TW506083B - Method of using nano-tube to increase semiconductor device capacitance - Google Patents

Method of using nano-tube to increase semiconductor device capacitance Download PDF

Info

Publication number
TW506083B
TW506083B TW090129368A TW90129368A TW506083B TW 506083 B TW506083 B TW 506083B TW 090129368 A TW090129368 A TW 090129368A TW 90129368 A TW90129368 A TW 90129368A TW 506083 B TW506083 B TW 506083B
Authority
TW
Taiwan
Prior art keywords
capacitance
scope
increasing
patent application
semiconductor element
Prior art date
Application number
TW090129368A
Other languages
English (en)
Inventor
Jiun-Dau Li
Jeng-Jung Li
Bing-Cheng Tsuei
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW090129368A priority Critical patent/TW506083B/zh
Priority to US10/122,188 priority patent/US6759305B2/en
Priority to JP2002181128A priority patent/JP3652672B2/ja
Application granted granted Critical
Publication of TW506083B publication Critical patent/TW506083B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0033Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

506083 五、發明說明(1) 【發明領域】 本發明是有關於一種應用奈米管(Nanotube)增加半 導體元件電容之方法,且特別是有關於一種應用奈米管增 加動悲隨機存取記憶體(Dynamic Random Access Memory,DRAM )電容之方法。 【發明背景】 習 Access 容所組 所佔的 才能夠 決上述 面積以 之方法 疊層( 提高電 制,故 容電極 體(Dynamic Random 係由一電晶體及一電 晶體愈做愈小時,電容 但是電容值又必須夠大 的電壓。故而,為了解 用「增加電容電極的表 種增加電容電極表面積 (trench )』及『往上 ,上述2種方法雖然可 當别微影技術的物理限 單又有效地大幅提高電 的重要課題之一。
知以來
Memory,以下簡稱為DRAM〕 成,隨著科技的進步,當電 底面積也被要求必需縮:, 儲存足夠的電荷來維持固定 之問題,業界日^I 揾古雷六佶 則主要是採 k问電谷值」之方式,而此 主Λ又、可分為『往下挖溝槽 stack)』等2種方式。然而 容電極的面積,作 效果有限。因此:ΓΓ限於 1 u此,如何能簡 的面積,乃當前業界所研究 【發明概要】 有鑑於此,本發明 管(Nano tube )增力口半 基板,包括下列步驟: 的主要目的就是提供一種應用奈米 導體元件電容之方法,其適用於一
0356-7000TWF;03900052;pe t e r1i ou.p t d 第4頁 506083 五、發明說明(2) 形成一奈米管於上述觸媒區域; 形成一第一介電層於上述奈米管及上述基板之表面; 以及 形成一電極層於上述第一介電層之表面。 藉由上述本發明之方法,就可在不需要增加電容所佔 的底面積之情況下,簡單地利用奈米管圓柱的側表面來增 加電容電極的面積,而達到大幅度地提昇電容值之效果, 且上述方法製程簡單,能大幅降低製造成本。 【圖式簡單說明】 第1 a圖〜第1 f圖係表示本發明應用奈米管增加半導體 元件電容之方法的示意說明圖。 符號說明】 1 0〜基板 1 2〜觸媒區 2 0〜奈米碳管 3 0〜金屬層 40〜第一介電層 5 0〜電極層 60〜第二介電層 【發明之詳細說明】 為讓本發明之上述和其他目的、特徵、和優點能更明
0356-7000TWF;03900052;pe t e r1i ou·p t d 第5頁 五、發明說明(3) 顯易懂,下" 細說明如下:寺+出車乂仏貝知例,並配合所附圖式,作詳 【實施例] 12。定Ϊ出觸a::’於基板U之表面定義出觸媒區 法:第- =:: ΐ方式可使用例如下列3種方 述基板10表面之二=屬觸媒離子溶液(未圖示)於上 而既定區m卜即第1a圖中所示的觸媒區12, :丁::火步驟,以使上述所塗屬U "之後再施 成奈米級的觸媒堆,就可定義出j = f觸媒離子溶液團聚 媒離子溶液可使用 某區1 2。上述之金屬觸 液、石肖酸鐵溶液等1二如:石肖酸鎳溶 12,而既定區域以夕〕弟1a圖中所示的觸媒區 屬觸媒’就可定義出觸媒區12。心入金 媒声Γ去同-、 币一係先 >儿積一金屬觸 w (未圖不)於上述基板1G ^觸 定圖荦之氺卩日恩,, ^ 接者形成一具有既 第此既定圖案係用以於後述步驟中定義出 弟la圖中所示的觸 丨於上 義出 利闲主土 W W< 至屬觸媒層之表面,再 貝光斂衫v驟來定義出如第1 a圖中所+ Μ ^ ϋ ρΩ 藉由卜诂q括七* 口 Y所不的觸媒區1 2 〇 至屬觸媒則可使用例如··鎳、鐵等。 管20其Ϊ長所示,於上述觸媒區12處成長奈米碳 (CVD法)在—既定電衆條件下通入—裂解氣體
03 56-7000TWF;03900052;pe t e r1i ou.p t d 506083 五、發明說明(4) 示)於上述觸媒區丨2,就可於上 ?圖戶:示的奈米碳管20。上述裂解 (C 4 )、乙烷(c2h6 )或二氧化碳 接著,於上述奈米碳管20及上 第一 ^電層40。在此處,為了更進 表面積並同時增進奈米碳管2 〇與第 力’亦可如第1 c圖所示般,先於上 成一金屬層3〇,再如第Id圖所示般 沉積上述第一介電層40。形成上述 例如:賤錢法等。 最後,如第1 e圖所示,於上述 積一電極層5 0。 ; 藉由上述方法,由於奈米碳管 分子管,並具有接近金屬的導電性 的直徑可以有微米級的高度),故 化高的半導體元件電容電極上(特 記憶體電容電極上)來當作電容的 需要增加電容所佔的底面積之情況 米碳管圓柱的側表面來增加電容電 幅度地提昇電容值之效果,且若應 體上,還能因電容值大幅度提昇而 的穩定度。 又,如第1 f圖所示,上述本發 應用狀況所需,再於上述電極層5 0 觸媒區1 2處成長出如第 氣體可使用例如:甲烧 (C〇2 )氣體等。 & 述基板1 0之表面沉積一 一步增加奈米碳管2 〇之 w電層4 0之間的附著 述奈米碳管20之表面形 ,於此金屬層30之表面 金屬層30之方式可使用 第 係奈 及大 將此 別是 底電 下, 極的 用於 有助 介電層40之表面 米級 的1¾ 種奈 長在 極棒 簡單 面積 動態 於提 沉 直徑的圓杈碳 覓比(奈米級 米官長在集積 動態隨機存取 時,就可在不 地利用大量奈 ,而達到能大 隨機存取記憶 昇記憶體資料 明之方法亦可對應實際 之表面全面性地沉積—
506083 五、發明說明(5) 第二介電層60,且必要時並可進一步對上述第二介電層60 施行一平坦化步驟。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。
0356 - 7000TWF; 03900052; pe t e 1· 1 i ou. p t d 第8頁

Claims (1)

  1. 506083 六、申請專利範圍 1 · 一種應用奈米管增加半導體元件電容之方法,適用 於一基板,包括下列步驟: 定義一觸媒區域於上述基板之表面; 形成一奈米管於上述觸媒區域; 形成一第一介電層於上述奈米管及上述基板之表面; 以及 形成一電極層於上述第一介電層之表面。 2. 如申請專利範圍第1項所述之應用奈米管增加半導 體元件電容之方法,其中更包括以下步驟: 形成一金屬層於上述奈米管及上述第一介電層之間。 3. 如申請專利範圍第1項所述之應用奈米管增加半導 體元件電容之方法,其中更包括以下步驟: 全面性地形成一第二介電層於上述電極層之表面。 4. 如申請專利範圍第3項所述之應用奈米管增加半導 體元件電容之方法,其中更包括以下步驟: 對上述第二介電層施行一平坦化步骤。 5. 如申請專利範圍第1項所述之應用奈米管增加半導 體元件電容之方法,其中上述定義觸媒區域之步驟係包括 以下步驟: 塗佈一金屬觸媒離子溶液於上述基板表面之一既定區 域;以及 施行一退火步驟。 6. 如申請專利範圍第5項所述之應用奈米管增加半導 體元件電容之方法,其中上述金屬觸媒離子溶液為鎳的離
    0356-7000TWF;03900052;pe t e r1i ou.p t d 第9頁 506083 六、申請專利範圍 子水溶液或鐵的離子水溶液。 7 ·如申請專利範圍第1項所述之應用奈米管增加半導 體元件電容之方法,其中上述定義觸媒區域之步驟為: 藉由離子佈植法於上述基板表面之一既定區域植入一 金屬觸媒。 8. 如申請專利範圍第7項所述之應用奈米管增加半導 體元件電容之方法,其中上述金屬觸媒為鎳或鐵。 9. 如申請專利範圍第1項所述之應用奈米管增加半導 體元件電容之方法,其中上述定義觸媒區域之步驟係包括 以下步驟: 形成一金屬觸媒層於上述基板之表面; 形成一光阻層於上述金屬觸媒層之表面;以及 施行一微影步驟。 1 0.如申請專利範圍第9項所述之應用奈米管增加半導 體元件電容之方法,其中上述金屬觸媒層係由鎳或鐵所構 成。 11.如申請專利範圍第9項所述之應用奈米管增加半導 體元件電容之方法,其中上述微影步驟為黃光微影步驟。 1 2.如申請專利範圍第1項所述之應用奈米管增加半導 體元件電容之方法,其中上述形成奈米碳管之步驟為: 藉由化學氣相沉積法(CVD法)在一既定電漿條件下 通入一裂解氣體於上述觸媒區域。 1 3.如申請專利範圍第1 2項所述之應用奈米管增加半 導體元件電容之方法,其中上述裂解氣體係擇自甲烷、乙
    0356-7000TWF;03900052;pe t e r11ou.p t d 第10頁 506083 六、申請專利範圍 烷及二氧化碳中之一者。 1_11_ 第11頁 0356-7000TWF;03900052;peterliou.ptd
TW090129368A 2001-11-28 2001-11-28 Method of using nano-tube to increase semiconductor device capacitance TW506083B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW090129368A TW506083B (en) 2001-11-28 2001-11-28 Method of using nano-tube to increase semiconductor device capacitance
US10/122,188 US6759305B2 (en) 2001-11-28 2002-04-16 Method for increasing the capacity of an integrated circuit device
JP2002181128A JP3652672B2 (ja) 2001-11-28 2002-06-21 集積回路素子の容量を増加させる方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW090129368A TW506083B (en) 2001-11-28 2001-11-28 Method of using nano-tube to increase semiconductor device capacitance

Publications (1)

Publication Number Publication Date
TW506083B true TW506083B (en) 2002-10-11

Family

ID=21679829

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090129368A TW506083B (en) 2001-11-28 2001-11-28 Method of using nano-tube to increase semiconductor device capacitance

Country Status (3)

Country Link
US (1) US6759305B2 (zh)
JP (1) JP3652672B2 (zh)
TW (1) TW506083B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401209B (zh) * 2006-06-30 2013-07-11 Hon Hai Prec Ind Co Ltd 場發射元件及其製備方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI236505B (en) * 2002-01-14 2005-07-21 Nat Science Council Thermal cracking chemical vapor deposition process for nanocarbonaceous material
EP1582501A4 (en) 2003-01-09 2009-01-28 Sony Corp PROCESS FOR TUBE-LIKE CARBON MOLECULAR AND TUBE SHAPED CARBON MOLECULE, METHOD FOR RECORDING DEVICE AND RECORDING DEVICE, METHOD FOR FIELD ELECTRON EMISSION ELEMENT AND FIELD ELECTRON EMISSION ELEMENT AND METHOD FOR DISPLAY UNIT AND DISPLAY UNIT
US6855647B2 (en) * 2003-04-02 2005-02-15 Hewlett-Packard Development Company, L.P. Custom electrodes for molecular memory and logic devices
DE10324081B4 (de) * 2003-05-27 2005-11-17 Infineon Technologies Ag Speichervorrichtung zur Speicherung elektrischer Ladung und Verfahren zur Herstellung derselben
WO2005007564A1 (ja) 2003-07-18 2005-01-27 Nec Corporation 金属粒子の固定方法ならびにこれを用いた金属粒子含有基板の製造方法、カーボンナノチューブ含有基板の製造方法、および半導体結晶性ロッド含有基板の製造方法
DE10344814B3 (de) * 2003-09-26 2005-07-14 Infineon Technologies Ag Speichervorrichtung zur Speicherung elektrischer Ladung und Verfahren zu deren Herstellung
DE10345394B4 (de) * 2003-09-30 2006-10-05 Infineon Technologies Ag Verfahren zum Herstellen von Speicherzellen
JP5250615B2 (ja) * 2003-10-28 2013-07-31 株式会社半導体エネルギー研究所 半導体装置
WO2005069372A1 (en) * 2003-12-18 2005-07-28 International Business Machines Corporation Carbon nanotube conductor for trench capacitors
EP1738378A4 (en) * 2004-03-18 2010-05-05 Nanosys Inc NANOFIBRE SURFACE BASED CAPACITORS
KR100689813B1 (ko) * 2004-09-08 2007-03-08 삼성전자주식회사 탄소나노튜브를 가진 반도체 메모리 장치 및 이의 제조 방법
US7777597B2 (en) * 2004-10-29 2010-08-17 Nortel Networks Limited Band reject filters
US7348592B2 (en) 2004-11-29 2008-03-25 The United States Of America As Represented By The Secretary Of The Navy Carbon nanotube apparatus and method of carbon nanotube modification
US7320911B2 (en) * 2004-12-06 2008-01-22 Micron Technology, Inc. Methods of forming pluralities of capacitors
US7126207B2 (en) * 2005-03-24 2006-10-24 Intel Corporation Capacitor with carbon nanotubes
JP4766895B2 (ja) * 2005-03-28 2011-09-07 トヨタ自動車株式会社 カーボンナノウォールデバイス
KR100677771B1 (ko) * 2005-03-31 2007-02-02 주식회사 하이닉스반도체 무촉매층으로 성장시킨 나노튜브를 갖는 캐패시터 및 그의제조 방법
US7271079B2 (en) * 2005-04-06 2007-09-18 International Business Machines Corporation Method of doping a gate electrode of a field effect transistor
CN1850580A (zh) * 2005-04-22 2006-10-25 清华大学 超晶格纳米器件及其制作方法
JP4653647B2 (ja) * 2005-11-28 2011-03-16 積水化学工業株式会社 セラミックコンデンサ、セラミックコンデンサの製造方法及びセラミックグリーンシート
KR100718142B1 (ko) * 2005-12-02 2007-05-14 삼성전자주식회사 금속층-절연층-금속층 구조의 스토리지 노드를 구비하는불휘발성 메모리 소자 및 그 동작 방법
JP4500797B2 (ja) * 2005-12-06 2010-07-14 キヤノン株式会社 キャパシタと電界効果型トランジスタとを有する回路装置及び表示装置
JP2007184554A (ja) * 2005-12-06 2007-07-19 Canon Inc キャパシタおよびそれを用いた回路装置
US7906803B2 (en) * 2005-12-06 2011-03-15 Canon Kabushiki Kaisha Nano-wire capacitor and circuit device therewith
CN101086939B (zh) * 2006-06-09 2010-05-12 清华大学 场发射元件及其制备方法
US8114774B2 (en) * 2006-06-19 2012-02-14 Nxp B.V. Semiconductor device, and semiconductor device obtained by such a method
CN101093765B (zh) * 2006-06-23 2011-06-08 清华大学 场发射元件及其制备方法
CN101093764B (zh) * 2006-06-23 2012-03-28 清华大学 场发射元件及其制备方法
JP2008007376A (ja) * 2006-06-29 2008-01-17 National Univ Corp Shizuoka Univ ナノワイヤ部材およびその製造方法
JP2008091566A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd 絶縁膜で被覆されたカーボンナノチューブ構造体の製造方法及びその構造体からなる電界効果トランジスタ装置
CN101573772B (zh) * 2006-10-04 2011-10-05 Nxp股份有限公司 Mim电容器
KR100836131B1 (ko) * 2006-10-19 2008-06-09 삼성전기주식회사 나노와이어를 이용한 커패시터 및 그 제조방법
EP2132756B1 (en) * 2007-03-15 2016-11-09 Yazaki Corporation Capacitor electrodes comprising carbon nanotubes filled with one or more non-carbon materials
US8357980B2 (en) * 2007-10-15 2013-01-22 Hewlett-Packard Development Company, L.P. Plasmonic high-speed devices for enhancing the performance of microelectronic devices
KR100972909B1 (ko) * 2007-10-31 2010-07-28 주식회사 하이닉스반도체 반도체 소자 및 그 형성 방법
WO2009133510A1 (en) * 2008-04-29 2009-11-05 Nxp B.V. Method of manufacturing a capacitor on a nanowire and integrated circuit having such a capacitor
KR20110018437A (ko) * 2008-06-13 2011-02-23 큐나노 에이비 나노구조 mos 커패시터
US9786444B2 (en) * 2009-06-25 2017-10-10 Nokia Technologies Oy Nano-structured flexible electrodes, and energy storage devices using the same
KR101320166B1 (ko) 2011-04-21 2013-10-23 삼성전기주식회사 세라믹 전자부품용 세라믹 시트 제품, 이를 이용한 적층 세라믹 전자 부품 및 이의 제조방법
SG11201404773YA (en) * 2012-03-22 2014-10-30 California Inst Of Techn Micro -and nanoscale capacitors that incorporate an array of conductive elements having elongated bodies
CA2887900C (en) 2012-10-19 2021-10-12 Georgia Tech Research Corporation Multilayer coatings formed on aligned arrays of carbon nanotubes
US9412806B2 (en) 2014-06-13 2016-08-09 Invensas Corporation Making multilayer 3D capacitors using arrays of upstanding rods or ridges
WO2016112315A2 (en) * 2015-01-09 2016-07-14 President And Fellows Of Harvard College Nanowire arrays for neurotechnology and other applications
TWI782939B (zh) 2016-12-29 2022-11-11 美商英帆薩斯邦德科技有限公司 具有整合式被動構件的接合結構
US11768196B2 (en) 2017-07-07 2023-09-26 President And Fellows Of Harvard College Current-based stimulators for electrogenic cells and related methods
KR101973438B1 (ko) * 2017-07-19 2019-04-29 삼성전기주식회사 커패시터 부품
TWI665690B (zh) 2017-10-24 2019-07-11 財團法人工業技術研究院 磁性電容元件
CN112823403B (zh) * 2018-10-18 2023-05-02 斯莫特克有限公司 分立金属-绝缘体-金属(mim)能量存储部件和制造方法
US11901281B2 (en) * 2019-03-11 2024-02-13 Adeia Semiconductor Bonding Technologies Inc. Bonded structures with integrated passive component
WO2021059570A1 (ja) * 2019-09-25 2021-04-01 株式会社村田製作所 ナノ構造集合体およびその製造方法
EP4168528A4 (en) 2020-06-17 2024-07-03 Harvard College APPARATUS FOR MAPPING CELLS VIA IMPEDANCE MEASUREMENTS AND METHODS OF OPERATING THEREOF
JP2023530702A (ja) 2020-06-17 2023-07-19 プレジデント アンド フェローズ オブ ハーバード カレッジ 細胞のパターニングおよび空間電気化学マッピングのためのシステムおよび方法
JP7485082B2 (ja) 2020-11-19 2024-05-16 株式会社村田製作所 キャパシタ
JP7459971B2 (ja) 2020-11-27 2024-04-02 株式会社村田製作所 キャパシタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872422A (en) * 1995-12-20 1999-02-16 Advanced Technology Materials, Inc. Carbon fiber-based field emission devices
US6294450B1 (en) * 2000-03-01 2001-09-25 Hewlett-Packard Company Nanoscale patterning for the formation of extensive wires
US6448701B1 (en) * 2001-03-09 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Self-aligned integrally gated nanofilament field emitter cell and array
US6542400B2 (en) * 2001-03-27 2003-04-01 Hewlett-Packard Development Company Lp Molecular memory systems and methods
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401209B (zh) * 2006-06-30 2013-07-11 Hon Hai Prec Ind Co Ltd 場發射元件及其製備方法

Also Published As

Publication number Publication date
US6759305B2 (en) 2004-07-06
JP2003168745A (ja) 2003-06-13
JP3652672B2 (ja) 2005-05-25
US20030100189A1 (en) 2003-05-29

Similar Documents

Publication Publication Date Title
TW506083B (en) Method of using nano-tube to increase semiconductor device capacitance
Nasrollahzadeh et al. Types of nanostructures
JP5743353B2 (ja) 電荷蓄積デバイス、電荷蓄積デバイスを製造する方法、移動型電子デバイスおよびマイクロ電子デバイス
US20060186451A1 (en) Memory device for storing electric charge, and method for fabricating it
TWI460839B (zh) 石墨烯(graphene)內連線及其製造方法
TW558740B (en) Single-electron transistors and fabrication methods in which a projecting feature defines spacing between electrodes
US10208394B2 (en) Damascene template for directed assembly and transfer of nanoelements
CN104885211B (zh) 金属-绝缘体-金属电容器形成技术
CN100592546C (zh) 独立式静电掺杂碳纳米管器件及其制造方法
KR100874912B1 (ko) 반도체 소자 및 그 제조방법
US7081383B2 (en) Method for fabricating memory cells and memory cell array
JP4814487B2 (ja) 絶縁層の厚さが電極間の間隔を形成する単一電子トランジスタ及び製造方法
Seol et al. Piezoelectric nanogenerator with a nanoforest structure
CN101034708A (zh) 纳米线存储器件及其制造方法
CN103855150A (zh) 片上解耦电容器、集成芯片及其制造方法
TW200904746A (en) Triodes using nanofabric articles and methods of making the same
US20040114445A1 (en) Molecular memory obtained using DNA strand molecular switches and carbon nanotubes, and method for manufacturing the same
Mccreery The merger of electrochemistry and molecular electronics
JP5037804B2 (ja) 垂直配向カーボンナノチューブを用いた電子デバイス
JP2003338621A (ja) 半導体装置及びその製造方法
US20120293915A1 (en) High energy density storage material device using nanochannel structure
JP4796569B2 (ja) 超格子の製造及び使用
JP2014051413A (ja) グラフェン−cnt構造及びその製造方法
TWI766072B (zh) 能量存儲中介層裝置、電子裝置和製造方法
JP4755827B2 (ja) 回路及び自己組織化構造体

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees