料,其不允許使用CVD方法使鑽石或其他材料實質的沉積於該材料上。有關於鑽石沉積之CVD被動材料之範例為銅。因此,於CVD程序中,碳不會沉積於銅上,而僅於CVD主動材料上,如矽、鑽石或其他已知材料。因此,CVD被動材料相對於某些材料但非對其他材料而言可為“被動”。例如,多種碳化形成物可成功地沉積於銅上。
如此所用,“相反對應”係指鑽石裝置表面配置與製造該裝置之模型介面表面配置之間的相反關係(當這些表面定位於相同方向時)。換句話說,當裝置表面形成於模型之介面表面時,當該兩表面分開且面對相同方向時兩者之配置為互相相反對應。於某些情況中,該相反對應可導致鏡面圖像。
如此所用,可替換使用“核心側”,“核心表面”以及類似的名詞,以及係指鑽石粒子核心發源之鑽石層之側或表面。除非另有描述,鑽石層核心表面為首先沉積於模型介面表面之側或表面。於許多情況中,核心表面可能變成工具的裝置表面。
如此所用,可替換使用“生長側”、“已生長側”以及“已生長表面”以及係指於CVD程序中生長之超級研磨作用的薄膜或層之表面。
如此所用,“Ra”係指表面粗糙度之測量,係由一尖峰與相鄰谷底之間高度不同所決定。此外,“Rmax”為表面粗糙度之測量,係由該表面上的最高峰以及該表面上的最低谷底之間的不同所決定。
如此與識別出之特性或情況有關所用,“實質上”係指與識別出之特性或情況測量上相差夠小的差異程度。確切允許的差異程度於某些情況中取決於特定的上下文。因此,例如,具有“實質上”特定區域之合成的原料可能於合成或相關特性中達到幾個百分比之實驗誤差,例如1%到3%。
濃度、數量以及其他數字資料可能在此以範圍的形式表達或提供。應瞭解到此種範圍形式僅係因為方便以及簡明而使用,因此應有彈性地詮釋它們以包含不僅僅作為範圍限制明確敘述之數字值,而亦包含此範圍中所含括的所有個別的值或次範圍,有如明確地敘述各個數字值以及次範圍。
作為範例,“約1微米至約5微米”之數字範圍應詮釋為不僅包含明確敘述之約1微米至約5微米的值,但亦應包含在該指示之範圍內的個別值以及次範圍。因此,包含於此數字範圍內之個別值為例如2、3以及次範圍為諸如從1-3、從2-4以及從3-5等等。
相同的原理應用到僅敘述單一數字值之範圍。例如,“小於5微米”之範圍應詮釋為包含於5微米以及0微米之間的所有值以及次範圍,包含0微米之值。此外,不論範圍的寬度或所描述之特徵都應該應用此種詮釋。
本發明
茲參照第1圖,根據本發明之一實施例絕緣體上半導體(SOI)裝置大致顯示於200。可包含基板202以提供支撐以及/或功能特性至SOI裝置。任何數量的材料可用作為基板材料。典型地,基板可由具有特定應用所希望的特性的材料形成。例如,於一些實施例中,機械力、熱膨脹性、熱導性、電子阻抗性以及之類者可能很重要。多種適當基板材料非限制性的範圍可包含鎢、矽、碳化矽、氮化矽、碳化鈦、氮化鈦、氮化硼、石墨、其他陶瓷、玻璃、鉬、鋯、鉭、鉻、氮化鋁、類鑽石碳(DLC)以及其複合物。含鎢之基板可提供卓越的機械支撐以及低熱膨脹。類似地,含矽之基板可與各種半導體裝置以及/或產品之整合非常相容。雖然許多材料可作為適當的基板,具有低熱膨脹係數之材料為較佳者。這至少考量了降低在基板以及諸 如DLC、矽、氮化鎵以及砷化鎵等等之相鄰材料間介面的熱膨脹應力。
無力鑽石層204亦可於基板202上。無力鑽石層可具有遠離基板之裝置表面210。該無力鑽石層可包含鑽石材料。典型地,無力層係使用氣相沉積方法生長,將於下與本發明之方法相關作敘述。無力鑽石層可具有多種特別的性質,對於SOD裝置而言為有利者。通常,鑽石層可具有從約10nm至約100μm之厚度,以及於某些情況中約100nm至約30μm。此外,小於10μm之鑽石層厚度可能於某些應用中為恰當者。於一特定實施例中,鑽石層可具有從約10nm至小於100μm之厚度。經常地,具有小於約30μm之厚度之無力鑽石層可提供所希望的絕緣效果,同時亦可將生產時間以及成本降至最低。
額外的考量包含裝置表面210之表面粗糙度。更詳言之,非常平滑之表面可具有數個所希望的效果。這些考量的其中一些包含:半導體層至該處之黏接、特徵形成之改善的解析度、改善的耦合係數之類者。例如,在此所述之方法以及裝置主要集中在SOD裝置,而非在此處所述方法之後或一同形成於SOD裝置上之任何特徵或半導體裝置。於製造各種裝置期間,光源的焦深(focal depth)可影響使用特定設備可達成之解析度以及最小特徵尺寸,例如線寬等等。焦深係指一晶圓或其他基板表面上影像聚焦之深度。故,在不同深度,暴露的影像可具有惡化的焦距或銳利線緣。典型焦深係在1μm至2μm的範圍,雖然在此外之 範圍為已知者。另外,粗糙表面可干擾此解析度,尤其當表面粗糙度之程度趨向使用的特定設備的焦深。因此,當暴露表面的表面粗糙度降低時,可達成解析度以及裝置密度之增加。換句話說,於某些情況中,表面粗糙度可為裝置解析度以及密度之限制因素。
根據本發明,表面粗糙度可大幅降低而不需磨光昂貴的鑽石或矽層。將隨同某些方法更詳細討論此觀點。結果為,可達成解析度之主要限制可因此為使用的設備而非晶圓或暴露的材料。例如,裝置表面210可具有從約1nm至約1μm之表面粗糙度(Ra),且較佳者從約1nm至約20nm,最佳者從約1nm至約10nm。
半導體層206可耦合至鑽石層204之裝置表面210。該半導體層可直接耦合至裝置表面或可經由額外的層耦合至裝置表面。半導體層可包含任何用於形成電子裝置、半導體裝置之類者之適當的材料。大部分的半導體係基於矽、鎵、銦以及鍺。惟,半導體層適當的材料可包含但不限於矽、碳化矽、砷化鎵、氮化鎵、鍺、硫化鋅、磷化鎵、銻化鎵、砷磷化鎵銦、砷化鋁鎵、、氮化硼、氮化鋁、砷化銦、磷化銦、銻化銦、氮化銦以及其複合物。於一實施例中,半導體層可包含矽、碳化矽、砷化鎵、氮化鎵、氮化鋁或這些材料的複合。於一些額外實施例中,非矽為基礎之裝置可例如為以砷化鎵、氮化鎵、鍺、氮化硼、氮化鋁、銦為基礎材料以及其複合物為基礎者所形成。可使用之其他材料包含Al2O3、BeO、W、Mo、c-Y2 O3 、c-( Y0.9 La0.1 )2 O3 、c-Al23 O27 N5 、c-MgAl2 O4 、t-MgF2 、石墨以及其混合物。但目前大部分的半導體裝置以矽為基礎。
參考第2圖,半導體層206可使用中間層208耦合至裝置表面210。中間層可提供數個優點,例如但不限於,改善的熱膨脹匹配、提供取向附生生長用之改善的晶格匹配、提供特定電子特性、熱導性之類者。中間層適當的非限制性範例可包含氮化鋁、氮化鉻、矽、碳化矽、氮化矽、碳化鎢、氮化鎵、碳化鎢、氮化硼、鎢、錳、鉭、鉻、以及其複合物或合金。於又另一實施例中,中間材料可自由包含氮化鋁、氮化鉻、氮化矽、碳化鎢、氮化鎵以及其混合物組成之族群的材料。又另一實施例中,中間材料可自由包含氮化鋁、氮化鉻、碳化鎢以及其混合物組成之族群的材料。目前,中間層較佳為氮化鋁。氮化鋁有利的原因是由於改善的晶格匹配促進了在其上典型半導體材料(如矽以及鎵為基礎的材料)之取向附生之生長。
替代地,一非必要的中間層可包含電性傳導材料。適當的導電材料之非限制性的範例可包含銅、鋁、鎢、鉭以及其合金。包含此非必要的中間層以提供設計具有正與負電極於絕緣層各側之半導體的獨特選擇。
典型地,該中間層可具有使無力層之輪廓以及平滑度不受到實質上改變之厚度。惟,可能發生一些變異,依照特定應用以及裝置,常見厚度可從約50nm至約10μm,較佳約400nm至約5μm。
茲參考第3A至3D圖,顯示根據本發明製造SOD裝置之 方法。第3A圖描述模型220,具有介面表面212組態成相反匹配SOI裝置之裝置表面210預期之組態。使用於本發明方法中之模型可為任何足以承受氣相沉積以及/或其他層形成程序,並允許鑽石薄膜或其他中間層於其上形成之材料。此外,可設計該模型以形成單一或多個SOD裝置,並由其取得個別最終的SOD裝置。作為下列討論之概要,一旦無力鑽石層生長後,可完全或部分移除該模型。模型可包含幾乎任何適當的材料,並且於一些清況中可包含適用作為中間以及/或半導體層之材料。
雖然可使用許多種材料,該模型可包含鎢、矽、鈦、鉻、鋯、鉬、鉭、鎂、這些材料之碳化物、陶瓷以及其複合或合金。惟,於一態樣中,模型可由或實質上由含金屬材料製成。該含金屬材料可為選自由鋁、銅、鎢、鉬、鉭、鋯、釩以及鉻組成之族群的材料。於另一實施例中,模型可由或實質上由非金屬材料製成,如碳化物以及陶瓷,包含玻璃、氧化物以及氮化物材料。碳化物材料可包含但不限於碳化鎢(WC)、碳化矽(SiC)、碳化鈦(TiC)、碳化鋯(ZrC)以及其混合物等等。氧化物材料範例包含但不限於石英(亦即結晶SiO2 )、金剛砂或藍寶石(亦即Al2 O3 )、LiTaO3 、LiNbO3 、ZnO以及其混合物。氮化物材料範例包含但不限於氮化矽(Si3 N4 )、氮化鋁(AlN)、氮化硼(BN)、氮化鈦(TiN)、氮化鋯(ZrN)以及其混合物等等。玻璃的範例包含含有碳酸氫納等等之所有種類的玻璃。替代地,該模型可包含適用作為先前揭露之 半導體或中間層之材料。
可磨光該模型以形成非常平滑的介面表面212。可使用各種熟悉該項技藝者已知之各種方法來完成模型介面表面之磨光。但,於磨光步驟中使用微米或奈米尺寸鑽石粒子亦可提供針對鑽石氣相沉積之良好的成核促進層。可將介面表面磨光至對應裝置表面210所希望的表面粗糙度。某些非金屬材料,諸如上述碳化物以及陶瓷材料,由於它們的硬度以及達到極平滑介面表面之能力,特別適用於本發明之模型。當製造需要平滑裝置表面之SOD裝置時,平滑介面表面係特別的重要。於許多情況中,可磨光陶瓷材料之介面表面以具有小於10μm之表面粗糙度。於其他情況中,表面粗糙度可小於約5μm。依照裝置,小於約1μm之表面粗糙度可提供良好的結果。於一些情況中,可能希望有超級平滑表面並且小於約20nm。隨著線寬解析度減少,小於1nm之表面粗糙度亦可對於提供改善的暴露解析度以及影像銳度有利。各種磨光介面表面以達成此種平滑程度之方法對於熟悉該項技術者而言為已知,例如利用鑽石或奈米鑽石粉末或膏或其他鑽石工具。
再次參照第3A圖,可使用氣相沉積技術將無力鑽石層204生長於模型220上。可使用任何數量的已知氣相沉積技術來形成無力鑽石層。最常見的氣相沉積技術包含CVD以及PVD,但若能獲得類似的特性或結果可使用任何類似方法。目前,較佳鑽石生長方法為CVD技術,如熱燈絲(hot filament)、微波離子、氧乙炔火焰以及直流電弧(direct current arc)技術。於此種技術中使用的反應物氣體可為該技藝中已知對於使用選擇的CVD技術安全達成鑽石層製造有幫助的任何一者。惟,於一態樣中,使用於CVD技術中的氣體為甲烷以及氫氣的結合。無力鑽石層可具有上述的厚度。但於某些情況中,可形成稍微厚一點的鑽石層,接著謹慎地磨光至所希望的厚度。
可於介面表面上形成非必要的成核促進層以改善鑽石層之品質與沉積時間。尤甚者,可藉由沉積適當的核心形成鑽石層裝置表面,例如鑽石核心於模型之介面表面並且接著使用氣相沉積技術使核心生長成薄膜或層。雖然陶瓷以及其他非金屬材料可達成平滑介面表面,許多這些材料,如氧化物,無法成核成鑽石並良好地使之保持於適當的位置。因此,為了克服這種缺點,於本發明一態樣中,可在模型介面表面上塗覆薄的成核促進者層。鑽石核心接著放置在該成核促進者層上,並如同上述般藉由CVD進行鑽石層生長。
熟悉該項技藝者將認知可作為成核促進者之各種適當的材料。於本發明一態樣中,成核促進可為金屬、金屬合金、金屬化合物、碳化物、碳化形成物以及其混合組成之族群的材料。碳化形成材料之範例包含但不限於鎢(W)、鉭(Ta)、鈦(Ti)、鋯(Zr)、鉻(Cr)、鉬(Mo)、矽(Si)以及錳(Mn)。此外,碳化物的範例包含碳化鎢(WC)、碳化矽(SiC)、碳化鈦(TiC)、碳化鋯(ZrC)以及其混合物等等。
當使用成核促進者層時,其夠薄而不至於不利地影響介面表面到裝置表面之預期配置的轉移。於一態樣中,成核促進者層之厚度可小於約0.1微米。於另一態樣中,成核促進者層厚度小於約10奈米。於又一態樣中,厚度小於約5奈米。於再一態樣中,成核促進者層厚度小於約3奈米。
雖然鑽石層的核心表面可作為工具的裝置表面,應謹慎地確保此表面為最高可能的品質以及完整性。於氣相沉積程序中,可依照被製造特定裝置之需求而達成不同品質程度。熟悉該項技藝者可迅速地認知到產生給定品質程度之不同條件或技術,且能夠不經過度實驗達成各種品質程度。
可使用各種方法來增加氣相沉積技術產生之鑽石層核心表面中鑽石之品質。例如,可藉由於鑽石沉積早期時降低甲烷流速以及增加總氣壓,增加鑽石粒子的品質。這種措施降低碳分解速率並且增加氫原子濃度。因此可於sp3 鍵結組態中沉積顯著較高百分比的碳,並且增加形成之鑽石核心的品質。此外,可增加沉積於模型的鑽石介面表面或成核促進者層上之鑽石粒子的成核速率以降低鑽石粒子間的空隙量。增加成核速率之方法範例包含但不限於:施加適當量的負偏壓,通常約100伏,至模型的鑽石介面表面;以細鑽石膏或粉磨光鑽石介面表面,該鑽石膏或粉可能部份會保留於介面表面上;以及藉由PVD或PECVD用C、Si、Cr、Mn、Ti、V、Zr、W、Mo、Ta之類者的離子佈值 控制鑽石介面表面之成分。物理氣相沉積(PVD)程序典型地比CVD程序在較低的溫度,且於某些情況中可低200℃諸如約150℃。對熟悉該項技藝者而言其他增加鑽石成核度之方法為明顯者。
當希望有超級平滑介面表面時,以鑽石粉或膏磨光特別有用處。此外,當使用細鑽石膏磨光介面表面時,許多鑽石粒子會嵌入鑽石介面表面中,並可作為增加成核速率之種子。特定金屬,如鐵、鎳、鈷以及它們的合金已知能於高溫度(亦即高於700℃)將鑽石催化成非結晶碳或石墨。因此,藉由限制此種物質於模型介面表面的成分中之量,可大幅降低鑽石被催化成石墨的量,並且增加核心成核表面之總品質。
於本發明再一詳細態樣中,模型介面表面可蝕刻出微痕以增進成核作用。產生這種微痕的一種方法係將模型浸入含懸浮微米尺寸鑽石粒子之丙酮池中。可接著施加超音波能量至模型以及/或流體中。當從超音波池中移除模型後,微米尺寸鑽石的一部分保留在表面上作為鑽石生長種子。
於本發明另一細節中,非必要地,可藉由施加電流以使強烈負偏壓形成於模型上促進成核。約120伏的施加電壓可增加成核密度上至百萬倍。
於一態樣中,碳化鎢可用作為模型之材料,包含其鑽石介面表面。惟,藉由將包含在其中之鈷接合物的量限制在4% w/w,可大幅降低鑽石催化作用之發生率。此外,已 發現到可使用無接合物之碳化鎢材料來大幅降低鑽石催化作用。另外,已發現到使用超級細或次微米碳化鎢細粒產生非常平滑鑽石的介面表面,其增加鑽石成核作用。另外,介面表面的平滑微配置會傳給鑽石層的裝置表面。
參考第3A圖,當鑽石層204生長時可於模型220之介面表面212上產生裝置表面210。當鑽石層生長時,生長表面變得越來越粗糙。一旦CVD程序完成,生長表面222保持暴露著並且與裝置表面相比典型地較粗糙。如上述,無力的鑽石層無法自我支撐,因此若移除模型而僅保留鑽石層,則該層會捲曲或失去其該有的形狀,而造成無法適用於SOD裝置至中的表面。典型地,無力鑽石層知厚度小於約30μm,諸如約5μm至約20μm之間,雖然針對特定應用其他厚度可為適當者。
第3B圖描述本發明一實施例。為了防止無力層的變形,於移除模型220或其一部分之前,基板214可與無力鑽石層204之生長表面222連接,為了防止無力鑽石層捲曲。於本發明一態樣中,基板可藉由硬焊(brazing)連接至無力鑽石層之生長表面。各種銅鋅合金可適用於本發明中。特別有利的銅鋅合金包含有碳化形成物,如Ti、Cr、Si、Zr、Mn以及其混合物。多個銅鋅合金範例包含Ag-Cu-Ti、Ag-Cu-Sn-Ti、Ni-Cr-B-Si、Ni-Cu-Zr-Ti、Cu-Mn以及其混合物。銅鋅合金可以任何已知的型態予以施加,例如粉末或薄片狀。典型硬焊溫度小於約1000℃諸如900℃。
此外,該基板較佳包含具有與鑽石熱膨脹相當之材料 ,以避免從硬焊溫度冷卻下來時對無力鑽石層造成破壞。對鑽石層的生長表面硬焊具有另外一個好處,亦即生長表面粗糙,會增加鑽石層以及基板之間硬焊接合之力量。
於本發明一些實施例中,可能希望使用非碳化形成物之材料製造模型。例如,當模型為諸如銅的非碳化形成物材料時,於冷卻時鑽石層會分離。於冷卻前或後,可放置一銅鋅薄片於無力鑽石層的生長表面上。此後,基板置靠於該銅鋅薄片,且在熱度和非必要的真空環境下將該組合壓在一起,以將鑽石層硬焊至基板上。於此實施例中,模型並未黏接至該鑽石層並且可簡單地被移除。
替代地,可將無力鑽石層之裝置表面置靠於一抵壓表面,其可非必要地覆蓋有一層防止抵壓表面與鑽石層黏接之材料層,例如含氮化硼之氣溶膠。接著藉由謹慎地弄平彎曲的鑽石層之後並將基板壓抵該銅鋅薄片並如上述硬焊該組合,可將該銅鋅薄片置靠於無力鑽石層的生長側。將基板連接後,可移除整個或一部分的模型而不破壞無力鑽石層。可將鑽石裝置表面磨光以移除剩餘的石墨鏈結,但此經常為並非達成必要平滑表面所需要者。任何此種磨光應將為最少且在埃的程度,有時會在奈米而非微米的程度。
此外,可在耦合半導體層之前或之後連接該基板至該生長表面。典型地,可在耦合該半導體層之前如上述先連接基板。惟,如在此所討論,若模型係用於形成中間層或半導體層,基板則是在形成半導體或裝置於生長表面上之 後才連接至生長表面。形成個別層順序的特定選擇可取決於程序考量,如方便性、層的力量、預先存在之設備規劃等等。
於一態樣中,當於模型中或者當最初的鑽石層已形成並自模型移除形成了具有希望厚度之固結(consolidate)的層之後,可使用氣相沉積技術一層又一層地沉積多個鑽石層。於一態樣中,在沉積最初的薄膜後可使用非蒸氣技術將鑽石層增厚,此技術為鑽石製造與固結之技藝中為習知者。於本發明另一態樣中,此種增厚可在最初鑽石層仍在模型中時發生,或者在移除(藉由於酸或KOH中溶解)模型後發生。
根據特定實施例,可將整個或部分模型移除。第3C圖描述一實施例,其中將整個模型移除以暴露出無力鑽石層204之裝置表面210。可使用任何適合用於移除特定製造模型以及成核促進者層用之物質,自鑽石層移除模型以及/或成核促進者層。於本發明一態樣中,可自鑽石化學地移除該模型,例如藉由以酸或諸如KOH之鹼溶液溶解或藉由電漿蝕刻。於另一態樣中,可利用物理移除例如藉由噴粒處理或機械研磨實際自鑽石層移除模型。於又一態樣中,可使用熱或冷處理自鑽石層移除模型,例如熔化模型之熔爐或以液體氮凍結並弄碎模型。於再一態樣中,由於加熱或冷卻而自鑽石層分離模型可僅僅是模型材料以及鑽石材料之間不同熱膨脹特性之結果。
根據第3D圖中所示的實施例,半導體層206可耦合至 無力鑽石層204之裝置表面210。半導體層可包含任何前述之材料或任何適合建造特定裝置於其上之材料。於本發明另一態樣中,半導體材料可從單一晶塊獲得,以控制晶體方位、降低晶體缺陷以及提供高機電耦合因子。可典型地由熔化的液體而非蒸氣的階段形成單一晶塊。此外,單一晶塊典型地比使用氣相沉積形成之晶體具有較低缺陷的內容。並且,此排除有關於在含鑽石材料上半導體層取向附生生長可能困難之問題。
此外,可於移除模型以及(若使用)成核促進者層後於鑽石層暴露的裝置表面上形成額外的構件。可使用本發明程序製造之裝置種類為任何含括鑽石作為絕緣層而有產生優點之裝置。本發明之SOD裝置可含括至各種電子裝置中,諸如但不限於邏輯晶片、記憶體貯存、例如發藍光之光二極體、微波產生器以及其他半導體裝置。熟悉該項技藝者將認知到本發明SOD裝置以及將此種裝置包含至各種上述裝置或半導體裝置中之方法的潛在優點。於許多應用中需要非常平滑裝置表面的一個重要的優點係因為在移除模型後需要很少或不需要裝置表面機械處理,可有效地降低或排除此種機械處理導致之變異、微痕或裂縫之數量。於裝置表面上包含微痕之變異發生率之降低可大幅改善最終產品之品質。此外,半導體裝置或特徵可根據已知的半導體製造技術與在此所述之步驟同時或分別的步驟形成於半導體層上。
替代地,該模型亦可作為基板。於此情況中,在耦合 半導體層之前極有可能需要磨光生長表面。
第4A至4C圖描述另一替代實施例,其中至少一部分的模型保留在原位以形成SOD裝置的一層。第4A圖描述一無力鑽石層204形成於模型220之介面表面212上。基板214可如先前所述般連接或形成。取而代之,可於移除模型一部分後將基板連接。
如第4B圖所示,可使模型220變薄至由線218所示之預定厚度。第4C圖描述移除部份模型後之SOD裝置。於此種情況中,保留下來的模型部分變成完成之裝置的組成部分。為了在這些環境下製造完成的產品,於一些態樣中,可磨光或塑形模型的外部表面以提供希望的配置或厚度(若尚未在製造鑽石層以前進行這些工作)。可藉由磨薄(grind)、磨光或化學蝕刻模型至所希望的厚度。
於一態樣中,原來模型的厚度可為任何產生特定裝置所需之厚度或配置。預定厚度可大於約1毫米,並且於一些態樣中,大於約5毫米。於額外的態樣中,可磨光或塑形模型的外部表面以具有產生特定裝置所需之配置。於又一態樣中,可磨光或塑形模型成具有厚度小於約1微米之層。於再一態樣中,該厚度可小於約0.1微米。
於一實施例中,該模型可包含適用為半導體層之材料。於此情況中,同時達成無力鑽石層生長以及半導體層耦合之步驟,亦即,於模型外形成半導體層。亦可作為半導體層之適合的模型材料範例包含但不限於矽、碳化矽、砷化鎵、氮化鎵、氮化鋁以及其複合物。
於一替代實施例中,可藉由於耦合半導體層至模型前設置適當材料的模型並僅移除有必要移除之模型部分,如上所述,而設置中間層。非必要地,可於移除模型後形成中間層。
此外,可部分移除模型以暴露至少一部分的裝置表面。典型地,可於移除部份模型前連接基板以輔助機械支撐。惟,若僅移除部份的模型,模型保留下的材料可提供足夠的支撐以允許後續基板之連接。由於處理上的便利性以及其他原因,諸如於單一程序中形成多個裝置之,此替代例可為所希望者。可藉由形成半導體層於裝置表面至少暴露的部分上而將半導體層耦合至裝置表面。取而代之,可於裝置表面暴露的部分上形成中間層,並接著於中間層上形成半導體層。於此種實施例中,可藉由氣相沉積、硬焊、膠合或其他已知方法形成半導體以及/或中間層。於一較佳態樣中,由氣相沉積形成這些層。
一些SOD裝置利用中間材料層。於本發明一態樣中,可將薄中間層與鑽石層平滑的裝置表面接觸放置。於本發明一實施例中,生長鑽石層於介面表面上之前可先放置中間層。於此種實施例中,中間層可包含適合鑽石成核並形成於其上之材料。這亦可藉由形成如先前敘述之成核促進層來改善。藉由沉積薄材料層,可維持模型介面之平滑表面以及輪廓於沉積的中間層上。於無力鑽石層之生長以及/或連接基板至生長表面的步驟之後,可移除模型或其一部分。
取而代之,可於移除模型後將中間層連接至鑽石層之裝置表面。典型地,可將中間層噴濺或生長至鑽石層裝置表面上。從蒸氣階段於鑽石層表面上將材料沉積的此種方法對熟悉該項技藝者而言為已知者,如CVD、PVD或於加熱基板上噴濺。可使用後續熱處理以產生適用於特定實施例之特定晶體以及晶格。
於本發明一替代實施例中,使用具有的單一晶體可能為恰當者。典型的單一晶體係形成為塊狀,其接著可被切割供各種裝置使用。此外,於本發明一態樣中,可非必要地覆蓋碳化形成物於單一晶體上。
惟,根據本發明一態樣,可使用超級薄黏接材料層將這些單一晶體待加工物黏接至鑽石層裝置表面。在與裝置表面黏接之前,應將單一晶體磨光成平滑表面,具有與對應裝置表面相當的表面粗糙度。表面粗糙度將取決於預期的最終裝置。惟,於某些情況中,小於約一奈米之表面粗糙度,較佳小於約5埃為適當者。隨後,藉由形成黏接材料層於裝置表面或平滑待加工物之表面上,而製造超級薄的黏接材料層,並接著將兩表面壓合起來以降低黏階層厚度至小於約1微米以及較佳小於約10奈米(亦即僅幾個分子厚)。該黏接材料可包含有機黏接劑,諸如環氧化物或可為反應金屬,如Ti、Si、Zr、Cr、Mo、W、Mn以及其混合物。於反應金屬的情況中,可將金屬噴濺於裝置表面或平滑待加工物表面,並在熱與真空條件下相互壓抵兩表面。在這些超級薄的厚度,黏接材料在較高溫度較為穩定。 例如,典型環氧黏接劑會在高於約200℃的溫度失效;但在超級薄厚度,在高溫度環氧化物維持堅固。此外,SOD裝置不需要如機械應用中相同程度的力量。因此,這些薄黏接材料層可適用於SOD裝置。可接著將該黏接的待加工物磨薄並且磨光至任何希望的厚度,例如於SOD裝置的情況中小於約2μm。
取而代之,本發明之SOD裝置可藉由設置具有介面表面的模型並且使用氣相沉積技術將無力鑽石層生長在介面表面上。可直接耦接半導體層至無力鑽石層的生長表面。可將模型移除、薄化或留在原處作為基板用。此外,可將中間層形成於生長表面上。可接著將半導體層形成於中間層上。非必要地,可在鑽石層耦合至半導體層前將鑽石層的生長表面磨光。
為了量產本發明之SOD裝置,模型可為具有足夠尺寸的晶圓,以自單一晶圓母體產生多個SOD裝置。一旦生長了無力鑽石層、形成了半導體層以及連接了基板,該較大晶圓母體可細分成個別的SOD裝置。經常,鑽石層以及模型的熱膨脹係數足夠地不一樣以令該兩層能分離。通常這對數毫米寬的區域不是問題,但經濟性量產通常需要將這些構件形成於晶圓上並切割晶圓。此外,晶圓尺寸常高達6吋,且更新的程序使用8或12吋寬的晶圓尺寸。故,當晶圓尺寸增加時,熱膨脹之差異變成較大的問題。
因此,根據本發明另一態樣,可在模型介面表面形成小溝槽。該些溝槽形成格柵,其中每一個細分的區域定義 對應單一SOD裝置之表面。可藉由蝕刻、切割或其他已知方法形成這些溝槽。當沉積鑽石或中間材料於其上時,這些溝槽用以固定模型並將熱膨脹差異孤立至每一個格柵區域。因此,在氣相沉積程序之後模型冷卻時,由沉基於溝槽內之鑽石限制住模型之收縮。例如,當自900℃冷卻單一晶體壓電LiNdO3 模型時,其根據結晶方向可具有比鑽石之熱膨脹高達五倍之收縮。
雖然溝槽可具有任何深度以及寬度,於一目前的實施例中係利用具有約1μm至約10μm以及較佳違約5μm之寬度以及深度之溝槽。任何適當方法可用於形成這種溝槽,例如,鑽石畫線器、化學蝕刻等等。雖非必要的,對於僅移除部份模型(並納入最終裝置)的情況,使用此方法的一個好處是可選擇溝槽深度以對應所希望之半導體層或中間層之厚度。例如,可用適當半導體材料製造模型並且在將基板連接至無力層之生長表面後,可磨光該模型直到暴露出溝槽中沉積的鑽石。於此實施例中,保留下的模型材料係用於最終產品之中。
此外,暴露鑽石之程度可由橫跨磨光表面之電子阻抗的升高偵測而得(由於鑽石為電絕緣)。可測量整個晶圓電子阻抗以保持實質上均勻的厚度。因此,例如,若晶圓一側之電子阻抗不均勻地增加,可於晶圓之相對側增加力量以增加磨光以及移除速率。作為導引,溝槽之均勻深度能確保遍及整個晶圓母體之半導體材料的均勻厚度。接著可將其他構件黏接至半導體材料以及最後的封裝材料可堆 積於其上。之後,最終裝置之分離可利用已知技術切割以產生最終裝置,接著可將之納入各種產品中。雖然SOD裝置尺寸可有變化,但其典型具有0.5mm之總厚度,其中半導體層以及鑽石層為最多約30μm。
於上述利用於陶瓷模型中的溝槽之方法的另一變化中,於溝槽中沉積CVD鑽石-被動材料。適當CVD被動材料包含任何於CVD條件下不會形成鑽石於其上之材料,如銅、銀、SiO2 、Al2 O3 、BN、石墨以及其混合物。銅目前為較佳之CVD鑽石-被動材料。於CVD程序中,鑽石會形成於介面表面而非CVD被動材料上。在完成SOD裝置後,可藉由酸溶解或機械力量將CVD被動材料移除。本發明之此變化使自晶圓母體分離個別裝置變得更不昂貴,因為無需鑽石切割。於又一替代例中,將CVD被動材料沉積於對應個別SOD裝置之圖案中而無需形成溝槽於模型表面上。
範例 範例1
將直徑100mm以及厚度0.6mm之矽晶圓磨光至小於1μm之表面粗糙度。接著使用鑽石畫線器沿格柵線刻劃該磨光的表面以形成約2μm深的刻痕。接著將矽晶圓放置於含有丙酮並散佈有微米尺寸鑽石細粒之超音波池中。處理過後,矽晶圓會具有一層薄的微米尺寸鑽石粒子保留於磨光表面上。接著將矽晶圓放置於具有1%甲烷以及40torr平衡氫氣的環境之熱燈絲CVD系統中。維持此條件約30小時 ,於此期間鑽石薄膜會沉積至約30μm厚度。接著將覆蓋鑽石之矽晶圓自CVD系統移除。10-5 torr真空下在1005℃使用NICROBRAZ LM將直徑100mm以及厚度0.5mm之鎢圓形片硬焊至鑽石生長側12分鐘。接著將矽基板磨薄至約1μm厚度,使用沉積於刻痕中的鑽石作為導引以維持磨薄的均勻度。可進一步處理鑽石上矽之晶圓以於其上形成任何數量的半導體裝置。
範例2
進行如範例1之相同的程序,除了由PVD噴濺的鎢取代鎢圓形片。
範例3
將直徑100mm以及厚度0.6mm之矽晶圓磨光至小於1μm之表面粗糙度。接著將矽晶圓放置於含有丙酮並散佈有微米尺寸鑽石細粒之超音波池中。處理過後,矽晶圓會具有一層薄的微米尺寸鑽石粒子保留於磨光表面上。接著將矽晶圓放置於具有1%甲烷以及40torr平衡氫氣的環境之熱細絲CVD系統中。維持此條件約30小時,於此期間鑽石薄膜會沉積至約30μm厚度。接著將覆蓋鑽石之矽晶圓自CVD系統移除。10-5 torr真空下在1005℃使用NICROBRAZ LM將直徑100mm以及厚度0.5mm之鎢圓形片硬焊至鑽石生長側12分鐘。接著藉由於熱濃縮氫氧化納溶液中溶解矽基板以將之完全移除。將暴露的鑽石表面輕微的磨光並使用 PVD沉積1μm厚之氮化鋁層。該CVD程序包含於真空下於氮環境中之鋁目標。已發現該沉積的氮化鋁會優先與基礎面(0002)對齊,亦即與矽表面平行。接著沉積氮化鎵半導體層以形成SOD裝置。可進一步處理該SOD晶圓以於其上形成任何數量的半導體裝置。
範例4
進行如範例3之相同的程序,除了沉積單一晶體之矽於氮化鋁中間層上取代氮化鎵層。
範例5
進行如範例1之相同的程序,除了使用砷化鎵晶圓取代矽晶圓。此外,具有相同尺寸的矽晶圓接著硬焊至CVD鑽石上。接著將砷化鎵磨光至約5μm的厚度。
當然應了解到上述的安排僅用於說明本發明原理之應用。熟悉該項技藝者可作出各種變更以及替代的安排而不悖離本發明之精神與範圍,並且所附申請專利範圍用意在於包含這些變更與安排。故,雖然已藉由上述與目前認為是本發明最實用且較佳之實施例有關的特質與細節描述了本發明,對於熟悉該項技藝者而言很明顯的可作出各種變更,包含但不限於尺寸、材料、形狀、型態、功能以及操作、組裝以及使用方式之變化,而不悖離在此所提出之原理與觀念。
200‧‧‧絕緣體上半導體
202‧‧‧基板
204‧‧‧無力鑽石層
206‧‧‧半導體層
208‧‧‧中間層
210‧‧‧裝置表面
212‧‧‧介面表面
214‧‧‧基板
218‧‧‧線
220‧‧‧模型
222‧‧‧生長表面
第1圖為根據本發明之一實施例的SOD裝置的側剖面圖。
第2圖為根據本發明之一替代實施例的SOD裝置的側剖面圖。
第3A至3D圖為描述根據本發明之製造SOD裝置之方法的側剖面圖。
第4A至4C圖為描述根據本發明之製造SOD裝置之替代方法的側剖面圖。
上述圖示僅作為圖解說明用。應注意到層以及特徵的實際尺寸可與所示者不同。
200‧‧‧絕緣體上半導體
202‧‧‧基板
204‧‧‧無力鑽石層
206‧‧‧半導體層
210‧‧‧裝置表面

Claims (18)

  1. 一種鑽石上半導體裝置,包含:a)基板;b)於該基板上之無力(adynamic)鑽石層,具有遠離基板之裝置表面;以及c)半導體層,直接形成於該鑽石層之裝置表面上。
  2. 如申請專利範圍第1項之裝置,其中該鑽石層具有從約0.1μm至約30μm的厚度。
  3. 如申請專利範圍第1項之裝置,其中該基板包含鎢、矽、碳化矽、氮化矽、碳化鈦、氮化鈦、氮化硼、石墨、陶瓷、玻璃、鉬、鋯、鉭、鉻、氮化鋁、類鑽石碳(DLC)以及其複合物組成之族群的構件。
  4. 如申請專利範圍第1項之裝置,其中該裝置為發光二極體。
  5. 一種製造鑽石上半導體(SOD)裝置之方法,包含下列步驟:a)設置模型,該模型具有介面表面配置成與SOD裝置之裝置表面的預期配置相反匹配;b)使用氣相沉積技術將無力鑽石層生長於模型上,該無力鑽石層具有相對於裝置表面之生長表面;c)將該模型之至少一部分移除;以及d)將半導體層耦合至無力鑽石層之裝置表面。
  6. 如申請專利範圍第5項之方法,其中該模型包含鎢、矽、鈦、鉻、鋯、鉬、鉭、錳以及其複合或合金組成之 族群之構件。
  7. 如申請專利範圍第5項之方法,進一步包含將模型薄化之步驟。
  8. 如申請專利範圍第7項之方法,其中該模型薄化之步驟形成半導體層。
  9. 如申請專利範圍第7項之方法,其中該模型薄化之步驟形成中間層。
  10. 如申請專利範圍第5項之方法,其中該模型移除之步驟包含暴露裝置表面的至少一部分。
  11. 如申請專利範圍第10項之方法,其中該半導體耦合之步驟係藉由將半導體層形成於至少裝置表面暴露的部分上而達成。
  12. 如申請專利範圍第10項之方法,其中該半導體耦合之步驟係藉由將中間層形成於裝置表面暴露的部分上並且接著於將半導體層形成於中間層上而達成。
  13. 如申請專利範圍第7或10項之方法,進一步包含在將該無力鑽石層生長於該模型上之前將中間層形成於該模型之介面表面上之步驟。
  14. 如申請專利範圍第5項之方法,進一步包含將基板連接至該無力鑽石層之生長表面的步驟。
  15. 如申請專利範圍第14項之方法,其中將基板連接至生長表面的步驟係藉由以含有碳化物形成媒介的銅鋅合金硬焊而達成。
  16. 如申請專利範圍第5項之方法,該裝置表面具有從 約1nm至約1μm的表面粗糙度(Ra)。
  17. 如申請專利範圍第16項之方法,其中該表面粗糙度小於約10奈米。
  18. 如申請專利範圍第5項之方法,其中該無力鑽石層具有小於約30微米之厚度。
TW094115397A 2004-05-13 2005-05-12 鑽石上半導體裝置及其形成方法 TWI389165B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/846,847 US7132309B2 (en) 2003-04-22 2004-05-13 Semiconductor-on-diamond devices and methods of forming

Publications (2)

Publication Number Publication Date
TW200609998A TW200609998A (en) 2006-03-16
TWI389165B true TWI389165B (zh) 2013-03-11

Family

ID=35503825

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094115397A TWI389165B (zh) 2004-05-13 2005-05-12 鑽石上半導體裝置及其形成方法

Country Status (6)

Country Link
US (5) US7132309B2 (zh)
JP (1) JP2007537127A (zh)
KR (1) KR20070009701A (zh)
CN (1) CN100547722C (zh)
TW (1) TWI389165B (zh)
WO (1) WO2005122284A2 (zh)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132309B2 (en) * 2003-04-22 2006-11-07 Chien-Min Sung Semiconductor-on-diamond devices and methods of forming
US6833556B2 (en) 2002-08-12 2004-12-21 Acorn Technologies, Inc. Insulated gate field effect transistor having passivated schottky barriers to the channel
US7084423B2 (en) 2002-08-12 2006-08-01 Acorn Technologies, Inc. Method for depinning the Fermi level of a semiconductor at an electrical junction and devices incorporating such junctions
US7713839B2 (en) * 2004-10-06 2010-05-11 Intel Corporation Diamond substrate formation for electronic assemblies
FR2878648B1 (fr) * 2004-11-30 2007-02-02 Commissariat Energie Atomique Support semi-conducteur rectangulaire pour la microelectronique et procede de realisation d'un tel support
US7355247B2 (en) * 2005-03-03 2008-04-08 Intel Corporation Silicon on diamond-like carbon devices
US20060202209A1 (en) * 2005-03-09 2006-09-14 Kelman Maxim B Limiting net curvature in a wafer
GB0505752D0 (en) * 2005-03-21 2005-04-27 Element Six Ltd Diamond based substrate for gan devices
US8674405B1 (en) * 2005-04-13 2014-03-18 Element Six Technologies Us Corporation Gallium—nitride-on-diamond wafers and devices, and methods of manufacture
TWI275566B (en) * 2005-04-27 2007-03-11 Kinik Co A diamond substrate and the process method of the same
TWI262853B (en) * 2005-04-27 2006-10-01 Kinik Co Diamond substrate and method for fabricating the same
US7619347B1 (en) 2005-05-24 2009-11-17 Rf Micro Devices, Inc. Layer acoustic wave device and method of making the same
US7498191B2 (en) * 2006-05-22 2009-03-03 Chien-Min Sung Semiconductor-on-diamond devices and associated methods
US8236594B2 (en) * 2006-10-20 2012-08-07 Chien-Min Sung Semiconductor-on-diamond devices and associated methods
TW200826322A (en) * 2006-12-15 2008-06-16 Kinik Co LED and manufacture method thereof
US8490260B1 (en) 2007-01-17 2013-07-23 Rf Micro Devices, Inc. Method of manufacturing SAW device substrates
US7408286B1 (en) * 2007-01-17 2008-08-05 Rf Micro Devices, Inc. Piezoelectric substrate for a saw device
EP2118335A1 (en) 2007-01-22 2009-11-18 Element Six Limited High uniformity boron doped diamond material
JP2008263126A (ja) * 2007-04-13 2008-10-30 Oki Data Corp 半導体装置、該半導体装置の製造方法、ledヘッド、及び画像形成装置
US7709298B2 (en) * 2007-07-18 2010-05-04 Hewlett-Packard Development Company, L.P. Selectively altering a predetermined portion or an external member in contact with the predetermined portion
US7846767B1 (en) 2007-09-06 2010-12-07 Chien-Min Sung Semiconductor-on-diamond devices and associated methods
US20090108437A1 (en) * 2007-10-29 2009-04-30 M/A-Com, Inc. Wafer scale integrated thermal heat spreader
CN101593798B (zh) * 2008-05-26 2012-11-14 晶元光电股份有限公司 含渐变式折射率透明基材或散热性高的发光二极管及应用
FR2934713B1 (fr) * 2008-07-29 2010-10-15 Commissariat Energie Atomique Substrat de type semi-conducteur sur isolant a couches de diamant intrinseque et dope
JP2010056194A (ja) * 2008-08-27 2010-03-11 Oki Data Corp 半導体装置及び光プリントヘッド
TWI387417B (zh) * 2008-08-29 2013-02-21 Ind Tech Res Inst 電路板結構及其製作方法
US8236603B1 (en) 2008-09-04 2012-08-07 Solexant Corp. Polycrystalline semiconductor layers and methods for forming the same
FR2938373A1 (fr) * 2008-11-12 2010-05-14 Commissariat Energie Atomique Integration d'une couche de diamant polycristallin, notamment dans une structure sod
WO2010088366A1 (en) 2009-01-28 2010-08-05 Wakonda Technologies, Inc. Large-grain crystalline thin-film structures and devices and methods for forming the same
US20100270653A1 (en) * 2009-04-24 2010-10-28 Christopher Leitz Crystalline thin-film photovoltaic structures and methods for forming the same
US8183086B2 (en) * 2009-06-16 2012-05-22 Chien-Min Sung Diamond GaN devices and associated methods
US20110127562A1 (en) * 2009-07-23 2011-06-02 Chien-Min Sung Electronic Substrate Having Low Current Leakage and High Thermal Conductivity and Associated Methods
US20110024767A1 (en) * 2009-07-30 2011-02-03 Chien Min Sung Semiconductor Substrates, Devices and Associated Methods
CN102034772B (zh) * 2009-09-30 2013-02-27 宋健民 钻石底半导体装置及其相关方法
WO2011048809A1 (ja) * 2009-10-21 2011-04-28 パナソニック株式会社 太陽電池およびその製造方法
US20110108854A1 (en) * 2009-11-10 2011-05-12 Chien-Min Sung Substantially lattice matched semiconductor materials and associated methods
KR101108574B1 (ko) * 2009-11-26 2012-01-30 페어차일드코리아반도체 주식회사 탄화규소계 반도체 소자 및 제조 방법
TW201133945A (en) * 2010-01-12 2011-10-01 jian-min Song Diamond LED devices and associated methods
US8476150B2 (en) * 2010-01-29 2013-07-02 Intersil Americas Inc. Methods of forming a semiconductor device
US8815641B2 (en) * 2010-01-29 2014-08-26 Soitec Diamond SOI with thin silicon nitride layer and related methods
US20110282421A1 (en) * 2010-05-11 2011-11-17 Chien-Min Sung Diamond neural devices and associated methods
GB201010705D0 (en) * 2010-06-25 2010-08-11 Element Six Ltd Substrates for semiconductor devices
US9783885B2 (en) 2010-08-11 2017-10-10 Unit Cell Diamond Llc Methods for producing diamond mass and apparatus therefor
US10258959B2 (en) 2010-08-11 2019-04-16 Unit Cell Diamond Llc Methods of producing heterodiamond and apparatus therefor
TWI464839B (zh) * 2010-09-21 2014-12-11 Ritedia Corp 單層鑽石顆粒散熱器及其相關方法
US8394224B2 (en) * 2010-12-21 2013-03-12 International Business Machines Corporation Method of forming nanostructures
WO2012125632A1 (en) * 2011-03-16 2012-09-20 Memc Electronic Materials, Inc. Silicon on insulator structures having high resistivity regions in the handle wafer and methods for producing such structures
US9194189B2 (en) 2011-09-19 2015-11-24 Baker Hughes Incorporated Methods of forming a cutting element for an earth-boring tool, a related cutting element, and an earth-boring tool including such a cutting element
US9711534B2 (en) 2011-10-28 2017-07-18 Hewlett Packard Enterprise Development Lp Devices including a diamond layer
US9362376B2 (en) 2011-11-23 2016-06-07 Acorn Technologies, Inc. Metal contacts to group IV semiconductors by inserting interfacial atomic monolayers
GB201121655D0 (en) 2011-12-16 2012-01-25 Element Six Ltd Substrates for semiconductor devices
GB201121659D0 (en) 2011-12-16 2012-01-25 Element Six Ltd Substrates for semiconductor devices
CN102593294B (zh) * 2012-03-15 2016-08-03 安徽三安光电有限公司 复合式氮化镓基半导体生长衬底及其制作方法
KR20150006837A (ko) * 2012-05-08 2015-01-19 신에쓰 가가꾸 고교 가부시끼가이샤 방열 기판 및 그 제조 방법
GB201209424D0 (en) * 2012-05-28 2012-07-11 Element Six Ltd Free-standing non-planar polycrystalline synthetic diamond components
KR20150023540A (ko) * 2012-07-03 2015-03-05 엘리먼트 씩스 테크놀로지스 유에스 코포레이션 반도체-온-다이아몬드 웨이퍼용 핸들 및 제조 방법
GB2510468B (en) * 2012-12-18 2016-06-08 Element Six Ltd Substrates for semiconductor devices
CN106062922B (zh) * 2014-02-21 2019-04-05 信越化学工业株式会社 复合基板
US10109707B2 (en) * 2014-03-31 2018-10-23 Flosfia Inc. Crystalline multilayer oxide thin films structure in semiconductor device
GB201502698D0 (en) 2015-02-18 2015-04-01 Element Six Technologies Ltd Compound semiconductor device structures comprising polycrystalline CVD diamond
GB201502954D0 (en) * 2015-02-23 2015-04-08 Element Six Technologies Ltd Compound semiconductor device structures comprising polycrystalline CVD diamond
GB2544563B (en) * 2015-11-20 2019-02-06 Rfhic Corp Mounting of semiconductor-on-diamond wafers for device processing
US10584412B2 (en) * 2016-03-08 2020-03-10 Ii-Vi Delaware, Inc. Substrate comprising a layer of silicon and a layer of diamond having an optically finished (or a dense) silicon-diamond interface
US20170269265A1 (en) * 2016-03-18 2017-09-21 Corning Incorporated Graphite substrates for reflective optics
US10816702B2 (en) * 2016-03-18 2020-10-27 Corning Incorporated Reflective optical element with high stiffness substrate
US9620611B1 (en) 2016-06-17 2017-04-11 Acorn Technology, Inc. MIS contact structure with metal oxide conductor
DE112017005855T5 (de) 2016-11-18 2019-08-01 Acorn Technologies, Inc. Nanodrahttransistor mit Source und Drain induziert durch elektrische Kontakte mit negativer Schottky-Barrierenhöhe
JP6875634B2 (ja) * 2017-04-27 2021-05-26 富士通株式会社 半導体装置及びその製造方法
US10594298B2 (en) * 2017-06-19 2020-03-17 Rfhic Corporation Bulk acoustic wave filter
CN108767077A (zh) * 2018-05-24 2018-11-06 深圳市光脉电子有限公司 一种新型芯片光源结构及其制备工艺
CN110828292A (zh) * 2018-08-13 2020-02-21 西安电子科技大学 基于复合衬底的半导体器件及其制备方法
JP7172556B2 (ja) * 2018-12-19 2022-11-16 株式会社Sumco 多結晶ダイヤモンド自立基板の製造方法
CN111129184A (zh) * 2019-12-30 2020-05-08 长春理工大学 一种高效散热半导体衬底及其制备方法
CN112047740B (zh) * 2020-08-18 2021-08-03 北京科技大学 一种氮化铝/金刚石聚晶材料的制备方法
CN113224200B (zh) * 2021-05-08 2022-11-04 西北核技术研究所 一种氮化镓半导体辐射探测器及其制备方法和检测设备
CN116525730B (zh) * 2023-07-05 2023-09-08 江西兆驰半导体有限公司 一种发光二极管外延片制备方法及外延片

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670442B2 (ja) 1986-03-31 1997-10-29 キヤノン株式会社 結晶の形成方法
US5413772A (en) 1987-03-30 1995-05-09 Crystallume Diamond film and solid particle composite structure and methods for fabricating same
EP0307109A1 (en) 1987-08-24 1989-03-15 Canon Kabushiki Kaisha Method for forming semiconductor crystal and semiconductor crystal article obtained by said method
US5131963A (en) * 1987-11-16 1992-07-21 Crystallume Silicon on insulator semiconductor composition containing thin synthetic diamone films
US6413589B1 (en) * 1988-11-29 2002-07-02 Chou H. Li Ceramic coating method
US5380349A (en) 1988-12-07 1995-01-10 Canon Kabushiki Kaisha Mold having a diamond layer, for molding optical elements
US4988421A (en) 1989-01-12 1991-01-29 Ford Motor Company Method of toughening diamond coated tools
US5130111A (en) 1989-08-25 1992-07-14 Wayne State University, Board Of Governors Synthetic diamond articles and their method of manufacture
US4952832A (en) 1989-10-24 1990-08-28 Sumitomo Electric Industries, Ltd. Surface acoustic wave device
US5096465A (en) 1989-12-13 1992-03-17 Norton Company Diamond metal composite cutter and method for making same
US5387555A (en) * 1992-09-03 1995-02-07 Harris Corporation Bonded wafer processing with metal silicidation
US4981818A (en) * 1990-02-13 1991-01-01 General Electric Company Polycrystalline CVD diamond substrate for single crystal epitaxial growth of semiconductors
JP2651947B2 (ja) 1990-03-26 1997-09-10 株式会社半導体エネルギー研究所 ダイヤモンド薄膜コーティング部材およびダイヤモンド薄膜コーティング方法
US5173089A (en) 1990-03-30 1992-12-22 Sumitomo Electric Industries, Ltd. Method for producing the polycrystalline diamond tool
JP3191878B2 (ja) 1991-02-21 2001-07-23 三菱マテリアル株式会社 気相合成ダイヤモンド被覆切削工具の製造法
US5186785A (en) * 1991-04-05 1993-02-16 The United States Of America As Represented By The Secretary Of The Air Force Zone melted recrystallized silicon on diamond
JPH04358410A (ja) 1991-06-05 1992-12-11 Sumitomo Electric Ind Ltd 表面弾性波素子及びその製造方法
WO1993001617A1 (en) 1991-07-08 1993-01-21 Asea Brown Boveri Ab Method for the manufacture of a semiconductor component
EP0534354A1 (en) 1991-09-25 1993-03-31 Sumitomo Electric Industries, Limited Surface acoustic wave device and manufacturing method thereof
JPH0590872A (ja) 1991-09-27 1993-04-09 Sumitomo Electric Ind Ltd 表面弾性波素子
US5221870A (en) 1991-09-30 1993-06-22 Sumitomo Electric Industries, Ltd. Surface acoustic wave device
US5440189A (en) 1991-09-30 1995-08-08 Sumitomo Electric Industries, Ltd. Surface acoustic wave device
US5397428A (en) * 1991-12-20 1995-03-14 The University Of North Carolina At Chapel Hill Nucleation enhancement for chemical vapor deposition of diamond
US5276338A (en) * 1992-05-15 1994-01-04 International Business Machines Corporation Bonded wafer structure having a buried insulation layer
JPH0639729A (ja) 1992-05-29 1994-02-15 Canon Inc 精研削砥石およびその製造方法
US5827613A (en) 1992-09-04 1998-10-27 Tdk Corporation Articles having diamond-like protective film and method of manufacturing the same
JP3205976B2 (ja) 1992-09-14 2001-09-04 住友電気工業株式会社 表面弾性波素子
US5391895A (en) * 1992-09-21 1995-02-21 Kobe Steel Usa, Inc. Double diamond mesa vertical field effect transistor
US5236545A (en) 1992-10-05 1993-08-17 The Board Of Governors Of Wayne State University Method for heteroepitaxial diamond film development
US5272104A (en) * 1993-03-11 1993-12-21 Harris Corporation Bonded wafer process incorporating diamond insulator
JP3233489B2 (ja) 1993-03-19 2001-11-26 ティーディーケイ株式会社 弾性表面波素子およびその製造方法
JPH06326548A (ja) 1993-05-14 1994-11-25 Kobe Steel Ltd 高配向性ダイヤモンド薄膜を使用した表面弾性波素子
JP3309492B2 (ja) * 1993-05-28 2002-07-29 住友電気工業株式会社 半導体装置用基板
US5376579A (en) * 1993-07-02 1994-12-27 The United States Of America As Represented By The Secretary Of The Air Force Schemes to form silicon-on-diamond structure
US5554415A (en) 1994-01-18 1996-09-10 Qqc, Inc. Substrate coating techniques, including fabricating materials on a surface of a substrate
US5731046A (en) 1994-01-18 1998-03-24 Qqc, Inc. Fabrication of diamond and diamond-like carbon coatings
EP0674386B1 (en) 1994-03-25 2000-03-22 Sumitomo Electric Industries, Ltd. Orientational material and surface acoustic wave device
EP0676485B1 (en) 1994-04-07 1998-07-08 Sumitomo Electric Industries, Limited Diamond wafer and method of producing a diamond wafer
US5656828A (en) 1994-05-04 1997-08-12 Daimler-Benz Ag Electronic component with a semiconductor composite structure
DE4427715C1 (de) * 1994-08-05 1996-02-08 Daimler Benz Ag Komposit-Struktur mit auf einer Diamantschicht und/oder einer diamantähnlichen Schicht angeordneter Halbleiterschicht sowie ein Verfahren zu deren Herstellung
US5576589A (en) 1994-10-13 1996-11-19 Kobe Steel Usa, Inc. Diamond surface acoustic wave devices
US6054719A (en) * 1995-04-20 2000-04-25 Damilerchrysler Ag Composite structure of an electronic component
US5652436A (en) 1995-08-14 1997-07-29 Kobe Steel Usa Inc. Smooth diamond based mesa structures
DE19542943C2 (de) * 1995-11-17 2001-03-08 Daimler Chrysler Ag Verfahren zur Herstellung eines mikroelektronischen Bauteils mit einer mehrlagigen Komposit-Struktur
KR970030066A (ko) * 1995-11-18 1997-06-26 김은영 전계방출소자 및 그 제조방법
CN1037386C (zh) * 1995-12-12 1998-02-11 吉林大学 金刚石膜上的薄层硅结构芯片材料及其制造方法
US5776355A (en) 1996-01-11 1998-07-07 Saint-Gobain/Norton Industrial Ceramics Corp Method of preparing cutting tool substrate materials for deposition of a more adherent diamond coating and products resulting therefrom
JP3416470B2 (ja) 1996-07-18 2003-06-16 三洋電機株式会社 弾性表面波素子
EP1067210A3 (en) 1996-09-06 2002-11-13 Sanyo Electric Co., Ltd. Method for providing a hard carbon film on a substrate and electric shaver blade
US6039641A (en) 1997-04-04 2000-03-21 Sung; Chien-Min Brazed diamond tools by infiltration
TW394723B (en) 1997-04-04 2000-06-21 Sung Chien Min Abrasive tools with patterned grit distribution and method of manufacture
US5925154A (en) 1997-08-14 1999-07-20 Materials Specialties Scandinavia, Inc. Carbon bonded abrasive tools and method for producing
JP3168961B2 (ja) 1997-10-06 2001-05-21 住友電気工業株式会社 ダイヤモンド基板及びダイヤモンド基板の評価方法並びにダイヤモンド表面弾性波フィルタ
US6159604A (en) 1997-10-09 2000-12-12 Mitsubishi Materials Corporation Seed diamond powder excellent in adhesion to synthetic diamond film forming surface and dispersed solution thereof
US6222299B1 (en) 1998-02-09 2001-04-24 Lucent Technologies Inc. Surface acoustic wave devices comprising large-grained diamonds and methods for making
US6858080B2 (en) * 1998-05-15 2005-02-22 Apollo Diamond, Inc. Tunable CVD diamond structures
JP3291248B2 (ja) 1998-07-16 2002-06-10 日本碍子株式会社 弾性表面波マッチトフィルタ
US6248394B1 (en) 1998-08-14 2001-06-19 Agere Systems Guardian Corp. Process for fabricating device comprising lead zirconate titanate
US6416865B1 (en) 1998-10-30 2002-07-09 Sumitomo Electric Industries, Ltd. Hard carbon film and surface acoustic-wave substrate
FI113211B (fi) 1998-12-30 2004-03-15 Nokia Corp Balansoitu suodatinrakenne ja matkaviestinlaite
EP1052058B1 (en) 1999-05-12 2005-03-16 National Institute of Advanced Industrial Science and Technology Grinding & polishing tool for diamond, method for polishing diamond and polished diamond, single crystal diamond and sintered diamond compact obtained thereby
US6830780B2 (en) * 1999-06-02 2004-12-14 Morgan Chemical Products, Inc. Methods for preparing brazeable metallizations for diamond components
US6531226B1 (en) * 1999-06-02 2003-03-11 Morgan Chemical Products, Inc. Brazeable metallizations for diamond components
DE19931297A1 (de) * 1999-07-07 2001-01-11 Philips Corp Intellectual Pty Volumenwellen-Filter
US6573565B2 (en) * 1999-07-28 2003-06-03 International Business Machines Corporation Method and structure for providing improved thermal conduction for silicon semiconductor devices
JP2002057549A (ja) 2000-08-09 2002-02-22 Sumitomo Electric Ind Ltd 表面弾性波素子用基板及び表面弾性波素子
US6659161B1 (en) 2000-10-13 2003-12-09 Chien-Min Sung Molding process for making diamond tools
US7132309B2 (en) 2003-04-22 2006-11-07 Chien-Min Sung Semiconductor-on-diamond devices and methods of forming
US6814130B2 (en) 2000-10-13 2004-11-09 Chien-Min Sung Methods of making diamond tools using reverse casting of chemical vapor deposition
US7011134B2 (en) 2000-10-13 2006-03-14 Chien-Min Sung Casting method for producing surface acoustic wave devices
AU2003209209A1 (en) 2002-01-25 2003-09-02 Michigan State University Surface acoustic wave devices based on unpolished nanocrystalline diamond
JP2004056010A (ja) 2002-07-23 2004-02-19 Toyota Central Res & Dev Lab Inc 窒化物半導体発光素子
US7501330B2 (en) * 2002-12-05 2009-03-10 Intel Corporation Methods of forming a high conductivity diamond film and structures formed thereby
US6936497B2 (en) 2002-12-24 2005-08-30 Intel Corporation Method of forming electronic dies wherein each die has a layer of solid diamond
US6830813B2 (en) * 2003-03-27 2004-12-14 Intel Corporation Stress-reducing structure for electronic devices
US7365374B2 (en) 2005-05-03 2008-04-29 Nitronex Corporation Gallium nitride material structures including substrates and methods associated with the same

Also Published As

Publication number Publication date
US7863606B2 (en) 2011-01-04
KR20070009701A (ko) 2007-01-18
CN100547722C (zh) 2009-10-07
WO2005122284A3 (en) 2006-08-24
US20040256624A1 (en) 2004-12-23
US8168969B2 (en) 2012-05-01
JP2007537127A (ja) 2007-12-20
WO2005122284A2 (en) 2005-12-22
US20060186556A1 (en) 2006-08-24
CN1993802A (zh) 2007-07-04
US20120273775A1 (en) 2012-11-01
US20080087891A1 (en) 2008-04-17
US7132309B2 (en) 2006-11-07
US7812395B2 (en) 2010-10-12
US20110163312A1 (en) 2011-07-07
TW200609998A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
TWI389165B (zh) 鑽石上半導體裝置及其形成方法
US7011134B2 (en) Casting method for producing surface acoustic wave devices
US7095157B2 (en) Cast diamond tools and formation thereof by chemical vapor deposition
KR101065572B1 (ko) 다이아몬드 막 피복 공구 및 그 제조 방법
US20180334757A1 (en) METHOD FOR MANUFACTURING SiC COMPOSITE SUBSTRATE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR SUBSTRATE
US20070269964A1 (en) Semiconductor-on-diamond devices and associated methods
JPH01153228A (ja) 気相合成ダイヤモンド工具の製造法
JP5181785B2 (ja) ダイヤモンド多結晶基板の製造方法
JP2018049868A (ja) 半導体積層構造体および半導体デバイス
JP7117281B2 (ja) シリコン層、及び、光学的に仕上げられた(又は密集した)シリコン‐ダイヤモンド界面を有するダイヤモンド層を含む基板
US7846767B1 (en) Semiconductor-on-diamond devices and associated methods
JP7266593B2 (ja) 非平坦面を有する支持体上にフィルムを製造するための方法
US20210237168A1 (en) Silicon nitride ceramic tool comprising diamond film and method of preparing the same
JP7170720B2 (ja) 軟質シート上にフィルムを製造するための方法
JPH0713298B2 (ja) ダイヤモンド被覆切削工具
TW201445765A (zh) 複合基板、使用複合基板之半導體晶圓之製造方法、及複合基板用之支持基板
EP4439630A1 (en) Polycrystalline silicon carbide substrate and method of manufacturing the same
KR950008924B1 (ko) 반복사용이 가능한 기판을 이용한 자립 다이아몬드 막의 제조방법
JPH06262521A (ja) 研削砥石及びその製造方法