CN106328393B - 一种NiCo2O4@碳纳米管复合材料的制备方法 - Google Patents

一种NiCo2O4@碳纳米管复合材料的制备方法 Download PDF

Info

Publication number
CN106328393B
CN106328393B CN201610853991.7A CN201610853991A CN106328393B CN 106328393 B CN106328393 B CN 106328393B CN 201610853991 A CN201610853991 A CN 201610853991A CN 106328393 B CN106328393 B CN 106328393B
Authority
CN
China
Prior art keywords
carbon nano
nico
nano tube
preparation
compound materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610853991.7A
Other languages
English (en)
Other versions
CN106328393A (zh
Inventor
徐靖才
王攀峰
王新庆
彭晓领
洪波
金顶峰
金红晓
李静
杨艳婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201610853991.7A priority Critical patent/CN106328393B/zh
Publication of CN106328393A publication Critical patent/CN106328393A/zh
Application granted granted Critical
Publication of CN106328393B publication Critical patent/CN106328393B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

一种NiCo2O4@碳纳米管复合材料的制备方法,它涉及一种NiCo2O4纳米颗粒填充碳纳米管的制备方法,包括步骤:将碳纳米管溶于二甘醇中超声分散60 min,然后按Ni2+/Co2+摩尔比为1:2加入Ni(NO3)2·6H2O和Co(NO3)2·6H2O,在80℃下充分搅拌均匀后逐滴加入一定量的NH3·H2O得到混合溶液;将所述混合溶液移入反应釜,置换CO2,置换之后将CO2的压强调到0.05~0.1 MPa;将反应釜放进烘箱中,设置温度为160~240℃,反应时间为10~24 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,在300℃煅烧2 h得到NiCo2O4@碳纳米管复合材料。本发明方法具有填充过程温度低、操作简单和避免了酸处理对碳纳米管结构的破坏等优点;所获得的NiCo2O4@碳纳米管复合材料用于超级电容器电极时具有较高的比电容值和良好的电化学性能稳定性。

Description

一种NiCo2O4@碳纳米管复合材料的制备方法
技术领域
本发明涉及复合材料领域,具体涉及一种NiCo2O4纳米颗粒填充碳纳米管的制备方法。
背景技术
超级电容器因其具有高功率密度、充电短时间和循环寿命长等诸多优点,广泛用于通信,航空航天,大型工业装备,微电子器件等诸多等要求瞬间释放超大电流的场合,尤其是在新能源汽车领域有着广阔的应用前景。电极材料是影响超级电容器性能的关键因素,以RuO2等贵金属氧化物因其赝电容原理有较大的比电容值,但昂贵的价格和毒性限制了其商业化应用。一些廉价金属氧化物代替贵金属作为超级电容器电极材料成为研究热点。NiCo2O4是一种典型的尖晶石结构复合金属氧化物,存在Co3+/Co2+及Ni3+/Ni2+氧化还原电对,可以获得较高的工作电压窗口和比电容值,同时因其廉价无毒表现为极具潜力的超级电容器电极材料,受到了众多研究者的广泛关注。然而NiCo2O4与贵金属氧化物相比,由于其导电性较差,导致比电容偏低,在大电流密度下充循环冲放电不够稳定。因此,人们考虑将NiCo2O4与碳材料或导电聚合物进行复合来提高材料的导电性,以达到增强其电化学性能的目的。
碳纳米管(CNTs)主要由呈六边形排列的碳原子构成的单层或数层的同轴圆管构成,是特殊的一维中空的纳米结构,具有优良的耐热、耐腐蚀、耐冲击性能,而且传热和导电性能好,使其有制备大容量超级电容器的潜在优势。但CNTs单独作为超级电容器电极材料比电容值过低,一般只有40F/g。鉴于金属氧化物和碳纳米管之间的互补性,通常考虑将其复合,使该复合产物既具有赝电容特性,又具有双电层特性,从而制备出具有高比电容、高导电率、循环充放电稳定的超级电容器电极材料。
目前,金属氧化物与碳纳米管的复合有金属氧化物负载在碳纳米管表面和金属氧化物填充到碳纳米管中两种方式。其中金属氧化物负载在碳纳米管表面的复合方式往往存在结合力不强,在超级电容器充放电的过程中金属氧化物容易脱离碳纳米管的缺点。所以金属氧化物填充到碳纳米管中成为人们研究的热点。目前碳纳米管的填充主要有原位填充方法和毛细管作用填充方法两大类。原位填充方法是指碳纳米管的填充过程和生长过程同步进行,即直接制备碳纳米管包覆外来物质,因此不需要碳纳米管的开口阶段,这一类方法主要为电弧放电法,这种方法需要在几百度甚至上千度的温度下进行,填充的物质一般以金属碳化物的形式存在,而且填充率很低。毛细管作用填充方法是利用碳纳米管中空内腔的毛细管作用,使外来物质填充进入碳纳米管的方法,这种填充方法条件相对比较温和,对填充的物质适应性广,填充率更高。然而目前几乎所有的毛细管作用填充方法都要经过强酸处理使碳纳米管开口这一步骤,强酸处理会破坏碳纳米管的结构,在一定程度上影响碳纳米管的性质。
发明内容
本发明的目的是提供一种NiCo2O4@碳纳米管复合电极材料的制备方法,该制备方法可避免强酸处理破坏碳纳米管的结构,所制得的NiCo2O4@碳纳米管复合材料可以提高超级电容器电极材料的比电容和循环充放电稳定性。
为了实现上述目的,本发明提供一种NiCo2O4@碳纳米管复合材料的制备方法,其特征在于,具体包括以下步骤:将碳纳米管溶于二甘醇中超声分散60 min,然后按Ni2+/Co2+摩尔比为1:2加入Ni(NO3)2·6H2O和Co(NO3)2·6H2O,在80 ℃下充分搅拌均匀后逐滴加入一定量的NH3·H2O得到混合溶液;将所述混合溶液移入反应釜,置换CO2,置换之后将CO2的压强调到0.05~0.1 MPa;将反应釜放进烘箱中,设置温度为160~240 ℃,反应时间为10~24 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,在300℃煅烧2 h得到NiCo2O4@碳纳米管复合材料。
本发明优点:一、本发明没有用强酸处理碳纳米管,对碳纳米管的结构几乎没有破坏;二、本发明具有操作简单、环境友好、耗能低等优点;三、所获得的NiCo2O4@碳纳米管复合材料用于超级电容器电极时具有较高的比电容值和良好的电化学性能稳定性。
本发明采用X射线衍射技术(XRD)分析本发明制备的NiCo2O4@碳纳米管复合材料的物相,采用投射电子显微镜(TEM)表征本发明制备的NiCo2O4@碳纳米管复合材料的微观结构,采用电化学工作站来测试本发明制备的NiCo2O4@碳纳米管复合材料的电化学性能,可知本发明成功制备出了具有较高的比电容值和良好的电化学性能稳定性的NiCo2O4@碳纳米管复合材料。
附图说明
图1是实施方式一制备的NiCo2O4@碳纳米管复合材料的XRD曲线图,证实制备的NiCo2O4@碳纳米管复合材料含有NiCo2O4物相和碳纳米管物相。
图2是实施方式一制备的NiCo2O4@碳纳米管复合材料的TEM图,通过图2可知本发明制备的NiCo2O4@碳纳米管复合材料形成了NiCo2O4填充碳纳米管的结构。
图3是实施方式一制备的NiCo2O4@碳纳米管复合材料在电流密度为2A/g的恒流充放电曲线和循环稳定性能图,通过图3可知本发明制备的NiCo2O4@碳纳米管复合材料第998~1000循环充放电曲线和保持了第1~3循环充放电曲线特性;第1循环的比电容值为1082.8F/g,经过1000次循环后为1067.2 F/g,仍保持98.5%以上的比电容值。
具体实施方式
下面是结合具体实施例,进一步阐述本发明。这些实施例仅用于说明本发明,但不用来限制本发明的范围。
具体实施方式一:一种NiCo2O4@碳纳米管复合电极材料的制备方法:将10 mg碳纳米管溶于60 ml二甘醇中超声分散60 min,然后加入1.5 mmol Ni(NO3)2·6H2O和3 mmol Co(NO3)2·6H2O,在80 ℃下充分搅拌均匀后逐滴加入9 mmol NH3·H2O得到混合溶液;将所述混合溶液移入反应釜,置换CO2,置换之后将CO2的压强调到0.05 MPa;将反应釜放进烘箱中,设置温度为160 ℃,反应时间为24 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,在300℃煅烧2 h得到NiCo2O4@碳纳米管复合材料。
具体实施方式二:一种NiCo2O4@碳纳米管复合电极材料的制备方法:将20 mg碳纳米管溶于60 ml二甘醇中超声分散60 min,然后加入1.5 mmol Ni(NO3)2·6H2O和3 mmol Co(NO3)2·6H2O,在80 ℃下充分搅拌均匀后逐滴加入13.5 mmol NH3·H2O得到混合溶液;将所述混合溶液移入反应釜,置换CO2,置换之后将CO2的压强调到0.05 MPa;将反应釜放进烘箱中,设置温度为200 ℃,反应时间为18 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,在300℃煅烧2 h得到NiCo2O4@碳纳米管复合材料。
具体实施方式三:一种NiCo2O4@碳纳米管复合电极材料的制备方法:将10 mg碳纳米管溶于60 ml二甘醇中超声分散60 min,然后加入1.5 mmol Ni(NO3)2·6H2O和3 mmol Co(NO3)2·6H2O,在80 ℃下充分搅拌均匀后逐滴加入4.5 mmol NH3·H2O得到混合溶液;将所述混合溶液移入反应釜,置换CO2,置换之后将CO2的压强调到0.1 MPa;将反应釜放进烘箱中,设置温度为240 ℃,反应时间为10 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,在300℃煅烧2 h得到NiCo2O4@碳纳米管复合材料。
具体实施方式四:一种NiCo2O4@碳纳米管复合电极材料的制备方法:将30 mg碳纳米管溶于60 ml二甘醇中超声分散60 min,然后加入1.5 mmol Ni(NO3)2·6H2O和3 mmol Co(NO3)2·6H2O,在80 ℃下充分搅拌均匀后逐滴加入9 mmol NH3·H2O得到混合溶液;将所述混合溶液移入反应釜,置换CO2,置换之后将CO2的压强调到0.1 MPa;将反应釜放进烘箱中,设置温度为160 ℃,反应时间为10 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,在300℃煅烧2 h得到NiCo2O4@碳纳米管复合材料。
具体实施方式五:一种NiCo2O4@碳纳米管复合电极材料的制备方法:将20 mg碳纳米管溶于60 ml二甘醇中超声分散60 min,然后加入1.5 mmol Ni(NO3)2·6H2O和3 mmol Co(NO3)2·6H2O,在80 ℃下充分搅拌均匀后逐滴加入9 mmol NH3·H2O得到混合溶液;将所述混合溶液移入反应釜,置换CO2,置换之后将CO2的压强调到0.075 MPa;将反应釜放进烘箱中,设置温度为220 ℃,反应时间为15 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,在300℃煅烧2 h得到NiCo2O4@碳纳米管复合材料。

Claims (3)

1.一种NiCo2O4@碳纳米管复合材料的制备方法,其特征在于,由以下步骤组成:将碳纳米管溶于二甘醇中超声分散60 min,然后按Ni2+/Co2+摩尔比为1:2加入Ni(NO3)2·6H2O和Co(NO3)2·6H2O,在80 ℃下充分搅拌均匀后逐滴加入一定量的NH3·H2O得到混合溶液;将所述混合溶液移入反应釜,置换CO2,置换之后将CO2的压强调到0.05~0.1 MPa;将反应釜放进烘箱中,设置温度为160~240 ℃,反应时间为10~24 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,在300℃煅烧2 h得到NiCo2O4@碳纳米管复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述加入的Ni(NO3)2·6H2O和Co(NO3)2·6H2O,其中Ni2+和Co2+的总浓度为0.1~1.0 mol/L。
3.根据权利要求1所述的制备方法,其特征在于,NH3·H2O与所述加入的硝酸盐总的物质的量的比为1:1~3:1。
CN201610853991.7A 2016-09-28 2016-09-28 一种NiCo2O4@碳纳米管复合材料的制备方法 Expired - Fee Related CN106328393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610853991.7A CN106328393B (zh) 2016-09-28 2016-09-28 一种NiCo2O4@碳纳米管复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610853991.7A CN106328393B (zh) 2016-09-28 2016-09-28 一种NiCo2O4@碳纳米管复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN106328393A CN106328393A (zh) 2017-01-11
CN106328393B true CN106328393B (zh) 2018-05-25

Family

ID=57820643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610853991.7A Expired - Fee Related CN106328393B (zh) 2016-09-28 2016-09-28 一种NiCo2O4@碳纳米管复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106328393B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110858640B (zh) * 2018-08-22 2022-02-18 天津大学 碳纳米管/钴酸镍锂离子电池负极材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255622B1 (ko) * 2014-12-16 2021-05-25 한국과학기술원 리튬을 이용한 금속 산화물이 재배열된 나노 결정의 에너지 저장 장치 및 이를 이용한 슈퍼커패시터
CN105161313B (zh) * 2015-07-14 2017-12-12 中国计量大学 一种钴酸镍/碳纳米管复合材料的制备方法

Also Published As

Publication number Publication date
CN106328393A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
Shi et al. 3D interpenetrating assembly of partially oxidized MXene confined Mn–Fe bimetallic oxide for superior energy storage in ionic liquid
Cheng et al. Template fabrication of amorphous Co2SiO4 nanobelts/graphene oxide composites with enhanced electrochemical performances for hybrid supercapacitors
Xie et al. Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method
Niu et al. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors
Paulose et al. Nanostructured nickel oxide and its electrochemical behaviour—A brief review
CN105161313B (zh) 一种钴酸镍/碳纳米管复合材料的制备方法
Liu et al. Facile synthesis of Fe2O3 nano-dots@ nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte
Ma et al. Nickel cobalt hydroxide@ reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability
Sun et al. One-step synthesis of 3D network-like Ni x Co1–x MoO4 porous Nanosheets for high performance battery-type hybrid supercapacitors
Chen et al. Hierarchical CoMn-layered double hydroxide nanowires on nickel foam as electrode material for high-capacitance supercapacitor
Zhang et al. Three-dimensional Co3O4 nanowires@ amorphous Ni (OH) 2 ultrathin nanosheets hierarchical structure for electrochemical energy storage
Kim et al. Redox deposition of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes
Wang et al. Facile synthesis of reduced graphene oxide/NiMn2O4 nanorods hybrid materials for high-performance supercapacitors
Huang et al. Facilely synthesized porous ZnCo 2 O 4 rodlike nanostructure for high-rate supercapacitors
Yang et al. All-solid-state high-energy asymmetric supercapacitors enabled by three-dimensional mixed-valent MnO x nanospike and graphene electrodes
CN105129871B (zh) 一种NiCo2S4/碳纳米管复合材料的制备方法
Fahimi et al. Fabrication of ZnO@ C foam: A flexible free-standing electrode for energy storage devices
Foo et al. High-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materials
Raj et al. Ultrasound assisted formation of Mn2SnO4 nanocube as electrodes for high performance symmetrical hybrid supercapacitors
Miao et al. Electrochemical performance of an asymmetric coin cell supercapacitor based on marshmallow-like MnO2/carbon cloth in neutral and alkaline electrolytes
Zhu et al. Low-charge-carrier-scattering three-dimensional α-MnO2/β-MnO2 networks for ultra-high-rate asymmetrical supercapacitors
Samanta et al. Flower-shaped self-assembled Ni0. 5Cu0. 5Co2O4 porous architecture: a ternary metal oxide as a high-performance charge storage electrode material
Zhao et al. Facile synthesis of Co (OH) 2/Al (OH) 3 nanosheets with improved electrochemical properties for asymmetric supercapacitor
Chen et al. Cobalt oxides nanorods arrays as advanced electrode for high performance supercapacitor
Zhang et al. Ultrahigh capacitance of TiO2 nanotube arrays/C/MnO2 electrode for supercapacitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180411

Address after: 310018 Jianggan District University of education, Zhejiang, Hangzhou Province, China University of metrology, 258

Applicant after: China Jiliang University

Address before: Hangzhou City, Zhejiang province 310018 Jianggan District Xiasha Higher Education Park source Street No. 258

Applicant before: Xu Jingcai

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180525

Termination date: 20210928