CN105161313B - 一种钴酸镍/碳纳米管复合材料的制备方法 - Google Patents

一种钴酸镍/碳纳米管复合材料的制备方法 Download PDF

Info

Publication number
CN105161313B
CN105161313B CN201510411067.9A CN201510411067A CN105161313B CN 105161313 B CN105161313 B CN 105161313B CN 201510411067 A CN201510411067 A CN 201510411067A CN 105161313 B CN105161313 B CN 105161313B
Authority
CN
China
Prior art keywords
solution
cobalt acid
acid nickel
preparation
composite materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510411067.9A
Other languages
English (en)
Other versions
CN105161313A (zh
Inventor
徐靖才
王新庆
王攀峰
洪波
彭晓领
金红晓
金顶峰
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201510411067.9A priority Critical patent/CN105161313B/zh
Publication of CN105161313A publication Critical patent/CN105161313A/zh
Application granted granted Critical
Publication of CN105161313B publication Critical patent/CN105161313B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

一种钴酸镍/碳纳米管复合材料的制备方法,它涉及一种碳纳米管负载纳米颗粒钴酸镍的制备方法,包括步骤:将Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于二甘醇中,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;将NaOH和碳纳米管溶于二甘醇中,超声分散形成溶液B;将所述溶液B逐滴加入到溶液A中得到混合溶液;将所述混合溶液在80℃下充分搅拌均匀,移入反应釜,置换CO2,置换之后将CO2的压强调到10MPa;将反应釜放进油浴锅中,设置搅拌速率为400r/min,温度为140~220℃,反应时间为4~10h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到钴酸镍/碳纳米管复合材料。本发明方法对碳纳米管的结构几乎没有破坏、操作简单、环境友好、不需煅烧可在溶液中直接得到产物;所获得的钴酸镍/碳纳米管复合材料用于超级电容器电极时具有较高的比电容值和良好的电化学性能稳定性。

Description

一种钴酸镍/碳纳米管复合材料的制备方法
技术领域
本发明涉及复合材料领域,具体涉及一种碳纳米管负载纳米钴酸镍的制备方法。
背景技术
近年来,超级电容器因其具有高功率密度、充电短时间和循环寿命长等诸多优点,广泛用于通信,航空航天,大型工业装备,微电子器件等诸多等要求瞬间释放超大电流的场合,尤其是在新能源汽车领域有着广阔的应用前景。电极材料是影响超级电容器性能的关键因素,以RuO2等贵金属氧化物因其赝电容原理有较大的比电容值,但昂贵的价格和毒性限制了其商业化应用。一些廉价金属氧化物代替贵金属作为超级电容器电极材料成为研究热点。钴酸镍(NiCo2O4)是一种典型的尖晶石结构复合金属氧化物,存在Co3+/Co2+及Ni3+/Ni2 +氧化还原电对,可以获得较高的工作电压窗口和比电容值,同时因其廉价无毒表现为极具潜力的电极材料,因此不同结构、形态、尺寸的NiCo2O4的制备受到了众多研究人员的关注(如CN102259936B; CN102092797B; CN102745752A; CN103107025A; CN103594246A;CN103318978B; CN104003455B; CN104659358A)。然而与贵金属氧化物相比,NiCo2O4由于其导电性较差,导致比电容偏低,在大电流密度下充循环冲放电不够稳定。因此,人们考虑将NiCo2O4与碳材料或导电聚合物进行复合来提高材料的导电性,以达到增强其电化学性能的目的(如CN103117389B; CN104143450A)。
碳纳米管(CNTs)具有特殊的一维中空的纳米结构,它主要由呈六边形排列的碳原子构成的单层或数层的同轴圆管构成,具有优良的耐热、耐腐蚀、耐冲击性能,而且传热和导电性能好,使其有制备大容量超级电容器的潜在优势。但CNTs单独作为超级电容器电极材料比电容值过低,一般只有40F/g。鉴于过渡氧化物和碳纳米管之间的互补性,通常考虑将其复合,使该复合产物既具有赝电容特性,又具有双电层特性,从而制备出具有高比电容、高导电率、循环充放电稳定的超级电容器电极材料。Leela等(Asymmetric FlexibleSupercapacitor Stack, Nonoscale Research Letters, 2008)利用溶胶凝胶法制备金属氧化物/多壁碳纳米管复合电极材料,表现出优异的电化学性能,但溶胶凝胶法加入表面活性剂,容易引入杂质,而且成本较高;Kuan等(Electrodeposition of Nickel and CobaltMixed Oxide/Carbon Nanotube Thin Films and Their Charge Storage Properties,J. Electorchem. soc., 2006)、Fan等(Preparation and capacitive properties ofcobalt-nickel oxides/carbon nanotube coposites,Electrochim. Acta. 2007)和Wen等(A three dimensional vertically aligned multiwall carbon nanotube-NiCo2O4core-shell structure for novel high-performance supercapacitors, J. Mater.Chem. A, 2014)利用电化学沉积方法制备了钴镍氧化物/碳纳米管复合材料,该方法反应时间长,耗能高;中国专利(CN1315139C)提供了一种碳纳米管与过渡氧化物复合的途径,利用粘结剂把碳纳米管和过渡金属氧化物复合,粘结剂的加入会增加材料的内阻,不利于该复合材料作为超级电容器电极材料。
发明内容
本发明的目的是提供一种钴酸镍/碳纳米管复合纳米电极材料的制备方法,该方法可以提高超级电容器电极材料的比电容和循环充放电稳定性。
为了实现上述目的,本发明提供一种钴酸镍/碳纳米管复合材料的制备方法,其特征在于,具体包括以下步骤:将Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于二甘醇中,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;将NaOH和碳纳米管溶于二甘醇中,超声分散形成溶液B;将所述溶液B逐滴加入到溶液A中得到混合溶液;将所述混合溶液在80℃下充分搅拌均匀,移入反应釜,置换CO2,置换之后将CO2的压强调到10MPa;将反应釜放进油浴锅中,设置搅拌速率为400r/min,温度为140~220℃,反应时间为4~10h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到钴酸镍/碳纳米管复合材料。
本发明优点:一、本发明没有用强氧化剂处理碳纳米管,对碳纳米管的结构几乎没有破坏;二、本发明操作简单、环境友好、不需煅烧可在溶液中直接得到产物;三、所获得的钴酸镍/碳纳米管复合材料用于超级电容器电极时具有较高的比电容值和良好的电化学性能稳定性。
本发明采用X射线衍射技术(XRD)分析本发明制备的钴酸镍/碳纳米管复合纳米材料的物相,采用投射电子显微镜(TEM)表征本发明制备的钴酸镍/碳纳米管复合纳米材料的微观结构,采用电化学工作站来测试本发明制备的钴酸镍/碳纳米管复合材料的电化学性能,可知本发明成功制备出了具有较高的比电容值和良好的电化学性能稳定性的钴酸镍/碳纳米管复合材料。
附图说明
图1是实施方式一制备的钴酸镍/碳纳米管复合材料的XRD曲线图,证实制备的钴酸镍/碳纳米管复合材料含有钴酸镍物相和碳纳米管物相。
图2是实施方式一制备的钴酸镍/碳纳米管复合材料的TEM图,通过图2可知本发明制备的钴酸镍/碳纳米管复合材料形成了钴酸镍包覆碳纳米管的结构。
图3是实施方式一制备的钴酸镍/碳纳米管复合材料的循环伏安曲线图,通过图3可知本发明制备的钴酸镍/碳纳米管复合材料表现出良好的循环伏安特性和Co3+/Co2+及Ni3 +/Ni2+氧化还原峰。
图4是实施方式一制备的钴酸镍/碳纳米管复合材料的恒流充放电曲线图,通过图4可知本发明制备的钴酸镍/碳纳米管复合材料在电流密度为1A/g、2A/g、4A/g、10A/g下的比电容值分别问938.8F/g、880F/g、820.8F/g、720F/g。
图5是实施方式一制备的钴酸镍/碳纳米管复合材料的循环稳定性能图,通过图5可知本发明制备的钴酸镍/碳纳米管复合材料在10A/g电流密度下经过1000次循环仍保持97%以上的比电容值。
具体实施方式
下面是结合具体实施例,进一步阐述本发明。这些实施例仅用于说明本发明,但不用来限制本发明的范围。
具体实施方式一:一种钴酸镍/碳纳米管复合纳米磁性材料的制备方法,具体是按以下步骤完成的:将1.5mmol Ni(NO3)2·6H2O和3mmol Co(NO3)2·6H2O溶于20ml的二甘醇中,80℃下搅拌至溶解,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;将9mmol NaOH和30mg碳纳米管溶于40ml二甘醇中,80℃下超声分散30min,形成溶液B;将所述溶液B逐滴加入到溶液A中得到混合溶液;将所述混合溶液在80℃下充分搅拌均匀,移入反应釜,置换CO2,置换之后将CO2的压强调到10MPa;将反应釜放进油浴锅中,设置搅拌速率为400r/min,温度为200℃,反应时间为8h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到钴酸镍/碳纳米管复合材料。
具体实施方式二:一种钴酸镍/碳纳米管复合纳米磁性材料的制备方法,具体是按以下步骤完成的:将1.5mmol Ni(NO3)2·6H2O和3mmol Co(NO3)2·6H2O溶于10ml的二甘醇中,80℃下搅拌至溶解,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;将7mmol NaOH和30mg碳纳米管溶于20ml二甘醇中,80℃下超声分散30min,形成溶液B;将所述溶液B逐滴加入到溶液A中得到混合溶液;将所述混合溶液在80℃下充分搅拌均匀,移入反应釜,置换CO2,置换之后将CO2的压强调到10MPa;将反应釜放进油浴锅中,设置搅拌速率为400r/min,温度为200℃,反应时间为8h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到钴酸镍/碳纳米管复合材料。
具体实施方式三:一种钴酸镍/碳纳米管复合纳米磁性材料的制备方法,具体是按以下步骤完成的:将1.5mmol Ni(NO3)2·6H2O和3mmol Co(NO3)2·6H2O溶于20ml的二甘醇中,80℃下搅拌至溶解,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;将9mmol NaOH和60mg碳纳米管溶于40ml二甘醇中,80℃下超声分散30min,形成溶液B;将所述溶液B逐滴加入到溶液A中得到混合溶液;将所述混合溶液在80℃下充分搅拌均匀,移入反应釜,置换CO2,置换之后将CO2的压强调到10MPa;将反应釜放进油浴锅中,设置搅拌速率为400r/min,温度为200℃,反应时间为8h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到钴酸镍/碳纳米管复合材料。
具体实施方式四:一种钴酸镍/碳纳米管复合纳米磁性材料的制备方法,具体是按以下步骤完成的:将1.5mmol Ni(NO3)2·6H2O和3mmol Co(NO3)2·6H2O溶于20ml的二甘醇中,80℃下搅拌至溶解,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;将9mmol NaOH和60mg碳纳米管溶于40ml二甘醇中,80℃下超声分散30min,形成溶液B;将所述溶液B逐滴加入到溶液A中得到混合溶液;将所述混合溶液在80℃下充分搅拌均匀,移入反应釜,置换CO2,置换之后将CO2的压强调到10MPa;将反应釜放进油浴锅中,设置搅拌速率为400r/min,温度为140℃,反应时间为10h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到钴酸镍/碳纳米管复合材料。
具体实施方式五:一种钴酸镍/碳纳米管复合纳米磁性材料的制备方法,具体是按以下步骤完成的:将1.5mmol Ni(NO3)2·6H2O和3mmol Co(NO3)2·6H2O溶于20ml的二甘醇中,80℃下搅拌至溶解,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;将9mmol NaOH和60mg碳纳米管溶于40ml二甘醇中,80℃下超声分散30min,形成溶液B;将所述溶液B逐滴加入到溶液A中得到混合溶液;将所述混合溶液在80℃下充分搅拌均匀,移入反应釜,置换CO2,置换之后将CO2的压强调到10MPa;将反应釜放进油浴锅中,设置搅拌速率为400r/min,温度为220℃,反应时间为4h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到钴酸镍/碳纳米管复合材料。

Claims (4)

1.一种钴酸镍/碳纳米管复合材料的制备方法,其特征在于,由以下步骤组成:将Ni(NO3)2·6H2O和Co(NO3)2·6H2O溶于二甘醇中,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;将NaOH和碳纳米管溶于二甘醇中,超声分散形成溶液B;将所述溶液B逐滴加入到溶液A中得到混合溶液;将所述混合溶液在80℃下充分搅拌均匀,移入反应釜,置换CO2,置换之后将CO2的压强调到10MPa;将反应釜放进油浴锅中,设置搅拌速率为400r/min,温度为140~220℃,反应时间为4~10h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,80℃烘干得到钴酸镍/碳纳米管复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述的混合金属溶液A中,Ni2+和Co2+的总浓度为0.1~1.0mol/L。
3.根据权利要求1所述的制备方法,其特征在于,NaOH在所述溶液B中的浓度为0.1~1.0mol/L,NaOH与所述的混合金属溶液A中Ni2+和Co2+的总的物质的量的比为1.5~2:1。
4.根据权利要求1所述的制备方法,其特征在于,碳纳米管加入的量为钴酸镍理论重量的5~50%。
CN201510411067.9A 2015-07-14 2015-07-14 一种钴酸镍/碳纳米管复合材料的制备方法 Expired - Fee Related CN105161313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510411067.9A CN105161313B (zh) 2015-07-14 2015-07-14 一种钴酸镍/碳纳米管复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510411067.9A CN105161313B (zh) 2015-07-14 2015-07-14 一种钴酸镍/碳纳米管复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN105161313A CN105161313A (zh) 2015-12-16
CN105161313B true CN105161313B (zh) 2017-12-12

Family

ID=54802136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510411067.9A Expired - Fee Related CN105161313B (zh) 2015-07-14 2015-07-14 一种钴酸镍/碳纳米管复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN105161313B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531457B (zh) * 2016-08-23 2018-10-23 宁波中车新能源科技有限公司 一种超级电容器用NiCo2O4/碳纳米管复合电极材料
CN106328393B (zh) * 2016-09-28 2018-05-25 中国计量大学 一种NiCo2O4@碳纳米管复合材料的制备方法
CN106992078A (zh) * 2017-03-02 2017-07-28 同济大学 多孔碳/二元过渡金属氧化物微球材料的制备方法
CN108376614B (zh) * 2018-03-01 2019-09-27 中国计量大学 一种NiCo2O4/碳纳米管复合电极材料及其制备方法
CN108615904B (zh) * 2018-04-13 2021-05-14 广东石油化工学院 一种钴酸镍空心球/氮化碳量子点复合材料及其制备方法和应用
CN109557161A (zh) * 2019-01-03 2019-04-02 河北工业大学 一种钴酸镍/碳化钛复合材料的制备方法及其应用
CN109841812B (zh) * 2019-01-25 2022-05-24 四川师范大学 一种三明治结构的三元钴酸镍锂离子电池负极材料及其制备方法
CN110272036B (zh) * 2019-05-13 2021-03-23 中山大学 一种磁性物质掺杂的多壁碳纳米管的制备方法及其制备的多壁碳纳米管
CN112599348B (zh) * 2020-12-09 2022-03-22 中国计量大学 一种同轴磁纳米电缆的制备方法
CN113201747A (zh) * 2021-03-26 2021-08-03 广州费舍尔人工智能技术有限公司 一种磷改性钴酸镍修饰碳纳米管电极催化剂

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"A study of the electrical properties of carbon nanotube-NiFe2O4 composites: Effect of the surface treatment of the carbon nanotubes";Yangqiao Liu等;《Carbon》;20040925;第43卷(第1期);第47-52页 *
"Hierarchical NiCo2O4 nanosheet-decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation";Hui Cheng等;《Journal of Materials Chemistry A》;20150709;第3卷(第38期);第19314-19321页 *
"Magnetic CoFe2O4/carbon nanotubes composites: fabrication, microstructure and magnetic response";Panfeng Wang等;《Modern Physics Letters B》;20140516;第28卷(第12期);第1450095:1-9页 *
"Multi-walled carbon nanotubes supported nickel ferrite: A magnetically recyclable photocatalyst with high photocatalytic activity on degradation of phenols";Pan Xiong等;《Chemical Engineering Journal》;20120511;第195-196卷;第149-157页 *
"Nickel Cobalt Oxide-Single Wall Carbon Nanotube Composite Material for Superior Cycling Stability and High-Performance Supercapacitor Application";Xu Wang等;《JOURNAL OF PHYSICAL CHEMISTRY C》;20120517;第116卷(第23期);第12448-12454页 *

Also Published As

Publication number Publication date
CN105161313A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
CN105161313B (zh) 一种钴酸镍/碳纳米管复合材料的制备方法
Li et al. Ruthenium based materials as electrode materials for supercapacitors
Venkatachalam et al. Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications
Wang et al. Enhancing the performance of a battery–supercapacitor hybrid energy device through narrowing the capacitance difference between two electrodes via the utilization of 2D MOF-Nanosheet-derived Ni@ nitrogen-doped-carbon Core–Shell rings as both negative and positive electrodes
Chen et al. Ternary oxide nanostructured materials for supercapacitors: a review
Ma et al. Nickel cobalt hydroxide@ reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability
Wu et al. Fe 3 O 4-based core/shell nanocomposites for high-performance electrochemical supercapacitors
Sun et al. One-step synthesis of 3D network-like Ni x Co1–x MoO4 porous Nanosheets for high performance battery-type hybrid supercapacitors
Zhou et al. Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor
Xu et al. Design of the seamless integrated C@ NiMn-OH-Ni3S2/Ni foam advanced electrode for supercapacitors
Long et al. A facile and large-scale synthesis of NiCo-LDHs@ rGO composite for high performance asymmetric supercapacitors
CN105129871B (zh) 一种NiCo2S4/碳纳米管复合材料的制备方法
Dong et al. The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors
Zhang et al. One-pot synthesis of γ-MnS/reduced graphene oxide with enhanced performance for aqueous asymmetric supercapacitors
Fan et al. Facile synthesis of Co3O4 nanowires grown on hollow NiO microspheres with superior electrochemical performance
Luo et al. Three-dimensional enoki mushroom-like Co3O4 hierarchitectures constructed by one-dimension nanowires for high-performance supercapacitors
Zhang et al. Design, synthesis and evaluation of three-dimensional Co3O4/Co3 (VO4) 2 hybrid nanorods on nickel foam as self-supported electrodes for asymmetric supercapacitors
Raj et al. Ultrasound assisted formation of Mn2SnO4 nanocube as electrodes for high performance symmetrical hybrid supercapacitors
Zhang et al. Manganese hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: facile synthesis, characterization and application to high performance supercapacitors
Jiang et al. Hybrid α-Fe2O3@ Ni (OH) 2 nanosheet composite for high-rate-performance supercapacitor electrode
Xie et al. Electronic structure and electrochemical performance of CoS2/MoS2 nanosheet composite: simulation calculation and experimental investigation
Li et al. Facile synthesis of Co3P2O8· 8H2O for high-performance electrochemical energy storage
Shakir et al. Ultra-thin and uniform coating of vanadium oxide on multiwall carbon nanotubes through solution based approach for high-performance electrochemical supercapacitors
CN104979103A (zh) 一种螺旋线形非对称超级电容器制备方法
Xing et al. NiMoO4@ Ni3S2 core–shell composites grown in situ on nickel foam for applications in supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20171116

Address after: Hangzhou City, Zhejiang Province, Jianggan District Xiasha 310018 source Street No. 258 University Chinese measurement

Applicant after: CHINA JILIANG UNIVERSITY

Address before: Hangzhou City, Zhejiang Province, Jianggan District Xiasha 310018 source Street No. 258

Applicant before: Xu Jingcai

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171212

Termination date: 20210714

CF01 Termination of patent right due to non-payment of annual fee