TW447183B - Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks - Google Patents

Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks Download PDF

Info

Publication number
TW447183B
TW447183B TW088114962A TW88114962A TW447183B TW 447183 B TW447183 B TW 447183B TW 088114962 A TW088114962 A TW 088114962A TW 88114962 A TW88114962 A TW 88114962A TW 447183 B TW447183 B TW 447183B
Authority
TW
Taiwan
Prior art keywords
item
scope
substrate
layer
patent application
Prior art date
Application number
TW088114962A
Other languages
English (en)
Inventor
Coman Carrie Carter
R Scott Kern
Fred A Kish Jr
Michael R Krames
Arto V Nurmikko
Original Assignee
Lumileds Lighting Us Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumileds Lighting Us Llc filed Critical Lumileds Lighting Us Llc
Application granted granted Critical
Publication of TW447183B publication Critical patent/TW447183B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • H01L33/105Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector with a resonant cavity structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • H01L33/465Reflective coating, e.g. dielectric Bragg reflector with a resonant cavity structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0215Bonding to the substrate
    • H01S5/0216Bonding to the substrate using an intermediate compound, e.g. a glue or solder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0217Removal of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/1838Reflector bonded by wafer fusion or by an intermediate compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/977Thinning or removal of substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

44718 3 A7 B7 <?0 r 經濟部智慧財產局員工消費合作社印製 五、發明說明(1)
MjtA盡邦赞助研究舆發屐針割下之;at利的簦明 本發明係為依國防先進研究計劃屬(DARPA)所授與之 第MDA972-96-3-0014號合約,在政府的支持下所完成者。 聯邦政府對於本發明享有某些權利。 發明领域 本發明係關於特別有關對於AlxGayInzN元件之兩侧提 供向品質反射表面之光發射領域β 背景 一垂直空腔光電子結構由一插入封閉層的發光層所形 成的主動區域所構成’該封閉層可被摻雜、未被摻雜或含 有一 ρ-η接合面。該結構亦包含至少一面在垂直於發光層 之方向上形成Fabry-Perot空腔之反射鏡。在 GaN/AlxGaylrizN/AlxGahNC其中在 AlxGayInzN 中 x+y+z=l, 並且在AlxGa^N中X芸1)材料系統中製造垂直空腔光電子 結構會具有遠離其他瓜-V材料系統置放該結構之挑戰, 而難以生成具有高光學品質之AlxGayInzN結構。電流散布 對AlxGayInzN元件具有主要的利害關係。在p_型材料中之 橫向電流散布比在η-型材料中小〜30倍。此外,因為元件 為了達到最佳的散熱而需要被安裝成接合面朝下,故許多 基材之熱導率增加了元件設計的複雜性。 一種例如垂直空腔表面發射雷射(VCSEL)之垂直空腔 光電子結構要求尚品質的鏡子’例如99.5 %的反射率。一 本紙張K改過用中關家標準(CNS)A4規格(½ X 297公笼)' (請先閲讀背面之注意事項再填寫本頁) -裝--------訂--------- 4 經 濟 部J 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 A7 B7 五、發明說明(2) 種達至向品質鏡子之方法是透過半導體生成技術。為達到 適合VCSELs(>99%)之分佈布雷格反射器(DBRs)所需的高 反射率,對於半導體AlxGayInzN DBRs的生成會有重要的 材料問題,其係包括破裂與導電率。這些鏡子要求許多交 替的鋁銦鎵氮化物組成物(AlxGayInzN/Alx,Gay,Inz ’ N) 之節/層。與半導體DBRs相對照,介電DBRs(D-DBR)被相 地直接製造具有AlxGayItizN系統所跨的光譜範圍中超過 99%的反射率。這些鏡子典型地藉由蒸發或藏鐘技術而被 積’但MBE(分子束蠢晶 ’ molecu丨ar beam epitaxia丨)與 MOCVD(金屬-有機物化學氣相沉積,metal-organic chemical vapor deposition)亦可以被使用。然而,僅有主 動區域的一側可以使用D-DBR沉積,除非生長基材被移 除。右可st在A】xGayInzN動區域的兩側上結合與/或沉積 D-DBRs,則製造AlxGayInzN垂直空腔光電子結構會是更 加容易。 晶圓結合可以被分成兩個基本類別:直接晶圓結合以 及金屬晶圓結合。在直接晶圓結合中,兩晶圓經由於接合 界面處的質量傳送而被溶合在一起。直接晶圓結合可以在 半導體、氧化物及界電材料的任何組合間被執行。其通常 是在高溫(>4〇0°C)並在單軸壓力下被完成。—種合適的直 接晶圓結合技術被K1Sh等人在美國專利第5,5〇2,3〗6號中揭 露。在金屬晶圓結合中’-金屬層被沉積在兩結合基材之 間,以使其粘著。-金屬結合之例示為倒裝片接合,苴係 為-種使用在微粒與光電子工業中,以將—元件面朝;地
^--------^---------線------------- n I n i n n I I— n (請先閱讀背面之注意事項再填寫本頁) I 447183 A7 B7
Pc. ' r日修^ 丄/拗龙 ,.*1. ' 五/、發明說明(3) (請先閱讀背面之注意事項再填寫本頁) 附著至基材上之技術,該例示係被Yablonavitch等人揭露 於 1990年版 Applied Physics Letters 第 56冊第 2419-2421 頁 中。因為倒裝片接合被用來改善一元件的散熱性,基材之 移除會視元件結構,以及習慣上僅對導電與機械堅固的金 屬結合層之要求而定。 在Dudley於 1994年版之Applied Physics Letters第 64冊 No.12 第 1463-1465 頁中戶斤發表之 ’’Low threshold, wafer fused long wavelength vertical cavity lasers” 中教示,將 AlAs/GaAs半導體DBRs直接晶圓結合至垂直空腔結構之 一側上,而在Babic等人於1995年11月版之IEEE Photonics Technology Letters 第 7 冊 No.ll 中所發表的”Room-Temperature Continuous-Wave Operation of 1.54 β m Vertical-Cavity Lasers”中教示直接晶圓結合半導體DBRs 至InGaAsP VCSEL的兩側上,以使用在AlAs/GaAs之間大 的折射率變化。如將會說明者,晶圓接合D-DBRs至 AlxGayInzN比半導體至半導體晶圓結合更複雜許多,並在 此技藝中先前並不知曉。 經濟部智慧財產局員工消費合作社印製 在Clma等人於1994年12月版之IEEE Photonics Technology Letters 第 5 冊 No. 12 中所發表的 ”Dielectrically-B在使用應變補償多重量子井之GaAs上介電結合長波長垂 直空腔雷射”揭露AlAs/GaAs半導體DBRs藉由旋塗式玻璃 層而與InGaAsP雷射連結"旋塗式玻璃對於在主動層與 DBR之間的VCSEL中之結合並不是一種適合的材料,因 為難以控制旋塗式玻璃精確的厚度,因而對於VCSEL空 本紙張尺度適用中固國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印*)衣 -—__B7 &本1曰修正/更正/補》 五、發明說明(4) 腔所需要的臨界層控制無效。此外,玻璃的性質會是非均 一性’而造成在空腔中的散射與其他損失。 具有足夠VCSEL用之反射率’例如;>99%之半導體DBR 鏡子之AlxGai_xN/GaN對的光學鏡子生成為困難者。參考 第1圖’反射率之理論計算建議達到所要求的高反射率, 一高指數對比被要求可以藉由增加低指數AlxGai xN層之 A1組成與/或藉由包括更多層節(取自Ambacher et ai.,MRS Internet Journal of Nitride Semiconductor Research, 2(22) 1997之材料性質)而被提供,這些方法招致重要的考驗。 若電流將會透過DBR層而被傳導,重要的是為導電 者。為了充分地傳導,AlxGa^N層必須被充分地摻雜。 除非AI組成被減少到對於Si(n-型)摻雜低於約50%以下, 而對於Mg(p-型)摻雜約2〇。/。以下,否則導電率不足夠。然 而’如第1圖所示’需要使用低八丨組成層而達到足夠的反 射率之層節數目要求大的AlxGai χΝ材料之總厚度,以增 加蟲晶層破裂的風險(由於在Α1Ν與GaN之間相對大的晶格 錯配合所造成)’並減少組成控制。實際上,第1圖之
Al.30Ga.70N/GaN積材早已是〜2.5#m厚,且與VCSEL之足 多句的反射率相差甚遠。因此,根據此層對之高反射率Dbr 要求顯著大於2.5 // m的總厚度,並且只要在A1N與GaN生 成條件之間與材料性質發生錯配合的情況下,便難以可靠 地生成。若層未被推雜’即使破裂未大到而成為—個問題, 級成控制與AlN/GaN生成溫度仍對生成高反射率DBRs造 成大考驗。因此’即使在DBRs不需要傳導電流的應用下, 本尺度通用τ國函取標单(cns)A.丨規格κ 297公釐 裝--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 447183 - A7 —. —___;__ B 如年厂月c曰修正/更正./補充 一— 五、發明說明(5) 在AlxGayInzN材料系統中具有反射率>99%之半導體鏡子 積材未被證實。為此原因,以介電體為主的〇]611鏡子為較 佳者。 總結 至少一鏡子積材,例如一介電分佈布雷格反射器(D_ DBR)或複合D-DBR/半導體DBR,插在一 A〗xGayInN主動 區域與一主基材之間。一晶圓結合界面被定置在主基材與 主動區域之間的某處^ —任意的中間結合屠與晶圓結合界 面相鄰,以適應於晶圓結合界面處的應變與熱係數錯配 合。一任意的鏡子積材相鄰於AlxGayinzN主動區域而被定 置。主基材或中間結合層因為順性而被選擇。 前述發明之一實施例由一具有被定置成與AlxGayI^N 主動區域相鄰之晶圓結合界面的元件所構成,該 AIxGayInzN主動區域在例如aiz〇3之犧牲基材上而被製 造。附著於主基材上之鏡子積材被直接晶圓結合至 AlxGayInzN主動區域上。接著,犧牲基材被移除。任意的 鏡子積材被附著至AlxGayInzN主動區域的頂部上。供附著 用之技術包括結合 '沉積及生成。電氣接點被加到化型與 P-型層上。 對於具有被定置成與主基材相鄰之晶圓結合界面之另 一替實施例,鏡子積材被附著在AlxGayInzN主動區域上。 若採用直接晶圓結合,被選擇而具有合適的機械性質之主 基材被晶圓結合至鏡子積材上。另—方面,金屬結合可以 本紙張尺度適用辛國國家標準 (CNS)A4規格(210 X 297公爱) <請先閱讀背面之注意事項再填寫本頁) -^--------^--------- 經濟部智慧財產局員工消費合作社印製 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(6) 被用來將主基材結合至鏡子積材上。犧牲基材被移除。一 任意的鏡子積材被附著在AlxGayInzN主動區域的頂部上。 電氣接點被加到η-型與p-型層上。在直接晶圓結合而得到 所欲性質的情況下’主基材之選擇是一個重要的教示。另 外的實施例包括在DBR之内定置晶圓結合界面。 «式之ffi短說明 第1圖例示理論反射率對AlN/GaN與A1 3〇Ga.7()N/GaN DBRs之波長。 第2圖例示本發明之較佳實施例。 第3 A-F圖圖示地描述對應本發明之流程圖。 第4 A-F圖圖示地描述對應本發明之另一個流程圖。 第5圖顯示在一被沉積在〇aN/Al203結構上之D-DBR 與一 GaP主基材間之直接晶圓結合界面的掃描式電子顯微 鏡(SEM)橫戴面圖。 第6圖顯不具有一被金屬結合至主基材上經沉積的d_ DBR主動區域的SEM橫截面圖。該基材已被移除且第二D_ DBR相對於第一 d-DBR已被沉積在AlxGayInzN之側邊上。 第7圖顯示來自第6圖所述之元件從400至5 〇〇nm的光 學發射光譜。其中典型的高峰描述垂直空腔結構。 圖式之詳細說明 介電分佈布雷格反射器(D-DBR)由低損失介電體之積 材對所構成,在此對材料的其中之一具有低折射率,而一 本紙冰、.‘艾適用申园國家標準ίΟ·»Λ丨規格(Π0 * 29:•公釐) -------------裝·-------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 9 經濟部智慧財產局員工消費合作钍印製 447 1 8 3 A7 ------— B7__年f月7曰修正/更正/補兔 五、發明說明(7) 具有高折射率。某些可能的介電DBR鏡子以與二氧化鈦 (Ti〇2)成對的二氧化外Si〇2)層為根據,:氧化錯(z叫、 氧化鈕(TaA)或氧化給(Hf〇i)可以達到藍色垂直空腔表面 發射雷射(VCSEL)所要求的高反射率,例如>99 5%,或是 共振空腔發光元件(RCLED)所要求者,例如〜6〇%或更高。 因為SiOVHfO2積材對可以被用來生產在35〇 5〇〇nm的波長 範圍中具有超過99〇/°的反射率之鏡子積材,故對Si02/Hf02 積材對具有特別的興趣。以Si〇2/Hf〇2之交替層所製成之 D-DBRS已顯出直至1050艽會具有機械穩定,而對之後的 處理提供挽曲度。 一較佳實施例顯示於第2圖中。在第2圖中,一第一鏡 子積材14’例如具有高反射率之DBR,被附著至一合適的 基材上β鏡子積材14可以由一種或多種下列之材料所構 成:介電體、半導體以及金屬。第一鏡子積材14被晶圓結 合至被生成於一犧牲基材上之AlxGayInzN主動區域18中的 頂部p-層18b上。AlxGayInzN垂直空腔光電子結構18已為 了在所欲之波長下具有高增益而被設計。晶圓結合界面16 必須具有非常低散射之極好的光學品質。晶圓結合界面16 可以包括一任意的中間結合層(未顯示)。一例如D-DBR(於 第2圖所示)之任意的第二鏡子積材20被附著至在相對於第 一鏡子積材14之一側上的AlxGayInzN垂直空腔光電子結構 18上。任意的第二鏡子積材20與A〗xGayInzNi動區域18之 η-與p-型ISa、18b層會被形成圖案並被蝕刻,以提供歐姆 接觸用之區塊。對於一 VCSEL,鏡子必須具有非常高的 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) . 裝--------訂---------"- (請先閱讀背面之注意事項再填寫本頁) 10 經濟部智慧財產局員工消費合作社印製 五、發明說明(8) 反射率>99%。對於一 rCled ’鏡子反射率之要求被放寬 (>60%) 〇 第2圖所示之另一種方法係為供欲被附著至 AlxGayInzN主動區域上之鏡子積材14之用。接著,晶圓結 合界面16接著位於鏡子積材14與主基材12之間。此結構亦 會具有一任意的第二鏡子積材2〇β欲連同第一或第二種方 法一起被使用之又另一種方法為在一或兩鏡子積材的令間 處具有一直接晶圓結合。數種晶圓結合界面1 6可能的配置 被顯示於第2圖中。 電流集中可以在η-型或ρ-型主動區域材料中藉由插入 一 A】xGayInzN層而被達成,其係可以被蝕刻與/或氧化,以 改善電流與光學限制,因而減少雷射門檻或改進元件效 率。當一D-DBR與/或未摻雜之半導體DBR被使用時’此 類層的合併是重要的,因為沒有電流透過它們而被傳導。 空腔根據接觸層所需的厚度而可以是單一或多重波長空 腔,以得到適合的低正向電壓。上述許多結構上的變化為 可能者。一相似的結構亦可以口—與^型材料轉換的方式而 被製造。 第4A-F圊圖示地描述對應本發明之一實施例的流程 圖。在第4A圖中,一AlxGayInzN主動區域在例如Al2〇3的 犧牲基材上被製造。在第4B圖中,一第一鏡子積材被附 著至一主基材上。供附著用之技術包括結合、沉積與生成。 在第4C圊中,該第一鏡子積材經由晶圓結合而被附著至 Al,GayInzN主動區域上。對於—VCSEL,直接晶圓結合鹿
褒--------訂---------線 (請先閱讀背面之注意事項再填寫本頁J 11 A471 8 3 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(9) 該被使用,因為具有低光學損失是重要的因素。在第4D 圖中,該犧牲基材被移除。在第4E圖中,任意的第二鏡 子積材被附著至AlxGayInzN主動區域的頂部上。在第仆圖 中,電氣接點被加到任意的第二鏡子積材或AlxGayInzNi 動區域上。形成圖案來界定元件面積並暴露接觸層亦可以 在處理流程_被執行。 第3A-F圖圖示地描述另一處理流程圖。在第3A圖中, 一 AlxGayInzN主動區域在—犧牲基材上方被生成。在第3B 圖中’該第一鏡子積材被附著至AlxGayInzN主動區域上。 在第3C圖中’ 一主基材經由直接晶圓結合或金屬結合而 被附著至第一鏡子積材上。因為晶圓結合是在光學空腔的 外部’由於晶圓結合所造成的損失較不重要。在第3D圖 中’該犧牲基材被移除。在第3E圖中,任意的第二鏡子 積材被附著至AlxGayInzN主動區域上。在第3F圖中,電氣 接點被加到任意的第二鏡子積材或AlxGayInzN主動區域 上°形成圖案來界定元件面積並暴露接觸層也可以在處理 流程中被執行。 供直接晶圓結合用之主基材的選擇是重要的,並被下 列數種性質所影響:質量傳送、順性、及應力/應變減緩。 該主基材可以選自一個包括磷化鎵(GaP)、砷化磷(GaAs)、 墙化铜(InP)、或矽(Si)之群組。對於si,基材較佳的厚度 在1000A與50 之間。 質量傳送在直接晶圓結合扮演一個重要的角色。在標 準瓜-V至ΙΠ-V的直接晶圓結合,或是至介電結合 本紙張尺度適用中國國家標準(CNS)A4規格(210 χ 297公釐) · . — - M,--------^---------岭、 (請先閱讀背面之注意事項再填寫本頁) 12 A7
五、發明說明(10) 中,至少一表面在足夠低來維護層品質的溫度下呈現顯著 的咸量傳送。相反地,AlxGayIl^N*大多數的介電材料在 與維持高In含量的AlxGayInzN主動區域之完整性—致的溫 度下(<1000。(:)不會進行顯著的質量傳送。在—種或兩種 結合材料中質量傳送的缺乏會阻礙晶圓的附著性。對於此 之模式是當兩種材料在結合溫度下皆呈現出顯著的質量傳 4兩種材料的結合可以跨越界面而重新排列成最強的 結合。當僅有一種材料呈現顯著的質量傳送時,僅此一種 材料的結合可與其他材料的表面結合對準。在此情況下, 難以形成具有高機械強度的晶圓結合。 順性是材料改變原子或巨觀級形狀而適應應力或應變 之能力。為了本發明之目的,順性被界定以籍由具有比結 5恤度低的熔點之材料,或在材料在低於結合溫度下具有 一可延展/脆化的變換之時,或於基材比〜⑼以爪薄時而被 達成。 寸於GaP、GaAs、及InP基材之標準羾_ v晶圓結合一 叙疋在400-1 〇〇〇°c的溫度下執行,於此溫度下兩種基材係 白為順性。至少一種結合材料的順性對於晶圓結合是必須 的,因為材料具有原有的表面粗糙度與/或缺乏微觀或巨 觀級上的平坦度。在looot:的溫度下’於N2環境下回火20 刀知的AlxGayInzN結構會造成約2〇%pl強度的減少。因 此,期望將結合溫度保持在1〇〇〇<t以下。在A12〇3基材上 生成以GaN為主的材料在低於1〇〇(rc的溫度下不為順性^ 用來製造供寬帶間隙半導體用之高反射率d_DBRs的介電 ⑤張尺度適用1*.,國$標iS. i 賴— ^--------t---------線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 297 13 447183 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(II) 材料在低於looot下典型為非順性。因此,結合/支撐基 材與/或中間結合在這些溫度下為順性是重要的。 熔點是一個判定材料順性之性質^例如,對於下列材 料,GaAs(丁m=15I0K)、GaP(Tm=175〇K)、以及 Inp (Tmi 1330K),可以瞭解順性的相對次序是Inp、GaAs、eap, 而InP是具有最大順性者。材料一般在低於熔點的溫度下 會進行可延展/脆性轉變.在高溫下這些材料的順性必須 以其中一元素的解吸附作用來被平衡。即使Inp在丨〇〇〇!>c 下為順性,但材料會在該溫度下劇烈地分解,其係因為磷 的解吸附作用的緣故《與此類材料之結合應該被限制在比 結合期間於周圍壓力下之解吸附作用溫度約兩倍的溫度 下。因此,材料之選擇必須與所要求的順性與結合溫度兩 者皆相容。 非常薄的基材也可以是順性。例如<5〇卩爪之薄梦為 順性,因為即使是在高曲度半徑處,若基材非常薄則應力 小。此技術對於具有高斷裂硬度之材料非常有用,例如砂 (U270N/mm2)或AlxGayInzN。然而,具有低斷裂硬度之材 料,例如GaAs(2500N/mm2)在操作期間容易斷裂。對於具 有厚度>50 # m的矽,即使小曲度半徑在材料中會造成高 應力’而使材料斷裂。相同的方式會應用到其他可能的基 材選擇物之材料上。 應力與應變之減緩是因為在生成於八丨2〇3上之GaN中 的高錯配合應力,以及在AlxGayInzN與其他最適合的基材 物質間的熱膨脹係數(CTE)而惡化。與其他被晶圓結合之 本紙張尺度適用中國國家標準(CNS)A4規格(210 >= 297公釐) I. ^ —^-------. 訂 ----—II__. (請先閱讀背面之注意事項再填寫本頁) 14 ' ---------年、月M修正/更£/補克 五、發明說明(I2) --------------裝--I (請先閱讀背面之注意事項再填寫本頁) 半導體材料對照’在AlxGayinzN與其他半導體材料之間的 CTE錯配合比較大;應力藉由沿著纖鋅礦材料之咖平面 之不同的CTE錯配合而被合成。在晶圓結合至不同基材
(GaAs CTE-5.8、GaP CTE=6.8、ΙηΡ=4.5χ ΙΟ.6/。。)上之GaN 中的應力(CTE=5.59,a-平面/3.17xi〇-6,c_平面/t)需要 以j部的應力緩減為條件,因為主基材的CTE錯配合應該 緊密地配合兩GaN平面之錯配合。此應力應該在順性材料 令或是藉由提供局部應力緩減,例如將至少一面結合界 面幵v成圖案之方式而被適應,該順性材料係於中間結合層 中疋軟的或在結合溫度下結合界面處為液體。中間結合層 選自個包括含有鹵化物(例如CaF2)、ZnO、銦(in)、錫 (Sn)、鉻(cr)、金(Au)、鎳(Ni)、銅(Cu)及—奵材料之合 金與介電體之群組。 -線- 經濟部智慧財產局員工消費合作社印製 電流分布對於以GaN為主的元件是另一個主要的關 聯。在p-形材料中的橫向電流分布為〜3〇χ,小於在心型材 料中的橫向電流分布。雖然在主動層之兩側上製造高反射 率的鏡子對於一良好的空腔是必須者,但橫向?_層電流分 布之問題會因為D-DBRs的絕緣本質而變得更嚴重。—種 在P-層中改進電流分布之方式是製造導電透明半導體之複 eDBR與"電積材。邊積材的半導體部分藉由增加層的 厚度而改善電流分布,而介電基材改進低半導體反射率, 而達到高於99%的總鏡子反射率。雖然因為n_型層具有較 向的導電度故不是很重要’但此相同的步驟可以被應用到 η-型鏡子上。 15 447183 A7 B7 年Γ月V日修正/更正/補充 經濟部智慧財產局員工消費合作社印製 五、發明說明(I3) 電流聚集層之加入會藉由僅將電流導入空腔中而進一 步改善電流分布,並且對於VCSEL會是必須的。該電流 聚集層可以被用到帶有或未帶有複合半導體/介電dbr之 垂直空腔光電子結構上,並且可以被加到一複合鏡子之半 導體部分中。雖然電流聚集層會被包括在封閉層之卜與心 層兩層中,但因為較低的導電度,故此在化封閉層中是最 有效的。 若一 D-DBR被附著到主動區域的兩侧上時,則支撑 基材為必要者’因為原本的主基材必須被移除。有數種用 以移除藍寶石基材的方法’該藍寶石典型被作為生長基 材。於下概述的方法僅為可以被用來移除生長基材之技術 的子集,該生長基材以可以是除了藍寶石以外之材料。 在雷射炫化中,一種由Wong, et al,與Kelley, et al.,所 揭露具有一波長係對於藍寶石基材會呈透明,但對於相鄰 於基材之半導體層則否之雷射的技術會照亮該結構的背面 (藍寶石侧)。雷射能量不能貫透相鄰的半導體層。若雷射 能量足夠’相鄰於藍寶石基材之半導體層會加熱到其分解 點。對於GaN是與藍寶石基材相鄰之層的情況,位於界面 處之層會分解成Ga與N,而留下在界面後的Ga。Ga金屬 接著會被熔化,並且藍寶石基材會被從該層結構的剩餘部 分上移除》相鄰於藍寶石基材之層的分解會視雷射能量、 波長、材料分解溫度、及材料吸收而定。藍寶石基材藉由 此種技術而被移除,而使得D-DBR能夠附著至主動區域 的其他側上。然而,重要的是,VCSEL界面有最小的損 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) . ,—· ί 裝--------訂. (請先閱讀背面之沒意事項再填寫本頁) 16 Λ A7 B7 五、發明說明(14) 耗(<0.5%)並非常的平滑,而使空腔的共振特性增加到最 大。此雷射溶化技術具有許多會使雷射界面缺乏VCSEL 需要的平坦度之設計變因。此外,VCSELs具有非常緊密 的厚度约束。有數種雷射可以被用來減缓這些問題之方 式。 與犧牲生長基材相鄰之層被界定成一犧牲層,若該層 的厚度會使其將因雷射而被完全地分解。在文獻(w〇ng,et al _)中所發表的結果表示將會被完全地分解的層厚度為 500人,但是此數值將根據雷射能量、雷射波長、及與基 材相W之層的吸收與材料分解溫度。相鄰於犧牲層為阻絕 層之層(相對於該基材)被選擇,其係為阻絕層,以具有較 高的分解溫度或在雷射波長下具有比犧牲層底的吸收。因 為阻纟e層具有較向的分解溫度或是低吸收,故其將會被雷 射能量大大地影響。在此結構中,犧牲層被雷射分解,而 在具有較高的分解溫度或較低的吸收的阻絕層處留下一陡 變界面"接著’該阻絕層亦可以被蝕刻、氧化與蝕刻,或 是使用具有不同能量與波長之雷射而分解。 較佳的層組合是 GaN/ALGahN、InGaN/AlxGaUx:N、 及InGaN/GaN。在GaN/AlxGaUxN組合的情況下,(}aN犧牲 層將會因雷射而分解,但AlxGa!xN阻絕層將不受到影響。 AlxGaNxN接著可以運用選擇性濕式化學蝕刻來被蝕刻 掉’以在平滑的AKGayInzN界面上停止。另—方面,若上 述的GaN層未被完全地分解’留下的GaN可以被蝕刻掉。 因為厚的緩衝層需要在GaN生成的開始,且VCSEL層界面 木纸豉尺度適用宁國舀家標準(CNS.m規烙公餐〉 裝--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 17 447183
經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(is) 主動區域結構被直接晶圓結合至Gap主基材上(參見第3C 圖)。在情形2中,DBR/AlxGayInzN主動區域結構經由一中 間CaF2層而被晶圓結合至一 Gap主基材上(第3C圖,在此 中間層未顯示)。在情形3中,D-DBR在一主基材(GaP)上 被沉積,並被直接晶圓結合至一 AlxGayInzN主動區域上(苐 4C圖)。對於情形1與3,經结合的面積比情形2小很多,因 為沒有使用中間層。第5圖顯示對於情形1結構之結合界面 的掃描式電子顯微鏡(SEM)橫載面影像。該界面平滑並且 在此倍率下未見到空隙。在情形4中,該DBR/AlxGayInzN 主動區域結構經由一層由CrAuNiCu合金所構成的金屬中 間層而被結合至一主基材上。第6圖顯示情形4的SEM橫截 面’藍寶石基材已經被移除’且一第二D-DBR在相對於 弟 D-DBR之AlxGayInzN主動區域的側邊上被沉積。對於 所有的元件,D-DBR積材為SiOVHfO2,並且藍寶石基材 使用雷射溶化技術被移除。第7圖顯示來自第6圖所述之元 件從4〇0-500nm的光學發射光譜。典型的高峰為一垂直空 腔結構之特徵。 元件標號對照表 12 主基材 14 第一鏡子積材 16 晶圓結合界面 18 AlxGayIn2N±動區域 18a η-型層 18b P-型層 20 第二鏡子積材 +氏&尸、度適用中國S家標準(CN.S).-\4現格公》〉 ---------------------訂--------I (請先閲讀背面之注意事項再填寫本頁) 19

Claims (1)

  1. 447183 A8 B8 C8 D8 經濟部智慧財產局員工消費合作杜印製
    六、申請專利範圍 第08S114962號專利申請案申請專利範圍修正本 修正曰期:90年5月 f彳%倏正/更正/補充 一種半導體發光元件,係包含 一基材; 一緊接著該基材而被設置之Α1χ(ϊ~ΙηζΝ結構 (叫’其係包括一卜型層、一p_型層' 及一主動層丨 一第一鏡子積材(14),其係被插置在該積材與該 AixGayInzN結構之一底部側之間; 一具有一結合溫度之晶圓結合界面(丨…,其係插 置在該第一鏡子積材與該基材與入丨山屮心队结構之其 中一者之間;以及 一 P與一 η接點(22a,22b),該p接點與卜型層電氣 地連接,該η接點與n-型層電氣地連接。 如申請專利範圍第丨項所述之元件,其係進一步包含: 至少一層尹間層,其係與該晶圓結合界面相鄰:以及 該中間結合層與該基材的其中一者被選擇以為順性。 如申請專利範圍第2項所述之元件,其中該Α1χ(3^ΙηζΝ 元件(18)為一垂直空腔光電子結構。 4. 如申請專利範圍第3項所述之元件,其中該从GwN 元件(18)在p-型層中進—步包括一電流聚集層。 5. 如申請專利範圍第2項所述之元件,其中該基材為順 性,並且被從一包括磷化鎵(GaP)、砷化磷(GaAs)、 磷化銦(InP)、或矽(Si)之群組作選擇a 6. 如申請專利範圍第2項所述之元件,其中該中間金屬 訂 2. 3. 本紙張尺度適用中國國家標準(CJSS)A4規格(210 χ 297公爱〉 •20 A8 B8 C8 D8 η年厂aw: 六、申請專利範圍 結合層為順性,並從一包括含有齒化物、ZnO、銦(ιη)、 錫、鉻(Cr)、金(Au)、鎳(Ni)、銅(Cu)及Π - VI材料之 合金與介電體的群組中作選擇。 7. 如申請專利範圍第2項所述之元件,其係進一步包含 一相鄰於該AlxGayInzr^#構之一頂部側而被設置之第 二鏡子積材(20)。 8. 如申請專利範圍第7項所述之元件,其中該等第一與 第二鏡子積材(14、20)之至少一者被從一個包括介電 分佈布雷格反射器與複合分佈布雷格反射器之群組中 選出。 9. 如申請專利範圍第丨項所述之元件,其係進一步包含 一相鄰於該構而被設置之第二鏡子積材 (20)。 10. 如申請專利範圍第9項所述之元件,其中該等第一與 第二鏡子積材(14、20)之至少一者被從一個包括介電 分佈布雷格反射器與複合分佈布雷格反射器之群組中 選出。 11. 如申請專利範圍第1項所述之元件,其中該AlxGayInzN 元件(1 8)在該p,型層内係進一步包括一電流聚集層。 12. 如申請專利範圍第1項所述之元件,其中該基材為順 性’並選自一個包括磷化鎵(GaP) '砷化磷(GaAs)、 璃化銦(InP)、或矽(Si)之群組。 13. 如申請專利範圍第1項所述之元件,其中該Al、GayIi^N 元件為一垂直空腔光電子結構。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公髮) --------------------訂--------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作杜印製 21 447183 0g8892 ^Bcs A ί(( Γ ο 〇Ί " 六、申請專利範圍 14'種用以製造A1*GayInzN結構之方法,其包含下列步 驟: 將一主基材附著至一第一鏡子積材上; 在一犧牲生長基材上製造一 AlxGayinzN結構; 產生晶圓結合界面; 移除該犧牲生長基材;以及 在該AlxGayInzN基材上沉積電氣接點。 I5·如申凊專利範圍第M項所述之用以製造結 構之方法’其中該用以移除該犧牲生長積材之步驟包 含雷射熔化步驟。 16.如申M專利範圍第14項所述之用以製造人丨/^匕^結 構之方法,其係進一步包含於該晶圓結合界面處附著 一中間結合層之步騾。 17·如巾請專利範圍第16項所述之用以製制问#輯 構之方法,其中該主基材與該中間結合層之其中一者 被選擇而呈順性。 1如申請專利範圍第Μ項所述之用以製造从叫心結 構之方法,其係進-步包含在該从叫❻結構之頂 部上附著一第二鏡子積材之步驟。 19·—種用以製造AlxGayInzN結構之方法,其係包含下列 步驟: 將-AIxGayInzN結構製造至—犧牲生長基材上; 在一 AlxGayInzN結構之頂部上附著—第一鏡子積 材, (請先閱讀背面之注意事項再填寫本頁:> -I 裝- ----— II 訂----In — 經濟部智慧財產局員工消費合作社印製 22 A8B8C8D8 六、申請專利範圍 :主基材晶圓結合至該第一鏡子積材上,以產 生—晶圓結合界面; 移除該犧牲生長基材;以及 在邊AlxGayInzT^#構上沉積電氣接點。 士申μ專利範圍第19項所述之用以製造八丨力〜匕力結 構之方去’其中該用以移除該犧牲生長積材之步驟包 含雷射溶化步驟。 21 ’如申請專利範圍第i 9項所述之用以製造从〜AN結 構之方法,其係進一步包含於該晶圓結合界面處附著 —中間結合層之步驟。 22‘如申請專利範圍心項所述之用以Μα叫^結 構之方法,其中該主基材與該中間結合層之其中—者 被選擇而順性3 23.如申請專利範圍第丨9項 負所迷之用以製造AlxGayinzN結 構之方法’其係進一步包含在該八⑽㈣結構之頂 部上附著-第二鏡子積持之步驟。 11 1裝 if—----訂 — I---I 線 f靖先閱蹟背面之注項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格---- -23
TW088114962A 1999-02-05 1999-08-31 Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks TW447183B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/245,435 US6320206B1 (en) 1999-02-05 1999-02-05 Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks

Publications (1)

Publication Number Publication Date
TW447183B true TW447183B (en) 2001-07-21

Family

ID=22926642

Family Applications (1)

Application Number Title Priority Date Filing Date
TW088114962A TW447183B (en) 1999-02-05 1999-08-31 Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks

Country Status (7)

Country Link
US (2) US6320206B1 (zh)
JP (1) JP4834210B2 (zh)
KR (1) KR100641925B1 (zh)
CN (1) CN1267109A (zh)
DE (1) DE19953588C2 (zh)
GB (1) GB2346480A (zh)
TW (1) TW447183B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414021B (zh) * 2009-12-07 2013-11-01 Soitec Silicon On Insulator 具有氮化銦鎵層之半導體裝置

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9807692D0 (en) * 1998-04-14 1998-06-10 Univ Strathclyde Optival devices
US20010042866A1 (en) * 1999-02-05 2001-11-22 Carrie Carter Coman Inxalygazn optical emitters fabricated via substrate removal
JP2000323797A (ja) * 1999-05-10 2000-11-24 Pioneer Electronic Corp 窒化物半導体レーザ及びその製造方法
DE10051465A1 (de) * 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements auf GaN-Basis
WO2001082384A1 (de) * 2000-04-26 2001-11-01 Osram Opto Semiconductors Gmbh Strahlungsmittierendes halbleiterbauelement und herstellungsverfahren
CN1252837C (zh) * 2000-04-26 2006-04-19 奥斯兰姆奥普托半导体股份有限两合公司 在GaN基板上的发光二极管芯片和用GaN基板上的发光二极管芯片制造发光二极管元件的方法
TWI292227B (en) * 2000-05-26 2008-01-01 Osram Opto Semiconductors Gmbh Light-emitting-dioed-chip with a light-emitting-epitaxy-layer-series based on gan
US6643304B1 (en) * 2000-07-26 2003-11-04 Axt, Inc. Transparent substrate light emitting diode
US6628685B1 (en) * 2000-08-21 2003-09-30 Chan-Long Shieh Method of fabricating long-wavelength VCSEL and apparatus
US6625367B2 (en) * 2000-08-21 2003-09-23 Triquint Technology Holding Co. Optoelectronic device having a P-contact and an N-contact located over a same side of a substrate and a method of manufacture therefor
US6562648B1 (en) * 2000-08-23 2003-05-13 Xerox Corporation Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials
KR100754156B1 (ko) * 2000-08-23 2007-09-03 삼성전자주식회사 다중 파장 표면광 레이저 및 그 제조방법
US6998281B2 (en) * 2000-10-12 2006-02-14 General Electric Company Solid state lighting device with reduced form factor including LED with directional emission and package with microoptics
US6525335B1 (en) * 2000-11-06 2003-02-25 Lumileds Lighting, U.S., Llc Light emitting semiconductor devices including wafer bonded heterostructures
JP3729065B2 (ja) * 2000-12-05 2005-12-21 日立電線株式会社 窒化物半導体エピタキシャルウェハの製造方法及び窒化物半導体エピタキシャルウェハ
FR2818263B1 (fr) * 2000-12-14 2004-02-20 Commissariat Energie Atomique Substrat pour materiau a insoler
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
JP4853677B2 (ja) * 2001-03-09 2012-01-11 セイコーエプソン株式会社 発光装置、表示装置ならびに電子機器
US6791115B2 (en) * 2001-03-09 2004-09-14 Seiko Epson Corporation Light emitting device, display device and electronic instrument
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
US6740906B2 (en) 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
TW523939B (en) * 2001-11-07 2003-03-11 Nat Univ Chung Hsing High-efficient light emitting diode and its manufacturing method
US6656761B2 (en) * 2001-11-21 2003-12-02 Motorola, Inc. Method for forming a semiconductor device for detecting light
US6455340B1 (en) * 2001-12-21 2002-09-24 Xerox Corporation Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff
US6635503B2 (en) 2002-01-28 2003-10-21 Cree, Inc. Cluster packaging of light emitting diodes
TWI226139B (en) 2002-01-31 2005-01-01 Osram Opto Semiconductors Gmbh Method to manufacture a semiconductor-component
US6658041B2 (en) 2002-03-20 2003-12-02 Agilent Technologies, Inc. Wafer bonded vertical cavity surface emitting laser systems
US20030189215A1 (en) * 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
US8294172B2 (en) 2002-04-09 2012-10-23 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
EP1508157B1 (en) 2002-05-08 2011-11-23 Phoseon Technology, Inc. High efficiency solid-state light source and methods of use and manufacture
US6967981B2 (en) * 2002-05-30 2005-11-22 Xerox Corporation Nitride based semiconductor structures with highly reflective mirrors
JP3846367B2 (ja) * 2002-05-30 2006-11-15 セイコーエプソン株式会社 半導体素子部材及び半導体装置並びにそれらの製造方法、電気光学装置、電子機器
US20040140474A1 (en) * 2002-06-25 2004-07-22 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device, method for fabricating the same and method for bonding the same
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
US6750071B2 (en) * 2002-07-06 2004-06-15 Optical Communication Products, Inc. Method of self-aligning an oxide aperture with an annular intra-cavity contact in a long wavelength VCSEL
US7928455B2 (en) * 2002-07-15 2011-04-19 Epistar Corporation Semiconductor light-emitting device and method for forming the same
TW567618B (en) * 2002-07-15 2003-12-21 Epistar Corp Light emitting diode with adhesive reflection layer and manufacturing method thereof
DE10253908B4 (de) * 2002-09-24 2010-04-22 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement
US6936486B2 (en) * 2002-11-19 2005-08-30 Jdsu Uniphase Corporation Low voltage multi-junction vertical cavity surface emitting laser
WO2004047242A1 (en) * 2002-11-19 2004-06-03 Julian Cheng Low voltage multi-junction vertical cavity surface emitting laser
JP3795007B2 (ja) 2002-11-27 2006-07-12 松下電器産業株式会社 半導体発光素子及びその製造方法
TW571449B (en) * 2002-12-23 2004-01-11 Epistar Corp Light-emitting device having micro-reflective structure
CN100530705C (zh) 2003-01-31 2009-08-19 奥斯兰姆奥普托半导体有限责任公司 用于制造一个半导体元器件的方法
US20040161006A1 (en) * 2003-02-18 2004-08-19 Ying-Lan Chang Method and apparatus for improving wavelength stability for InGaAsN devices
JP2006521984A (ja) * 2003-03-18 2006-09-28 クリスタル フォトニクス,インコーポレイテッド Iii族の窒化物装置を製作する方法およびそのように製作された装置
US20040259279A1 (en) 2003-04-15 2004-12-23 Erchak Alexei A. Light emitting device methods
US6884645B2 (en) * 2003-04-18 2005-04-26 Raytheon Company Method for preparing a device structure having a wafer structure deposited on a composite substrate having a matched coefficient of thermal expansion
JP2004327581A (ja) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp 半導体レーザ装置
JP2006525682A (ja) * 2003-04-30 2006-11-09 クリー インコーポレイテッド 高出力固体発光素子パッケージ
JP4130158B2 (ja) * 2003-06-09 2008-08-06 三洋電機株式会社 半導体装置の製造方法、半導体装置
US8999736B2 (en) * 2003-07-04 2015-04-07 Epistar Corporation Optoelectronic system
US7008858B2 (en) * 2003-07-04 2006-03-07 Epistar Corporation Light emitting diode having an adhesive layer and a reflective layer and manufacturing method thereof
DE102004036295A1 (de) * 2003-07-29 2005-03-03 GELcore, LLC (n.d.Ges.d. Staates Delaware), Valley View Flip-Chip-Leuchtdioden-Bauelemente mit Substraten, deren Dicke verringert wurde oder die entfernt wurden
US7009215B2 (en) * 2003-10-24 2006-03-07 General Electric Company Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
US7119372B2 (en) * 2003-10-24 2006-10-10 Gelcore, Llc Flip-chip light emitting diode
US7819550B2 (en) * 2003-10-31 2010-10-26 Phoseon Technology, Inc. Collection optics for led array with offset hemispherical or faceted surfaces
WO2005043954A2 (en) * 2003-10-31 2005-05-12 Phoseon Technology, Inc. Series wiring of highly reliable light sources
US7151284B2 (en) * 2003-11-10 2006-12-19 Shangjr Gwo Structures for light emitting devices with integrated multilayer mirrors
JP4954712B2 (ja) * 2003-12-24 2012-06-20 ジーイー ライティング ソリューションズ エルエルシー 窒化物フリップチップからのサファイヤのレーザ・リフトオフ
EP1569263B1 (de) * 2004-02-27 2011-11-23 OSRAM Opto Semiconductors GmbH Verfahren zum Verbinden zweier Wafer
WO2005089477A2 (en) * 2004-03-18 2005-09-29 Phoseon Technology, Inc. Direct cooling of leds
TWI312583B (en) * 2004-03-18 2009-07-21 Phoseon Technology Inc Micro-reflectors on a substrate for high-density led array
US7808011B2 (en) * 2004-03-19 2010-10-05 Koninklijke Philips Electronics N.V. Semiconductor light emitting devices including in-plane light emitting layers
WO2005094390A2 (en) * 2004-03-30 2005-10-13 Phoseon Technology, Inc. Led array having array-based led detectors
US7285801B2 (en) * 2004-04-02 2007-10-23 Lumination, Llc LED with series-connected monolithically integrated mesas
DE602005027201D1 (de) * 2004-04-12 2011-05-12 Phoseon Technology Inc Hochdichtes led-array
EP1738156A4 (en) * 2004-04-19 2017-09-27 Phoseon Technology, Inc. Imaging semiconductor strucutures using solid state illumination
US7825006B2 (en) * 2004-05-06 2010-11-02 Cree, Inc. Lift-off process for GaN films formed on SiC substrates and devices fabricated using the method
US7791061B2 (en) * 2004-05-18 2010-09-07 Cree, Inc. External extraction light emitting diode based upon crystallographic faceted surfaces
US7332365B2 (en) * 2004-05-18 2008-02-19 Cree, Inc. Method for fabricating group-III nitride devices and devices fabricated using method
US7196835B2 (en) * 2004-06-01 2007-03-27 The Trustees Of Princeton University Aperiodic dielectric multilayer stack
US6956246B1 (en) * 2004-06-03 2005-10-18 Lumileds Lighting U.S., Llc Resonant cavity III-nitride light emitting devices fabricated by growth substrate removal
US7148075B2 (en) * 2004-06-05 2006-12-12 Hui Peng Vertical semiconductor devices or chips and method of mass production of the same
US20050274970A1 (en) * 2004-06-14 2005-12-15 Lumileds Lighting U.S., Llc Light emitting device with transparent substrate having backside vias
JP4996463B2 (ja) * 2004-06-30 2012-08-08 クリー インコーポレイテッド 発光デバイスをパッケージするためのチップスケール方法およびチップスケールにパッケージされた発光デバイス
US7534633B2 (en) * 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
DE112005001596T5 (de) * 2004-07-06 2007-05-16 Japan Science & Tech Agency Verfahren zum Verbinden von Scheiben aus (Al, In, Ga)N und Zn(S, Se)für optoelektronische Anwendungen
TWI266435B (en) * 2004-07-08 2006-11-11 Sharp Kk Nitride-based compound semiconductor light emitting device and fabricating method thereof
US20060054919A1 (en) * 2004-08-27 2006-03-16 Kyocera Corporation Light-emitting element, method for manufacturing the same and lighting equipment using the same
JP2006073619A (ja) * 2004-08-31 2006-03-16 Sharp Corp 窒化物系化合物半導体発光素子
JP4371956B2 (ja) * 2004-09-02 2009-11-25 シャープ株式会社 窒化物系化合物半導体発光素子およびその製造方法
US7737459B2 (en) * 2004-09-22 2010-06-15 Cree, Inc. High output group III nitride light emitting diodes
US7259402B2 (en) * 2004-09-22 2007-08-21 Cree, Inc. High efficiency group III nitride-silicon carbide light emitting diode
US8174037B2 (en) 2004-09-22 2012-05-08 Cree, Inc. High efficiency group III nitride LED with lenticular surface
US8513686B2 (en) * 2004-09-22 2013-08-20 Cree, Inc. High output small area group III nitride LEDs
US20060081858A1 (en) * 2004-10-14 2006-04-20 Chung-Hsiang Lin Light emitting device with omnidirectional reflectors
US7256483B2 (en) * 2004-10-28 2007-08-14 Philips Lumileds Lighting Company, Llc Package-integrated thin film LED
DE102004057802B4 (de) * 2004-11-30 2011-03-24 Osram Opto Semiconductors Gmbh Strahlungemittierendes Halbleiterbauelement mit Zwischenschicht
US8288942B2 (en) * 2004-12-28 2012-10-16 Cree, Inc. High efficacy white LED
JP4800324B2 (ja) * 2004-12-30 2011-10-26 フォーセン テクノロジー インク 露光装置
TWI352437B (en) * 2007-08-27 2011-11-11 Epistar Corp Optoelectronic semiconductor device
US7932111B2 (en) * 2005-02-23 2011-04-26 Cree, Inc. Substrate removal process for high light extraction LEDs
US7125734B2 (en) * 2005-03-09 2006-10-24 Gelcore, Llc Increased light extraction from a nitride LED
US7804100B2 (en) * 2005-03-14 2010-09-28 Philips Lumileds Lighting Company, Llc Polarization-reversed III-nitride light emitting device
US8748923B2 (en) * 2005-03-14 2014-06-10 Philips Lumileds Lighting Company Llc Wavelength-converted semiconductor light emitting device
US7341878B2 (en) * 2005-03-14 2008-03-11 Philips Lumileds Lighting Company, Llc Wavelength-converted semiconductor light emitting device
JP4767035B2 (ja) * 2005-04-12 2011-09-07 シャープ株式会社 窒化物系半導体発光素子およびその製造方法
US8901699B2 (en) 2005-05-11 2014-12-02 Cree, Inc. Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection
TWI422044B (zh) * 2005-06-30 2014-01-01 Cree Inc 封裝發光裝置之晶片尺度方法及經晶片尺度封裝之發光裝置
EP1739213B1 (de) * 2005-07-01 2011-04-13 Freiberger Compound Materials GmbH Vorrichtung und Verfahren zum Tempern von III-V-Wafern sowie getemperte III-V-Halbleitereinkristallwafer
US7384808B2 (en) * 2005-07-12 2008-06-10 Visual Photonics Epitaxy Co., Ltd. Fabrication method of high-brightness light emitting diode having reflective layer
US8674375B2 (en) * 2005-07-21 2014-03-18 Cree, Inc. Roughened high refractive index layer/LED for high light extraction
US7638810B2 (en) * 2005-09-09 2009-12-29 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. GaN laser with refractory metal ELOG masks for intracavity contact
US20080258133A1 (en) * 2005-10-29 2008-10-23 Samsung Electronics Co., Ltd. Semiconductor Device and Method of Fabricating the Same
CN100418241C (zh) * 2005-12-10 2008-09-10 金芃 垂直结构的半导体芯片或器件的批量生产方法
US7642527B2 (en) * 2005-12-30 2010-01-05 Phoseon Technology, Inc. Multi-attribute light effects for use in curing and other applications involving photoreactions and processing
US8441179B2 (en) 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
JP2009524247A (ja) * 2006-01-20 2009-06-25 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド ルミファー膜を空間的に分離することにより固体光発光素子におけるスペクトル内容をシフトすること
DE102006061167A1 (de) * 2006-04-25 2007-12-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
CN100377456C (zh) * 2006-05-17 2008-03-26 中微光电子(潍坊)有限公司 垂直腔面发射半导体激光二极管的外延结构
JP2009538536A (ja) 2006-05-26 2009-11-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド 固体発光デバイス、および、それを製造する方法
KR20090019871A (ko) 2006-05-31 2009-02-25 크리 엘이디 라이팅 솔루션즈, 인크. 조명 장치 및 조명 방법
US7910945B2 (en) * 2006-06-30 2011-03-22 Cree, Inc. Nickel tin bonding system with barrier layer for semiconductor wafers and devices
US8698184B2 (en) 2011-01-21 2014-04-15 Cree, Inc. Light emitting diodes with low junction temperature and solid state backlight components including light emitting diodes with low junction temperature
US8643195B2 (en) * 2006-06-30 2014-02-04 Cree, Inc. Nickel tin bonding system for semiconductor wafers and devices
US7915624B2 (en) 2006-08-06 2011-03-29 Lightwave Photonics, Inc. III-nitride light-emitting devices with one or more resonance reflectors and reflective engineered growth templates for such devices, and methods
EP2060155A2 (en) * 2006-08-23 2009-05-20 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
JP2008091862A (ja) * 2006-09-08 2008-04-17 Sharp Corp 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
US20100224890A1 (en) * 2006-09-18 2010-09-09 Cree, Inc. Light emitting diode chip with electrical insulation element
JP4172515B2 (ja) * 2006-10-18 2008-10-29 ソニー株式会社 発光素子の製造方法
US7847306B2 (en) * 2006-10-23 2010-12-07 Hong Kong Applied Science and Technology Research Insitute Company, Ltd. Light emitting diode device, method of fabrication and use thereof
US20080101062A1 (en) * 2006-10-27 2008-05-01 Hong Kong Applied Science and Technology Research Institute Company Limited Lighting device for projecting a beam of light
JP5171016B2 (ja) * 2006-10-27 2013-03-27 キヤノン株式会社 半導体部材、半導体物品の製造方法、その製造方法を用いたledアレイ
JP2008117824A (ja) * 2006-11-01 2008-05-22 Sharp Corp 窒化物系半導体素子の製造方法
WO2008070604A1 (en) * 2006-12-04 2008-06-12 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US9310026B2 (en) 2006-12-04 2016-04-12 Cree, Inc. Lighting assembly and lighting method
US9391118B2 (en) 2007-01-22 2016-07-12 Cree, Inc. Fault tolerant light emitters, systems incorporating fault tolerant light emitters and methods of fabricating fault tolerant light emitters
TWI440210B (zh) 2007-01-22 2014-06-01 Cree Inc 使用發光裝置外部互連陣列之照明裝置及其製造方法
JP5576272B2 (ja) * 2007-07-03 2014-08-20 マイクロリンク デバイセズ インコーポレイテッド Iii−v化合物薄膜太陽電池
US8123384B2 (en) 2007-07-17 2012-02-28 Cree, Inc. Optical elements with internal optical features and methods of fabricating same
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
US8617997B2 (en) * 2007-08-21 2013-12-31 Cree, Inc. Selective wet etching of gold-tin based solder
US11114594B2 (en) 2007-08-24 2021-09-07 Creeled, Inc. Light emitting device packages using light scattering particles of different size
WO2009055079A1 (en) * 2007-10-26 2009-04-30 Cree Led Lighting Solutions, Inc. Illumination device having one or more lumiphors, and methods of fabricating same
KR101449005B1 (ko) 2007-11-26 2014-10-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
KR20090072980A (ko) * 2007-12-28 2009-07-02 서울옵토디바이스주식회사 발광 다이오드 및 그 제조방법
DE102008006988A1 (de) * 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
CN102017156B (zh) 2008-02-25 2013-03-13 光波光电技术公司 电流注入/隧穿发光器件和方法
DE102008019268A1 (de) * 2008-02-29 2009-09-03 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
KR101428719B1 (ko) * 2008-05-22 2014-08-12 삼성전자 주식회사 발광 소자 및 발광 장치의 제조 방법, 상기 방법을이용하여 제조한 발광 소자 및 발광 장치
TWI495141B (zh) * 2008-08-01 2015-08-01 Epistar Corp 晶圓發光結構之形成方法及光源產生裝置
US7919780B2 (en) * 2008-08-05 2011-04-05 Dicon Fiberoptics, Inc. System for high efficiency solid-state light emissions and method of manufacture
JP5521478B2 (ja) * 2008-10-22 2014-06-11 日亜化学工業株式会社 窒化物半導体発光素子の製造方法及び窒化物半導体発光素子
JP5152520B2 (ja) * 2009-01-28 2013-02-27 国立大学法人北海道大学 半導体発光素子
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
EP2529394A4 (en) 2010-01-27 2017-11-15 Yale University Conductivity based selective etch for gan devices and applications thereof
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
EP2369696A1 (en) * 2010-03-23 2011-09-28 ETH Zurich Surface-Emitting semiconductor laser and method of manufacture thereof
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
CN103003966B (zh) * 2010-05-18 2016-08-10 首尔半导体株式会社 具有波长变换层的发光二级管芯片及其制造方法,以及包括其的封装件及其制造方法
WO2011145794A1 (ko) 2010-05-18 2011-11-24 서울반도체 주식회사 파장변환층을 갖는 발광 다이오드 칩과 그 제조 방법, 및 그것을 포함하는 패키지 및 그 제조 방법
KR101230619B1 (ko) 2010-05-18 2013-02-06 서울반도체 주식회사 파장변환층을 갖는 발광 다이오드 칩, 그것을 제조하는 방법 및 그것을 갖는 패키지
AU2011268135B2 (en) 2010-06-18 2014-06-12 Glo Ab Nanowire LED structure and method for manufacturing the same
CN102386200B (zh) 2010-08-27 2014-12-31 财团法人工业技术研究院 发光单元阵列与投影系统
KR101769075B1 (ko) * 2010-12-24 2017-08-18 서울바이오시스 주식회사 발광 다이오드 칩 및 그것을 제조하는 방법
CN102593291B (zh) * 2011-01-07 2014-12-03 山东华光光电子有限公司 一种氮化物分布式布拉格反射镜及制备方法与应用
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
US8350251B1 (en) 2011-09-26 2013-01-08 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
CN103117349A (zh) * 2011-11-17 2013-05-22 大连美明外延片科技有限公司 一种高亮度AlGaInP发光二极管及其制造方法
KR101272833B1 (ko) * 2012-02-03 2013-06-11 광주과학기술원 실리콘 dbr 구조가 집적된 광 소자 및 그 제조방법
WO2013138676A1 (en) 2012-03-14 2013-09-19 Robbie Jorgenson Materials, structures, and methods for optical and electrical iii-nitride semiconductor devices
US9583353B2 (en) * 2012-06-28 2017-02-28 Yale University Lateral electrochemical etching of III-nitride materials for microfabrication
US8735219B2 (en) * 2012-08-30 2014-05-27 Ziptronix, Inc. Heterogeneous annealing method and device
CN102820398B (zh) * 2012-08-31 2015-05-27 厦门大学 分布式布拉格反射与小面积金属接触复合三维电极
US9052535B1 (en) * 2012-12-14 2015-06-09 Sandia Corporation Electro-refractive photonic device
CN103227265B (zh) * 2013-04-12 2015-08-19 厦门大学 一种氮化镓基垂直腔面发射激光器的制作方法
US8896008B2 (en) 2013-04-23 2014-11-25 Cree, Inc. Light emitting diodes having group III nitride surface features defined by a mask and crystal planes
DE102013105035A1 (de) * 2013-05-16 2014-11-20 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines optoelektronischen Halbleiterchips
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
CN106663919B (zh) 2014-06-17 2020-03-10 索尼公司 发光元件及其制造方法
WO2016054232A1 (en) 2014-09-30 2016-04-07 Yale University A METHOD FOR GaN VERTICAL MICROCAVITY SURFACE EMITTING LASER (VCSEL)
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
US10554017B2 (en) 2015-05-19 2020-02-04 Yale University Method and device concerning III-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer
DE102015108876B3 (de) * 2015-06-04 2016-03-03 Otto-Von-Guericke-Universität Magdeburg, Ttz Patentwesen Lichtemittierendes Gruppe-III-Nitrid basiertes Bauelement
CN105206716B (zh) * 2015-09-18 2019-02-05 华灿光电(苏州)有限公司 一种垂直结构发光二极管的制作方法
US10263144B2 (en) 2015-10-16 2019-04-16 Robbie J. Jorgenson System and method for light-emitting devices on lattice-matched metal substrates
JP6575299B2 (ja) * 2015-10-27 2019-09-18 セイコーエプソン株式会社 原子発振器
US10644114B1 (en) * 2015-11-18 2020-05-05 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Reticulated shallow etch mesa isolation
CN105609602B (zh) * 2015-12-29 2017-10-31 中国科学院半导体研究所 可见光通信用倒装rcled及其制备方法
EP3219832B1 (en) * 2016-03-16 2020-06-24 Thorlabs Inc. Method for manufacturing direct-bonded optical coatings
EP3464689A4 (en) 2016-05-26 2020-07-22 Robbie Jorgenson SYSTEM AND METHOD FOR GROWING GROUP IIIA NITRIDE
EP3465776A4 (en) * 2016-05-27 2020-05-06 The Government of the United States of America, as represented by the Secretary of the Navy INFRARED RESONATOR PHOTODETECTORS WITH COMPLETELY EXHAUSTED ABSORBERS
US10297699B2 (en) 2016-05-27 2019-05-21 The United States Of America, As Represented By The Secretary Of The Navy In-plane resonant-cavity infrared photodetectors with fully-depleted absorbers
DE102016113002B4 (de) * 2016-07-14 2022-09-29 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Bauelemente mit verbesserter Effizienz und Verfahren zur Herstellung von Bauelementen
DE102017122325A1 (de) 2017-09-26 2019-03-28 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement und Verfahren zur Herstellung von strahlungsemittierenden Halbleiterbauelementen
US20190237629A1 (en) 2018-01-26 2019-08-01 Lumileds Llc Optically transparent adhesion layer to connect noble metals to oxides
CN108550666A (zh) 2018-05-02 2018-09-18 天津三安光电有限公司 倒装四元系发光二极管外延结构、倒装四元系发光二极管及其生长方法
WO2020010056A1 (en) 2018-07-03 2020-01-09 Invensas Bonding Technologies, Inc. Techniques for joining dissimilar materials in microelectronics
CN110768106B (zh) * 2018-07-26 2021-01-26 山东华光光电子股份有限公司 一种激光二极管制备方法
US11365492B2 (en) 2018-09-11 2022-06-21 Thorlabs, Inc. Substrate-transferred stacked optical coatings
JP7237536B2 (ja) * 2018-11-12 2023-03-13 株式会社ジャパンディスプレイ 表示装置
CN109830596A (zh) * 2018-12-14 2019-05-31 苏州矩阵光电有限公司 一种半导体器件及其制备方法
WO2021150953A1 (en) 2020-01-25 2021-07-29 Jade Bird Display (shanghai) Limited Micro light emitting diode with high light extraction efficiency
KR20230003471A (ko) 2020-03-19 2023-01-06 아데이아 세미컨덕터 본딩 테크놀로지스 인코포레이티드 직접 결합된 구조체들을 위한 치수 보상 제어
CN112436380B (zh) * 2020-11-19 2022-02-18 清华大学 基于范德华外延的垂直腔面发射激光器及其制作方法
WO2022109990A1 (zh) * 2020-11-27 2022-06-02 苏州晶湛半导体有限公司 半导体发光器件及其制备方法
CN112670391A (zh) * 2020-12-31 2021-04-16 深圳第三代半导体研究院 一种发光二极管及其制造方法
CN115085006B (zh) * 2022-08-22 2023-02-28 福建慧芯激光科技有限公司 一种两端带有组合反射镜的长波长vcsel及其制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217564A (en) 1980-04-10 1993-06-08 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
US5376580A (en) 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
JPH06342958A (ja) * 1993-06-02 1994-12-13 Nippon Telegr & Teleph Corp <Ntt> 面発光半導体レーザ
JP3194822B2 (ja) * 1993-09-14 2001-08-06 松下電器産業株式会社 複合基板材料の製造方法
US5846844A (en) 1993-11-29 1998-12-08 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor substrates using ZnO release layers
JPH07202265A (ja) 1993-12-27 1995-08-04 Toyoda Gosei Co Ltd Iii族窒化物半導体の製造方法
US5679152A (en) 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
JP3974667B2 (ja) * 1994-08-22 2007-09-12 ローム株式会社 半導体発光素子の製法
IT1268123B1 (it) * 1994-10-13 1997-02-20 Sgs Thomson Microelectronics Fetta di materiale semiconduttore per la fabbricazione di dispositivi integrati e procedimento per la sua fabbricazione.
US5804834A (en) 1994-10-28 1998-09-08 Mitsubishi Chemical Corporation Semiconductor device having contact resistance reducing layer
US5641381A (en) 1995-03-27 1997-06-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Preferentially etched epitaxial liftoff of InP material
US5724376A (en) * 1995-11-30 1998-03-03 Hewlett-Packard Company Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
JP3409958B2 (ja) * 1995-12-15 2003-05-26 株式会社東芝 半導体発光素子
EP0784363B1 (en) * 1995-12-26 2000-10-11 Nippon Telegraph and Telephone Corporation Vertical-cavity surface-emitting laser and method for manufacturing the same
JP3440977B2 (ja) * 1995-12-26 2003-08-25 日本電信電話株式会社 面発光半導体レーザおよびその製造方法
FR2753577B1 (fr) * 1996-09-13 1999-01-08 Alsthom Cge Alcatel Procede de fabrication d'un composant optoelectronique a semiconducteur et composant et matrice de composants fabriques selon ce procede
US5835521A (en) 1997-02-10 1998-11-10 Motorola, Inc. Long wavelength light emitting vertical cavity surface emitting laser and method of fabrication
JPH10233558A (ja) * 1997-02-19 1998-09-02 Canon Inc ダイヤモンド層を含む多層膜構造、それを有する光デバイス、およびその作製方法
JP3220977B2 (ja) * 1997-05-07 2001-10-22 日亜化学工業株式会社 窒化物半導体レーザ素子及び窒化物半導体レーザ素子の製造方法。
JP3148154B2 (ja) * 1997-07-08 2001-03-19 日本電気株式会社 面発光レーザの製造方法及び該方法により製造された面発光レーザ
JPH11154774A (ja) 1997-08-05 1999-06-08 Canon Inc 面発光半導体デバイスの製造方法、この方法によって製造された面発光半導体デバイス及びこのデバイスを用いた表示装置
GB2333895B (en) 1998-01-31 2003-02-26 Mitel Semiconductor Ab Pre-fusion oxidized and wafer-bonded vertical cavity laser
US6046465A (en) * 1998-04-17 2000-04-04 Hewlett-Packard Company Buried reflectors for light emitters in epitaxial material and method for producing same
US6133589A (en) * 1999-06-08 2000-10-17 Lumileds Lighting, U.S., Llc AlGaInN-based LED having thick epitaxial layer for improved light extraction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414021B (zh) * 2009-12-07 2013-11-01 Soitec Silicon On Insulator 具有氮化銦鎵層之半導體裝置

Also Published As

Publication number Publication date
DE19953588C2 (de) 2003-08-14
US6420199B1 (en) 2002-07-16
US20020030198A1 (en) 2002-03-14
DE19953588A1 (de) 2000-08-17
GB0002759D0 (en) 2000-03-29
CN1267109A (zh) 2000-09-20
US6320206B1 (en) 2001-11-20
KR100641925B1 (ko) 2006-11-02
JP2000228563A (ja) 2000-08-15
KR20000076604A (ko) 2000-12-26
GB2346480A (en) 2000-08-09
JP4834210B2 (ja) 2011-12-14

Similar Documents

Publication Publication Date Title
TW447183B (en) Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks
TW442982B (en) Thickness tailoring of wafer bonded AlxGayInzN structure by laser melting
US11631775B2 (en) Materials and structures for optical and electrical III-nitride semiconductor devices and methods
Hamaguchi et al. Milliwatt‐class GaN‐based blue vertical‐cavity surface‐emitting lasers fabricated by epitaxial lateral overgrowth
TW441137B (en) InAlGaN optical emitters fabricated via substrate removal
EP2070122B1 (en) Iii-nitride light-emitting devices with one or more resonance reflectors and reflective engineered growth templates for such devices, and methods
US8253157B2 (en) III-nitride light-emitting devices with reflective engineered growth templates and methods of manufacture
EP1326290B1 (en) Method of fabricating semiconductor structures
US8354679B1 (en) Microcavity light emitting diode method of manufacture
US20080179605A1 (en) Nitride semiconductor light emitting device and method for fabricating the same
US7804100B2 (en) Polarization-reversed III-nitride light emitting device
US20200244036A1 (en) Iii-nitride surface-emitting laser and method of fabrication
JP2009200178A (ja) 半導体発光素子
WO2000016455A1 (fr) Element lumineux semi-conducteur et laser a semi-conducteur
JP2011513954A (ja) オプトエレクトロニクス素子およびオプトエレクトロニクス素子の製造方法
US7885306B2 (en) Edge-emitting semiconductor laser chip
JP3502527B2 (ja) 窒化物半導体レーザ素子
Margalith et al. Nitride-based lasers: advances in cavity design
KR20080091603A (ko) 레이저 다이오드 및 그 제조방법

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent