GB201010705D0 - Substrates for semiconductor devices - Google Patents

Substrates for semiconductor devices

Info

Publication number
GB201010705D0
GB201010705D0 GBGB1010705.0A GB201010705A GB201010705D0 GB 201010705 D0 GB201010705 D0 GB 201010705D0 GB 201010705 A GB201010705 A GB 201010705A GB 201010705 D0 GB201010705 D0 GB 201010705D0
Authority
GB
United Kingdom
Prior art keywords
wafer
layer
cleavage
polycrystalline diamond
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
GBGB1010705.0A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Bath
Element Six Ltd
Original Assignee
University of Bath
Element Six Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Bath, Element Six Ltd filed Critical University of Bath
Priority to GBGB1010705.0A priority Critical patent/GB201010705D0/en
Publication of GB201010705D0 publication Critical patent/GB201010705D0/en
Priority to PCT/EP2011/060503 priority patent/WO2011161190A1/en
Priority to GB1110557.4A priority patent/GB2481687A/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A composite substrate or a method of manufacturing a composite substrate comprising polycrystalline diamond layer 12 bonded to single crystal silicon or silicon carbide cleaved layer 14 which is 15mm or less in thickness. Polycrystalline diamond layer 12 (50mm to 150mm thick) is grown by Chemical Vapour Deposition (CVD) at 700°C to 1200°C on single crystal silicon or silicon carbide wafer 10 0.3mm to 2.0mm thick. A strain field to enable cleavage is generated in wafer 10 by heating or cooling. Cleavage may be triggered by mechanical force (e.g. using a knife blade), thermal shock or wafer 10 may cleave automatically during heating/cooling due to mismatch in the thermal expansion coefficient between the silicon/silicon carbide and the polycrystalline diamond. Wafer 10 may be treated to promote cleavage by forming a buried oxide damage layer, implanting a weakened cleave plane or forming nanostructured surface pits. Wafer 10 may be reused to grow further diamond substrates. A semiconductor material 16 may be epitaxially grown on a buffer layer over a planarised surface of cleaved layer 14 to form a semiconductor device e.g. thin film transistor, diode or high power switching device.
GBGB1010705.0A 2010-06-25 2010-06-25 Substrates for semiconductor devices Ceased GB201010705D0 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GBGB1010705.0A GB201010705D0 (en) 2010-06-25 2010-06-25 Substrates for semiconductor devices
PCT/EP2011/060503 WO2011161190A1 (en) 2010-06-25 2011-06-22 Substrates for semiconductor devices
GB1110557.4A GB2481687A (en) 2010-06-25 2011-06-22 Diamond composite substrate for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB1010705.0A GB201010705D0 (en) 2010-06-25 2010-06-25 Substrates for semiconductor devices

Publications (1)

Publication Number Publication Date
GB201010705D0 true GB201010705D0 (en) 2010-08-11

Family

ID=42582983

Family Applications (2)

Application Number Title Priority Date Filing Date
GBGB1010705.0A Ceased GB201010705D0 (en) 2010-06-25 2010-06-25 Substrates for semiconductor devices
GB1110557.4A Withdrawn GB2481687A (en) 2010-06-25 2011-06-22 Diamond composite substrate for semiconductor devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
GB1110557.4A Withdrawn GB2481687A (en) 2010-06-25 2011-06-22 Diamond composite substrate for semiconductor devices

Country Status (2)

Country Link
GB (2) GB201010705D0 (en)
WO (1) WO2011161190A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
CN110828293A (en) * 2018-08-13 2020-02-21 西安电子科技大学 Semiconductor device based on SiC/diamond composite substrate layer and preparation method thereof
JP7172556B2 (en) * 2018-12-19 2022-11-16 株式会社Sumco Method for manufacturing polycrystalline diamond free-standing substrate
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding
CN112548359B (en) * 2020-11-30 2023-03-21 贵州大学 Preparation method of surface functional composite structured monocrystalline silicon carbide
CN112686280B (en) * 2020-12-05 2021-10-15 刘成彬 Medical semiconductor cold knife control platform
CN113151898B (en) * 2021-02-18 2021-10-15 北京科技大学 Preparation method of embedded diamond-based silicon carbide composite substrate
CN115161767B (en) * 2022-07-25 2023-07-07 北京科技大学 Preparation method of (100)/(111) orientation composite high-performance diamond semiconductor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981818A (en) * 1990-02-13 1991-01-01 General Electric Company Polycrystalline CVD diamond substrate for single crystal epitaxial growth of semiconductors
US6291326B1 (en) * 1998-06-23 2001-09-18 Silicon Genesis Corporation Pre-semiconductor process implant and post-process film separation
US7132309B2 (en) * 2003-04-22 2006-11-07 Chien-Min Sung Semiconductor-on-diamond devices and methods of forming
US6497763B2 (en) * 2001-01-19 2002-12-24 The United States Of America As Represented By The Secretary Of The Navy Electronic device with composite substrate
US6770966B2 (en) * 2001-07-31 2004-08-03 Intel Corporation Electronic assembly including a die having an integrated circuit and a layer of diamond to transfer heat
GB0127263D0 (en) * 2001-11-13 2002-01-02 Diamanx Products Ltd Layered structures
FR2855908B1 (en) * 2003-06-06 2005-08-26 Soitec Silicon On Insulator METHOD FOR OBTAINING A STRUCTURE COMPRISING AT LEAST ONE SUBSTRATE AND AN ULTRAMINO LAYER
US7033912B2 (en) 2004-01-22 2006-04-25 Cree, Inc. Silicon carbide on diamond substrates and related devices and methods
US20060113545A1 (en) 2004-10-14 2006-06-01 Weber Eicke R Wide bandgap semiconductor layers on SOD structures
US7695564B1 (en) 2005-02-03 2010-04-13 Hrl Laboratories, Llc Thermal management substrate
GB0505752D0 (en) * 2005-03-21 2005-04-27 Element Six Ltd Diamond based substrate for gan devices
US7595507B2 (en) 2005-04-13 2009-09-29 Group4 Labs Llc Semiconductor devices having gallium nitride epilayers on diamond substrates

Also Published As

Publication number Publication date
WO2011161190A1 (en) 2011-12-29
GB201110557D0 (en) 2011-08-03
GB2481687A (en) 2012-01-04

Similar Documents

Publication Publication Date Title
GB201110557D0 (en) Substrates for semiconductor devices
TWI698908B (en) SiC composite substrate manufacturing method and semiconductor substrate manufacturing method
US10023974B2 (en) Substrates for semiconductor devices
CN100393922C (en) Method of fabricating an epitaxially grown layer
CN107636800B (en) Method for manufacturing diamond semiconductor composite substrate
CN101521155B (en) Method for preparing substrate having monocrystalline film
CN102832115B (en) Method for controlled layer transfer
WO2008058131A3 (en) Method and structure for thick layer transfer using a linear accelerator
WO2006127157A3 (en) Method of transferring a thin crystalline semiconductor layer
AU2003249475A1 (en) Transfer of a thin layer from a wafer comprising a buffer layer
CN104272436A (en) Techniques for forming optoelectronic devices
CN103021946A (en) Method of preparing GaN monocrystal substrate in mechanical removal way
CN104733286B (en) The controlled peeling of III group-III nitride comprising embedded peeling release plane
CN101821846A (en) Semiconductor wafer re-use in exfoliation process using heat treatment
EP2324493B1 (en) Relaxation of strained layers
GB2534675A8 (en) Compound semiconductor device structures comprising polycrystalline CVD diamond
US9041165B2 (en) Relaxation and transfer of strained material layers
SG144883A1 (en) Method and structure using selected implant angles using a linear accelerator process for manufacture of free standing films of materials
CN102832104B (en) The method of two device wafers is formed from single basal substrate
Shi et al. Realization of wafer-scale single-crystalline GaN film on CMOS-compatible Si (100) substrate by ion-cutting technique
US20140038329A1 (en) Epitaxial growth on thin lamina
US20140332934A1 (en) Substrates for semiconductor devices
Farah et al. Dry-epitaxial lift-off for high efficiency solar cells
Peter et al. Diamond composite substrate for semiconductor devices
US20120037925A1 (en) Engineered Substrate for Light Emitting Diodes

Legal Events

Date Code Title Description
AT Applications terminated before publication under section 16(1)