TW486381B - Method for preparing single layer carbon nano-tube - Google Patents

Method for preparing single layer carbon nano-tube Download PDF

Info

Publication number
TW486381B
TW486381B TW088103562A TW88103562A TW486381B TW 486381 B TW486381 B TW 486381B TW 088103562 A TW088103562 A TW 088103562A TW 88103562 A TW88103562 A TW 88103562A TW 486381 B TW486381 B TW 486381B
Authority
TW
Taiwan
Prior art keywords
carbon
metal
electrode
added
electrodes
Prior art date
Application number
TW088103562A
Other languages
English (en)
Inventor
Toshiyuki Tsuboi
Haruhiro Kobayashi
Kenji Nawamaki
Original Assignee
Futaba Denshi Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Denshi Kogyo Kk filed Critical Futaba Denshi Kogyo Kk
Application granted granted Critical
Publication of TW486381B publication Critical patent/TW486381B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0822The electrode being consumed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

486381
五、發明說明(1) I發明所屬之技術領域] 本發明係關於一種單層碳納管(nanotube)之製造方 •法-〇 [鸷知技術] 近來,由碳尤其是石墨(graphite)所製成的極微小圓 ,柱體狀纖維(外徑3mm以下之單圓柱體構造)之所謂的碳納 諾管為人所注目。該種碳納諾管,向來係以下述方式製 造0 亦即,向來,係於 f添加碳電極,在稀薄 體環境中,使該等電 於陽極間發生電極之蒸 碳。已蒸發的碳,雖以 的碳中,已蒸發的金屬 為包含有外徑大致均勻 在此,依上述方法 中,藉由預先將 種類 地提高單層碳納諾管之 [發明所欲解決的問題] %習知的單層碳納諾 弧放電,所以有自電極 有單層碳納諾管的碳灰 單層碳納諾管之吸收率 陰極使 氣體, 極間產 發。亦 碳灰之 係起觸 的單層 所進行 之金屬 生成效 或稀薄 生直流 即,由 方式出 媒作用 碳納諾 的單層 觸媒添 率係為 氣體與碳化 電弧放電。 陽極同時蒸 現,但由於 ,.所以在碳 管。 石炭納諾管之 加在陽極上 人所知的。 極使用金 氳之混合 如此,即 發金屬及 在已蒸發 灰中乃成 製造方法 ’可大幅 由於、碳之蒸發僅在 側 用直流電 會成為含 物,以及 的方法, 一側的電 ^之製造方法,由於係使 蒸發出的碳之大部份,不 ’且會在陰極上成長堆積 甚低的問題點。又,習知 的電極中發生,而不在另
486381 修正 案號 88103562 五、發明說明(2) 極中發生,故亦有包含單層碳納諾管的碳灰之生產量少的 問題點。 又,成長於陰極上的堆積物,除持有與陰極材料不同 的t阻外,由於其形、狀容易形成#圓形(甚難在陰極中心 部分上成長),且非常脆弱,故因該堆積物之成長,且因 該堆積物之脫落,故而仍有放電不穩定的問題點。 再者,習知方法,在利用複數種金屬觸媒時,由於必 須將該等觸媒全部添加在陽極上,故亦有電極之製作困難 的問題點。 本發明之目鈞係在於提供一種可穩定生成單層碳納諾 管,且因由兩電極產生碳之蒸發而增多含有單層碳納諾管 的碳之生產量,以提高生成效率的單層碳納諾管之製造方 法0 [解決問題之手段] 若依據本發明,則可獲得一種在氣體環境中,使二個 碳電極間產生電弧放電,且藉由使前述碳電極蒸發以產生 含有單層碳納諾管的碳灰之單層碳納諾管之製造方法,其 特徵為:前述二個碳電極,係使用一側或雙側添加有合計 二種類以上之金屬的金屬率加碳電極所構成,而於該二個 碳電極之間施加交流電壓以產生交流電弧放電。 前述二個碳電極,係可於一側使用添加複數種金屬的 金屬添加碳電極,而於另一方使用純礙電極。又,亦可於 一側使用添加一種以上的金屬之金屬添;加碳電極,而於另 一側使用添加含有至少一種與之不同金屬的金屬之金屬添
A:\310467.ptc 第5頁 486381 修正 案號 88103562 五、發明說明(3) 、加碳電極。或者是,添加於一側與另^側的金屬,亦可使 用作為含有複數種金屬之同一金屬的二個金屬添加碳電 極。 - 亦可藉由控制流至該等二個金屬添加碳電極間之放電 電流,以變更由前述二個金屬添加碳電極之一侧蒸發前述 金屬的速度與由另一側蒸發前述金屬的速度之比。 亦可在各週期中,將前述交流電壓控制成,放電電流 由前球二個金屬添加碳電極之另一側流至一側的時間,長 於由一侧流至另一側的時間d A 前述金屬,可利用鎳及鐵,或鎳及氧4釔,更可利用 β及鑭(氧化鑭)。 又,前述氣體,可利用氦。 [發明之實施形憊] 以下說明本發明之實施形態。 第1圖係玆示使用於本發明之第一實施形態的電弧放 電裝置。該電弧放電裝置,具有真空容器11;將真空容器 11内部予以排氣成真空之旋轉泵12;在真空容器11内部相 對紀置的金屬添加碳電極13、14;用以變更該等電極間之 距離的位置控制裝置15、16;在電極13、14上施加童壓俾 放電發生的同時控制放電電流之放電電源裝置17 (AC,DC 兼用);g及用以觀測放電電流之波形的數位示波器1 8 6 在真空容器Π上,設有將氣體導入内部用的(設於圖 之内側)氣體導入口 19,及觀看碳灰冬生成狀態用的窺視 窗2 0。又,在真空容器1 1、之内部,譟有冷卻放電空間用的
第6頁 A: \310467.ptc 486381
_ 案號 88103562 五、發明說明(4) 冷卻管21,同時將因放電而產生之碳灰予以回收用的碳灰 回收用過濾器22安裝在排氣口 23之附近。 旋轉泵12,係介以真空閥24,連接夺真空容器u之排 氣口 23上,而真空容器11内的氣體,係埠過碳灰回收過渡 器2 2,而從排氣口排氣。 吻 位置控制裝置1 5、1 6,分別具有臂部,並使其前端側 位於真空容器11内。電極13、14,係固定在該等臂部之前 端上。位置控制裝置15、16,可至少使其前端部移動於圖 之左右方向,以變更電極13、14間之距離0又,位置控制 裝置15' 16,係以電氣連铎放電電源裝置17及電極13、14 之間。 、 金屬添加碳電極13、14,係與純碳電極不同,除主成 分之碳外’每次添加一種種類互為不同的金屬。例如,在 電極13上添加鎳(Ni),在電極14上添加鐵(Fe)。或在電極 13上添加錄(Ni),在電極14上添加氧化釔(Y203)。 其次’使用第1圖之裝置,就製造單層碳納諾管之方 法加以說明。 連士了 t戈邊使甩旋轉录12將真空容器11内部予以排氣’ 哭11 =製口 Η將氦氣導入真空容器11内,且在真空容 ~ _ 出稀薄氣罈環境(2/3氣壓程度)。又,在冷卻 吕流通冷碳灰以冷卻真空容器内部。 w/、: 便用位置控制裝置15、16而接觸金屬添加碳雷 極13、14,推品你m 1/<ea 要而便用放電電源裝置17在金屬添加碳電極 义瓜電壓。之後利用位置控、制裝置將電極1 3
486381 案號 88103562 五、發明說明(5) 、及1 4予以拉離俾使之發生電弧放電。 依電弧放電就可由各電極13、14同時蒸發金屬及碳。 ’又,由於施加交流電壓,所以實際上,可視作同時發生來 自電極13之金屬及碳之蒸發,以及來自電極14之金屬及碳 之蒸發。 自二個電極13、14蒸發的二種類金屬,係在真空容器 11内合金化,且同樣地會對自電極1 3、1 4蒸發的碳起觸媒 作用,而生成單層碳納諾管。 在此,自各電極13、14蒸發金屬之速度化,可藉由變 電 W整 流波形予以控制。對於變更電流波形而言,例如僅需 施加在電極上的交流電壓之極性反轉的時間即可。易 言之,在通常的交流電壓上,雖以每1/2週期進行極性反 轉,但在改變金屬之蒸發速度比時,僅需以非均等的時間 (例如,1 / 3週期及1 / 2週期)反覆進行極性反轉即可。藉由 如此的做法,於放電電流之每1週期時,即可將放電電流 由一側之電極流至另一側之電極的時間,設成較放電電流 由另一側之電極流至一側之電極的時間長。此時之電流波 形,可利用數位示波器1 8予以確認。 如以上所述,當變更由各電極13、14蒸發金屬的速度 |時,已蒸發的碳,其變化成單層碳納諾管之比例即發生 變化。因而,為使單層碳納諾管之生成效率變成最高,僅 需調整金屬觸媒之組成即可達成。另外,在發明人之實驗 中,亦較完全的交流,以接近^種度直流(將放電電流由 一做之電極流至另一側之電極的時間增長一些,而將放電
A:\310467.ptc 第8頁 修」 五、發明說明(6) ,流由另一側之電極流至一側之電極的時間縮短一些,較 能使碳灰中的單層碳納諾管之純度變高。又,交流之頻 率’ 2可能影響碳灰中的單層碳納諾管之純度。 3有單層碳納諾管之碳灰,係出現於真空容器11之内 壁(正確而& ’主要係於冷卻管2 1之表面,以下稱為鉛室 ^ )上。出現於錯室壁上的碳灰,係在放電結束後,由鉛 至壁被削落’且可由碳灰回收過濾器2 2予以回收。 — 在本實施形態中,由於係使用交流電弧放電,故在進 I直,電弧放電之情況堆積物即不致在電極上成長。此係 習知的方法中’如第2圖(a)所示堆積物成長於 陰極上的奴,亦以含有單層碳納諾管之碳灰 :不mi實施形態之方法,如第2圖(b)所示,在電極 碳納!ΐΐ;;堆積物’而可獲得較習知大量的含有單層 故可i規ii實施形態'巾,*於在電極上+成長堆積物, 故了實現長時間穩定的放電。 在本實施形態中,除使用二種類之金屬觸媒 的生制其存在比•’藉此可實現單層碳納諾管較高 的生烕效率。 τ插/μ且,在本實施形態中,即使僅有在各碳電極上添加 Λ/Λ金屬添加碳電極,由於藉由使不同種類之金屬 電極相對峙亦可獲得合金化的效果,故較未添加二 碳電極將獲得合金化之效果的習知技術(直流電 狐放電)而言,本實施形態係較有利。
HI 第9頁 A:\310467.ptc 486381 η f 轮 88103562_ 五、發日月15?明 其次,就本發明之第二實施形態加以說明。 在本實施形態中,亦使用第1圖之電藏放電裝置。但 是,在金屬添加碳電極13、土’係分別使用添_同一金 屬-者被添加的金屬’例如’電極13、14皆添加有錄及 鐵,或鎳及氧化纪。 使用該種電極,以與第一實施形態同樣的方法,可有 效率地生成單層碳納諾管。本實施形態之單層碳納諾管的 id!:於『一實施形態之生成效率’且藉由控制 可更進一步提高生成效率。在此放電 鬌:之波形控制’例如係藉由放電電流在各 門内1 4流至電極1 3之時間加長並於電極1 3流至電極1 4之睥 間内而進行者(改變-陽坧 *·芏電極1 4之時 頻率的單層碳納諾管之3生成效J :有可能影響使交流 二種金屬的情況加Ί:第-:二:形態★’雖係就使用 此情況,添加於一侧二::使:三種以上的金屬。 極的金屬,亦可一部分=金:添=於另-側之電 電極上使用禾知选奴含,、通的金屬。又,亦可於一側之 i使用純碳電極 金屬的金属添加竣電極,而於另- =,在上述第—及第二之實施形態中,雖係使用鋅及 鐵,或鎳及釔(氧化耖、^ 躍你便用録汉 合其他的金屬,例如,鈷錄i鑭(氧化鑭)’但亦可適當組 鉉:釓,&,鏑,鈥,餌淖:鑭,鈽,镨, 錦’及搞、等。更且,如鈷及硫磺之 第10頁 A:\3l0467.ptc 486381 案號 88103562 巧〇年 >月 9曰 修正 五'發明說明(8) 組合般,亦可加上金屬以外的元素。 [實施例] 以下,係就本發明之實施例加以說明。另外,在以下 的實施例中,係使用東洋炭素股份有限公司所製的直徑 l〇mm,長度75 min之金屬添加碳電極。又,真空容器内,係 將乱之流量設為500cc/m,背壓設為4-&x l〇,3Torr至使氦 氣壓力變成5 00Torr。更且,相對峙的電極間之距離,設 為2至3mm。 實施例1
電極係使用鎳添加(3.2 wt%)碳電極 '及鐵添加 (3· Owt%)碳電極。放電電流係以AC3〇〇A(52Hz)、陽極時間 比Fe : Ni=5 ·· 5(各電極成為陽極之時間比,此情況為完全 的父流),埠行9分鐘之交流電弧放電。此時,放電電壓為 34-35V ° 結果,鐵添加碳電極,消耗2· 45g,而鎳添加碳電 極’则消私1· 56 g (重量減少)。由此情形,可求出鐵添加 碳電極之平均蒸發速度為〇.273g/min,鎳添加碳電極之平 均蒸發速度為〇. 1 73g/min。
^ 又,附著在鉛室壁上的碳灰,不易崩潰(含高含量之 單層碳納諾管的碳灰不易崩潰(成為被稱磨碎薯蕷(grated yam)狀的狀態),該碳灰(粗單層碳納諾管)之回收量為 3· 30g二當將碳灰回收量設為回收率=已回收的碳灰之重量 /原料消費量時,其回收率為83%(損失率17%)。 將此時所得的碳灰之穿透型電子顯微鏡之顯微鏡相片
486381 銮號 88103562 P年二月 Ί曰 修正 五、發明說明(9) ‘顯示於第3圖中。另外,該顯微鏡相片係在三重大學工學 系,齋藤彌八副教授之協助下所攝影完成者(實施例2以下 的%相片亦同)。 -另外 > 如本實施例所不’在使鐵添和碳電極及錄添加 碳電極相對崎的情況’雖可看出依電極之變形而蒸發速度 發生變化的情形,但是可當作可依電極定位(對軸)之精度 提高、與電流密度之增大而抑制者。 t施例2 電極係使角鎳添加(3.2wt%)碳電極、及γ2〇3添加 .6wt% = Y元素換算值(依ICP分析所得))碳電極。放電電 <係以AC 2 5 0 A ( 5 2 Hz )、陽極時間比γ2〇3、: Ni=5 : 5進行6分 短, 響) 鎊之交流電孤放電。放電電壓,與時間同時由3 5 V減少至 26V。該放電電壓冬減少係因來自電極之蒸發而使電極變 且電阻減少之故C但是幾乎不受到放電電壓降低之影 極 為 结果,Y2〇3添加碳電極,消耗6· 19g,而鎳添加碳電 ,則消耗3· 83g。與而,γζ〇3添加碳電極之平均蒸發速度 1.03g/min,鎳添加礙電極之平均蒸發速度為 638g/miii。又,碳灰之回收量為65i3g,碳灰回收_為 |%(損失率35%)。 被回收的碳灰為容易崩溃的碳灰質,藉由穿缘型顯微 鏡之觀察,由鉛室壁中可稍微發現單層碳納諾管。將此時 所得的碳灰之穿透型電子顯微鏡之顯微鏡相片顯示於第4 圖中。
A:\310467.ptc 第12頁 486381 案藏 88l_Q35fi2 _Y年 >月 7 & _修正_ _ 五、發明說明(10) 實施例3 使用與實施例2相同的電極,且以同一放電電流,將 陽極時間比設為Υ2〇3 : Ni=4 : 6進行5分鐘之交流電弧放 電°放電電麼因電極蒸發而變短,故由33V降低至3】V。 結果’ Υζ〇3添加碳電極,消耗2. I8g,而鎳添加碳電 極’則消耗5 · 3 8 g。因而,添加碳電極之平均蒸發速度為 0. 44g/min,鎳、添加碳電極之平均蒸發速度為丨.〇8g/miri。 又,附著在鈕室壁上的碳灰,為容易崩潰的碳灰質y 而該碳灰之回收量為6,57g,碳灰回收率為87%(損失率 13%)。將此時所得的碳灰之穿透型電子顯微鏡之顯檄鏡相 片顧示於第5圖中。 當比較實施例2及實施例3時,可明白藉由改變陽極時 間比,並將一谢予以加長(藉由調整放電電流波形),即可 提高被回收的碳灰中之單層碳納諾管的純度。 又’若考慮在使用習知的直流電弧放電之方法,且只 使用記(Y2〇3)以作為添加在電極上的金屬時,單層碳納諾 管之直徑較本實施例之單層碳納諾管的直徑粗,及在單獨 使用鎳時,由附著在鉛室壁上的碳灰中,若幾乎未發現單 層碳納諾管(其可珉附著在陰極電择之表面上的碳灰中發 f )時,則在本實施例中,藉由容易由附著在鉛室壁上的 碳灰中’發現來自鎳之單層碳納諾管,即可推測係使用釔 及鎳之合金以作為觸碳灰的作用者0 實施例4 電極,係使用二支用時添加Ρ(3· 74〇〇1%)及γ2〇3
A:\310467.ptc 一 — 一第 口 頁 ^" 1- 486381 _ 案號 88103562__,。年 > 月 Ί 日_修正_______ 五、發明說明(11) 、·(0. 9 0mol%)之碳電極。放電電流係以AC250A(52Hz),陽極 時間比=5 : 5之條件’進行交流電弧放電5分30秒。此期 間>,放電電壓會隨時間由3 6 V減少至2 6 V。 .結果,一側之電極消耗7· 00g,而另一側之電極、則消 -耗6. 15g。易言之< ^側之電極的平均蒸發速度,為1. 26g * /min、而另一側之雩極的平均蒸發速度,為1. 14g/min。 又,碳灰之回收量為8· 84g,碳灰回收奉為纟7%(損失 率3 3%),已回收的碳灰之質非常容易崩潰。 實施例5 % 使用與實施例4同一電極,以同一放電電流,並將陽 時間比設為一側·另一侧=6 · 4,而進行3分3 0秒之交流 放電。放電電塵為27至28V。 結果,一側之電極消耗7 · 54g,而另一側之電極則消 耗-1· 93g。因而,一側之電極的平均蒸發速度為2· 15g /min,而另一側之電極的平均蒸發速度為- 〇.55g/min。 又,船室碳灰之碳灰質不容易崩潰,而碳灰之回收量 為4.19g,碳灰回收率為56%。另外,陰極堆積物之回收量 為1 · 9 ,回收率為26%。因而,損失率為'18%。 另外,陰極堆積物不在電極之長度方向成長,而以捲 %電極之前端部的方式,形成外徑2 0mm的喇^形狀。 由實施例4及實施例·5之比較中,亦可得知藉由改、變陽 —極時間比,並將一側予以加長(藉由調整放電電流波形), 即可提高被回收的碳灰中之單層碳納諾管的純度。 _ 實施例6
486381
使用與實施例4同一的電極,以同 陽極時間比設為一側:另一側=这· 2, 流放電。放電電壓為28V。 一放電電流,並將 而進行2分30秒之交 ⑽果側弋電極消耗7· 64g,而另一側之電極則消 耗-3. 74g(依陰極堆積物之成長而增加)。易言之,一側之 電極的平均蒸發速度為5.05g/iniri,而另一侧之電極的平 均蒸發速度為-1. 5 〇 g / m i II。 又,鉛室碳灰之碳灰質不 為2.97g,碳灰回收率為39%。 為3.74g,回收率為49%。因而 積物之形狀為外徑17瓜m之圓柱 實施例7 谷易崩潰,而碳灰之回收量 另外’陰極堆積物之回收量 ’損失率為12¾。又陰極堆 狀。 結果,電極係使用添加Fe添加(3 0wt%)碳電極、 1(3.74〇1〇1%)及¥2〇3(〇.90的1%)之碳電極。放 AC25〇A(52HZ),陽極時間比為 Fe: Ni_Y2〇3=6: 4之^ 進行交流電弧放電6分鐘。此期間,放睥 30V減少至24V。 电电魘會隨時間由
Fe添加電極消耗5.21g,而Ni_Y2〇3添加電極列 35g。易言之,Fe添加電極之平均蒸發速度為〇. 87g/min,· 而Ni-YgO3添加電極之平均蒸發速度為。 又,鉛室碳灰之碳灰質不容易崩潰‘,而碳灰^回 為4.12g,碳灰回收率為79%。由於择極之增加率為6%「故 本實施例中的損失率為1 5%。 實施例8
^6381
、 電極係使用添加La添加碳電極、Ni添加碳電極。而乙 •,電極係使用東洋皮素股份有限公司製造的La2〇3添: 省極(外徑2〇fflm,長度π㈣,以U元素換算為93wt%(依 分析法算出者))。 .放電電流係以AC2、50A(52HZ),陽極時間比為La: Ni=4 .6之條件,進行交流電弧放電6分鐘。此期間,放電電壓 為33至35V。 結^La添加電極消耗〇· 64g,而…添加電極則消耗一5· 8 3g。易言之’ La添加電極之平均蒸發速度為〇·丨, 胃|Ni添加電極之平均蒸發速度為97g/iflin。 又’裂I至奴灰之碳灰質不容易崩潰,而碳灰之回收量 為5· 15g,碳灰回收率為料%。本實施例中之損失率為 20% 〇 實施例9 電極係使用在高純度化學研究戶斤股份有限公司製造的 管形狀碳電極(5N,外徑1 Offlin,内徑6ππη,長度75mm)之中 空部内’填入如下的粉末者。亦即,皆以寒重量混合高純 度化學研究所股份有限公司製造的氧化纪(純度99.9%,直 徑2-3//Π1)、純鎳(純度99·9%,尖銳尺度1〇〇)、及純碳(純 | 9 9 · 9 9 % ’ 10/zm)之粉末,充填於中空部内的管形狀碳電 極。另外,管形狀碳電極之重量,為6.7至6. 9g,在充填 ,上述粉末時,變成9.6至9. 9g。 放電電流係以AC180A(52Hz),陽極時間比為一側··另 * 一倒=6 ·. 4之條件,進行交流電弧放電1 2分3 0秒。放電電
A:\310467.ptc 第16頁 486381 案號 88103562 五、發明說明(U) 壓為21至23V。將此時的電流波形及電壓波形分別顯示在 第6圖(a)及第6圖(b)令。另外,第6圖(3)係顯示在基準電 阻之兩端產生電流變化的電壓變化。 結果’ 一側之意極消# 6· 42g,而另一側之電極則消 耗-3· 10g(有成長陰極堆積叙)。結果,一侧之電極的平均 蒸發速度為0· 51g/min,而另一側之電極的平均蒸發速度 為- 0 · 2 5 g/m i η 〇 又’錯室碳灰之碳灰質非常不容易崩潰,而碳灰之回 收量為2.48g(陰極堆積物回收量為31〇g),碳灰回收率為 3 9%(陰極堆積物回收率為48%)。本實施例中之損失率為 1 3 %另外’陰極堆積物為將前端做成凹、型之外徑1 5 in m的 课碟型。 [比較例] 陽極係使用添加Ni (3· 74mol%)及Υ203( 0· 90m〇]^)之碳 電極(直徑10mm,長度8Qmm);陰極係使用高純度化學研究 所股份有限公司製造的Μ( 99. 999%)之純碳電極(直徑 10mm ’長度75mm),係以壓力5〇〇Torr,流量SOOccm並使用 氣氣作為稀薄氣體,且以放電電流5〇A,放電電壓25至 26V之條件,進行直流電弧放電5分秒。 結果,陽極電極之消耗量為8. 55g,陰極電極之消耗 量為5· 31g,陽極電極平均蒸發速度為丨· 55g/mi η,陰極電 極平均堆積速度為〇.9 7、g/ min。接華,由錯室壁中雖可獲 得不容易廓潰的碳灰質之碳灰,但碳灰之回收量為 2.42g,其回收率為28wt%。又,附極上成長有管形狀(夕卜
A:\310467.ptc 第17頁 486381
、徑12㈣,内徑3mn〇之陰極堆積物,陰極堆廣物之回收量為 5· 31g,回收率為62wt%。 [奋明之功效] _若依據本發明,則在單層碳納諾管之製邊方法中,藉 •由使用交流電弧放電,則即使自一側之電極中蒸發的碳, ,附著在另一側之電極上,由於在下一瞬間,極性會改變, 且會自該電極中發生碳之蒸發,而隨之已附著的碳亦會蒸 發,故堆積物即不致於電極上成長(或可抑制成長速度), 而可大量獲得包含單層碳納諾管之碳灰。 A 又’若依據本發明,則在單層碳納諾管之製造方法 ,,藉由使用交流電孤放電,則由於堆積物不會在電極上 成長(或可抑制成長速度),而可持續穩定的放電,故可長 時間穩:定地進行單層碳納諾管之製造。 再者,若依據本發明,則藉由將複數個金屬添加在碳 電榼上使用’以在該等的電極間進行交流電孤放電,即可 高效率生成單層碳納諾管。 更且,若依據本發明,則藉由控制放電奄流波形(陽 極索極比)即可效率佳地生成單層碳納諾管。 [圖式之簡單說明] % 第1圖為本發明可適用的電弧放電裝置之概略圓。 第2圖(a)顯不習知的直流電弧放電之電極周邊的樣鮮 •圖;第2圖(b)顯示本發明之交流電弧放電的電極周邊樣態 圖。 > 、第3圖為依本發明之第一實施例所得的碳灰之穿透型
第18頁
A:\3l0467.ptc 486381 __案號88103562_和年 >月 7日_^_ 五、發明說明(16) 1:子顯微鏡之顯微鏡相片。 第4圖為依本發明之第二實施例所得的碳灰之穿透型 電子顯微鏡之顯微鏡相片。 第5圖為依本發明之第三實施例所得的嗥灰之穿透型 電子顯微鏡之顯微鏡相片。 第6圖(a)顯示本發明之實施例中的交流電弧放電之放 電電流波形圖;第6圖(b )顯示本發明之實施例中的交流電 弧放電之放電電壓波形圖。 [圖號之說明] 11 真 空 容 器 12 旋 轉 泵 13、 14金 屬 添 加 碳 電極 15 ' 16位 置 控 制 裝 置 17 放 電 電 源 裝 置 18 數 位 示 波 器 19 氣 體 導 入 α 20 窺 視 窗 21 冷 卻 管 2 2 碳 灰 回 收 用 過濾器 23 排 氣 π 24 真 空 閥
A:\310467.ptc 第19頁

Claims (1)

  1. 486381 案號 88103562 修正
    六、申請專利範圍 ,1. 一種單層 二個碳電 發以產生 β徵為:前 二種類以 飾、镨、 金屬之金 施加交流 2. 如申請專 中僅於前 為純碳電 3. 如申請專 中於前述 側的金屬 金屬為不 碳納諾管之製造方法,係在氣體環境中,使 極間產生電弧放電,且藉由使前述碳電極蒸 含有單層碳納諾管的碳灰之製造方法,其特 述二個碳電極係使用一側或雙側添加有合計 上的由錄、鐵、令匕、鋼、始、錢、把、舶、 鈥、铽、鏑、鈥、铒、及||所成之群選出之 屬添加碳電極而成,而於該二個碳電極之間 電壓以產生交流電弧放電。 利範圍第1項之單層碳納諾管之製造方法,其 述二個碳電極之一側添加有金屬,而另一側 極者。 利範圍第1項之單層碳納諾管之製造方法,其 二個碳電極之雙側添加有金屬,而添加於一 之中至少有一種的金屬,與添加於另一側的 同種類的金屬者。 4.如申請專利範圍第1項之單層碳納諾管之製造方法,其 中於前述二個碳電極之雙側添加有金屬,而添加於一 側及另一側的金屬為含有複數種類金屬之同一金屬 者。 %如申請專利範圍第3或4項任一項之單層碳納諾管之製 造方法,其中藉由控制流至前述二個碳電極間之放電 電流,以變更由前述二個碳電極之一方蒸發前述金屬 的速度及由另一側蒸發前述金屬的速度之比。 ' 6.如申請專利範圍第2' 3或4項任一項之單層碳納諾管之 鸷 製造方法,其中在前述交流電壓之各週期中,將放電
    A:\310467.ptc 第20頁 486381 _案號881Q3562_Ψ年 >月 Ί日 修正_ 六、申請專利範圍 電流由前述二個碳電極之另一側流至一側的時間,加 長於由一側流至另一側的時間,並藉此方式控制前述 交流電壓者。
    第21頁 A:\310467.ptc
TW088103562A 1998-03-16 1999-03-09 Method for preparing single layer carbon nano-tube TW486381B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10082409A JP3017161B2 (ja) 1998-03-16 1998-03-16 単層カーボンナノチューブの製造方法

Publications (1)

Publication Number Publication Date
TW486381B true TW486381B (en) 2002-05-11

Family

ID=13773801

Family Applications (1)

Application Number Title Priority Date Filing Date
TW088103562A TW486381B (en) 1998-03-16 1999-03-09 Method for preparing single layer carbon nano-tube

Country Status (4)

Country Link
US (1) US6149775A (zh)
JP (1) JP3017161B2 (zh)
KR (1) KR100358972B1 (zh)
TW (1) TW486381B (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049019B2 (ja) * 1998-09-11 2000-06-05 双葉電子工業株式会社 単層カーボンナノチューブの皮膜を形成する方法及びその方法により皮膜を形成された単層カーボンナノチューブ
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US8958917B2 (en) 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
JP3943272B2 (ja) 1999-01-18 2007-07-11 双葉電子工業株式会社 カーボンナノチューブのフイルム化方法
CN1101335C (zh) * 1999-06-16 2003-02-12 中国科学院金属研究所 一种大量制备单壁纳米碳管的氢弧放电方法
KR100374972B1 (ko) * 1999-10-11 2003-03-06 일진나노텍 주식회사 탄소나노튜브의 팁 오픈 방법 및 정제 방법
KR100360470B1 (ko) * 2000-03-15 2002-11-09 삼성에스디아이 주식회사 저압-dc-열화학증착법을 이용한 탄소나노튜브 수직배향증착 방법
KR100367455B1 (ko) * 2000-03-21 2003-01-14 일진나노텍 주식회사 탄소나노튜브 합성용 다중 진공챔버 플라즈마화학기상증착장치 및 이 장치를 이용한 탄소나노튜브 합성방법
KR20020017164A (ko) * 2000-08-29 2002-03-07 김성근 나노튜브 생성장치 및 방법
TW523960B (en) * 2000-09-29 2003-03-11 Sony Corp Method of producing fuel cell
US7161285B2 (en) * 2000-11-20 2007-01-09 Nec Corporation CNT film and field-emission cold cathode comprising the same
EP1209714A3 (en) * 2000-11-21 2005-09-28 Futaba Corporation Method for manufacturing nano-tube, nano-tube manufactured thereby, apparatus for manufacturing nano-tube, method for patterning nano-tube, nano-tube material patterned thereby, and electron emission source
JP4604342B2 (ja) 2000-12-08 2011-01-05 ソニー株式会社 カーボンナノ構造体の合成用のアーク電極
JP3825336B2 (ja) * 2001-03-12 2006-09-27 双葉電子工業株式会社 ナノカーボンの製造方法及びナノカーボンの製造装置
US6740224B1 (en) 2001-06-11 2004-05-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of manufacturing carbon nanotubes
US6743500B2 (en) * 2001-08-03 2004-06-01 Hitachi Chemical Company, Ltd. Hollow carbon fiber and production method
US7008605B1 (en) * 2001-11-08 2006-03-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for manufacturing high quality carbon nanotubes
JP3842159B2 (ja) * 2002-03-26 2006-11-08 株式会社半導体エネルギー研究所 ドーピング装置
CA2385802C (en) * 2002-05-09 2008-09-02 Institut National De La Recherche Scientifique Method and apparatus for producing single-wall carbon nanotubes
US7037319B2 (en) * 2002-10-15 2006-05-02 Scimed Life Systems, Inc. Nanotube paper-based medical device
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
JP3810756B2 (ja) * 2003-05-12 2006-08-16 独立行政法人科学技術振興機構 単層カーボンナノチューブの製造方法及び装置
CN100376476C (zh) * 2003-10-18 2008-03-26 鸿富锦精密工业(深圳)有限公司 嵌入金属的碳纳米管的设备和其制备方法
CN100500338C (zh) * 2004-04-30 2009-06-17 鸿富锦精密工业(深圳)有限公司 碳包金属纳米材料的制备方法
GB2413793A (en) * 2004-05-05 2005-11-09 Ntec As Method of producing carbon nanotubes using cooled carbon anodes
JP2005343784A (ja) * 2004-05-06 2005-12-15 Fukui Prefecture ナノ構造炭素材料の製造方法及び製造装置
US7459013B2 (en) * 2004-11-19 2008-12-02 International Business Machines Corporation Chemical and particulate filters containing chemically modified carbon nanotube structures
CA2500766A1 (en) * 2005-03-14 2006-09-14 National Research Council Of Canada Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency induction plasma torch
US20070207182A1 (en) * 2006-03-06 2007-09-06 Jan Weber Medical devices having electrically aligned elongated particles
KR101384070B1 (ko) 2006-03-13 2014-04-09 가부시키가이샤 니콘 카본 나노 튜브 집합체의 제조 방법, 카본 나노 튜브집합체, 촉매 입자 분산막, 전자 방출 소자 및 전계 방출형디스플레이
US20080213367A1 (en) * 2007-03-01 2008-09-04 Cromoz Inc. Water soluble concentric multi-wall carbon nano tubes
EP2197508B1 (en) * 2007-09-06 2014-12-10 Boston Scientific Limited Medical devices containing silicate and carbon particles
JP5427538B2 (ja) * 2009-10-05 2014-02-26 本荘ケミカル株式会社 アーク放電法による単層カーボンナノチューブ製造用触媒とその利用
JP6386784B2 (ja) * 2014-05-16 2018-09-05 三重野 哲 炭素クラスターの製造装置と製造方法
GB202016334D0 (en) * 2020-10-15 2020-12-02 Q Flo Ltd Method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830326A (en) * 1991-10-31 1998-11-03 Nec Corporation Graphite filaments having tubular structure and method of forming the same
JP2699852B2 (ja) * 1993-12-28 1998-01-19 日本電気株式会社 単層カーボンナノチューブの製造法

Also Published As

Publication number Publication date
JP3017161B2 (ja) 2000-03-06
US6149775A (en) 2000-11-21
KR100358972B1 (ko) 2002-11-01
JPH11263609A (ja) 1999-09-28
KR19990077943A (ko) 1999-10-25

Similar Documents

Publication Publication Date Title
TW486381B (en) Method for preparing single layer carbon nano-tube
Chen et al. Hierarchically porous Mo-doped Ni–Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions
CN108779563A (zh) 碱性水电解用阳极及碱性水电解用阳极的制造方法
US6103298A (en) Method for making a low work function electrode
Li et al. Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells
CN101508421B (zh) 用于场电子发射器的碳纳米纤维/碳纳米管异质纳米阵列及其制备技术
JP2002356316A (ja) 炭素構造体の製造装置および製造方法
Chang et al. Flexible NiCo2O4@ carbon/carbon nanofiber electrodes fabricated by a combined electrospray/electrospinning technique for supercapacitors
CN100415643C (zh) 一种水溶液中阴极气膜微弧放电制备碳纳米材料的方法
Park et al. Pt–WOx electrode structure for thin-film fuel cells
Zhang et al. Preparation of boron-doped diamond nanospikes on porous Ti substrate for high-performance supercapacitors
Tan et al. TiN ceramic membrane supported nitrogen-incorporating NiCo2 nanowires as bifunctional electrode for overall water splitting in alkaline solution
KR101837059B1 (ko) 금속-세라믹 다공성 복합 나노구조체의 제조방법, 이의 방법으로 제조된 금속-세라믹 다공성 복합 나노구조체 및 이를 포함하는 전극
Zhang et al. A novel aqueous plasma electrolysis for carbon fiber
JPH1021931A (ja) 固体電解質型燃料電池セル
Choi et al. Low-temperature fabrication of nano-structured porous (La, Sr)(Co, Fe) O3− δ cathodes by aerosol deposition
JP3164579B2 (ja) 水素貯蔵体
CN111564642A (zh) 碳化铌纳米粒子修饰的碳布电极的制备方法及其应用
JPH1021929A (ja) 固体電解質型燃料電池セル
CN110323077A (zh) 一种基于Zr-Cu基非晶合金复合电极材料及其制备方法
Xiao et al. A novel Fe-Co-S/P electrode for aqueous symmetric supercapacitors
CN103086406A (zh) 一种氧化镁纳米带-碳纳米管复合材料的制备方法
Zhang et al. Ni nanoparticles on ultrathin Mo2C interconnected nanonet: an efficient 3D hydrogen-evolving electrocatalyst with superior durability
CN106328393B (zh) 一种NiCo2O4@碳纳米管复合材料的制备方法
CN211713211U (zh) 一种用于电解酸性水的柔性涂层电极

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees