TWI374507B - Method of forming buried isolation regions in semiconductor substrates and semiconductor devices with buried isolation regions - Google Patents

Method of forming buried isolation regions in semiconductor substrates and semiconductor devices with buried isolation regions Download PDF

Info

Publication number
TWI374507B
TWI374507B TW095101576A TW95101576A TWI374507B TW I374507 B TWI374507 B TW I374507B TW 095101576 A TW095101576 A TW 095101576A TW 95101576 A TW95101576 A TW 95101576A TW I374507 B TWI374507 B TW I374507B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
forming
gate
patterned
Prior art date
Application number
TW095101576A
Other languages
English (en)
Chinese (zh)
Other versions
TW200711004A (en
Inventor
Toshiharu Furukawa
Mark C Hakey
Steven J Holmes
David V Horak
Charles W Koburger
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Publication of TW200711004A publication Critical patent/TW200711004A/zh
Application granted granted Critical
Publication of TWI374507B publication Critical patent/TWI374507B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps
    • H10D62/116Dielectric isolations, e.g. air gaps adjoining the input or output regions of field-effect devices, e.g. adjoining source or drain regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28114Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76243Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using silicon implanted buried insulating layers, e.g. oxide layers, i.e. SIMOX techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76267Vertical isolation by silicon implanted buried insulating layers, e.g. oxide layers, i.e. SIMOX techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76283Lateral isolation by refilling of trenches with dielectric material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0223Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/031Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
    • H10D30/0321Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon
    • H10D30/0323Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon comprising monocrystalline silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6741Group IV materials, e.g. germanium or silicon carbide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6741Group IV materials, e.g. germanium or silicon carbide
    • H10D30/6743Silicon
    • H10D30/6744Monocrystalline silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/117Shapes of semiconductor bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/351Substrate regions of field-effect devices
    • H10D62/357Substrate regions of field-effect devices of FETs
    • H10D62/364Substrate regions of field-effect devices of FETs of IGFETs
    • H10D62/371Inactive supplementary semiconductor regions, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/017Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0223Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
    • H10D30/0227Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate having both lightly-doped source and drain extensions and source and drain regions self-aligned to the sides of the gate, e.g. lightly-doped drain [LDD] MOSFET or double-diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/601Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/82Heterojunctions
    • H10D62/822Heterojunctions comprising only Group IV materials heterojunctions, e.g. Si/Ge heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Thin Film Transistor (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)
TW095101576A 2005-01-28 2006-01-16 Method of forming buried isolation regions in semiconductor substrates and semiconductor devices with buried isolation regions TWI374507B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/905,980 US7071047B1 (en) 2005-01-28 2005-01-28 Method of forming buried isolation regions in semiconductor substrates and semiconductor devices with buried isolation regions

Publications (2)

Publication Number Publication Date
TW200711004A TW200711004A (en) 2007-03-16
TWI374507B true TWI374507B (en) 2012-10-11

Family

ID=36613693

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095101576A TWI374507B (en) 2005-01-28 2006-01-16 Method of forming buried isolation regions in semiconductor substrates and semiconductor devices with buried isolation regions

Country Status (4)

Country Link
US (3) US7071047B1 (enExample)
JP (1) JP5064689B2 (enExample)
CN (1) CN100517635C (enExample)
TW (1) TWI374507B (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557172B (zh) * 2012-12-21 2016-11-11 艾克瑪公司 製造奈米微影遮罩之方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7456476B2 (en) * 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
KR100605497B1 (ko) * 2003-11-27 2006-07-28 삼성전자주식회사 에스오아이 기판들을 제조하는 방법들, 이를 사용하여반도체 소자들을 제조하는 방법들 및 그에 의해 제조된반도체 소자들
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
KR100555569B1 (ko) 2004-08-06 2006-03-03 삼성전자주식회사 절연막에 의해 제한된 채널영역을 갖는 반도체 소자 및 그제조방법
US20100117152A1 (en) * 2007-06-28 2010-05-13 Chang-Woo Oh Semiconductor devices
KR100843717B1 (ko) * 2007-06-28 2008-07-04 삼성전자주식회사 플로팅 바디 소자 및 벌크 바디 소자를 갖는 반도체소자 및그 제조방법
US7332439B2 (en) * 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
US20060131265A1 (en) * 2004-12-17 2006-06-22 Samper Victor D Method of forming branched structures
KR100631905B1 (ko) * 2005-02-22 2006-10-11 삼성전기주식회사 질화물 단결정 기판 제조방법 및 이를 이용한 질화물 반도체 발광소자 제조방법
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7479421B2 (en) 2005-09-28 2009-01-20 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
US20070090416A1 (en) 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7241695B2 (en) * 2005-10-06 2007-07-10 Freescale Semiconductor, Inc. Semiconductor device having nano-pillars and method therefor
US20070249138A1 (en) * 2006-04-24 2007-10-25 Micron Technology, Inc. Buried dielectric slab structure for CMOS imager
US20100047959A1 (en) * 2006-08-07 2010-02-25 Emcore Solar Power, Inc. Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
US7482270B2 (en) * 2006-12-05 2009-01-27 International Business Machines Corporation Fully and uniformly silicided gate structure and method for forming same
US7514339B2 (en) * 2007-01-09 2009-04-07 International Business Machines Corporation Method for fabricating shallow trench isolation structures using diblock copolymer patterning
US8299455B2 (en) * 2007-10-15 2012-10-30 International Business Machines Corporation Semiconductor structures having improved contact resistance
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
FR2990794B1 (fr) * 2012-05-16 2016-11-18 Commissariat Energie Atomique Procede de realisation d'un substrat muni de zones actives variees et de transistors planaires et tridimensionnels
JP6299658B2 (ja) * 2015-04-22 2018-03-28 トヨタ自動車株式会社 絶縁ゲート型スイッチング素子
JP2016207830A (ja) * 2015-04-22 2016-12-08 トヨタ自動車株式会社 絶縁ゲート型スイッチング素子とその制御方法
US9722057B2 (en) * 2015-06-23 2017-08-01 Global Foundries Inc. Bipolar junction transistors with a buried dielectric region in the active device region
US10700263B2 (en) 2018-02-01 2020-06-30 International Business Machines Corporation Annealed seed layer for magnetic random access memory
KR20220158173A (ko) 2021-05-21 2022-11-30 삼성전자주식회사 반도체 장치
US20240071833A1 (en) * 2022-08-25 2024-02-29 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid fin-dielectric semiconductor device

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034514A (ja) * 1989-06-01 1991-01-10 Clarion Co Ltd ウエハの製造方法
JP3068291B2 (ja) * 1990-12-12 2000-07-24 新日本製鐵株式会社 半導体記憶装置
JPH0590396A (ja) 1991-09-30 1993-04-09 Mitsubishi Electric Corp 半導体装置及びその製造方法
EP0613585A4 (en) 1991-11-22 1995-06-21 Univ California SEMICONDUCTING NANOCRYSTALS CONNECTED TO SOLID INORGANIC SURFACES BY SELF-ASSEMBLED SINGLE LAYERS.
US5298773A (en) 1992-08-17 1994-03-29 United Technologies Corporation Silicon-on-insulator H-transistor layout for gate arrays
US5338571A (en) 1993-02-10 1994-08-16 Northwestern University Method of forming self-assembled, mono- and multi-layer fullerene film and coated substrates produced thereby
JP3036619B2 (ja) 1994-03-23 2000-04-24 コマツ電子金属株式会社 Soi基板の製造方法およびsoi基板
EP0694960B1 (en) * 1994-07-25 2002-07-03 Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno - CoRiMMe Process for the localized reduction of the lifetime of charge carriers
US5731619A (en) * 1996-05-22 1998-03-24 International Business Machines Corporation CMOS structure with FETS having isolated wells with merged depletions and methods of making same
FR2758907B1 (fr) * 1997-01-27 1999-05-07 Commissariat Energie Atomique Procede d'obtention d'un film mince, notamment semiconducteur, comportant une zone protegee des ions, et impliquant une etape d'implantation ionique
US5963817A (en) 1997-10-16 1999-10-05 International Business Machines Corporation Bulk and strained silicon on insulator using local selective oxidation
JP3762136B2 (ja) * 1998-04-24 2006-04-05 株式会社東芝 半導体装置
US6376285B1 (en) 1998-05-28 2002-04-23 Texas Instruments Incorporated Annealed porous silicon with epitaxial layer for SOI
KR100294640B1 (ko) * 1998-12-24 2001-08-07 박종섭 부동 몸체 효과를 제거한 실리콘 이중막 소자 및 그 제조방법
JP4365920B2 (ja) 1999-02-02 2009-11-18 キヤノン株式会社 分離方法及び半導体基板の製造方法
US6362082B1 (en) * 1999-06-28 2002-03-26 Intel Corporation Methodology for control of short channel effects in MOS transistors
US6573565B2 (en) 1999-07-28 2003-06-03 International Business Machines Corporation Method and structure for providing improved thermal conduction for silicon semiconductor devices
JP4074051B2 (ja) * 1999-08-31 2008-04-09 株式会社東芝 半導体基板およびその製造方法
US6221737B1 (en) 1999-09-30 2001-04-24 Philips Electronics North America Corporation Method of making semiconductor devices with graded top oxide and graded drift region
US6521974B1 (en) * 1999-10-14 2003-02-18 Hitachi, Ltd. Bipolar transistor and manufacturing method thereof
US6271094B1 (en) * 2000-02-14 2001-08-07 International Business Machines Corporation Method of making MOSFET with high dielectric constant gate insulator and minimum overlap capacitance
US6579463B1 (en) 2000-08-18 2003-06-17 The Regents Of The University Of Colorado Tunable nanomasks for pattern transfer and nanocluster array formation
US6358813B1 (en) 2000-11-15 2002-03-19 International Business Machines Corporation Method for increasing the capacitance of a semiconductor capacitors
US6444534B1 (en) * 2001-01-30 2002-09-03 Advanced Micro Devices, Inc. SOI semiconductor device opening implantation gettering method
US6551937B2 (en) 2001-08-23 2003-04-22 Institute Of Microelectronics Process for device using partial SOI
JP2003069029A (ja) 2001-08-27 2003-03-07 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
AU2003241396A1 (en) * 2002-05-07 2003-11-11 Agere Systems, Inc. A multi-layer inductor formed in a semiconductor substrate and having a core of ferromagnetic material
JP4277481B2 (ja) * 2002-05-08 2009-06-10 日本電気株式会社 半導体基板の製造方法、半導体装置の製造方法
JP4031329B2 (ja) * 2002-09-19 2008-01-09 株式会社東芝 半導体装置及びその製造方法
US6929984B2 (en) * 2003-07-21 2005-08-16 Micron Technology Inc. Gettering using voids formed by surface transformation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557172B (zh) * 2012-12-21 2016-11-11 艾克瑪公司 製造奈米微影遮罩之方法

Also Published As

Publication number Publication date
TW200711004A (en) 2007-03-16
US7352030B2 (en) 2008-04-01
CN100517635C (zh) 2009-07-22
US7071047B1 (en) 2006-07-04
CN1828861A (zh) 2006-09-06
US20060172479A1 (en) 2006-08-03
JP5064689B2 (ja) 2012-10-31
US20080128811A1 (en) 2008-06-05
JP2006210927A (ja) 2006-08-10

Similar Documents

Publication Publication Date Title
TWI374507B (en) Method of forming buried isolation regions in semiconductor substrates and semiconductor devices with buried isolation regions
US9466686B2 (en) Graphene devices with local dual gates
TWI235457B (en) Fin FET devices from bulk semiconductor and method for forming
US7514339B2 (en) Method for fabricating shallow trench isolation structures using diblock copolymer patterning
JP4128771B2 (ja) レーザアニーリングを用いた極浅接合形成方法
US7786527B2 (en) Sub-lithographic gate length transistor using self-assembling polymers
TWI527092B (zh) 用於製造半導體裝置的多層構造及方法
TW200307986A (en) Semiconductor device and method for forming transistors having a reduced pitch
TW200839936A (en) Methods of forming one or more covered voids in a semiconductor substrate, methods of forming field effect transistors, methods of forming semiconductor-on-insulator substrates, methods of forming a span comprising silicon dioxide, methods of cooling sem
TW201019381A (en) Semiconductor devices and methods for making semiconductor devices having metal gate stacks
TW201017733A (en) Semiconductor device having metal gate stack and fabrication method thereof
CN100479170C (zh) 电子装置及制造该电子装置的方法
US8999791B2 (en) Formation of semiconductor structures with variable gate lengths
CN104851785A (zh) 用于对层进行处理的方法和用于制造电子器件的方法
TW200845398A (en) Semiconductor device and manufacture method thereof
US6551886B1 (en) Ultra-thin body SOI MOSFET and gate-last fabrication method
TWI282141B (en) Semiconductor device and manufacturing method thereof
US7573106B2 (en) Semiconductor device and manufacturing method therefor
US6620668B2 (en) Method of fabricating MOS transistor having shallow source/drain junction regions
TWI283923B (en) Semiconductor device capable of threshold voltage adjustment by applying an external voltage
TW201135852A (en) Structure and method for post oxidation silicon trench bottom shaping
KR100212455B1 (ko) 이중 게이트 구조의 반도체 소자 제조 방법
US6211054B1 (en) Method of forming a conductive line and method of forming a local interconnect
US6995452B2 (en) MOSFET device with nanoscale channel and method of manufacturing the same
TW201513353A (zh) 具有應變矽之積體電路及製造該電路之方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees