TW493185B - High performance iron-rare earth-boron-refractory-cobalt nanocomposites - Google Patents
High performance iron-rare earth-boron-refractory-cobalt nanocomposites Download PDFInfo
- Publication number
- TW493185B TW493185B TW088111739A TW88111739A TW493185B TW 493185 B TW493185 B TW 493185B TW 088111739 A TW088111739 A TW 088111739A TW 88111739 A TW88111739 A TW 88111739A TW 493185 B TW493185 B TW 493185B
- Authority
- TW
- Taiwan
- Prior art keywords
- gadolinium
- ultra
- patent application
- item
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/002—Making metallic powder or suspensions thereof amorphous or microcrystalline
- B22F9/007—Transformation of amorphous into microcrystalline state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/5156—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on rare earth compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58071—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58078—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/653—Processes involving a melting step
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
- C22C1/0441—Alloys based on intermetallic compounds of the type rare earth - Co, Ni
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0578—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0579—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Compounds Of Iron (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
493185 A7 _ B7 五、發明説明(i ) 本發明镅域 本發明有關磁性材料,尤其有關包括鐵、稀土元素、 硼、耐火金屬及鈷之磁性超微複合物材料,具有有利之磁 性而適合製作黏結磁鐵〇 背景眘訊 含有鈸、鐵及硼之磁性合金由於其等之有利磁性,故 曾經廣泛硏究供用於燒結及黏合磁鐵〇 Nd2 Fe: 4 B相已經確 認爲一種表現特佳磁性之硬磁相。
Koon 之美國專利 4,402,770 號、4,409,043 號及 Re. 34, 322號(其等係以指述方式納入本文)揭示各種磁性合 金,包含在指定範圍內之鑭及其他稀土元素、過渡金屬如 鐵及鈷、以及硼〇雖然所揭示之合金已經發現具有良好之 磁性,但此等合金不具有最佳之性質,故未變成具有商業 活力。 本發明提供有利之磁性而適合於商業上生產黏合磁鐵 〇 本發明綜沭 本發明提供一種具有控制組成之超微複合物磁性材料 ,表現增進之磁性且易加工〇本發明之一目的爲提供一種 超微複合物磁性材料,包含在指定範圍內之鐵、稀土元素 (尤其鑭、鐯及钕)、硼、耐火金屬及鈷0 本發明組合物可爲(Ndi- y Lay ) v Fe: 〇 〇 - Y - w - X - z Cow Mz Bx 通式,式中M爲至少一由鈦、锆、給、釩、鈮、钽、鉻、 鉬及鎢中選出之耐火金屬;v約爲5至15; w大於或等於 本紙張尺度適用中國國家標準(CNS )八4规格(2丨0X297公釐) ----_--‘I裝-- (請先^讀背复) 、ατ 經濟部智M財產局’㈣工消費合作社印製 493185 A7 _____ B7 五、發明説明(2 ) 5 約爲9至30;y約爲〇· 〇5至0·5 ;而冗約爲0.1至 5 〇 Μ較佳爲鉻。 本發明尙有一目的爲提供一種超微複合物磁性材料, 包括一硬磁相、一軟磁相、及一較佳爲耐火金屬硼化物之 沉澱相〇硬磁相較佳爲Nd2Fe14B,而軟磁相較佳爲包含α - Fe 、Fe3B或其組合形式。該材料最佳爲包含aL(Fe,Co) 及 R2 (Fe,Co)14B 等相。 本發明提供一種製作超微複合物磁性材料之方法〇該 方法包括提供一包含鐵、稀土元素(較佳爲钕及鑭)、硼 、至少一耐火金屬(較佳爲鉻)及鈷之熔融組合物,迅速 將該組合物固化以形成實質無定形之材料,以及熱處理該 材料〇 簡要圖說 圖1 :於旋壓態(Vs = 25米/秒)中及最佳熱處理後 (Nd〇 . 9 5 La。. 〇 5 )9 . δ Fe7 8 Cr2 Β: 〇 . 5 條帶磁性能。圖 2 :以 Vs = 25 米 / 秒淬火之(Nd().95La〇.〇5)9.5Fe78Cr2Bi().5 條 帶熔融液X光繞射圖案。圖3 :於最佳熱處理後”^.95_ La〇 . 〇 5 )9 . 5 Fe7 8 - x Cox Cr2 Β!。. 5 (x = 〇-l〇)條帶磁性能。圖 4 : (Nd〇.95La〇.〇5)9.5Fe78-xC〇xCr2Bi〇.5 (X=0-10)條 帶於最佳處理後去磁化曲線0圖5 : TMA掃描經熱處理之 (Nd〇.95La〇.〇5)9.5Fe78-xC〇xCr2Bi〇.5 (x=0_10) ’ (a) x = 0、(b) χ = 2·5、(c) x = 5、(d) χ = 7·5而(e) x = 10,顯示 存在二磁相,亦即2 : 14 : 1及a -Fe ,且Tc在二者相位中增 加。圖 6 : (^〇.951^().。5)9.5?678-\(^(^281().5條帶於 本紙張尺度適用中國國家標準(CNS ) Λ4规格(210X 297公釐) —5 — (請先閱讀背而之注意事項再
I 經濟部智慈財產局貨工消费合作社印製 493185 A7 ---— _B7___ 、 五、發明説明(3 ) 最佳熱處理後X光繞射圖案,其中(a) x = 0、(b) χ = 2·5、 (c) x = 5、(d) χ = 7·5、而(e) χ = 1〇〇 圖 7 :具最佳磁性之 (Nd〇 . 9 5 La。. 〇 δ ) 9 δ Fe7 8 - x Cox Cr2 Β! 〇 . 5 條帶之 ΤΕΜ 顯微組 織,其中(a) x = 〇、(b) x = 5、而(c) x = 10o 圖 8 :各種合 金條帶(Nd〇.95La〇.{)5)9 5Fe78-xCc)xCr2Bi〇.5 (x = 〇- l〇) 之外加磁場之δ Μ變化ο : 較佳具體形式詳沭 超微複合物由於其等之潛在高殘留性(Br)及最大能量 積(BHmax),已就黏合磁鐵予密集硏究。在NdFeB系統中 ,曾開發二類型之超微磁鐵,亦即a -Fe/Nd2 Fei 4 B [ 1 ]及 Fe3B/Nd2Fe14B [2,3] 〇此等超微複合物之Br可因個別相 位之化學組成及平均晶粒尺寸、α-Fe與Nd2Fe14B [1]或 Fe3 B與Nd2 Fei 4 B [2,3]之體積分量及分布而强烈受到影響 〇此外,及(BH)max可藉增加軟磁相(a-Fe)及/或硬 磁相(2 : 14 : 1相)之飽和磁化作用進一步增進。同樣,固 有矯頑性(i He )及垂直度强烈受到元素置換作用及顯微組 織[4 , 5 , 6 ]影響〇不管製作或元素置換/添加方法爲何, 習用NdFeB型三元超微複合物通常顯現小於9 KOe之iHc 〇 雖然 Nd8Fe87B5 &Nd8Fe87.5B4.5 之交換電偶式 a-Fe/ Nd2Fe14B型超微複合物曾經報導顯現極高之(12.5 kG) 及(BH)max (23·3 MGOe) [7],但低 iHe (5·3 KOe)可能 仍將其等之應_用限制於某些領域內譬如微馬達〇 本發明之組合物可爲通式: (REl-yL^y)vFei〇〇-v-w-x-zC〇wMzBx 本纸張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐)~^ —6- (請先閱讀背而之注意事項再本页 丁 、\'ύ 經濟部智慧財產局Μ工消費合作社印製 493185 A7 B7 五、發明説明(4) 式中RE爲至少一非鑭之稀土元素;Μ爲至少一由鈦、锆、 給、釩、鈮、鉅、鉻、鉬及鎢中選出之耐火金屬;ν約爲 5至15;w大於或等於5 ;χ約爲9至30;y約爲〇·〇5至 0.5 ;而2約爲0·1至5 〇 合宜之稀土元素包括鑭、鋪、鐯、鈒、鉅、釤、銪、 金L、紘、鏑、纟火、銷、錢、鏡及鐘。本發明之總稀土含量 在本文中稱爲nTRE” 〇本文所用”RE”一詞意指鑭以外之所 有合宜稀土元素。較佳之RE元素爲钕、鐯、鏑、絨及其等 之混合物,而最佳爲鈸、鐯及其等之混合物〇合宜之耐火 金屬包括週期表中IVb 、Vb及VIb族之元素,例如鈦、銷 、給、釩、鈮、鉅、鉻、鉬及鎢〇本發明組合物之耐火金 屬含量在本文中稱爲π Μ ” ◦ Μ較佳爲至少一由鈦、釩、鈮 、鉻及鉬中選出之耐火金屬更佳爲至少一由鈦、鈮及 鉻中選出之耐火金屬〇 Μ最佳爲鉻或鈦或其組合〇將鈷添 加於本發明超微複合物材料之利益一般始於約1 %至40% ,雖然本發明特佳組合物包含約等於或大於5 %鈷〇下表 列出TRE 、硼、耐火金屬及銘之典型、較佳及更佳範圍〇 ---------r^丨β--- (請先間讀背而之注*事項孙^^^4頁) 訂 經濟部智总財走局Μ工消赀合作社印製 概約範圍 TRE 硼 耐火金屬 鈷 鐵 典型 5-15 9-30 0 • 1 -5 5-40 餘量 較佳 9-12 9-12 0 .5-4 5-20 餘量 更佳 9.5-11.5 10-12 0 .5-3 6-15 餘量 最佳 9.5-11.5 10.5-11.5 1 -2 . 5 7-12 餘量 本發明之磁性材料較隹爲以- 一迅速固化及熱處理程序 本纸張尺度適用中國國家標準(CNS ) Λ4規格(2丨0〕<297公楚) -7- 493185 A7 _ B7 五、發明説明(5 ) 產生〇迅速固化之獲致係藉譬如熔融液旋壓、噴澆、熔融 液榨出、霧化及噴塗細片冷卻等技術將組合物自熔化狀態 迅速冷卻。通常採用約每秒鐘104至107 °c之冷卻速率, 較佳爲約1〇5至1〇6 °c〇經迅速固化之材料較佳爲實質上 無定形0在迅速固化之後,可將材料硏磨、硏磨並熱處理 、或者直接熱處理。 : 經濟部智£財產局員工消赀合作社印製 本發明之組合物經發現具有增進之可加工性,而容許 使用較慢之迅速固化速率〇舉例言之,在熔融液旋壓程序 期間,可使用較緩慢之轉輪速度及/或可處理較大體積之 材料。使用較緩慢熔融液轉輪速度之能力爲屬重要,因與 轉輪接觸之熔化合金直澆口窩在輪速度減小時實質爲更穩 定0此外,處理較大材料體積之能力容許生產成本降低〇 在該組合物迅速固化成實質上爲無定形狀態之後,其 較佳爲予熱處理以誘生自發性結晶作用。本文中所用A自 發性結晶作用〃一詞意指細微晶體晶粒之迅速及實質同質 形成作用〇自發性結晶作用較佳爲藉由加熱該材料至一指 定溫度達一經控制之時段而獲致,此造成晶體晶粒成核作 用,致無實質之後績晶粒生長0合宜溫度約爲4〇〇至800 °C,較佳爲約600至750 °c,更佳爲約645至700 °c,最 佳爲6 4 5至6 5 5 °C 〇加熱時間較佳爲約〇 · 〇 〇 1秒鐘至2小 時,更佳爲約0.01秒鐘至15分鐘。該材料可於任何合宜之 裝置譬如爐內加熱◦可採用連續及/或批式加熱方法0該 材料較佳爲加熱至其結晶溫度,並在出現實質晶粒生長之 前將熱源移去。 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐) —8 ~ 493185 經濟部智惡財產局員工消費合作社印製 A7 B7 五、發明説明(6) 本發明粉末形式之超微複合物磁性材料適用於形成具 有良好磁性之黏合磁鐵。任何習用以製備黏合磁鐵之方法 均可利用〇粉末超微複合物式磁性材料較佳爲與黏合劑混 合,並予固化。黏合劑較佳約佔黏合磁鐵重量之〇 . 5至4 % 〇 經發現,超微複合物之添加提供各種於約加鴒至180 °0且保持約15分鐘時不可逆感應損失(之量)約小於-4% ,較佳爲約小於-3.5% 〇 實驗 以下實例例示本發明之各種不同情況’且無意限制其 範疇〇 表 I : (Nd〇.95La〇.〇5)9.5Fe78Cr2Bi〇.5 條帶在旋壓態及 在650、675及700 °c — 10分鐘熱處理後之1、iHc 及(BH)… 條帶狀況 Br(kG) i He ( kOe ) BHm a x (MGOe) 旋壓態(25米/秒)7·6 9·9 8·5 650 °C 分鐘 8·4 10.3 14.0 675 °C -1〇 分鐘 8·2 9·8 12·5 700°C-l〇 分鐘 8.2 9 · 5 12.8 表 II : (Nd0.95La0.05)9.5Fe78-xCoxCi:2B10.5 (χ = 0-1〇) 條帶在最佳處理後L、iHe及(BH)max之比較 鈷含量 x= Br ( kG) i He ( kOe ) BHmax(k0e) 0 8 . 4 l〇·3 14·0 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210 X 297公釐) (請先間讀背而之注意事項洱本頁)
一 9 一 493185 A7 B7 五、發明説明( .4 8 . 10 10 10 10 10.4 14 14 15 19 經濟部智慧財產局Μ工消Φ合作社印製 表 DI : ( N d 〇 . 9 5 L a 〇 . 〇 5 ) 9 · 5 F e 7 8 - X c 0 - c r 2 B 工 〇 . 5 ( k = 0 - 1 0 ) 條帶在最佳處理後之i L 、不可逆感應損失及可逆 感應溫度係數(習知爲α)之比較 1 鈷含量 X = 0 2.5 5.0 7.5 10 對照組(商用) 藉眞空感應熔化製備具有(Ndo.HLao.osh.sFeH-x-CoxCi^Bio.s (χ=0-10) 組成之合金鑄錠 。將約 3 克 之鑄錠 塊壓碎成小塊,以適應熔融液旋壓用坩堝之尺寸0將一孔 徑約0.7-0.8毫米之石英噴嘴用於熔融液旋壓。用約15至 25米/秒之輪速(Vs )產生條帶。利用具有Cii-K α射線之X-光粉末繞射測定條帶之晶性。以熱重力分析儀(TGA )併同 5 0e之外加磁場(習知爲熱磁分析(TMA))測定各磁相及 i Hc 不可逆感應 α (kOe ) 損失(% ) % ( °C 10.3 -3 . 5 -0.184 10.2 -2.7 -0.144 10.2 -3 . 0 -0.131 10.3 -3.2 -0.118 9.5 -3.4 -0.105 9.2 -4.5 -0.105 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2丨〇 X 公釐) -10- (請先閱讀背而之注意事項再 493185 A7 B7 五、發明説明(8) 相應居里點(Tc)〇以約650至700艺熱處理部份爲無定形 之選定條帶分鐘,以引致結晶並增進磁性。用約50 KOe 之脈衝場將淬火態且經熱處理之條帶磁化,並以外加磁場 爲12 KOe之振動試樣磁力計(VSM)測量各帶之磁性。開放 電路特性亦即不可逆感應損失之測定方法爲將一尺寸約爲 4毫米χ_2·5毫米X 50毫米之全磁化帶置於零外:加磁場下 之VSM內,以約2至18(k/C爲週期〇Wohlfarth之殘留分 析[8 , 9 ]予採用以測定部份鈷置換鐵對所得材料之交換電 偶式交作强度之衝擊〇 圖1中顯亦(以(1。.951^().()5)9.51^78(^281().5條帶在 熔融液旋壓態(Vs = 25米/秒)以及分別在約以650、675 與700 °C對熱處理約10分鐘後之Br、iHe及(BH)max 〇爲 便利計,將此等試樣之Br、iHe及(BH)max列於表I供參 考。旋壓態條帶之Br、iHe及(BH)max在無任何熱處理時 較低:分別爲7.6 kG、9.9 kOe及8.5 MGOe,故可歸因於 條帶之不完全結晶作用,如由圖2中無定形前質合金寬尖 峰之疊合及2:14:1及α-Fe尖峰所證明。在適當退火後, Br及(BH)max二者顯著增進〇在6 50 °〇厂分鐘熱處理後獲 得 8·4 kG之 Br、10.3 kOe 之 iHe 及14 MG^e 之(BH) m a x 〇 當以較高溫度亦即約67 5或約7 00 °C處理時,可觀察到Br 及(BH) m a x急劇減小,指示可能已出現細微之晶粒生長或 相轉變。不同於Br及(BH) „ a x ,i He在任何熱處理後均較 恆定保持於9.5至9.9 kOe 〇所有數値均暗示,約650 °C 達約1〇分鐘之處理對本發明材料可爲較佳之熱處理0 本紙張尺度適用中國國家標準(CNS ) Λ4規格(21 OX 297公釐) -11- (請先間讀背而之注意事項再1^本页) .批衣-- I HI- HI i 經濟部智慈財產局段工消費合作社印製 493185 經濟部智葸財產局段工消费合作社印製 A7 ____B7五、發明説明(9 ) 圖3中所顯爲熱處理時,Br、iHe及(BH)raax隨鈷在 (Nd。. 95La〇 . )9 · sFe78 · 5_xCoxCr2Bi〇 . 5 合金系列中含量 之變化。初期,及(BH)max在低鈷濃度亦即χ = 2·5及5 時幾乎保持恆定,然後在X增加大於7·5時增大。在X爲 7.5及10之各試樣上獲得多於9·1 kG及15.8 MGOe之1及 (BH)m a x 〇此等高Br値暗示磁硬相及軟相間存在實質之交 換電偶交作。以鈷置換鐵明顯不實質衝撃i 〇在各實驗 組成內iHe範圍爲9·5至10.3 kOeo在x = 10之條帶上獲得 10·4 kG 之Br、9.5 kOe 之iHe 及19.8 MGOe 之(BH)max 〇該高i He與鈷置換鐵可能弱化硬磁相之各向異性常數並 績導致超微複合物上所得i He減小〇高鈷含量合金之顯微 結構改變可能在解釋所保存高i He値時扮演關鍵之角色〇 理論上,在有鉻存在時添加鈷可能改變前質合金用於熔融 液旋壓之液體特性,並修正超微複合物之顯微結構〇爲便 利計,將此合金系列之Br、iHe列於表II供比 較。圖 4 顯不(Nd〇.95La〇.〇5)9.5Fe78-xC〇xCr2Bi〇.5 (X= 0-10)條帶之第二象限去磁作用曲線。該去磁作用曲線之 iHe及垂直度似乎對鈷置換量不敏感。可推論(BH)max隨 鈷含量之變化依照Br之相同趨勢〇 爲了解導致Br及(BHhu隨鈷置換量改變之機制,檢 驗磁相轉變作爲溫度範圍約25至°c之鈷含量之結果。 圖 5(a)、(b)、(c)、(d)及(e)中所示爲 χ = 0、2·5、5.0 、7·5 及 10 之(^1(1().951^〇.()5)9.5?678-»(^(^(]12 131().5最佳 處理條帶之個別ΤΜΑ掃描〇在對照組試樣4 = 0)中僅發現 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210Χ297公釐) 一 12- (請先閲讀背而之注念事項再1^本页) i· 裝· I I--Ψ !丨I 、···τ 線ί 493185 A7 B7___ 五、發明説明(1〇) 二磁相,亦即R2Fe14B及α-Fe 〇經發現,在鈷含量由x = 0增加至10時,2 : 14 ·· 1相之Tc經約289 °C增高至3 93 °C 〇 此暗示可假設鈷進入Nd2 ( Fe,Co ) : 4 B相之晶體結構內。亦 發現,當X由〇增加至10時,α-Fe之Tc由約712 °C增加 至860 *〇 〇又,此Tc改變亦意味鈷亦可能形成a - (Fe , Co ) 固溶體〇 1 經最佳處理條帶之平均晶粒尺寸亦藉X-光繞射(XRD) 及傳輸電子顯微術(TEM)加以比較。圖6( a)、(b)、( c )、 (d)及(e)中所示爲實驗條帶之XRD圖案〇所有受硏究試 樣之類似尖峰寬度指示對a - ( F e,C 〇 )及2 : 1 4 : 1相而言,此 等試樣之平均晶粒尺寸大約相同。圖7(a)、(b)及(c)中 所示爲 x = 〇、5之(Nd〇.95LaQ.〇5)9.5Fe78-xGoxCr2BiG.52 TEM分析。在5 %含鈷合金中多少出現更多之晶粒生長( 參閱圖7(a)及(b) )〇平均晶粒尺寸之差異在X由5增加 至10時變成較不顯著,如圖7(b)及(c )中所示。然而,晶 粒周邊似乎變成較不明確,甚至在X增加至時被一沾汚 之第二相(未顯示)包圍。顯微結構之此一改變可解釋爲 何iHc對鈷含量不敏感〇 圖8中所示爲δ M (=md (H)-( l-2mr (H))之作圖,其中 md爲減小之去磁化作用而mr爲減小之殘留性[8,9 ],均相 對於(Nd〇 .95La〇 .〇5 )9 .5Fe78-xCoxCr2Bi〇 ·δ (χ = 0、2·5、 5、7. 5及10)條帶之五個受硏究組成之外加磁場而言。此 等作圖中之正5Μ尖峰高度指示在磁硬相與軟相間存在交 換電偶交作。將x = 7. 5及10 (晶粒粗化現象及顯微結構改 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2丨0:< 297公釐) n _ : —In an— mu I -- - -- I 1-: s 士· 儿?先間讀背而之注念事項再^^本頁) 、;o 經濟部智总財產.¾¾工消費合作社印t -13- 493185 經濟部智慧財產局’貨工消赀合作社印製 A7 B7 五、發明説明(η) 變)中所發現之高Br相結合,可得結論爲此等試樣之Br及 (BH)max之增加可能因鈷置換而由a-(Fe,C〇)及2:14:1二 者相位之飽和去磁化作用之增加引起。此外,此亦可能暗 示需要使細微平均晶粒所强化之交換電偶交作與晶粒粗化 及顯微結構改變間折衷,以於高鈷濃度材料(5<x<10) 上獲致最高心及(BH)max 〇如上述,鈷之置換鐵便2··14··1 相之Tc增加,而此對高操作溫度應用亦可能具有吸引力〇 表HI中所示爲i He 、不可逆感應損失及可逆感應溫度 係數α、隨所硏究材料之鈷濃度之變化。對於x = 〇 ,不可 逆損失及α分別爲-3.5%及- 0.184% / °C 〇鈷之置換鐵在 X由0變化至10時將α由-〇·184%/1減小至-0.105%/ °C 〇 α量之減小可直接與TC之增加相關,如於燒結Nd(Fe, Co) B磁鐵[10]中所觀察到者。然而,在各組成中,該不可 逆損失似由-2.7%變化至3.5 %,而與鈷含量不相關〇對 於x = 10,所得不可逆損失爲-3.4%而《爲-0.105%/°C 9 此等數値匹擬供黏合磁鐵應用之市售NdFeB粉末(不可逆 損失爲- 4·5% 而 α 爲-〇.l〇5%/°C) 〇 在本發明最佳處理磁性材料中僅存在二磁相,亦即α - Fe 及 R2Fei4B ,包括較佳之(Nd〇.95La〇.()5)9.5Fe78-x -CoxCr2B1Q.5 (x = 0-10)條帶。鈷之置換鐵(即例如χ = 2·5 至1〇之較佳範圍)使a - (Fe,Co)及112卩%(;〇)146二者相位 之居里點(Tc)〇各試樣中之Br及(BH)max亦隨高鈷含量增 加〇在磁硬相及軟相間可觀察到交換電偶作用。以TEM分 析在稀薄鈷置換(x = 2.5及5 )之最佳加工條帶中發現晶 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐) T! (請先閱讀背而之注意事項再本ϊ-rc )
-14- 493185 A7 B7 五、發明説明(12) 粒粗化現象0晶粒粗化在x增加至6或更高時變成較不明 顯〇舉例言之,在X = l〇時觀察到一包圍主要相之沾汚之晶 粒周邊相位(未顯示)。在譬如具有(Nd〇 . 9 5 La。. 〇 δ )9 . δ-^680〇1()02:61().5通式之較佳組成上獲得10·4 kG之ΒΓ、 9.5 kOe 之 iHe 及 19.8 MGOe 之(BH)max 〇 此外,完全處 理材料之可逆感應溫度係數大小經發現隨鈷含量增加而減 小〇 總之,熔融液旋壓超微複合物如"^.^!^。.^)^^-Fe7 8 - x Cox Cr2 Β! Q . δ (χ = 0-10)之相轉變及磁性證實二磁相 亦即 a-(Fe,Co)及 R2(Fe,Co)14B〇 鈷之置換鐵(如 χ = 2.5 至10)以每%之鈷置換量約爲20°C之速率使a-(Fe,Co)及 R2(Fe,Co)14B二者相位之居里點(Tc)增加〇在含有低鈷含 量(例如x = 5 )之最佳加工條帶上觀察到小量之晶粒粗化 現象〇鈷含量之進一步增加對所得平均晶粒尺寸無效應〇 反之,有一不明之晶粒周邊相位圍繞例如x = 10之條帶上之 主要相位〇此顯微結構改變之一理由可能爲鈷含量增加時 iHc保持大於9.5 kOe 〇於所有試樣中均發現在磁硬相與 軟相間有交換電偶作用。殘留性1及最大能量積(BH)max 在χ = 7·5及10時急劇增進,此可能因α - (Fe,Co)及R2(Fe, C〇 ) : 4 B飽和磁化作用以及其間交換電偶作用之增加而引起 〇 在(Nd〇.95La〇.()5)9.5Fe68C〇i〇Cr2Bi〇.5 h 獲致 1 〇 . 4 k G 之Br、9.5 kOe 之iHe 及19·8 MGOe 之(BH)max 〇 此外, 最佳加工材料之可逆感應溫度係數經發現隨鈷濃度增加而 減小〇 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X297公釐) 一 15- 請先間讀背而之注意事項再
經濟部智慧財產局g(工消費合作社印製 • mu n 1 -» mu βι^ϋ· 493185 A7 B7^__ 五、發明説明(13) 參考文獻 [1] A. Manaf, R. A. Buckley, H. A. Davies and M. Leonowicz, J. Magn. Magn. Mater” 101,360 (1991)· [2] R. Coehoom, D. B. de Mooji, J. P. W. B. Duchateau, and K. H. J. Buschow, J. Phys· 49, C8, 669 (1988).
[3] E. F. Kneller and R. Hawig, IEEE Trans. Magn., 27,3588 (1991). i [4] A. Manaf, P. Z. Zhang, I. Ahmed, H. A. Davies and R. A. Buckley, IEEE Trans. Mag., 29 (1993) 2866.
[5] A. Manaf, M. Al-Khafaji, P. Z. Zhang, H. A. Davies, R. A. Buckley and W. Rainforth, J. Magn. Magn. Mater. 128 (1993) 307.
[6] W· C· Chang, D· M. Hsing,B. M. Ma and C. 0· Bounds,IEEE Trans, Magn· 32 (1996),4425· [7] J. Bauer, M. Seeger, A. Zem, and H. Kronmuller, J. Appl. Phys. 80 (1996) 1667.
[8] F. Vajda and E. D. Torre, J. Appl. Phys. 75 (1994) 5689.
[9] P. E. Kelly, K. O' Grady, P. I. Mayo and R. W. Cantrell, IEEE Trans. Magn., MAG-25 (1989) 388.
[10] B.M. Ma, W. L. Liu, Y.L. Liang, D.W. Scoot, and C.O. Bounds, J. Appl, Phys., 75 (1994) 6628. (請先間讀背而之注念市項#
I 訂 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2丨OX 297公釐) -16-
Claims (1)
- 493185 Λ8 R8 C8 D8六、申請專利範圍 1 · 一種超微複合物磁性材料,具有通式: (REj.yLcly )vFGi〇〇-v-W-X-iC〇wMxBx 式中RE爲至少一由鈽、鍇、钕、鉅、釤、銪、釓、鉞、鏑 、鈥、餌、铥、鏡及錙所組成集團中選出之稀土元素;Μ 爲至少一由鈦、锆、給、釩、鈮、鉅、鉻、鉬及鎢所組成 集圃中選出之耐火金屬;ν約爲5至15; w大於或等於5 ;x約爲9至30;y約爲0·05至0·5 ;而2約爲0·1至5 〇 2 ·如申請專利範園第1項之超微複合^^料,其中w 大於或等於6 〇 3 ·如申請專利範圍第1項之超微複合,其中RE 爲至少一由鈒、錯、鏑及铽所組成集圆中選出之元素。 4 ·如申請專利範圍第1項之超微複合料,其中RE 爲至少一由鈒及鐯所組成集團中選出之元素。 5 ·如申請專利範圍第3項之超微複合料,其中Μ 爲至少一由汰、釩、鈮、鉻及鉬所組成集團中選出之耐火 金屬;ν約爲9至12;w約爲6至20;χ約爲9至12; y 約爲〇 · 〇 5至〇 · 1 ;而z約爲〇 . 5至4 〇 6 ·如申請靱利範園笫3项之超微複合^?料,其中Μ 爲至少一由汰、鈮或鉻所組成集團中選出之耐火金屬;ν 約爲9.5至11.5; w約爲6至15; X約爲10至12; y約爲 0·05 至 0.07;而 z 約爲 〇·5 至 3 〇 ‘ 1 性 / 7 ·如申請專利範圍第3項之超微複合料,其中Μ 爲鉻;ν約爲9.5至11·5; w約爲7至12; X約爲10·5至 本紙张尺度適川1丨,四四家楳準(CNS)A‘l规格(m〇 公:¾ ) -17- 請 先 間 背 經濟部t/ii財產Λ7诗工消货合作社印奴 之 注 t 事 項1/ 493185 A8 B8 C8 D8 六、申請專利範圍 11 ;y約爲0.05至0.07;而Z約爲1至2.5 Ο 8 ·如申請專利範圍第3項之超微複合料,其中 Μ 爲钛; 11 約爲9 · 5至11 · 5 ; w約爲7至12 ; X約爲1〇 · 5至 ’ ;y約爲0 · 05至0 . 07 ;而ζ約爲1至2 . 5 〇身1生, 9 ·如申請專利範圍第3項之超微複合料,其中χ 約大於或等於9.5 〇 t磁^生, 10·如申請專利範圍第3項之超微複合痴^料 約大於或等於10〇 I衡V生 11 ·如申請專利範圍第3項之超微複合 約大於或等於10.5ο L磁性/ 1 2 ·如申請專利範圍第:i項之超微複合^料 的爲10.5至30 〇 13·—種黏合磁鐵,包含: 一超微複合物磁性材料,具有通式: (Klijl_yL/3.y )vFG100-V-W-X-zC〇wM2Bx 式中re爲至少一由鈾、鍇、鈸、鉅、釤、銪、釓 其中X 其中X 其中X 铽、鏑 -----κ-------¾ (請先閱讀背面之注意事項再填寫本頁) • ϋ n 訂--------線I 經濟部智慈財產局員工消f合作社印被 、鈥、餌、铥、鏡及餾所組成集團中選出之稀土元素;Μ 爲至少一由鈦、錯、給、釩、鈮、鉅、鉻、鉬及鎢所組成 集團中選出之耐火金屬;ν約爲5至15; w大於或等於5 ;X約爲9至30; y約爲0·05至0.5 ;而2約爲0.1至5 ;以及 一黏合劑。 1 4 ·如申請專利範圍第1 3項之黏合磁鐵,其中該黏合劑 約佔該黏合磁鐵之0.5至4重量% 〇 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -18- 493185 Λ8 B8 C8 _ D8 六、申請專利範圍 15·—種製作黏合磁鐵之方法,包含: 提供一粉狀超微複合物磁性材料,具有通式: (Rtjl - yL3.y )yFGi Ο Ο _χ - % C〇wMz Βχ 式中RE爲至少一由鈽、鐯、钕、鉅、釤、銪、釓、鉞、鏑 、狄、餌、铥、鏡及餾所組成集團中選出之稀土元素;Μ 爲至少一由鈦、锆、給、釩、鈮、鉅、鉻、鉬及_所組成 集團中選出之耐火金屬;ν約爲5至15; w大於或等於5 ;x約爲9至30;y約爲0.05至0.5 ;而?約爲0.1至5 f 將該粉狀超微複合物磁性材料與一黏合劑混合;以 及 使該黏合劑固化以形成黏合磁鐵〇 1 6 .如申請專利範圍第1項之超微複合$^料,其中不 可逆感應損失之量在加熱至1 8 〇 °C約達1 5分鐘時小於-4 % 〇 (請先閱讀背面之注意事項本頁) 經濟部智慧財產局員工消货合作社印製 本紙張尺度適用中0國家標準(CNS)A‘l规格(210 X 297公兗) -19-
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9295998P | 1998-07-13 | 1998-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW493185B true TW493185B (en) | 2002-07-01 |
Family
ID=22235971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW088111739A TW493185B (en) | 1998-07-13 | 1999-07-09 | High performance iron-rare earth-boron-refractory-cobalt nanocomposites |
Country Status (10)
Country | Link |
---|---|
US (1) | US6352599B1 (zh) |
EP (1) | EP1105889B1 (zh) |
JP (1) | JP4596645B2 (zh) |
CN (1) | CN1265401C (zh) |
AT (1) | ATE354858T1 (zh) |
AU (1) | AU5313899A (zh) |
CA (1) | CA2336011A1 (zh) |
DE (1) | DE69935231T2 (zh) |
TW (1) | TW493185B (zh) |
WO (1) | WO2000003403A1 (zh) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6589367B2 (en) * | 1999-06-14 | 2003-07-08 | Shin-Etsu Chemical Co., Ltd. | Anisotropic rare earth-based permanent magnet material |
WO2001091139A1 (en) | 2000-05-24 | 2001-11-29 | Sumitomo Special Metals Co., Ltd. | Permanent magnet including multiple ferromagnetic phases and method for producing the magnet |
JP4243413B2 (ja) * | 2000-05-31 | 2009-03-25 | セイコーエプソン株式会社 | 磁石粉末の製造方法およびボンド磁石の製造方法 |
JP4243415B2 (ja) * | 2000-06-06 | 2009-03-25 | セイコーエプソン株式会社 | 磁石粉末の製造方法およびボンド磁石の製造方法 |
EP1880782B1 (en) | 2000-10-06 | 2015-01-07 | Santoku Corporation | A method for evaluating a raw alloy for a magnet |
US7217328B2 (en) * | 2000-11-13 | 2007-05-15 | Neomax Co., Ltd. | Compound for rare-earth bonded magnet and bonded magnet using the compound |
US6790296B2 (en) | 2000-11-13 | 2004-09-14 | Neomax Co., Ltd. | Nanocomposite magnet and method for producing same |
EP1358660B1 (en) | 2001-02-07 | 2008-08-13 | Hitachi Metals, Ltd. | Method of making material alloy for iron-based rare earth magnet |
US6555018B2 (en) * | 2001-02-28 | 2003-04-29 | Magnequench, Inc. | Bonded magnets made with atomized permanent magnetic powders |
US7208097B2 (en) * | 2001-05-15 | 2007-04-24 | Neomax Co., Ltd. | Iron-based rare earth alloy nanocomposite magnet and method for producing the same |
JP4055709B2 (ja) * | 2001-07-31 | 2008-03-05 | 日立金属株式会社 | アトマイズ法によるナノコンポジット磁石の製造方法 |
US6596096B2 (en) * | 2001-08-14 | 2003-07-22 | General Electric Company | Permanent magnet for electromagnetic device and method of making |
US7261781B2 (en) * | 2001-11-22 | 2007-08-28 | Neomax Co., Ltd. | Nanocomposite magnet |
JP3602120B2 (ja) | 2002-08-08 | 2004-12-15 | 株式会社Neomax | ナノコンポジット磁石用急冷合金の製造方法 |
US6979409B2 (en) * | 2003-02-06 | 2005-12-27 | Magnequench, Inc. | Highly quenchable Fe-based rare earth materials for ferrite replacement |
CN100541676C (zh) * | 2003-12-10 | 2009-09-16 | 日立金属株式会社 | 纳米复合磁体、纳米复合磁体用急冷合金以及它们的制造方法和判别方法 |
JP5366000B2 (ja) * | 2009-04-27 | 2013-12-11 | 日立金属株式会社 | 希土類系永久磁石およびその製造方法 |
US20120285583A1 (en) * | 2011-05-12 | 2012-11-15 | GM Global Technology Operations LLC | Cerium based permanent magnet material |
DE112012005566T8 (de) * | 2012-01-04 | 2014-11-13 | National Institute For Materials Science | Seltenerdnanoverbundmagnet |
DE102014006519A1 (de) | 2014-05-03 | 2015-11-05 | Smart Material Printing B.V. | Verwendung magnetischer und/oder magnetisierbarer, polymerer Mikro- und/oder Nanocomposite zur Herstellung komplexer, magnetischer und/oder magnetisierbarer Formteile mithilfe additiver Fabrikatoren |
KR20190003455A (ko) * | 2016-01-25 | 2019-01-09 | 유티-배텔, 엘엘씨 | 선택적 표면 변형이 있는 네오디뮴-철-붕소 자석 및 그 제조 방법 |
CN108475567B (zh) * | 2016-12-16 | 2022-04-29 | Neo新材料技术(新加坡)私人有限公司 | 合金组合物、磁性材料、粘结磁体及其制造方法 |
JP6359232B1 (ja) * | 2017-12-05 | 2018-07-18 | 三菱電機株式会社 | 永久磁石、永久磁石の製造方法、および、回転機 |
JP7294288B2 (ja) * | 2020-09-25 | 2023-06-20 | トヨタ自動車株式会社 | 磁性材料及びその製造方法 |
JP7409285B2 (ja) * | 2020-10-22 | 2024-01-09 | トヨタ自動車株式会社 | 希土類磁石及びその製造方法 |
Family Cites Families (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533408A (en) | 1981-10-23 | 1985-08-06 | Koon Norman C | Preparation of hard magnetic alloys of a transition metal and lanthanide |
USRE34322E (en) | 1981-10-23 | 1993-07-27 | The United States Of America As Represented By The Secretary Of The Navy | Preparation of hard magnetic alloys of a transition metal and lanthanide |
US4409043A (en) | 1981-10-23 | 1983-10-11 | The United States Of America As Represented By The Secretary Of The Navy | Amorphous transition metal-lanthanide alloys |
US4402770A (en) | 1981-10-23 | 1983-09-06 | The United States Of America As Represented By The Secretary Of The Navy | Hard magnetic alloys of a transition metal and lanthanide |
CA1316375C (en) | 1982-08-21 | 1993-04-20 | Masato Sagawa | Magnetic materials and permanent magnets |
US4792368A (en) | 1982-08-21 | 1988-12-20 | Sumitomo Special Metals Co., Ltd. | Magnetic materials and permanent magnets |
US5466308A (en) | 1982-08-21 | 1995-11-14 | Sumitomo Special Metals Co. Ltd. | Magnetic precursor materials for making permanent magnets |
US5194098A (en) | 1982-08-21 | 1993-03-16 | Sumitomo Special Metals Co., Ltd. | Magnetic materials |
US5172751A (en) | 1982-09-03 | 1992-12-22 | General Motors Corporation | High energy product rare earth-iron magnet alloys |
US4851058A (en) | 1982-09-03 | 1989-07-25 | General Motors Corporation | High energy product rare earth-iron magnet alloys |
DE3379131D1 (en) | 1982-09-03 | 1989-03-09 | Gen Motors Corp | Re-tm-b alloys, method for their production and permanent magnets containing such alloys |
US5174362A (en) | 1982-09-03 | 1992-12-29 | General Motors Corporation | High-energy product rare earth-iron magnet alloys |
US4597938A (en) | 1983-05-21 | 1986-07-01 | Sumitomo Special Metals Co., Ltd. | Process for producing permanent magnet materials |
JPS6032306A (ja) | 1983-08-02 | 1985-02-19 | Sumitomo Special Metals Co Ltd | 永久磁石 |
JPH0663056B2 (ja) | 1984-01-09 | 1994-08-17 | コルモーゲン コーポレイション | 非焼結永久磁石合金及びその製造方法 |
FR2566758B1 (fr) | 1984-06-29 | 1990-01-12 | Centre Nat Rech Scient | Nouveaux hydrures de terre rare/fer/bore et terre rare/cobalt/bore magnetiques, leur procede de fabrication et de fabrication des produits deshydrures pulverulents correspondants, leurs applications |
EP0175214B2 (en) | 1984-09-14 | 1993-12-29 | Kabushiki Kaisha Toshiba | Permanent magnetic alloy and method of manufacturing the same |
US4767450A (en) | 1984-11-27 | 1988-08-30 | Sumitomo Special Metals Co., Ltd. | Process for producing the rare earth alloy powders |
USRE34838E (en) * | 1984-12-31 | 1995-01-31 | Tdk Corporation | Permanent magnet and method for producing same |
US4765848A (en) * | 1984-12-31 | 1988-08-23 | Kaneo Mohri | Permanent magnent and method for producing same |
JPH0789521B2 (ja) | 1985-03-28 | 1995-09-27 | 株式会社東芝 | 希土類鉄系永久磁石 |
US5538565A (en) | 1985-08-13 | 1996-07-23 | Seiko Epson Corporation | Rare earth cast alloy permanent magnets and methods of preparation |
JP2530641B2 (ja) | 1986-03-20 | 1996-09-04 | 日立金属株式会社 | 磁気異方性ボンド磁石、それに用いる磁粉及びその製造方法 |
JP2727506B2 (ja) * | 1986-04-15 | 1998-03-11 | ティーディーケイ株式会社 | 永久磁石およびその製造方法 |
EP0242187B1 (en) * | 1986-04-15 | 1992-06-03 | TDK Corporation | Permanent magnet and method of producing same |
JP2727505B2 (ja) * | 1986-04-15 | 1998-03-11 | ティーディーケイ株式会社 | 永久磁石およびその製造方法 |
US4747874A (en) | 1986-05-30 | 1988-05-31 | Union Oil Company Of California | Rare earth-iron-boron permanent magnets with enhanced coercivity |
JPS62281403A (ja) * | 1986-05-30 | 1987-12-07 | Tdk Corp | 永久磁石 |
US5041171A (en) | 1986-07-18 | 1991-08-20 | U.S. Philips Corporation | Hard magnetic material |
JPS6328844A (ja) | 1986-07-23 | 1988-02-06 | Toshiba Corp | 永久磁石材料 |
DE3777523D1 (de) | 1986-10-10 | 1992-04-23 | Philips Nv | Magnetisches material aus eisen, bor und seltenerdmetall. |
US4983232A (en) | 1987-01-06 | 1991-01-08 | Hitachi Metals, Ltd. | Anisotropic magnetic powder and magnet thereof and method of producing same |
US4902360A (en) | 1987-02-04 | 1990-02-20 | Crucible Materials Corporation | Permanent magnet alloy for elevated temperature applications |
US5213631A (en) | 1987-03-02 | 1993-05-25 | Seiko Epson Corporation | Rare earth-iron system permanent magnet and process for producing the same |
US5460662A (en) | 1987-04-30 | 1995-10-24 | Seiko Epson Corporation | Permanent magnet and method of production |
US5186761A (en) | 1987-04-30 | 1993-02-16 | Seiko Epson Corporation | Magnetic alloy and method of production |
JPH01103805A (ja) * | 1987-07-30 | 1989-04-20 | Tdk Corp | 永久磁石 |
JPH02201903A (ja) * | 1989-01-30 | 1990-08-10 | Tdk Corp | 永久磁石粉末 |
JPH02201902A (ja) * | 1989-01-30 | 1990-08-10 | Tdk Corp | 永久磁石 |
US5022939A (en) * | 1987-07-30 | 1991-06-11 | Tdk Corporation | Permanent magnets |
DE3850001T2 (de) | 1987-08-19 | 1994-11-03 | Mitsubishi Materials Corp | Magnetisches Seltenerd-Eisen-Bor-Puder und sein Herstellungsverfahren. |
US4867785A (en) | 1988-05-09 | 1989-09-19 | Ovonic Synthetic Materials Company, Inc. | Method of forming alloy particulates having controlled submicron crystallite size distributions |
DE68925506T2 (de) * | 1988-10-04 | 1996-09-19 | Hitachi Metals Ltd | Gebundener R-Fe-B-Magnet und Verfahren zur Herstellung |
US5114502A (en) | 1989-06-13 | 1992-05-19 | Sps Technologies, Inc. | Magnetic materials and process for producing the same |
JPH0353505A (ja) * | 1989-07-21 | 1991-03-07 | Tdk Corp | ボンディッド磁石およびその着磁方法 |
US5228930A (en) | 1989-07-31 | 1993-07-20 | Mitsubishi Materials Corporation | Rare earth permanent magnet power, method for producing same and bonded magnet |
CA2030446C (en) | 1989-11-22 | 2001-01-23 | Yoshihito Yoshizawa | Magnetic alloy with ultrafine crystal grains and method of producing same |
US5037492A (en) | 1989-12-19 | 1991-08-06 | General Motors Corporation | Alloying low-level additives into hot-worked Nd-Fe-B magnets |
US5162064A (en) | 1990-04-10 | 1992-11-10 | Crucible Materials Corporation | Permanent magnet having improved corrosion resistance and method for producing the same |
JP2774372B2 (ja) | 1990-09-20 | 1998-07-09 | 三菱製鋼株式会社 | 永久磁石粉末 |
US5250206A (en) * | 1990-09-26 | 1993-10-05 | Mitsubishi Materials Corporation | Rare earth element-Fe-B or rare earth element-Fe-Co-B permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet manufactured therefrom |
DE4133214C2 (de) * | 1990-10-05 | 1996-11-07 | Hitachi Metals Ltd | Aus Eisen-Seltenerdmetall-Legierung bestehendes Dauermagnetmaterial |
JPH06505366A (ja) | 1991-03-08 | 1994-06-16 | ビーエーエスエフ アクチェンゲゼルシャフト | 新規カテゴリーの磁性材料、その製造方法および用途 |
US5545266A (en) | 1991-11-11 | 1996-08-13 | Sumitomo Special Metals Co., Ltd. | Rare earth magnets and alloy powder for rare earth magnets and their manufacturing methods |
JP2782024B2 (ja) | 1992-01-29 | 1998-07-30 | 住友特殊金属株式会社 | R−Fe−B系永久磁石用原料粉末の製造方法 |
EP0556751B1 (en) | 1992-02-15 | 1998-06-10 | Santoku Metal Industry Co., Ltd. | Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet |
GB9215109D0 (en) | 1992-07-16 | 1992-08-26 | Univ Sheffield | Magnetic materials and method of making them |
US5403408A (en) | 1992-10-19 | 1995-04-04 | Inland Steel Company | Non-uniaxial permanent magnet material |
JP2753432B2 (ja) * | 1992-10-28 | 1998-05-20 | ゼネラル・モーターズ・コーポレーション | 焼結永久磁石 |
US5643491A (en) | 1992-12-28 | 1997-07-01 | Aichi Steel Works, Ltd. | Rare earth magnetic powder, its fabrication method, and resin bonded magnet |
US5690752A (en) | 1993-06-14 | 1997-11-25 | Santoku Metal Industry Co., Ltd. | Permanent magnet containing rare earth metal, boron and iron |
US5591535A (en) | 1993-07-01 | 1997-01-07 | Dowa Mining Co., Ltd. | Ferromagnetic metal powder |
US5549766A (en) | 1993-08-31 | 1996-08-27 | Kabushiki Kaisha Toshiba | Magnetic material |
US5647886A (en) | 1993-11-11 | 1997-07-15 | Seiko Epson Corporation | Magnetic powder, permanent magnet produced therefrom and process for producing them |
JPH07188704A (ja) * | 1993-12-27 | 1995-07-25 | Showa Denko Kk | 希土類永久磁石用合金粉末及びその製造法 |
US5454998A (en) | 1994-02-04 | 1995-10-03 | Ybm Technologies, Inc. | Method for producing permanent magnet |
JP3644062B2 (ja) | 1995-01-13 | 2005-04-27 | Jfeスチール株式会社 | 軟磁気特性に優れた低ボロンアモルファス合金 |
-
1999
- 1999-07-09 AT AT99938718T patent/ATE354858T1/de not_active IP Right Cessation
- 1999-07-09 AU AU53138/99A patent/AU5313899A/en not_active Abandoned
- 1999-07-09 CN CNB998085677A patent/CN1265401C/zh not_active Expired - Lifetime
- 1999-07-09 JP JP2000559572A patent/JP4596645B2/ja not_active Expired - Lifetime
- 1999-07-09 WO PCT/US1999/015439 patent/WO2000003403A1/en active IP Right Grant
- 1999-07-09 TW TW088111739A patent/TW493185B/zh not_active IP Right Cessation
- 1999-07-09 CA CA002336011A patent/CA2336011A1/en not_active Abandoned
- 1999-07-09 DE DE69935231T patent/DE69935231T2/de not_active Expired - Lifetime
- 1999-07-09 EP EP99938718A patent/EP1105889B1/en not_active Expired - Lifetime
- 1999-07-12 US US09/351,760 patent/US6352599B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1105889A4 (en) | 2004-11-10 |
JP4596645B2 (ja) | 2010-12-08 |
WO2000003403A1 (en) | 2000-01-20 |
DE69935231T2 (de) | 2007-12-20 |
EP1105889A1 (en) | 2001-06-13 |
DE69935231D1 (de) | 2007-04-05 |
AU5313899A (en) | 2000-02-01 |
US6352599B1 (en) | 2002-03-05 |
CN1265401C (zh) | 2006-07-19 |
ATE354858T1 (de) | 2007-03-15 |
CA2336011A1 (en) | 2000-01-20 |
CN1309811A (zh) | 2001-08-22 |
EP1105889B1 (en) | 2007-02-21 |
JP2002520843A (ja) | 2002-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW493185B (en) | High performance iron-rare earth-boron-refractory-cobalt nanocomposites | |
US4898625A (en) | Method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder | |
Rong et al. | Nanocrystalline and nanocomposite permanent magnets by melt spinning technique | |
US4762574A (en) | Rare earth-iron-boron premanent magnets | |
US6332933B1 (en) | Iron-rare earth-boron-refractory metal magnetic nanocomposites | |
JP3549382B2 (ja) | 希土類元素・鉄・ボロン系永久磁石およびその製造方法 | |
EP1127358B1 (en) | Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME | |
CN101430958A (zh) | Sm(Co,M)7型合金薄带磁体的制备方法 | |
JP2904571B2 (ja) | 希土類異方性焼結永久磁石の製造方法 | |
Kong et al. | High‐coercivity Sm–Fe–Ga–C compounds with Th2Zn17 structure by melt spinning | |
JPH06207203A (ja) | 希土類永久磁石の製造方法 | |
JP2740981B2 (ja) | 不可逆減磁の小さい熱安定性に優れたR‐Fe‐Co‐B‐C系永久磁石合金 | |
JP3645312B2 (ja) | 磁性材料と製造法 | |
Chang et al. | Development of bulk Nd9. 5Fe75. 5− xMxB15 (M= Mo, Nb, Ta, Ti, and Zr; x= 0–4) magnets by direct casting method | |
JPH0146575B2 (zh) | ||
Yin et al. | Effect of Mo concentration on the phase composition and magnetic properties of Nd8 (Fe, Mo) 86B6 nanocomposite magnets | |
JPH08335508A (ja) | 高耐熱性ボンド磁石 | |
Chang et al. | High performance α-Fe/R2Fe14B-type nanocomposites with nominal compositions of (Nd, La) 9.5 Fe78− xCoxCr2B10. 5 (x= 0–10) | |
Chen et al. | Effects of Cr substitution on the formation, structure and magnetic properties of Sm/sub 2/(Fe, Cr)/sub 17/C/sub x/alloys | |
JPH0498802A (ja) | 永久磁石 | |
JPH03148803A (ja) | 永久磁石 | |
JPH03177544A (ja) | 永久磁石用合金 | |
JPS63216307A (ja) | 磁石用合金粉末 | |
JPH0579722B2 (zh) | ||
JPH05339683A (ja) | 永久磁石合金およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |