JP7172556B2 - Method for manufacturing polycrystalline diamond free-standing substrate - Google Patents

Method for manufacturing polycrystalline diamond free-standing substrate Download PDF

Info

Publication number
JP7172556B2
JP7172556B2 JP2018237665A JP2018237665A JP7172556B2 JP 7172556 B2 JP7172556 B2 JP 7172556B2 JP 2018237665 A JP2018237665 A JP 2018237665A JP 2018237665 A JP2018237665 A JP 2018237665A JP 7172556 B2 JP7172556 B2 JP 7172556B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
substrate
polycrystalline diamond
diamond
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018237665A
Other languages
Japanese (ja)
Other versions
JP2020100517A (en
Inventor
祥泰 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2018237665A priority Critical patent/JP7172556B2/en
Priority to PCT/JP2019/040040 priority patent/WO2020129371A1/en
Priority to DE112019006310.3T priority patent/DE112019006310T5/en
Priority to CN201980084289.0A priority patent/CN113544318B/en
Publication of JP2020100517A publication Critical patent/JP2020100517A/en
Application granted granted Critical
Publication of JP7172556B2 publication Critical patent/JP7172556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、支持基板としての多結晶ダイヤモンド層上に化合物半導体層が形成されてなる多結晶ダイヤモンド自立基板の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a polycrystalline diamond self-supporting substrate in which a compound semiconductor layer is formed on a polycrystalline diamond layer as a supporting substrate.

高周波デバイスやパワーデバイス等の高耐圧の半導体デバイスにおいては、デバイスの自己発熱が問題となる。この対策として、デバイス形成領域の下に熱伝導率が大きい材料を配置する技術が知られている。 2. Description of the Related Art High-voltage semiconductor devices such as high-frequency devices and power devices have a problem of self-heating of the devices. As a countermeasure against this, a technique of arranging a material with high thermal conductivity under the device forming region is known.

例えば、半導体デバイスを形成するためのデバイス層となる窒化ガリウム(GaN)層等の化合物半導体層の直下に、放熱性の高いダイヤモンド層を配置する技術が知られている。特許文献1には、ダイヤモンド上の窒化ガリウム型ウェーハの製造方法が開示されている。この方法は、支持基板上に位置するGaN層上に60nm以下の薄い窒化珪素膜を形成した後に、当該窒化珪素膜の表面に乾式スクラッチによりダイヤモンド粒子を埋め込み固定する工程と、前記表面に固定されたダイヤモンド粒子を核として、化学気相成長法によりGaN層上に前記窒化ケイ素膜を介してダイヤモンド層を成長させる工程と、前記支持基板を除去する工程と、を含み、ダイヤモンド上に窒化ガリウム層が形成されたウェーハを製造するものである。 For example, there is known a technique of arranging a diamond layer with high heat dissipation directly under a compound semiconductor layer such as a gallium nitride (GaN) layer, which is a device layer for forming a semiconductor device. Patent Document 1 discloses a method for producing a gallium nitride type wafer on diamond. This method includes the steps of: forming a thin silicon nitride film of 60 nm or less on a GaN layer positioned on a support substrate; growing a diamond layer on the GaN layer through the silicon nitride film by chemical vapor deposition using the obtained diamond particles as nuclei; and removing the supporting substrate, wherein the gallium nitride layer is formed on the diamond. is to manufacture a wafer on which is formed.

特表2015-509479号公報Japanese Patent Application Publication No. 2015-509479

しかしながら、本発明者の検討によると、特許文献1に記載の方法では、前記埋め込みに起因してGaN層にクラックが入り、その後の化学気相成長法による高温長時間の熱処理の過程でGaN層内をクラックが進展し、転位が発生することが判明した。このようなGaN層に半導体デバイスを形成すると、リーク電流が増加して、デバイス特性が悪化するおそれがある。 However, according to the study of the present inventors, in the method described in Patent Document 1, cracks occur in the GaN layer due to the embedding, and the GaN layer cracks during the subsequent high-temperature, long-time heat treatment by the chemical vapor deposition method. It was found that cracks propagated inside and dislocations were generated. If a semiconductor device is formed on such a GaN layer, leakage current may increase and device characteristics may deteriorate.

上記課題に鑑み、本発明は、高品質な化合物半導体層が積層された多結晶ダイヤモンド自立基板を製造することが可能な、多結晶ダイヤモンド自立基板の製造方法を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a method for manufacturing a free-standing polycrystalline diamond substrate that can manufacture a free-standing polycrystalline diamond substrate on which high-quality compound semiconductor layers are laminated.

上記課題を解決すべく、本発明者は鋭意研究を進め、以下の知見を得た。まず、本発明者は、特許文献1のような、支持基板上に位置する化合物半導体層上にダイヤモンド層を成長させるのではなく、予め用意した化合物半導体基板にダイヤモンド層を成長させることを着想した。しかしながら、化合物半導体基板の表面に、特許文献1と同様にダイヤモンド粒子を埋め込み固定し、当該ダイヤモンド粒子を核として化学気相成長法によりダイヤモンド層を成長させると、化合物半導体基板が割れることが分かった。これは、やはり前記埋め込みに起因して化合物半導体基板の表面に導入されたクラックが起点となったものと推測される。 In order to solve the above problems, the present inventors have made intensive studies and obtained the following findings. First, the inventor of the present invention conceived of growing a diamond layer on a compound semiconductor substrate prepared in advance, instead of growing a diamond layer on a compound semiconductor layer positioned on a support substrate as in Patent Document 1. . However, it has been found that when diamond particles are embedded and fixed on the surface of a compound semiconductor substrate in the same manner as in Patent Document 1 and a diamond layer is grown by chemical vapor deposition using the diamond particles as nuclei, the compound semiconductor substrate cracks. . It is presumed that this originated from cracks introduced into the surface of the compound semiconductor substrate due to the embedding.

そこで、本発明者がさらに検討したところ、化合物半導体基板上にダイヤモンド粒子を含有する溶液を塗布し、その後熱処理して溶媒を蒸発させる方法で、化合物半導体基板上にダイヤモンド粒子を付着させることで、化合物半導体基板が割れることなく、多結晶ダイヤモンド層を成長させることができることが分かった。その後、化合物半導体基板を減厚して得た化合物半導体層には、転位が発生することがなかった。 Accordingly, the present inventor conducted further studies and found that a compound semiconductor substrate is coated with a solution containing diamond particles, and then heat-treated to evaporate the solvent. It was found that the polycrystalline diamond layer could be grown without cracking the compound semiconductor substrate. After that, no dislocation occurred in the compound semiconductor layer obtained by reducing the thickness of the compound semiconductor substrate.

上記知見に基づき完成した本発明の要旨構成は以下のとおりである。
(1)化合物半導体基板上にダイヤモンド粒子を含有する溶液を塗布し、その後、前記化合物半導体基板に熱処理を施すことによって、前記化合物半導体基板上に前記ダイヤモンド粒子を付着させる工程と、
前記ダイヤモンド粒子を核として、化学気相成長法により、前記化合物半導体基板上に厚さが100μm以上の多結晶ダイヤモンド層を成長させる工程と、
その後、前記化合物半導体基板を減厚して、化合物半導体層とする工程と、
を有し、前記多結晶ダイヤモンド層が、前記化合物半導体層の支持基板として機能する多結晶ダイヤモンド自立基板を得ることを特徴とする多結晶ダイヤモンド自立基板の製造方法。
The gist and configuration of the present invention completed based on the above findings are as follows.
(1) a step of applying a solution containing diamond particles onto a compound semiconductor substrate and then subjecting the compound semiconductor substrate to a heat treatment to adhere the diamond particles onto the compound semiconductor substrate;
growing a polycrystalline diamond layer having a thickness of 100 μm or more on the compound semiconductor substrate by chemical vapor deposition using the diamond grains as nuclei;
Thereafter, a step of reducing the thickness of the compound semiconductor substrate to form a compound semiconductor layer;
and wherein the polycrystalline diamond layer functions as a support substrate for the compound semiconductor layer.

(2)前記溶液中の前記ダイヤモンド粒子の平均粒径が50nm以下である、上記(1)に記載の多結晶ダイヤモンド自立基板の製造方法。 (2) The method for producing a free-standing polycrystalline diamond substrate according to (1) above, wherein the diamond particles in the solution have an average particle size of 50 nm or less.

(3)前記溶液中の前記ダイヤモンド粒子が負電荷に帯電している、上記(1)又は(2)に記載の多結晶ダイヤモンド自立基板の製造方法。 (3) The method for producing a free-standing polycrystalline diamond substrate according to (1) or (2) above, wherein the diamond particles in the solution are negatively charged.

(4)前記熱処理では、前記化合物半導体基板の温度を100℃未満に1分以上30分以下保持する、上記(1)~(3)のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。 (4) Manufacturing a free-standing polycrystalline diamond substrate according to any one of (1) to (3) above, wherein in the heat treatment, the temperature of the compound semiconductor substrate is kept below 100° C. for 1 minute or more and 30 minutes or less. Method.

(5)前記多結晶ダイヤモンド層の表面を平坦化する工程をさらに有する、上記(1)~(4)のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。 (5) The method for producing a free-standing polycrystalline diamond substrate according to any one of (1) to (4) above, further comprising the step of flattening the surface of the polycrystalline diamond layer.

(6)前記化合物半導体基板は、GaN、AlN、InN、SiC、Al23、Ga23、MgO、ZnO、CdO、GaAs、GaP、GaSb、InP、InAs、InSb、又はSiGeからなる、上記(1)~(5)のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。 (6) The compound semiconductor substrate is made of GaN, AlN, InN, SiC, Al2O3 , Ga2O3 , MgO, ZnO, CdO, GaAs, GaP, GaSb, InP, InAs, InSb, or SiGe. A method for producing a free-standing polycrystalline diamond substrate according to any one of (1) to (5) above.

(7)前記化合物半導体層の厚さを1μm以上500μm以下とする、上記(1)~(7)のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。 (7) The method for producing a free-standing polycrystalline diamond substrate according to any one of (1) to (7) above, wherein the compound semiconductor layer has a thickness of 1 μm or more and 500 μm or less.

本発明の多結晶ダイヤモンド自立基板の製造方法によれば、高品質な化合物半導体層が積層された多結晶ダイヤモンド自立基板を製造することが可能である。 According to the method for producing a free-standing polycrystalline diamond substrate of the present invention, it is possible to produce a free-standing polycrystalline diamond substrate on which high-quality compound semiconductor layers are laminated.

(A)~(F)は、本発明の一実施形態による多結晶ダイヤモンド自立基板100の製造方法を説明する模式断面図である。(A) to (F) are schematic cross-sectional views illustrating a method for manufacturing a free-standing polycrystalline diamond substrate 100 according to one embodiment of the present invention.

(多結晶ダイヤモンド自立基板の製造方法)
図1を参照して、本発明の一実施形態による多結晶ダイヤモンド自立基板100の製造方法は、以下の工程を有する。まず、図1(A),(B)に示すように、化合物半導体基板10上にダイヤモンド粒子を含有する溶液を塗布する。これにより、化合物半導体基板10上にダイヤモンド粒子含有液膜12が形成される。その後、図1(B),(C)に示すように、化合物半導体基板10に熱処理を施すことによって、ダイヤモンド粒子含有液膜12中の溶媒を蒸発させ、かつ化合物半導体基板10の表面とダイヤモンド粒子14との結合力を強化して、化合物半導体基板10上にダイヤモンド粒子14を付着させる。その後、図1(C),(D)に示すように、ダイヤモンド粒子14を核として、化学気相成長法(CVD法:Chemical Vapor Deposition)により、化合物半導体基板10上に厚さが100μm以上の多結晶ダイヤモンド層16を成長させる。その後、任意に、図1(D),(E)に示すように、多結晶ダイヤモンド層16の表面を平坦化してもよい。その後、図1(E),(F)に示すように、化合物半導体基板10を減厚して、化合物半導体層18とする。
(Manufacturing method for polycrystalline diamond free-standing substrate)
Referring to FIG. 1, a method for manufacturing a free-standing polycrystalline diamond substrate 100 according to one embodiment of the present invention has the following steps. First, as shown in FIGS. 1A and 1B, a compound semiconductor substrate 10 is coated with a solution containing diamond particles. Thus, a diamond particle-containing liquid film 12 is formed on the compound semiconductor substrate 10 . Thereafter, as shown in FIGS. 1B and 1C, the compound semiconductor substrate 10 is subjected to a heat treatment to evaporate the solvent in the diamond particle-containing liquid film 12, and to separate the surface of the compound semiconductor substrate 10 from the diamond particles. 14 is strengthened to adhere the diamond particles 14 onto the compound semiconductor substrate 10 . After that, as shown in FIGS. 1(C) and 1(D), a diamond particle 14 is used as a nucleus to form a layer having a thickness of 100 μm or more on the compound semiconductor substrate 10 by chemical vapor deposition (CVD). A polycrystalline diamond layer 16 is grown. Optionally, the surface of polycrystalline diamond layer 16 may then be planarized, as shown in FIGS. Thereafter, as shown in FIGS. 1E and 1F, the thickness of the compound semiconductor substrate 10 is reduced to form a compound semiconductor layer 18. Next, as shown in FIG.

本実施形態では、以上の工程を経て、多結晶ダイヤモンド層16が化合物半導体層18の支持基板として機能する多結晶ダイヤモンド自立基板100を製造することができる。ここで、化合物半導体層18は、半導体デバイスを形成するためのデバイス層となる。以下、本実施形態における各工程を詳細に説明する。 In this embodiment, the polycrystalline diamond free-standing substrate 100 in which the polycrystalline diamond layer 16 functions as a support substrate for the compound semiconductor layer 18 can be manufactured through the above steps. Here, the compound semiconductor layer 18 becomes a device layer for forming a semiconductor device. Each step in this embodiment will be described in detail below.

[化合物半導体基板の用意]
図1(A)を参照して、まず、化合物半導体基板10を用意する。化合物半導体基板10を構成する化合物半導体は、特に限定されず、化合物半導体層18に形成する半導体デバイスの種類等に応じて適宜選定すればよく、例えば、GaN、AlN、InN、SiC、Al23、Ga23、MgO、ZnO、CdO、GaAs、GaP、GaSb、InP、InAs、InSb、又はSiGeからなるものとすることが好ましい。また、化合物半導体基板10の厚さは、200μm以上3mm以下とすることが好ましい。200μm未満の場合、化合物半導体基板が反ることにより多結晶ダイヤモンドの剥がれが発生したり、化合物半導体基板の割れを発生する。また、3mm超えの場合、後述の化合物半導体基板10の減厚の工程におけるプロセスタイムや材料コストの観点から好ましくない。
[Preparation of compound semiconductor substrate]
Referring to FIG. 1A, first, a compound semiconductor substrate 10 is prepared. The compound semiconductor forming the compound semiconductor substrate 10 is not particularly limited, and may be appropriately selected according to the type of semiconductor device to be formed on the compound semiconductor layer 18. Examples include GaN, AlN, InN, SiC, and Al2O . 3 , Ga 2 O 3 , MgO, ZnO, CdO, GaAs, GaP, GaSb, InP, InAs, InSb, or SiGe. Moreover, the thickness of the compound semiconductor substrate 10 is preferably 200 μm or more and 3 mm or less. If the thickness is less than 200 μm, the compound semiconductor substrate is warped, resulting in peeling of the polycrystalline diamond or cracking of the compound semiconductor substrate. Further, if the thickness exceeds 3 mm, it is not preferable from the viewpoint of process time and material cost in the step of reducing the thickness of the compound semiconductor substrate 10, which will be described later.

[ダイヤモンド粒子含有溶液の塗布]
次に、図1(A),(B)に示すように、化合物半導体基板10上にダイヤモンド粒子を含有する溶液を塗布して、化合物半導体基板10上にダイヤモンド粒子含有液膜12を形成する。塗布方法としては、スピンコート法、スプレー法、及び浸漬法を挙げることができ、スピンコート法が特に好ましい。スピンコート法によれば、化合物半導体基板10の両面のうちダイヤモンド粒子14を付着させたい片側の表面のみに、ダイヤモンド粒子含有溶液を均一に塗布することができる。
[Application of solution containing diamond particles]
Next, as shown in FIGS. 1A and 1B, a solution containing diamond particles is applied onto the compound semiconductor substrate 10 to form a diamond particle-containing liquid film 12 on the compound semiconductor substrate 10 . Examples of the coating method include a spin coating method, a spray method, and an immersion method, with the spin coating method being particularly preferred. According to the spin coating method, the diamond particle-containing solution can be uniformly coated only on one surface of the compound semiconductor substrate 10 to which the diamond particles 14 are to be attached.

ダイヤモンド粒子含有溶液に含まれるダイヤモンド粒子の平均粒径は1nm以上50nm以下とすることが好ましく、10nm以下とすることがより好ましい。1nm以上であれば、多結晶ダイヤモンド層16を成長させる初期段階において、ダイヤモンド粒子14がスパッタリング作用により化合物半導体基板10の表面から弾き飛ばされる現象を抑制することができ、50nm以下であれば、多結晶ダイヤモンド層が異常成長なく緻密に成膜でき、さらに多結晶ダイヤモンド表面への平坦化(研磨)プロセスを容易に実施することができるからである。このようなサイズのダイヤモンド粒子は、公知の爆轟法や爆縮法や粉砕法によりグラファイトから好適に作製することができる。なお、「ダイヤモンド粒子含有溶液に含まれるダイヤモンド粒子の平均粒径」は、JIS 8819-2に従って算出されるものであり、公知のレーザー回折式粒度分布測定装置によって測定された粒度分布が正規分布に従うと仮定して算出された平均粒径を意味する。 The average particle size of the diamond particles contained in the diamond particle-containing solution is preferably 1 nm or more and 50 nm or less, more preferably 10 nm or less. When the thickness is 1 nm or more, it is possible to suppress the phenomenon in which the diamond grains 14 are sputtered off the surface of the compound semiconductor substrate 10 in the initial stage of growing the polycrystalline diamond layer 16. When the thickness is 50 nm or less, many This is because the crystalline diamond layer can be densely formed without abnormal growth, and the surface of the polycrystalline diamond can be easily planarized (polished). Diamond particles of such a size can be suitably produced from graphite by a known detonation method, implosion method, or pulverization method. The "average particle diameter of the diamond particles contained in the diamond particle-containing solution" is calculated according to JIS 8819-2, and the particle size distribution measured by a known laser diffraction particle size distribution measuring device follows a normal distribution. Means the average particle size calculated on the assumption that

ここで、ダイヤモンド粒子含有溶液を塗布する前の化合物半導体基板10は、その表面に付着した金属不純物を除去するために、一般的にフッ酸などを用いて酸洗浄される。酸洗浄された化合物半導体基板10の表面は活性な撥水面であるので、その表面にはパーティクルが付着しやすい。このため、酸洗浄した化合物半導体基板10を純水などで洗浄して、化合物半導体基板10の表面を自然酸化膜が形成された親水性面とすることが好ましい。あるいは、酸洗浄した化合物半導体基板10をクリーンルーム内に長時間放置して、化合物半導体基板10の表面に自然酸化膜を形成することが好ましい。これにより、化合物半導体基板10の表面にパーティクルが付着するのを抑制することができる。この時、自然酸化膜中には正電荷を有する固定電荷が発生する。そのため、正電荷に帯電した自然酸化膜上に、負電荷に帯電させたダイヤモンド粒子を含有するダイヤモンド粒子含有溶液を塗布すれば、化合物半導体基板10とダイヤモンド粒子14とがクーロン引力により強固に結合する。その結果、多結晶ダイヤモンド層16の化合物半導体基板10に対する密着性が向上する。このように負電荷に帯電させたダイヤモンド粒子は、ダイヤモンド粒子に酸化処理を施すことによって、カルボキシル基やケトン基でダイヤモンド粒子を終端することで得られる。例えば、酸化処理としては、ダイヤモンド粒子を酸化熱する方法や、オゾン溶液、硝酸溶液、過酸化水素水溶液、又は過塩素酸溶液にダイヤモンド粒子を浸漬する方法などが挙げられる。 Here, the compound semiconductor substrate 10 before being coated with the diamond particle-containing solution is generally acid-cleaned with hydrofluoric acid or the like in order to remove metal impurities adhering to its surface. Since the surface of the acid-cleaned compound semiconductor substrate 10 is an active water-repellent surface, particles tend to adhere to the surface. Therefore, it is preferable to wash the acid-cleaned compound semiconductor substrate 10 with pure water or the like to make the surface of the compound semiconductor substrate 10 hydrophilic with a natural oxide film formed thereon. Alternatively, it is preferable to leave the acid-cleaned compound semiconductor substrate 10 in a clean room for a long time to form a natural oxide film on the surface of the compound semiconductor substrate 10 . This can prevent particles from adhering to the surface of the compound semiconductor substrate 10 . At this time, fixed charges having positive charges are generated in the native oxide film. Therefore, when a diamond particle-containing solution containing negatively charged diamond particles is applied onto the positively charged natural oxide film, the compound semiconductor substrate 10 and the diamond particles 14 are strongly bonded by Coulomb attraction. . As a result, the adhesion of the polycrystalline diamond layer 16 to the compound semiconductor substrate 10 is improved. Such negatively charged diamond particles can be obtained by subjecting the diamond particles to an oxidation treatment and terminating the diamond particles with carboxyl groups or ketone groups. For example, the oxidation treatment includes a method of oxidizing the diamond particles, a method of immersing the diamond particles in an ozone solution, a nitric acid solution, an aqueous hydrogen peroxide solution, or a perchloric acid solution.

ダイヤモンド粒子含有溶液の溶媒としては、水の他、メタノール、エタノール、2-プロパノ-ル、及びトルエン等の有機溶媒が挙げられ、これらの溶媒を単独で用いてもよく、2種以上組み合わせて用いてもよい。 Examples of the solvent for the diamond particle-containing solution include water and organic solvents such as methanol, ethanol, 2-propanol, and toluene. These solvents may be used alone or in combination of two or more. may

ダイヤモンド粒子含有溶液におけるダイヤモンド粒子の含有量は、ダイヤモンド粒子含有溶液全体に対して0.03質量%以上10質量%以下とすることが好ましい。0.03質量%以上であれば、ダイヤモンド粒子14を化合物半導体基板10上に均一に付着させることができ、10質量%以下であれば、付着したダイヤモンド粒子14がダイヤモンド層16の成長過程で異常成長するのを抑制することができるからである。 The content of diamond particles in the diamond particle-containing solution is preferably 0.03% by mass or more and 10% by mass or less with respect to the entire diamond particle-containing solution. If it is 0.03% by mass or more, the diamond particles 14 can be uniformly deposited on the compound semiconductor substrate 10, and if it is 10% by mass or less, the deposited diamond particles 14 are abnormal during the growth process of the diamond layer 16. This is because the growth can be suppressed.

ダイヤモンド粒子14と化合物半導体基板10との密着性を向上させる観点から、ダイヤモンド粒子含有溶液をジェル状のものとすることが好ましく、ダイヤモンド粒子含有溶液に増粘剤を含有させてもよい。増粘剤としては、寒天、カラギーナン、キサンタンガム、ジェランガム、グアーガム、ポリビニルアルコール、ポリアクリル酸塩系増粘剤、水溶性セルロース類、ポリエチレンオキサイドなどが挙げられ、これらの一種又は二種以上を用いることができる。増粘剤を含有させる場合、ダイヤモンド粒子含有溶液のpHを6以上8以下の範囲とすることが好ましい。 From the viewpoint of improving the adhesion between the diamond particles 14 and the compound semiconductor substrate 10, the diamond particle-containing solution is preferably gel-like, and the diamond particle-containing solution may contain a thickening agent. Examples of thickeners include agar, carrageenan, xanthan gum, gellan gum, guar gum, polyvinyl alcohol, polyacrylate-based thickeners, water-soluble celluloses, and polyethylene oxide. One or more of these may be used. can be done. When a thickener is included, the pH of the diamond particle-containing solution is preferably in the range of 6 or more and 8 or less.

ダイヤモンド粒子含有溶液の調製は、上記の溶媒にダイヤモンド粒子を混合して撹拌することにより、溶媒中にダイヤモンド粒子を分散させるようにして行えばよい。撹拌速度は500rpm以上3000rpm以下とすることが好ましく、撹拌時間は10分以上1時間以下とすることが好ましい。 The diamond particle-containing solution may be prepared by mixing the diamond particles with the above solvent and stirring to disperse the diamond particles in the solvent. The stirring speed is preferably 500 rpm or more and 3000 rpm or less, and the stirring time is preferably 10 minutes or more and 1 hour or less.

[熱処理]
次に、図1(B),(C)に示すように、化合物半導体基板10に熱処理を施す。これにより、ダイヤモンド粒子含有液膜12中の溶媒が蒸発し、かつ化合物半導体基板10の表面とダイヤモンド粒子14との結合力が強化されて、化合物半導体基板10上にダイヤモンド粒子14が付着する。熱処理中の化合物半導体基板10の温度は、100℃未満とすることが好ましく、30℃以上80℃以下とすることがより好ましい。100℃未満であれば、ダイヤモンド粒子含有溶液の沸騰に伴う泡の発生を抑制することができるので、化合物半導体基板10上にダイヤモンド粒子14が部分的に存在しない部位が発生することがなく、この部位を起点として多結晶ダイヤモンド層16が剥離するおそれもない。30℃以上であれば、化合物半導体基板10とダイヤモンド粒子14とが十分に結合するので、CVD法によって多結晶ダイヤモンド層16を成長させる過程で、スパッタリング作用によりダイヤモンド粒子14が弾き飛ばされるのを抑制することができ、多結晶ダイヤモンド層16を均一に成長させることができる。また、熱処理時間は1分以上30分以下とすることが好ましい。なお、熱処理装置としては、公知の熱処理装置を用いればよく、例えば、加熱したホットプレート上に化合物半導体基板10を載置することにより行うことができる。
[Heat treatment]
Next, as shown in FIGS. 1B and 1C, the compound semiconductor substrate 10 is heat-treated. As a result, the solvent in the diamond particle-containing liquid film 12 evaporates and the bonding force between the surface of the compound semiconductor substrate 10 and the diamond particles 14 is strengthened, so that the diamond particles 14 adhere to the compound semiconductor substrate 10 . The temperature of the compound semiconductor substrate 10 during the heat treatment is preferably less than 100.degree. C., more preferably 30.degree. C. or higher and 80.degree. If the temperature is less than 100° C., the generation of bubbles due to the boiling of the diamond particle-containing solution can be suppressed. There is no possibility that the polycrystalline diamond layer 16 will peel off starting from the site. If the temperature is 30° C. or higher, the compound semiconductor substrate 10 and the diamond grains 14 are sufficiently bonded, so that the diamond grains 14 are prevented from being sputtered off during the growth of the polycrystalline diamond layer 16 by the CVD method. and the polycrystalline diamond layer 16 can be grown uniformly. Moreover, the heat treatment time is preferably 1 minute or more and 30 minutes or less. As the heat treatment apparatus, a known heat treatment apparatus may be used. For example, the heat treatment can be performed by placing the compound semiconductor substrate 10 on a heated hot plate.

本実施形態では、上記のように、化合物半導体基板上にダイヤモンド粒子を含有する溶液を塗布し、その後熱処理する方法を採用することが肝要である。この方法であれば、化合物半導体基板10の表面にクラックが導入されることがなく、そのため、化合物半導体基板10が割れることなく、多結晶ダイヤモンド層16を成長させることができる。そして、化合物半導体基板10を減厚して得た化合物半導体層18に転位が発生することもない。 In this embodiment, as described above, it is essential to apply a solution containing diamond particles onto the compound semiconductor substrate and then apply a heat treatment. According to this method, cracks are not introduced into the surface of the compound semiconductor substrate 10, so that the polycrystalline diamond layer 16 can be grown without cracking the compound semiconductor substrate 10. FIG. Further, no dislocation occurs in the compound semiconductor layer 18 obtained by reducing the thickness of the compound semiconductor substrate 10 .

[多結晶ダイヤモンド層の成長]
次に、図1(C),(D)に示すように、ダイヤモンド粒子14を核として、CVD法により、化合物半導体基板10上に厚さが100μm以上の多結晶ダイヤモンド層16を成長させる。CVD法としては、プラズマCVD法および熱フィラメントCVD法等を好適に用いることができる。
[Growth of polycrystalline diamond layer]
Next, as shown in FIGS. 1(C) and 1(D), a polycrystalline diamond layer 16 having a thickness of 100 μm or more is grown on the compound semiconductor substrate 10 by CVD using the diamond grains 14 as nuclei. As the CVD method, a plasma CVD method, a hot filament CVD method, or the like can be preferably used.

プラズマCVD法を用いる場合、例えば、水素をキャリアガスとして、メタン等のソースガスをチャンバー内に導入して、化合物半導体基板10の温度を700℃以上1300℃以下として、多結晶ダイヤモンド層16を成長させる。多結晶ダイヤモンド層16の厚さの均一性を向上させる観点から、マイクロ波プラズマCVD法を用いることが好ましい。マイクロ波プラズマCVD法とは、プラズマチャンバー内でメタン等のソースガスをマイクロ波によって分解してプラズマ化し、プラズマ化したソースガスを加熱した化合物半導体基板10上に導くことにより、多結晶ダイヤモンド層16を成長させる方法である。ここで、プラズマチャンバー内の圧力、マイクロ波の出力、及び化合物半導体基板10の温度は、以下のように設定することが好ましい。プラズマチャンバー内の圧力は、1.3×103Pa以上1.3×105Pa以下とすることが好ましく、1.1×104Pa以上4.0×104Pa以下とすることがより好ましい。マイクロ波の出力は、0.1kW以上100kW以下とすることが好ましく、1kW以上10kW以下とすることがより好ましい。化合物半導体基板10の温度は、700℃以上1300℃以下とすることが好ましく、900℃以上1200℃以下とすることがより好ましい。 When the plasma CVD method is used, for example, a source gas such as methane is introduced into the chamber using hydrogen as a carrier gas, the temperature of the compound semiconductor substrate 10 is set to 700° C. or higher and 1300° C. or lower, and the polycrystalline diamond layer 16 is grown. Let From the viewpoint of improving the uniformity of the thickness of the polycrystalline diamond layer 16, it is preferable to use the microwave plasma CVD method. In the microwave plasma CVD method, a source gas such as methane is decomposed by microwaves in a plasma chamber to generate plasma, and the plasma generated source gas is led onto a heated compound semiconductor substrate 10 to form a polycrystalline diamond layer 16. is a way to grow Here, it is preferable to set the pressure in the plasma chamber, the output of the microwave, and the temperature of the compound semiconductor substrate 10 as follows. The pressure in the plasma chamber is preferably 1.3×10 3 Pa or more and 1.3×10 5 Pa or less, more preferably 1.1×10 4 Pa or more and 4.0×10 4 Pa or less. preferable. The output of the microwave is preferably 0.1 kW or more and 100 kW or less, more preferably 1 kW or more and 10 kW or less. The temperature of the compound semiconductor substrate 10 is preferably 700° C. or higher and 1300° C. or lower, more preferably 900° C. or higher and 1200° C. or lower.

熱フィラメントCVD法を用いる場合、タングステン、タンタル、レニウム、モリブデン、イリジウム等からなるフィラメントを用いて、フィラメント温度を1900℃以上2300℃以下程度とし、メタン等の炭化水素系のソースガスから炭素ラジカルを生成する。この炭素ラジカルを加熱した化合物半導体基板10上に導くことにより、多結晶ダイヤモンド層16を成長させる。熱フィラメントCVD法によれば、ウェーハの大口径化に容易に対応することができる。ここで、チャンバー内の圧力、フィラメントと化合物半導体基板10との距離、及び化合物半導体基板10の温度は、以下のように設定することが好ましい。チャンバー内の圧力は1.3×103Pa以上1.3×105Pa以下とすることが好ましい。フィラメントと化合物半導体基板10との距離は5mm以上20mm以下とすることが好ましい。化合物半導体基板10の温度は700℃以上1300℃以下とすることが好ましい。 When the hot filament CVD method is used, a filament made of tungsten, tantalum, rhenium, molybdenum, iridium, or the like is used, the filament temperature is set to about 1900° C. or higher and 2300° C. or lower, and carbon radicals are generated from a hydrocarbon-based source gas such as methane. Generate. A polycrystalline diamond layer 16 is grown by guiding the carbon radicals onto the heated compound semiconductor substrate 10 . According to the hot filament CVD method, it is possible to easily cope with an increase in the diameter of the wafer. Here, the pressure in the chamber, the distance between the filament and the compound semiconductor substrate 10, and the temperature of the compound semiconductor substrate 10 are preferably set as follows. The pressure in the chamber is preferably 1.3×10 3 Pa or more and 1.3×10 5 Pa or less. The distance between the filament and the compound semiconductor substrate 10 is preferably 5 mm or more and 20 mm or less. The temperature of the compound semiconductor substrate 10 is preferably 700° C. or higher and 1300° C. or lower.

多結晶ダイヤモンド層16は化合物半導体層18の支持基板として機能するものであるため、その厚さは100μm以上とし、500μm以上とすることがより好ましい。また、多結晶ダイヤモンド層16の厚さについて、上限は特に限定されないが、CVD法による成長時のプロセスタイムを過大としない観点から、3mm以下とすることが好ましい。 Since the polycrystalline diamond layer 16 functions as a support substrate for the compound semiconductor layer 18, its thickness is set to 100 μm or more, more preferably 500 μm or more. Although the upper limit of the thickness of the polycrystalline diamond layer 16 is not particularly limited, it is preferably 3 mm or less from the viewpoint of not excessively increasing the process time during growth by the CVD method.

[多結晶ダイヤモンド層の平坦化]
次に、図1(D),(E)に示すように、多結晶ダイヤモンド層16の表面を平坦化してもよい。成膜後の多結晶ダイヤモンド層16の表面には過度の凹凸が形成されている。多結晶ダイヤモンド層16の表面を平坦化することにより、その後得られる多結晶ダイヤモンド自立基板100を半導体プロセス装置の試料台へ確実にセット(チャック)することができる。平坦化方法は特に限定されないが、例えば公知の化学機械研磨(CMP:Chemical Mechanical Polishing)法を好適に用いることができる。なお、平坦化後も、多結晶ダイヤモンド層16の厚さは100μm以上とし、500μm以上とすることがより好ましい。
[Planarization of polycrystalline diamond layer]
Next, as shown in FIGS. 1(D) and 1(E), the surface of the polycrystalline diamond layer 16 may be planarized. Excessive unevenness is formed on the surface of the polycrystalline diamond layer 16 after film formation. By flattening the surface of the polycrystalline diamond layer 16, the polycrystalline diamond free-standing substrate 100 to be obtained later can be reliably set (chucked) on the sample table of the semiconductor processing equipment. Although the planarization method is not particularly limited, for example, a known chemical mechanical polishing (CMP) method can be preferably used. Even after flattening, the thickness of the polycrystalline diamond layer 16 is 100 μm or more, and more preferably 500 μm or more.

[化合物半導体基板の減厚]
次に、図1(E),(F)に示すように、化合物半導体基板10を減厚して、化合物半導体層18とする。具体的には、化合物半導体基板10を、多結晶ダイヤモンド層16との界面とは反対側の表面から研削及び研磨することにより減厚する。これにより、所望厚さの化合物半導体層18が支持基板としての多結晶ダイヤモンド層16上に積層された多結晶ダイヤモンド自立基板100を得ることができる。化合物半導体層18の厚さは、そこに形成する半導体デバイスの種類や構造に応じて適宜決定することができ、1μm以上500μm以下とすることが好ましい。なお、この研削及び研磨には、公知又は任意の研削法及び研磨法を好適に用いることができ、具体的には平面研削法及び鏡面研磨法を用いることができる。
[Thickness reduction of compound semiconductor substrate]
Next, as shown in FIGS. 1E and 1F, the thickness of the compound semiconductor substrate 10 is reduced to form a compound semiconductor layer 18 . Specifically, the thickness of the compound semiconductor substrate 10 is reduced by grinding and polishing the surface opposite to the interface with the polycrystalline diamond layer 16 . As a result, a polycrystalline diamond self-supporting substrate 100 can be obtained in which the compound semiconductor layer 18 having a desired thickness is laminated on the polycrystalline diamond layer 16 as a supporting substrate. The thickness of the compound semiconductor layer 18 can be appropriately determined according to the type and structure of the semiconductor device formed thereon, and is preferably 1 μm or more and 500 μm or less. For this grinding and polishing, a known or arbitrary grinding method and polishing method can be suitably used, and specifically, a surface grinding method and a mirror polishing method can be used.

(実施例1)
[本発明例1]
図1(A)~(F)に示す工程を経て、本発明例1-1に係る多結晶ダイヤモンド自立基板を作製した。
(Example 1)
[Invention Example 1]
A free-standing polycrystalline diamond substrate according to Example 1-1 of the present invention was produced through the steps shown in FIGS.

まず、HVPE(Hydride Vapor Phase Epitaxy)法により作製した窒化ガリウム(GaN)単結晶から切り出し加工した、直径が2インチ、厚さが600μmのGaN基板を用意した。 First, a GaN substrate having a diameter of 2 inches and a thickness of 600 μm was prepared by cutting from a gallium nitride (GaN) single crystal produced by the HVPE (Hydride Vapor Phase Epitaxy) method.

次に、爆轟法によって、平均粒径が4nmのダイヤモンド粒子を用意した。このダイヤモンド粒子を、過酸化水素水溶液に浸漬することによりカルボキシル基(COOH)で終端して、負電荷に帯電させた。次に、ダイヤモンド粒子を溶媒(H2O)に混合し、撹拌して、ダイヤモンド粒子の含有量が6質量%のダイヤモンド粒子含有溶液を調製した。なお、撹拌速度は1100rpm、撹拌時間は50分とし、撹拌中のダイヤモンド粒子含有溶液の温度は25℃とした。続いて、GaN基板を純水により洗浄して、表面に自然酸化膜を形成した後、スピンコート法によってGaN基板上にダイヤモンド粒子含有溶液を塗布し、ダイヤモンド粒子含有液膜を形成した。 Next, diamond particles having an average particle size of 4 nm were prepared by a detonation method. The diamond particles were immersed in an aqueous hydrogen peroxide solution to terminate with carboxyl groups (COOH) and to be negatively charged. Next, diamond particles were mixed with a solvent (H 2 O) and stirred to prepare a diamond particle-containing solution having a diamond particle content of 6% by mass. The stirring speed was 1100 rpm, the stirring time was 50 minutes, and the temperature of the diamond particle-containing solution during stirring was 25°C. Subsequently, the GaN substrate was washed with pure water to form a natural oxide film on the surface, and then a diamond particle-containing solution was applied onto the GaN substrate by spin coating to form a diamond particle-containing liquid film.

次に、80℃に設定したホットプレート上にGaN基板を5分間置くことにより、GaN基板とダイヤモンド粒子との結合を強化する熱処理を施し、GaN基板上にダイヤモンド粒子を付着させた。 Next, the GaN substrate was placed on a hot plate set at 80° C. for 5 minutes to perform a heat treatment for strengthening the bond between the GaN substrate and the diamond particles, thereby adhering the diamond particles to the GaN substrate.

次に、水素をキャリアガス、メタンをソースガスとして、既述のマイクロ波プラズマCVD法を用いて、GaN基板上に付着したダイヤモンド粒子を核として、厚さ300μmの多結晶ダイヤモンド層を成長させた。なお、プラズマチャンバー内の圧力を1.5×104Pa、マイクロ波の出力を5kW、GaN基板の温度を1050℃とした。 Next, using hydrogen as a carrier gas and methane as a source gas, a polycrystalline diamond layer having a thickness of 300 μm was grown using the diamond particles adhering to the GaN substrate as nuclei using the above-described microwave plasma CVD method. . The pressure in the plasma chamber was 1.5×10 4 Pa, the microwave output was 5 kW, and the temperature of the GaN substrate was 1050°C.

次に、CMP法により多結晶ダイヤモンド層の表面を平坦化した。平坦化後の多結晶ダイヤモンド層の厚さは290μmとした。 Next, the surface of the polycrystalline diamond layer was flattened by CMP. The thickness of the polycrystalline diamond layer after flattening was 290 μm.

次に、GaN基板を研削及び研磨して、厚さが10μmのGaN層とした。このようにして、厚さ290μmの多結晶ダイヤモンド層上に厚さが10μmのGaN層が積層された多結晶ダイヤモンド自立基板を得た。 Next, the GaN substrate was ground and polished to form a 10 μm thick GaN layer. Thus, a free-standing polycrystalline diamond substrate was obtained in which a 10 μm thick GaN layer was laminated on a 290 μm thick polycrystalline diamond layer.

本発明例では、GaN基板が割れることなく、多結晶ダイヤモンド層を成長させることができた。GaN層の断面をTEMにて観察したところ、転位は観察されなかった。 In the example of the present invention, the polycrystalline diamond layer could be grown without cracking the GaN substrate. When the cross section of the GaN layer was observed with a TEM, no dislocations were observed.

[比較例1-1]
ダイヤモンド粒子の付着方法を変更した以外は、発明例1と同様の方法で多結晶ダイヤモンド自立基板の作製を試みた。
[Comparative Example 1-1]
An attempt was made to fabricate a free-standing polycrystalline diamond substrate in the same manner as in Invention Example 1, except that the method of adhering diamond particles was changed.

発明例1と同様のGaN基板を用意した。次に、公知の傷付け法によって、GaN基板の表面にダイヤモンド粒子を埋め込んだ。すなわち、平均粒径1μmのダイヤモンド粒子を含有する溶液中で、GaN基板を超音波洗浄することによって、GaN基板の表面にダイヤモンド粒子を埋め込んだ。次に、発明例1と同様の条件で、マイクロ波プラズマCVD法を用いて、GaN基板上に埋め込んだダイヤモンド粒子を核として、厚さ300μmの多結晶ダイヤモンド層の成膜を試みた。 A GaN substrate similar to that of Invention Example 1 was prepared. Next, diamond particles were embedded in the surface of the GaN substrate by a known scratching method. That is, by ultrasonically cleaning the GaN substrate in a solution containing diamond particles with an average particle size of 1 μm, diamond particles were embedded in the surface of the GaN substrate. Next, under the same conditions as in Inventive Example 1, a microwave plasma CVD method was used to form a polycrystalline diamond layer having a thickness of 300 μm using the diamond grains embedded in the GaN substrate as nuclei.

比較例1-1では、多結晶ダイヤモンド成膜中にGaN基板が割れた。これは、埋め込みに起因してGaN基板の表面に導入されたクラックが起点となり、1050℃の高温での多結晶ダイヤモンド成膜中に、当該クラックがGaN基板を進展したためと考えられる。割れた箇所をTEMで観察した結果、割れの起点にクラックが存在していることがわかった。 In Comparative Example 1-1, the GaN substrate cracked during polycrystalline diamond film formation. This is presumably because cracks introduced into the surface of the GaN substrate due to embedding started and propagated through the GaN substrate during polycrystalline diamond film formation at a high temperature of 1050°C. As a result of observing the cracked portion with a TEM, it was found that a crack was present at the starting point of the crack.

[比較例1-2]
多結晶ダイヤモンド層の厚さを5μmに変更した以外は、発明例1と同様の方法で多結晶ダイヤモンド自立基板の作製を試みた。
[Comparative Example 1-2]
An attempt was made to fabricate a free-standing polycrystalline diamond substrate in the same manner as in Invention Example 1, except that the thickness of the polycrystalline diamond layer was changed to 5 μm.

比較例1-2では、GaN基板の研削の過程で、多結晶ダイヤモンド層とともにGaN基板が割れた。すなわち、多結晶ダイヤモンド層は、厚さ5μmでは自立基板としては機能しないことが分かった。 In Comparative Example 1-2, the GaN substrate cracked together with the polycrystalline diamond layer during the grinding process of the GaN substrate. That is, it was found that a polycrystalline diamond layer with a thickness of 5 μm does not function as a free-standing substrate.

(実施例2)
[本発明例2]
化合物半導体基板の種類をGaN基板からSiC基板に変更した以外は、発明例1と同様の方法で多結晶ダイヤモンド自立基板の作製を行った。
(Example 2)
[Invention Example 2]
A free-standing polycrystalline diamond substrate was produced in the same manner as in Invention Example 1, except that the type of compound semiconductor substrate was changed from a GaN substrate to a SiC substrate.

まず、昇華再結晶法により作製した炭化ケイ素(SiC)単結晶から切り出し加工した、直径が2インチ、厚さが600μmの4H-SiC基板を用意した。 First, a 4H—SiC substrate having a diameter of 2 inches and a thickness of 600 μm was prepared by cutting from a silicon carbide (SiC) single crystal produced by a sublimation recrystallization method.

以降は発明例1と同様の手順及び条件にて、厚さ460μmの多結晶ダイヤモンド層上に厚さが10μmのSiC層が積層された多結晶ダイヤモンド自立基板を得た。 Thereafter, in the same procedure and under the same conditions as in Invention Example 1, a polycrystalline diamond free-standing substrate was obtained in which a 10 μm thick SiC layer was laminated on a 460 μm thick polycrystalline diamond layer.

本発明例では、SiC基板が割れることなく、多結晶ダイヤモンド層を成長させることができた。SiC層の断面をTEMにて観察したところ、転位は観察されなかった。 In the present invention example, the polycrystalline diamond layer could be grown without cracking the SiC substrate. When the cross section of the SiC layer was observed with a TEM, no dislocation was observed.

[比較例2-1]
ダイヤモンド粒子の付着方法を変更した以外は、発明例2と同様の方法で多結晶ダイヤモンド自立基板の作製を試みた。
[Comparative Example 2-1]
An attempt was made to fabricate a free-standing polycrystalline diamond substrate in the same manner as in Invention Example 2, except that the method of adhering diamond particles was changed.

発明例2と同様のSiC基板を用意した。次に、公知の傷付け法によって、SiC基板の表面にダイヤモンド粒子を埋め込んだ。すなわち、平均粒径1μmのダイヤモンド粒子を含有する溶液中で、SiC基板を超音波洗浄することによって、SiC基板の表面にダイヤモンド粒子を埋め込んだ。次に、発明例2と同様の条件で、マイクロ波プラズマCVD法を用いて、SiC基板上に埋め込んだダイヤモンド粒子を核として、厚さ460μmの多結晶ダイヤモンド層の成膜を試みた。 A SiC substrate similar to that of Invention Example 2 was prepared. Next, diamond particles were embedded in the surface of the SiC substrate by a known scratching method. That is, diamond particles were embedded in the surface of the SiC substrate by ultrasonically cleaning the SiC substrate in a solution containing diamond particles with an average particle diameter of 1 μm. Next, under the same conditions as in Example 2, an attempt was made to form a polycrystalline diamond layer having a thickness of 460 μm by microwave plasma CVD using the diamond grains embedded in the SiC substrate as nuclei.

比較例2-1では、多結晶ダイヤモンド成膜中にSiC基板が割れた。これは、埋め込みに起因してSiC基板の表面に導入されたクラックが起点となり、1050℃の高温での多結晶ダイヤモンド成膜中に、当該クラックがSiC基板を進展したためと考えられる。割れた箇所をTEMで観察した結果、割れの起点にクラックが存在していることがわかった。 In Comparative Example 2-1, the SiC substrate cracked during polycrystalline diamond film formation. This is probably because cracks introduced into the surface of the SiC substrate due to the embedding started and propagated through the SiC substrate during polycrystalline diamond film formation at a high temperature of 1050°C. As a result of observing the cracked portion with a TEM, it was found that a crack was present at the starting point of the crack.

[比較例2-2]
多結晶ダイヤモンド層の厚さを5μmに変更した以外は、発明例2と同様の方法で多結晶ダイヤモンド自立基板の作製を試みた。
[Comparative Example 2-2]
An attempt was made to fabricate a free-standing polycrystalline diamond substrate in the same manner as in Invention Example 2, except that the thickness of the polycrystalline diamond layer was changed to 5 μm.

比較例2-2では、SiC基板の研削の過程で、多結晶ダイヤモンド層とともにSiC基板が割れた。すなわち、多結晶ダイヤモンド層は、厚さ5μmでは自立基板としては機能しないことが分かった。 In Comparative Example 2-2, the SiC substrate cracked together with the polycrystalline diamond layer during the grinding of the SiC substrate. That is, it was found that a polycrystalline diamond layer with a thickness of 5 μm does not function as a free-standing substrate.

本発明の多結晶ダイヤモンド自立基板の製造方法によれば、高品質な化合物半導体層が積層された多結晶ダイヤモンド自立基板を製造することが可能である。 According to the method for producing a free-standing polycrystalline diamond substrate of the present invention, it is possible to produce a free-standing polycrystalline diamond substrate on which high-quality compound semiconductor layers are laminated.

100 多結晶ダイヤモンド自立基板
10 化合物半導体基板
12 ダイヤモンド粒子含有液膜
14 ダイヤモンド粒子
16 多結晶ダイヤモンド層
18 化合物半導体層
REFERENCE SIGNS LIST 100 polycrystalline diamond free-standing substrate 10 compound semiconductor substrate 12 diamond particle-containing liquid film 14 diamond particles 16 polycrystalline diamond layer 18 compound semiconductor layer

Claims (6)

正電荷に帯電した自然酸化膜が形成された化合物半導体基板上に、カルボキシル基またはケトン基で終端させることにより負電荷に帯電させたダイヤモンド粒子を含有する溶液を塗布し、その後、前記化合物半導体基板に熱処理を施すことによって、前記化合物半導体基板上に前記ダイヤモンド粒子を付着させる工程と、
前記ダイヤモンド粒子を核として、化学気相成長法により、前記化合物半導体基板上に厚さが100μm以上の多結晶ダイヤモンド層を成長させる工程と、
その後、前記化合物半導体基板を減厚して、化合物半導体層とする工程と、
を有し、前記多結晶ダイヤモンド層が、前記化合物半導体層の支持基板として機能する多結晶ダイヤモンド自立基板を得ることを特徴とする多結晶ダイヤモンド自立基板の製造方法。
A solution containing negatively charged diamond particles terminated with a carboxyl group or a ketone group is applied onto a compound semiconductor substrate on which a positively charged native oxide film is formed, and then the compound semiconductor substrate is coated. a step of attaching the diamond particles onto the compound semiconductor substrate by subjecting the substrate to a heat treatment;
growing a polycrystalline diamond layer having a thickness of 100 μm or more on the compound semiconductor substrate by chemical vapor deposition using the diamond grains as nuclei;
Thereafter, a step of reducing the thickness of the compound semiconductor substrate to form a compound semiconductor layer;
and wherein the polycrystalline diamond layer functions as a support substrate for the compound semiconductor layer.
前記溶液中の前記ダイヤモンド粒子の平均粒径が50nm以下である、請求項1に記載の多結晶ダイヤモンド自立基板の製造方法。 2. The method for producing a free-standing polycrystalline diamond substrate according to claim 1, wherein said diamond particles in said solution have an average particle size of 50 nm or less. 前記熱処理では、前記化合物半導体基板の温度を100℃未満に1分以上30分以下保持する、請求項1又は2に記載の多結晶ダイヤモンド自立基板の製造方法。 3. The method for producing a free-standing polycrystalline diamond substrate according to claim 1, wherein in said heat treatment, the temperature of said compound semiconductor substrate is kept below 100[deg.] C. for 1 minute or more and 30 minutes or less. 前記多結晶ダイヤモンド層の表面を平坦化する工程をさらに有する、請求項1~3のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。 The method for producing a polycrystalline diamond free-standing substrate according to any one of claims 1 to 3, further comprising the step of flattening the surface of said polycrystalline diamond layer. 前記化合物半導体基板は、GaN、AlN、InN、SiC、Al、Ga、MgO、ZnO、CdO、GaAs、GaP、GaSb、InP、InAs、InSb、又はSiGeからなる、請求項1~4のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。 2. The compound semiconductor substrate of claim 1, comprising GaN, AlN, InN, SiC, Al2O3 , Ga2O3 , MgO, ZnO, CdO, GaAs, GaP, GaSb, InP, InAs, InSb, or SiGe. 5. A method for producing a free-standing polycrystalline diamond substrate according to any one of items 1 to 4. 前記化合物半導体層の厚さを1μm以上500μm以下とする、請求項1~5のいずれか一項に記載の多結晶ダイヤモンド自立基板の製造方法。 6. The method for producing a free-standing polycrystalline diamond substrate according to claim 1, wherein the compound semiconductor layer has a thickness of 1 μm or more and 500 μm or less.
JP2018237665A 2018-12-19 2018-12-19 Method for manufacturing polycrystalline diamond free-standing substrate Active JP7172556B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018237665A JP7172556B2 (en) 2018-12-19 2018-12-19 Method for manufacturing polycrystalline diamond free-standing substrate
PCT/JP2019/040040 WO2020129371A1 (en) 2018-12-19 2019-10-10 Method for manufacturing polycrystalline diamond free standing substrate
DE112019006310.3T DE112019006310T5 (en) 2018-12-19 2019-10-10 METHOD OF MANUFACTURING A FREE-STANDING POLYCRYSTALLINE DIAMOND SUBSTRATE
CN201980084289.0A CN113544318B (en) 2018-12-19 2019-10-10 Method for manufacturing polycrystalline diamond self-standing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018237665A JP7172556B2 (en) 2018-12-19 2018-12-19 Method for manufacturing polycrystalline diamond free-standing substrate

Publications (2)

Publication Number Publication Date
JP2020100517A JP2020100517A (en) 2020-07-02
JP7172556B2 true JP7172556B2 (en) 2022-11-16

Family

ID=71100761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018237665A Active JP7172556B2 (en) 2018-12-19 2018-12-19 Method for manufacturing polycrystalline diamond free-standing substrate

Country Status (4)

Country Link
JP (1) JP7172556B2 (en)
CN (1) CN113544318B (en)
DE (1) DE112019006310T5 (en)
WO (1) WO2020129371A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7480699B2 (en) 2020-12-24 2024-05-10 株式会社Sumco Multilayer substrate using freestanding polycrystalline diamond substrate and its manufacturing method
CN114517331A (en) * 2022-02-28 2022-05-20 郑州航空工业管理学院 Preparation method for growing polycrystalline diamond by MPCVD method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691884B2 (en) 1995-07-10 1997-12-17 株式会社石塚研究所 Hydrophilic diamond fine particles and method for producing the same
JP2005306617A (en) 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd Diamond thin film and manufacturing method therefor
JP2007519262A (en) 2004-01-22 2007-07-12 クリー インコーポレイテッド Silicon carbide on diamond substrate and related devices and methods
JP2007537127A (en) 2004-05-13 2007-12-20 チェン−ミン スン, Diamond-carrying semiconductor device and formation method
WO2011161190A1 (en) 2010-06-25 2011-12-29 Element Six Limited Substrates for semiconductor devices
JP2016501811A (en) 2013-04-23 2016-01-21 カルボデオン リミティド オサケユイチア Method for producing zeta-negative nanodiamond dispersion and zeta-negative nanodiamond dispersion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558784A (en) * 1991-09-02 1993-03-09 Toyota Central Res & Dev Lab Inc Method for depositing diamond
US5485804A (en) * 1994-05-17 1996-01-23 University Of Florida Enhanced chemical vapor deposition of diamond and related materials
KR100262259B1 (en) * 1996-06-12 2000-07-15 모리시타 요이찌 Diamond film and process for preparing the same
JP3650917B2 (en) * 1997-08-29 2005-05-25 株式会社神戸製鋼所 Semiconductor surface evaluation method and apparatus using surface photovoltage
JP4654389B2 (en) * 2006-01-16 2011-03-16 株式会社ムサシノエンジニアリング Room temperature bonding method for diamond heat spreader and heat dissipation part of semiconductor device
CN104285001A (en) 2012-02-29 2015-01-14 六号元素技术美国公司 Gallium-nitride-on-diamond wafers and manufacturing equipment and methods of manufacture
KR101331566B1 (en) * 2012-03-28 2013-11-21 한국과학기술연구원 Nanocrystalline diamond film and method for fabricating the same
CN108373153A (en) * 2018-04-17 2018-08-07 中国科学院宁波材料技术与工程研究所 A kind of nano-diamond film and its self-assembly preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691884B2 (en) 1995-07-10 1997-12-17 株式会社石塚研究所 Hydrophilic diamond fine particles and method for producing the same
JP2007519262A (en) 2004-01-22 2007-07-12 クリー インコーポレイテッド Silicon carbide on diamond substrate and related devices and methods
JP2005306617A (en) 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd Diamond thin film and manufacturing method therefor
JP2007537127A (en) 2004-05-13 2007-12-20 チェン−ミン スン, Diamond-carrying semiconductor device and formation method
WO2011161190A1 (en) 2010-06-25 2011-12-29 Element Six Limited Substrates for semiconductor devices
JP2016501811A (en) 2013-04-23 2016-01-21 カルボデオン リミティド オサケユイチア Method for producing zeta-negative nanodiamond dispersion and zeta-negative nanodiamond dispersion

Also Published As

Publication number Publication date
WO2020129371A1 (en) 2020-06-25
CN113544318B (en) 2024-01-30
DE112019006310T5 (en) 2021-09-09
JP2020100517A (en) 2020-07-02
CN113544318A (en) 2021-10-22

Similar Documents

Publication Publication Date Title
JP7115297B2 (en) Polycrystalline diamond free-standing substrate and its manufacturing method
JP6796162B2 (en) A method of growing a polycrystalline silicon film for charge trapping on a silicon substrate with controllable film stress
TWI698908B (en) SiC composite substrate manufacturing method and semiconductor substrate manufacturing method
EP3351660B1 (en) Manufacturing method of sic composite substrate
WO2015162842A1 (en) Bonded soi wafer and method for manufacturing bonded soi wafer
KR102115631B1 (en) Method for producing nanocarbon film and nanocarbon film
TWI738665B (en) Manufacturing method of SiC composite substrate
JP6353814B2 (en) Manufacturing method of bonded SOI wafer
TW200924073A (en) Ultra thin single crystalline semiconductor TFT and process for making same
US20230260841A1 (en) Method for producing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate of polycrystalline sic
JP7172556B2 (en) Method for manufacturing polycrystalline diamond free-standing substrate
TWI845800B (en) PROCESS FOR THE MANUFACTURE OF A COMPOSITE STRUCTURE COMPRISING A THIN LAYER MADE OF MONOCRYSTALLINE SiC ON A CARRIER SUBSTRATE MADE OF SiC
TW201413832A (en) Method for producing SOS substrates, and SOS substrate
US20220270875A1 (en) Method for manufacturing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate of polycrystalline sic
JP7480699B2 (en) Multilayer substrate using freestanding polycrystalline diamond substrate and its manufacturing method
JP6772995B2 (en) Manufacturing method of SOI wafer and SOI wafer
JP6825509B2 (en) Manufacturing method of diamond laminated silicon wafer and diamond laminated silicon wafer
JP2020038916A (en) Soi wafer and production method thereof
JP2023502571A (en) A process for making a composite structure comprising a thin layer of monocrystalline SiC on a carrier substrate made of SiC
JP2010129839A (en) Method of manufacturing laminated wafer
JP2023085098A (en) Laminated wafer and manufacturing method thereof
JP2013211314A (en) Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7172556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150