TW202303861A - 半導體結構及其製作方法 - Google Patents

半導體結構及其製作方法 Download PDF

Info

Publication number
TW202303861A
TW202303861A TW111121996A TW111121996A TW202303861A TW 202303861 A TW202303861 A TW 202303861A TW 111121996 A TW111121996 A TW 111121996A TW 111121996 A TW111121996 A TW 111121996A TW 202303861 A TW202303861 A TW 202303861A
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
sidewall
doped region
bit line
Prior art date
Application number
TW111121996A
Other languages
English (en)
Other versions
TWI803350B (zh
Inventor
韓清華
Original Assignee
中國大陸商長鑫存儲技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國大陸商長鑫存儲技術有限公司 filed Critical 中國大陸商長鑫存儲技術有限公司
Publication of TW202303861A publication Critical patent/TW202303861A/zh
Application granted granted Critical
Publication of TWI803350B publication Critical patent/TWI803350B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Bipolar Transistors (AREA)
  • Recrystallisation Techniques (AREA)
  • Light Receiving Elements (AREA)

Abstract

本發明實施例提供一種半導體結構及其製作方法,其中,製作方法包括:提供基底;在基底上形成位線,和在位線遠離基底的表面形成半導體通道,半導體通道包括依次排列的第一摻雜區、通道區和第二摻雜區;形成第一介質層,第一介質層環繞半導體通道側壁,且位於同一位線上相鄰半導體通道側壁的第一介質層之間具有第一間隙;形成第二介質層,第二介質層填充滿第一間隙,且第二介質層的材料和第一介質層的材料不同;去除部分第一介質層至露出通道區側壁;形成絕緣層,至少覆蓋通道區側壁表面,且絕緣層與第二介質層之間具有第二間隙;形成字線,字線填充滿第二間隙。本發明實施例有利於簡化形成字線的步驟,且形成尺寸小且精度高的字線。

Description

半導體結構及其製作方法
本發明實施例涉及半導體領域,特別涉及一種半導體結構及其製作方法。
隨著半導體器件的積體密度朝著更高的方向發展,開始對半導體結構中電晶體的排列方式以及如何縮小半導體結構中單個功能器件的尺寸進行研究。
相關技術中,基於馬鞍形鰭電晶體的動態隨機存取記憶體(DRAM,Dynamic Random Access Memory)存儲單元的佔據面積為6F 2(F:在給定製程條件下可獲得的最小圖案尺寸),為進一步縮小DRAM佔據面積,對DRAM進行等比例縮放時,會面臨近閘效應等問題,對DRAM的電學性能造成不利影響。
利用垂直的全環繞閘極(GAA,Gate-All-Around)電晶體結構作為選擇電晶體(access transistor)時,其佔據的面積可以達到4F 2,原則上可以實現更高的密度效率,但是在部分尺寸下,由於製造工藝所採用的設備以及製造流程的限制,存在字線蝕刻困難等問題。
本發明實施例解決的技術問題為提供一種半導體結構及其製作方法,有利於簡化字線的形成步驟,且形成尺寸精度高且尺寸小的字線和半導體通道。
為解決上述問題,本發明實施例提供一種半導體結構的製作方法,包括:提供基底;在所述基底上形成位線,以及在所述位線遠離所述基底的表面形成半導體通道,在沿所述基底指向所述位線的方向上,所述半導體通道包括依次排列的第一摻雜區、通道區以及第二摻雜區;形成第一介質層,所述第一介質層環繞所述半導體通道側壁,且位於同一所述位線上相鄰所述半導體通道側壁的所述第一介質層之間具有第一間隙;形成第二介質層,所述第二介質層填充滿所述第一間隙,且所述第二介質層的材料和所述第一介質層的材料不同;去除部分所述第一介質層至露出所述通道區側壁;形成絕緣層,所述絕緣層至少覆蓋所述通道區側壁表面,且所述絕緣層與所述第二介質層之間具有第二間隙;形成字線,所述字線填充滿所述第二間隙。
在一些實施例中,去除部分所述第一介質層至露出所述通道區側壁的步驟包括:蝕刻部分所述第一介質層至露出所述第二摻雜區側壁;形成第三介質層,所述第三介質層環繞所述第二摻雜區側壁和位於所述第二介質層側壁,位於所述第二摻雜區側壁的所述第三介質層和位於所述第二介質層側壁的所述第三介質層共同圍成通孔,所述通孔底部露出所述第一介質層,且所述第三介質層的材料和所述第一介質層的材料不同;去除所述通孔露出的位於所述通道區側壁的所述第一介質層,剩餘所述第一介質層環繞所述第一摻雜區側壁。
在一些實施例中,形成所述絕緣層的步驟包括:對露出的所述通道區側壁進行熱氧化處理,以形成所述絕緣層,且所述絕緣層覆蓋剩餘所述通道區的側壁表面。
在一些實施例中,形成所述字線的步驟包括:形成初始字線,所述初始字線填充滿所述第二間隙和所述通孔,且所述初始字線還位於相鄰所述位線上的所述通道區側壁的所述絕緣層之間;去除位於所述通孔中的所述初始字線,剩餘所述初始字線作為所述字線。
在一些實施例中,形成所述字線後,所述方法還包括:形成第四介質層,所述第四介質層填充滿所述通孔。
在一些實施例中,所述去除部分所述第一介質層至露出所述通道區側壁的步驟中,還包括去除位於所述第二摻雜區側壁的所述第一介質層;所述形成所述絕緣層的步驟中,所述絕緣層還覆蓋所述第二摻雜區側壁。
在一些實施例中,形成所述字線的步驟包括:形成初始字線,所述初始字線填充滿所述第二間隙,且所述初始字線還位於相鄰所述位線上的所述半導體通道部分側壁的所述絕緣層之間;去除部分所述初始字線,剩餘所述初始字線作為所述字線,所述字線僅環繞位於所述通道區側壁的所述絕緣層。
在一些實施例中,形成所述位線和所述半導體通道的步驟包括:在所述基底上形成第一遮罩層;以所述第一遮罩層為遮罩蝕刻所述基底,形成多個第一溝槽;去除所述第一遮罩層,在所述第一溝槽中形成第五介質層;在所述第五介質層和剩餘所述基底共同構成的頂面上形成第二遮罩層;以所述第二遮罩層為遮罩蝕刻所述基底和所述第五介質層,形成多個第二溝槽、所述位線和所述半導體通道,且在垂直於所述基底表面的方向上,所述第二溝槽的深度小於所述第一溝槽的深度;去除所述第二遮罩層。
在一些實施例中,所述第一遮罩層具有多個相互分立的第一開口,所述第二遮罩層具有多個相互分立的第二開口,且所述第一開口的延伸方向垂直於所述第二開口的延伸方向。
在一些實施例中,在垂直於所述半導體通道側壁的方向上,所述第一開口的開口寬度與所述第二開口的開口寬度的比值為2~1,且相鄰所述第一開口之間的間距等於相鄰所述第二開口之間的間距。
在一些實施例中,形成所述第一介質層的步驟包括:形成第六介質層,所述第六介質層位於所述第二溝槽的側壁,剩餘所述第五介質層和所述第六介質層共同組成所述第一介質層,且位於所述第二溝槽側壁的所述第六介質層之間具有所述第一間隙。
在一些實施例中,所述方法還包括:採用外延成長製程,在所述第二摻雜區頂面形成電容接觸層,且所述電容接觸層在所述位線上的正投影覆蓋所述第二摻雜區在所述位線上的正投影。
相應地,本發明實施例還提供一種半導體結構,包括:基底;位線,位於所述基底上;半導體通道,位於所述位線表面,在沿所述基底指向所述位線的方向上,所述半導體通道包括依次排列的第一摻雜區、通道區以及第二摻雜區,所述第一摻雜區與所述位線相接觸;第一介質層,環繞所述第一摻雜區設置,且同一所述位線上相鄰所述第一摻雜區側壁的所述第一介質層之間具有第一間隔;絕緣層,至少覆蓋所述通道區側壁表面;字線,環繞位於所述通道區側壁的所述絕緣層,且相鄰所述字線之間具有第二間隔;隔離層,至少位於所述第一間隔和所述第二間隔中,且所述隔離層遠離所述基底的頂面不低於所述第二摻雜區遠離所述基底的頂面。
在一些實施例中,所述基底、所述位線和所述半導體通道具有相同的半導體元素。
在一些實施例中,所述第一摻雜區、所述通道區和所述第二摻雜區摻雜有相同類型的摻雜離子,且所述摻雜離子在所述第一摻雜區中的摻雜濃度與在所述通道區和所述第二摻雜區中的摻雜濃度一致,所述摻雜離子為N型離子或P型離子中的一者。
在一些實施例中,所述半導體結構還包括:電容接觸層,位於所述第二摻雜區頂面,所述電容接觸層在所述位線上的正投影覆蓋所述第二摻雜區在所述位線上的正投影,且所述電容接觸層具有所述摻雜離子,所述摻雜離子在所述電容接觸層中的摻雜濃度大於在所述第二摻雜區中的摻雜濃度。
在一些實施例中,所述通道區在所述位線上的正投影小於所述第二摻雜區在所述位線上的正投影,且小於所述第一摻雜區在所述位線上的正投影。
在一些實施例中,所述隔離層包括第二介質層和第三介質層,所述第二介質層位於所述第一間隔和所述第二間隔中,且所述第二介質層遠離所述基底的頂面不低於所述第二摻雜區遠離所述基底的頂面;所述第三介質層覆蓋所述第二摻雜區側壁。
在一些實施例中,所述絕緣層的週邊在所述位線上的正投影小於所述第三介質層的週邊在所述位線上的正投影。
在一些實施例中,所述第一介質層包括第五介質層和第六介質層,所述第五介質層位於相鄰所述位線的間隔中,且位於相鄰所述位線上的相鄰所述第一摻雜區的間隔中;所述第六介質層位於同一所述位線上相鄰所述第一摻雜區的側壁,且位於所述第五介質層的側壁。
與相關技術相比,本發明實施例提供的技術方案具有以下優點:
上述技術方案中,在基底上形成垂直的GAA電晶體,且位線位於基底與GAA電晶體之間,因而可以構成3D堆疊的半導體結構,有利於提高半導體結構的積體密度。而且,部分第一介質層佔據後續所需形成的絕緣層和字線的位置,後續形成第二介質層後,去除位於通道區側壁的第一介質層時,剩餘第一介質層位於第一摻雜區側壁,使得在通道區側壁形成絕緣層時,剩餘第一介質層能保護第一摻雜區不受影響,且絕緣層與第二介質層之間形成第二間隙,則可通過自對準的方式在第二間隙中形成尺寸精確的字線,無需通過蝕刻製程即可形成高尺寸精度的字線,有利於簡化字線的形成步驟,且通過調控第二間隙的尺寸,即可獲得小尺寸的字線。
由背景技術可知,目前形成垂直結構的GAA電晶體的製作流程有待優化。
經分析發現,形成環繞GAA電晶體中半導體通道的通道區側壁的字線時,通常需要通過沉積加蝕刻兩個製程步驟,形成多條相互分立的字線。然而,由於積體度較高,相鄰半導體通道之間的間隔也較小,通過蝕刻製程形成字線的步驟中,蝕刻精度難以控制,因而形成字線的尺寸精度也難以控制。此外,當GAA電晶體的尺寸較小時,要形成垂直結構的GAA有接面電晶體,對半導體通道各區域的摻雜濃度難以控制,影響最終形成的PN接面的良率
為解決上述問題,本發明實施例提供一種半導體結構及其製作方法,製作方法中,部分第一介質層佔據後續所需形成的絕緣層和字線的位置,後續形成第二介質層後,去除位於通道區側壁的第一介質層時,剩餘第一介質層位於第一摻雜區側壁,使得在通道區側壁形成絕緣層時,剩餘第一介質層能保護第一摻雜區不受影響,且絕緣層與第二介質層之間形成第二間隙,則可通過自對準的方式在第二間隙中形成尺寸精確的字線,無需通過蝕刻製程即可形成高尺寸精度的字線,有利於簡化字線的形成步驟,且通過調控第二間隙的尺寸,即可獲得小尺寸的字線。此外,第一摻雜區、通道區和第二摻雜區中的摻雜離子的摻雜濃度可以相同,使得半導體通道105構成的器件為無接面電晶體(Junctionless Transistor)。
為使本發明實施例的目的、技術方案和優點更加清楚,下面將結合附圖對本發明的各實施例進行詳細的闡述。然而,本領域的普通技術人員可以理解,在本發明各實施例中,為了使讀者更好地理解本申請而提出了許多技術細節。但是,即使沒有這些技術細節和基於以下各實施例的種種變化和修改,也可以實現本申請所要求保護的技術方案。
本發明一實施例提供一種半導體結構的製作方法,以下將結合附圖對本發明一實施例提供的半導體結構的製作方法進行詳細說明。圖1至圖25為本發明一實施例提供的半導體結構的製作方法各步驟對應的結構示意圖。需要說明的是,為了便於描述以及清晰地示意出半導體結構製作方法的步驟,本實施例中的圖1至圖25均為半導體結構的局部結構示意圖。
參考圖1,提供基底100,本實施例中,基底100包括:基板110以及在基板110上依次堆疊的緩衝層120和保護層130。
本實施例中,提供基底100包括如下步驟:
提供基板110,具體地,基板110的材料類型可以為元素半導體材料或者晶態無機化合物半導體材料。元素半導體材料可以矽或者鍺;晶態無機化合物半導體材料可以為碳化矽、鍺化矽、砷化鎵或者鎵化銦等。
基板110包括:半導體阱層11,半導體阱層11內摻雜有第一類型離子;初始半導體層10,設置於半導體阱層11上。
對初始半導體層10進行摻雜處理以及退火處理,使得初始半導體層10內摻雜有第二類型離子,用於後續在初始半導體層10的基礎上形成位線和半導體通道,且第二類型離子與第一類型離子不同,第一類型離子與第二類型離子均為N型離子或P型離子中的一者。具體地,N型離子為砷離子、磷離子或者銻離子中的至少一種;P型離子為硼離子、銦離子或者鎵離子中的至少一種。
其中,摻雜處理可以採用高溫擴散或者離子植入的方法,當採用離子植入的方式對初始半導體層10進行摻雜處理後,退火處理的退火溫度為800℃~1000℃。
本實施例中,第二類型離子在初始半導體層10內的摻雜濃度為1×10 19atom/cm 3~1×10 20atom/cm 3,且在初始半導體層10指向半導體阱層11的方向上,初始半導體層10內第二類型離子的摻雜深度為150nm~250nm。此外,第一類型離子為P型離子,第二類型離子為N型離子。在其他實施例中,第一類型離子可以為N型離子,第二類型離子可以為P型離子。
在初始半導體層10遠離半導體阱層11的一側依次堆疊形成緩衝層120和保護層130。在一些例子中,可採用沉積製程形成緩衝層120和保護層130,緩衝層120的材料為氧化矽,保護層130的材料為氮化矽。
進一步地,可以採用化學氣相沉積製程沉積氮化矽以形成保護層130,氮化矽膜層的氧化速度非常慢,有利於保護位於氮化矽膜層下方的基板110,避免基板110被氧化。
在一些例子中,基板110為矽基板,由於氮化矽的晶格常數和熱膨脹係數與矽基板的晶格常數和熱膨脹係數的失配率都很大,因而若在矽基板上直接形成氮化矽,氮化矽和矽的介面處缺陷密度大,容易成為載子陷阱和複合中心,影響矽的載子遷移率,從而影響半導體結構的性能和工作壽命。而且,氮化矽薄膜應力較大,直接沉積在矽基板上易出現龜裂現象。因而,在矽基板上沉積氮化矽之前先形成氧化矽作為緩衝層120,有利於提高導體結構的性能和工作壽命。
參考圖1至圖4,在基底100上形成位線104,以及在位線104遠離基底100的表面形成半導體通道105,在沿基底100指向位線104的方向Z上,半導體通道105包括依次排列的第一摻雜區I、通道區II以及第二摻雜區III。
本實施例中,形成位線104和半導體通道105包括如下步驟:
繼續參考圖1,在基底100上形成第一遮罩層102,第一遮罩層102具有多個相互分立的第一開口b,在沿第一開口b的延伸方向X上,第一開口b的長度與後續形成的位線的長度一致。
參考圖2,以第一遮罩層102為遮罩蝕刻基底100,形成多個第一溝槽a,並去除第一遮罩層102。
本實施例中,沿垂直於基底100表面的方向Z,第一溝槽a的深度為250~300nm。由於第一溝槽a的深度大於初始半導體層10內第二類型離子的摻雜深度,有利於保證摻雜有第二類型離子的初始半導體層10均被蝕刻,便於後續形成第二類型離子摻雜濃度高的半導體通道和位線。
參考圖3,在第一溝槽a中形成第五介質層153。
本實施例中,可採用以下製程步驟形成第五介質層153:進行沉積製程,形成覆蓋保護層130頂面以及填充滿的第五介質膜;對第五介質膜進行化學機械平坦化處理至露出保護層130頂面,剩餘第五介質膜作為第五介質層153。其中,第五介質膜的材料包括氧化矽。
進一步地,在第五介質層153和剩餘基底100共同構成的頂面上形成第二遮罩層112,第二遮罩層112具有多個相互分立的第二開口c,在沿第二開口c的延伸方向Y上,第二開口c的長度與後續形成的字線的長度一致。
本實施例中,結合參考圖1和圖3,第一開口b的延伸方向X垂直於第二開口c的延伸方向Y,使得後續形成的半導體通道呈現4F 2的排列方式,有利於進一步提高半導體結構的積體積體密度。在其他實施例中,第一開口的延伸方向與第二開口的延伸方向相交,兩者之間的夾角可以不為90°。
進一步地,第一開口b沿方向Y上的開口寬度與第二開口c沿方向X上的開口寬度的比值為2~1,以保證後續能形成露出環繞通道區II側壁的第一介質層的通孔,從而有利於後續形成用於製造字線的第二間隙。在一些例子中,第一開口b沿方向Y上的開口寬度等於第二開口c沿方向X上的開口寬度,且相鄰第一開口b之間的間距等於相鄰第二開口c之間的間距,一方面,使得後續形成的多個半導體通道排列規整,進一步提高半導體結構的積體密度;另一方面,可以採用同一遮罩版形成第一遮罩層102和形成第二遮罩層112,有利於降低半導體結構的製備成本。
本實施例中,形成第一遮罩層102和形成第二遮罩層112的方法均包括自對準多重曝光技術(SAQP,Self-Aligned Quadruple Patterning)或者自對準多重成像技術(SADP,Self-aligned Double Patterning)。
參考圖4,以第二遮罩層112為遮罩蝕刻基底100(參考圖1)和第五介質層153,形成多個第二溝槽d、位線104和半導體通道105,且在垂直於基底100表面的方向Z上,第二溝槽d的深度小於第一溝槽a的深度,有利於在形成位線104的同時,在位線104遠離半導體阱層11的一側形成多個相互分立的半導體通道105,且位線104與半導體通道105的第一摻雜區I相接觸;去除第二遮罩層112。
在一些例子中,第二溝槽d的深度為100nm~150nm,由於初始半導體層10(參考圖1)內第二類型離子的摻雜深度為150nm~250nm,有利於使得大部分或者全部摻雜有第二類型離子的初始半導體層10經過兩次蝕刻轉變為半導體通道105。
此外,基板110的材料為矽,第五介質層153的材料為氧化矽,在以第二遮罩層112為遮罩蝕刻基底100和第五介質層153的步驟中,蝕刻製程對氧化矽的蝕刻速率大於對矽的蝕刻速率,因而位線104的部分側壁會暴露出來。
本實施例中,在半導體阱層11上可以形成多個間隔排列的位線104,以及每一位線104可與至少一個第一摻雜區I相接觸,圖4中以4個相互間隔的位線104,以及每一位線104與4個第一摻雜區I相接觸作為示例,可根據實際電學需求,合理設置位線104的數量以及與每一位線104相接觸的第一摻雜區I的數量。
為了實現相鄰位線104和相鄰半導體通道105之間的電絕緣,以第二遮罩層112為遮罩蝕刻基底100和第五介質層153之後,剩餘第五介質層153還位於相鄰位線104的間隔中,以及位於相鄰半導體通道105的間隔中。
本實施例中,由於初始半導體層10(參考圖1)摻雜有N型離子,因此本步驟中形成的位線104和半導體通道105中可以摻雜有N型離子。
其中,位線104中摻雜有N型離子,半導體阱層11中摻雜有P型離子,因此,位線104與半導體阱層11構成PN接面,該PN接面有利於防止位線104漏電,進一步改善半導體結構的電學性能。需要說明的是,在其他實施例中,基底也可以不包括半導體阱層,即基底為初始半導體層,且位線位於初始半導體層表面。
此外,半導體通道105構成的器件為無接面電晶體,即第一摻雜區I、通道區II和第二摻雜區III中的摻雜離子的類型相同,例如摻雜離子均為N型離子,進一步地,第一摻雜區I、通道區II和第二摻雜區III中的摻雜離子可以相同。其中,此處的“無接面”指的是無PN接面,即半導體通道105構成的電晶體中沒有PN接面,即第一摻雜區I、通道區II和第二摻雜區III中的摻雜離子的摻雜濃度相同,這樣的好處包括:一方面,無需對第一摻雜區I和第二摻雜區III進行額外的摻雜,從而避免了對第一摻雜區I和第二摻雜區III的摻雜製程難以控制的問題,尤其是隨著電晶體尺寸進一步縮小,若額外對第一摻雜區I和第二摻雜區III進行摻雜,摻雜濃度更加難以控制;另一方面,由於器件為無接面電晶體,有利於避免採用超陡峭源汲濃度梯度摻雜製程,在奈米尺度範圍內製作超陡峭PN接面的現象,因而可以避免摻雜突變所產生的閾值電壓漂移和漏電流增加等問題,還有利於抑制短通道效應,在幾奈米的尺度範圍內仍然可以工作,因而有助於進一步提高半導體結構的積體密度和電學性能。可以理解的是,此處額外的摻雜指的是,為了讓第一摻雜區I和第二摻雜區III的摻雜離子類型與通道區II的摻雜離子類型不同而進行的摻雜。
進一步地,形成半導體通道105垂直於位線104遠離半導體阱層11頂面的GAA電晶體,可以構成3D堆疊的半導體結構,有利於在不對GAA電晶體的電學性能造成不利影響的前提下,設計尺寸特徵更小的GAA電晶體,以提高半導體結構的積體密度。
本實施例中,利用第一遮罩層102和第二遮罩層112,通過兩次蝕刻製程同時形成位線104和半導體通道105,一方面,有利於通過調控第一開口b和第二開口c的尺寸調控半導體通道105的尺寸,且形成尺寸精度較高的半導體通道105;另一方面,位線104和半導體通道105均是通過蝕刻基板110形成的,即位線104和半導體通道105利用同一膜層結構形成,使得位線104和半導體通道105為一體結構,從而改善位線104和半導體通道105之間的介面態缺陷,改善半導體結構的性能。此外,在以第一遮罩層102為遮罩蝕刻基底100之後,在第一溝槽a中還形成有第五介質層153,為後續在通道區II側壁和第二介質層之間形成空隙做前期準備,從而有利於後續形成製備字線的第二間隙。
參考圖5至圖8,形成第一介質層113,第一介質層113環繞半導體通道105側壁,且位於同一位線104上相鄰半導體通道105側壁的第一介質層113之間具有第一間隙e。
其中,圖7為圖6所示結構沿第一截面方向AA1的剖面示意圖,圖8為圖6所示結構沿第二截面方向BB1的剖面示意圖。需要說明的是,後續將根據表述需要設置沿第一截面方向AA1的剖面示意圖以及沿第二截面方向BB1的剖面示意圖中的一者或者兩者,當僅參考一個附圖時,附圖為沿第一截面方向AA1的剖面示意圖;當同時參考兩個附圖時,附圖首先為沿第一截面方向AA1的剖面示意圖,其次為沿第二截面方向BB1的剖面示意圖。
本實施例中,形成第一介質層包括如下步驟:
參考圖5,形成第六介質膜103,第六介質膜103保形覆蓋第二溝槽d的側壁和底部,且還位於保護層130和第五介質層153的頂面。
結合參考圖5和圖6,對第六介質膜103進行無遮罩乾式蝕刻製程,直至露出保護層130,利用相同的蝕刻時間內,蝕刻製程蝕刻第六介質膜103不同區域的厚度相同,形成第六介質層163。
結合參考圖6至圖8,第六介質層163位於第二溝槽d的側壁,第五介質層153位於相鄰半導體通道105的間隔中,第五介質層153和第六介質層163共同組成第一介質層113,且位於第二溝槽d側壁的第六介質層163之間具有第一間隙e。
其中,第六介質層163的材料與第五介質層153的材料相同,便於後續通過蝕刻製程一同去除與通道區II側壁對應的第六介質層163和第五介質層153,從而在通道區II側壁和後續形成的第二介質層之間形成空隙,從而有利於後續形成製備字線的第二間隙。進一步地,第六介質層163的材料與第五介質層153的材料均為氧化矽。
在其他實施例中,第六介質層的材料和第五介質層的材料也可以不同,只需滿足第六介質層的材料和第五介質層的材料為絕緣效果良好的材料即可,然後可以分步去除與通道區側壁對應的第六介質層和第五介質層。
結合參考圖7和圖9,形成第二介質層123,填充滿第一間隙e,且第二介質層123的材料和第一介質層113的材料不同。
在一些例子中,可採用以下製程步驟形成第二介質層123:進行沉積製程,形成覆蓋保護層130頂面以及填充滿第一間隙e的第二介質膜;對第二介質膜、保護層130、緩衝層120以及第一介質層113(參考圖6)進行化學機械平坦化處理至露出第二摻雜區III頂面,剩餘第二介質膜作為第二介質層123。其中,第二介質膜的材料包括氮化矽。
參考圖10至圖17,去除部分第一介質層113至露出通道區II側壁。
在一些例子中,去除部分第一介質層113至露出通道區II側壁的包括如下步驟:
結合參考圖9和圖10,以半導體通道105和第二介質層123為遮罩,蝕刻部分第一介質層113至露出第二摻雜區III側壁。在一些例子中,在垂直於位線104指向半導體通道105的方向Z上,第二摻雜區III的高度為30nm~50nm。
參考圖11至圖14,其中,圖12為圖11的俯視示意圖,圖13為沿第三截面方向CC1的剖面示意圖,圖14為沿第二截面方向BB1的剖面示意圖。
形成第三介質層133,第三介質層133環繞第二摻雜區III側壁和位於第二介質層123側壁,位於第二摻雜區III側壁的第三介質層133和位於第二介質層123側壁的第三介質層133共同圍成通孔f,通孔f底部露出第一介質層113,且第三介質層133的材料和第一介質層113的材料不同。
進一步地,參考圖13和圖14,第三介質層133在環繞第二摻雜區III側壁的同時,覆蓋第六介質層163頂面和部分第五介質層153頂面,通孔f露出的是第五介質層153的部分頂面。
本實施例中,可採用以下製程步驟形成第三介質層133:進行沉積製程,形成保形覆蓋由半導體通道105、第一介質層113以及第二介質層123共同構成的表面的第三介質膜;對第三介質膜進行無遮罩乾式蝕刻製程,直至露出第二摻雜區III頂面,利用相同的蝕刻時間內,蝕刻製程蝕刻第三介質膜不同區域的厚度相同,形成露出第一介質層113的第三介質層133。其中,第三介質層133的材料包括氮化矽。
此外,在前述的第一遮罩層102和第二遮罩層112中,第一開口b沿方向Y上的開口寬度與第二開口c沿方向X上的開口寬度的比值為2~1,在形成第三介質層133時,有利於保證第三介質層133填充滿同一位線104上相鄰半導體通道105之間的間隔的同時,不會將相鄰位線104上相鄰半導體通道105之間的間隙填滿,從而保證形成露出第五介質層153的部分頂面的通孔f,便於後續利用通孔f去除部分第一介質層113。
參考圖15至圖17,去除通孔f露出的位於通道區II側壁的第一介質層113,剩餘第一介質層113環繞第一摻雜區I側壁。
由於通孔f露出第一介質層113的部分頂面,第一介質層113的材料與第二介質層123和第三介質層133的材料均不相同,則可以向通孔f中注入蝕刻液,通過濕式蝕刻製程去除位於通道區II側壁的第一介質層113,保留位於第一摻雜區I側壁的第一介質層113。
此外,第二介質層123和第三介質層133共同組成支撐骨架,支撐骨架與第二摻雜區III相接觸連接,且部分支撐骨架嵌入第一介質層113中。在進行濕式蝕刻製程的步驟中,一方面,支撐骨架有對半導體通道105起支撐固定的作用,當蝕刻液流動時產生對半導體通道105的擠壓力,有利於避免半導體通道105受擠壓發生傾斜或者偏移,以提高半導體結構的穩定性;另一方面,支撐骨架包裹著第二摻雜區III側壁,有利於避免蝕刻液對第二摻雜區III造成損傷。
去除位於通道區II側壁的第一介質層113之後,通道區II與第二介質層123之間形成第三間隙g,通孔f和第三間隙g共同組成洞穴結構h。
參考圖18和圖19,形成絕緣層106,絕緣層106至少覆蓋通道區II側壁表面,且絕緣層106與第二介質層123之間具有第二間隙i。進一步地,參考圖19,第二間隙i還位於相鄰位線104的相鄰半導體通道105側壁的絕緣層106之間。
本實施例中,由於半導體通道105的材料為矽,形成絕緣層106的步驟包括:對露出的通道區II側壁進行熱氧化處理,以形成絕緣層106,且絕緣層106覆蓋剩餘通道區II的側壁表面。其中,絕緣層106的材料為氧化矽。在其他實施例中,也可以通過沉積製程形成覆蓋通道區側壁表面的絕緣層。
由於對露出的通道區II側壁進行熱氧化處理,則通道區II的部分區域被轉化為絕緣層106,使得通道區II在位線104上的正投影小於第二摻雜區III在位線104上的正投影,且小於第一摻雜區I在位線104上的正投影,有利於在不採用蝕刻製程的前提下,形成在垂直於位線104指向半導體通道105的方向Z的截面中,截面面積更加小的通道區II,有利於提高後續形成的字線對通道區II的控制能力,從而更容易控制GAA電晶體的導通或者關斷。
在一些例子中,在垂直於方向Z的截面中,通道區II的寬度W和通道區II的長度L不高於10nm,有利於保證後續形成的字線對通道區II有良好的控制能力。此外,在方向Z上,通道區II的高度為30nm~50nm。
此外,由於第二摻雜區III頂面暴露在外,在熱氧化處理的過程中,第二摻雜區II的靠近頂面的部分區域也轉化為絕緣層106。本實施例中,在後續的製程步驟中去除位於剩餘第二摻雜區III頂面的絕緣層106。在其他實施例中,可以在熱氧化處理之後,就去除位於剩餘第二摻雜區頂面的絕緣層,僅保留覆蓋剩餘通道區的側壁表面的絕緣層。
繼續參考圖18和圖19,絕緣層106的週邊在位線104上的正投影小於第三介質層133的週邊在位線104上的正投影,即絕緣層106遠離半導體通道105的外壁相較於第三介質層133遠離半導體通道105外壁,更靠近半導體通道105,從而保證絕緣層106與第二介質層123之間具有第二間隙i,使得後續字線能環繞位於通道區II側壁的絕緣層106。此外,絕緣層106遠離半導體通道105的外壁相較於第一介質層113(參考圖15)遠離半導體通道105外壁,也可以更靠近半導體通道105。
參考圖20和圖22,其中,圖22為圖21中一條字線107環繞四個半導體通道105的局部剖視圖。
形成字線107,字線107填充滿第二間隙i。
本實施例中,形成字線107的步驟包括:形成初始字線,初始字線填充滿第二間隙i和通孔f。具體地,初始字線位於絕緣層106與第二介質層123之間,且位於相鄰位線104上相鄰通道區II側壁的絕緣層106之間;去除位於通孔f中的初始字線,剩餘初始字線作為字線107。其中,可通過沉積製程形成初始字線,初始字線的材料包括多晶矽、氮化鈦、氮化鉭、銅或者鎢中的至少一種。
初始字線自對準地填充滿洞穴結構h(參考圖15),去除位於通孔f中的初始字線之後,有利於自對準地形成尺寸精確的字線107,無需通過蝕刻製程來設計字線107的尺寸,有利於簡化字線107的形成步驟,且通過調控第二間隙i的尺寸,即可獲得小尺寸的字線107。
參考圖23,形成字線107之後,還形成第四介質層143,第四介質層143填充滿通孔f(參考圖21)。
本實施例中,可採用以下製程步驟形成第四介質層143:進行沉積製程,形成覆蓋位於第二摻雜區III頂面的絕緣層106的頂面以及填充滿通孔f的第四介質膜;對第四介質膜進行化學機械平坦化處理至露出絕緣層106頂面,剩餘第四介質膜作為第四介質層143。其中,第四介質膜與第二介質層和第三介質層的的材料相同,均包括氮化矽。在其他實施例中,也可以對第四介質膜進行化學機械平坦化處理至露出第二摻雜區頂面,即同步去除位於第二摻雜區頂面的絕緣層,剩餘第四介質膜作為第四介質層。
參考圖23至圖25,去除位於第二摻雜區III頂面的絕緣層106,採用外延成長製程,在第二摻雜區III頂面形成電容接觸層108,且電容接觸層108在位線104上的正投影覆蓋第二摻雜區III在位線104上的正投影。
一方面,採用外延成長製程有利於提升第二摻雜區III和電容接觸層108之間的連續性,減少因晶格特性不同或者晶格差排導致的接觸缺陷,減小因接觸缺陷導致的接觸電阻,提升載子的傳輸能力和移動速度,進而提高第二摻雜區III和電容接觸層108之間的導電性能,以及降低半導體結構運行過程中的發熱;另一方面,採用外延成長製程有利於增大電容接觸層108在位線104上的正投影,後續在電容接觸層108上形成電容結構的下電極時,有利於增大電容接觸層108與下電極之間的接觸面積,從而降低電容接觸層108與下電極之間的接觸電阻。
此外,在外延成長的製程步驟中,在電容接觸層108還摻雜有與第二摻雜區III中相同類型的摻雜離子,且摻雜離子在電容接觸層108中的摻雜濃度大於在第二摻雜區III中的摻雜濃度,則電容接觸層108的電阻小於第二摻雜區III的電阻,有利於進一步降低第二摻雜區III與下電極之間的傳輸電阻。
進一步地,在電容接觸層108和第四介質層143共同構成的表面形成電容結構(圖中未示出)。
在其他實施例中,在形成字線之後,可以採用濕式蝕刻製程去除第二介質層和第三介質層,形成露出字線和第一介質層全部頂面的第四間隙;採用沉積製程,形成填充滿第四間隙的第七介質層,由於第七介質層為一體結構,第七介質層的緻密度較高,內部缺陷少,有利於增強第七介質層對相鄰半導體通道以及相鄰位線之間的隔離效果。進一步地,第七介質層的材料和第二介質層的材料可以相同,在一些例子中,七介質層的材料和第二介質層的材料均為氮化矽。
在其他實施例中,還可以不形成電容接觸層,在去除位於第二摻雜區頂面的絕緣層之後,直接在第二摻雜區頂面形成電容結構。
綜上所述,通過形成第一介質層113和第二介質層123,以第二介質層123為遮罩對第一介質層113進行蝕刻,以形成洞穴結構h;採用沉積製程,在洞穴結構h中自對準地形成尺寸精確的字線107,無需通過蝕刻製程來設計字線107的尺寸,有利於簡化字線107的形成步驟,且通過調控第二間隙i的尺寸,即可獲得小尺寸的字線107。
本申請又一實施例還提供一種半導體結構的製作方法,該半導體結構的製作方法與前一實施例大致相同,主要區別包括去除部分第一介質層至露出通道區側壁的製程步驟不同。以下將結合附圖對本申請又一實施例提供的半導體結構的製作方法進行詳細說明,需要說明的是,與前述實施例相同或者相應的部分,可參考前述實施例的詳細描述,在此不再贅述。
圖26至圖31為本發明又一實施例提供的半導體結構的製作方各步驟對應的結構示意圖。需要說明的是,為了便於描述以及清晰地示意出半導體結構製作方法的步驟,本實施例中的圖26至圖31均為半導體結構的局部結構示意圖,後續將根據表述需要設置結構的沿第一截面方向AA1的剖面示意圖以及沿第二截面方向BB1的剖面示意圖中的一者或兩者,當僅參考一個附圖時,附圖為沿第二截面方向BB1的剖面示意圖;當同時參考兩個附圖時,附圖首先為沿第一截面方向AA1的剖面示意圖,其次為沿第二截面方向BB1的剖面示意圖。
本實施例中,參考圖26和圖27,在基底上形成位線204以及半導體通道205、形成第一介質層213和第二介質層223,且基底中具有半導體阱層21,第一介質層213包括第五介質層253和第六介質層263。具體地,形成位線204、半導體通道205、第一介質層213和第二介質層223的步驟與上述實施例的步驟相同,在此不再贅述。
參考圖27,去除部分第一介質層213至露出通道區II側壁的步驟中,還包括去除位於第二摻雜區III側壁的第一介質層213,即剩餘第一介質層213僅位於第一摻雜區I的側壁表面。
參考圖28和圖29,形成絕緣層206,絕緣層206不僅覆蓋通道區II側壁表面,還位於第二摻雜區III側壁表面以及頂面,且絕緣層206與第二介質層223之間具有第二間隙i。
本實施例中,由於半導體通道205的材料為矽,形成絕緣層206的步驟包括:對露出的通道區II側壁和第二摻雜區III的側壁和頂面進行熱氧化處理,以形成絕緣層206,且絕緣層206覆蓋剩餘通道區II和剩餘第二摻雜區III的側壁表面。在其他實施例中,也可以通過沉積製程形成覆蓋通道區側壁和第二摻雜區的側壁和頂面的絕緣層。
由於對露出的通道區II和第二摻雜區III側壁進行熱氧化處理,則通道區II和第二摻雜區III的部分區域被轉化為絕緣層206,使得通道區II和第二摻雜區III在位線204上的正投影均小於第一摻雜區I在位線204上的正投影,有利於在不採用蝕刻製程的前提下,形成在垂直於位線204指向半導體通道205的方向Z的截面中,截面面積更加小的通道區II和第二摻雜區III,有利於降低半導體通道205構成的電晶體的閾值電壓,使得電晶體在較低的閾值電壓下,實現導通或者關斷。
在一些例子中,在垂直於方向Z的截面中,通道區II的寬度W和通道區II的長度不高於10nm,有利於保證電晶體具有較小的閾值電壓。此外,在方向Z上,通道區II的高度為30nm~50nm。
本實施例中,在後續的製程步驟中去除位於剩餘第二摻雜區III頂面的絕緣層206。在其他實施例中,可以在熱氧化處理之後,就去除位於剩餘第二摻雜區頂面的絕緣層,僅保留覆蓋剩餘通道區以及剩餘第二摻雜區的側壁表面的絕緣層。
參考圖30和圖31,形成字線207。具體地,形成字線207包括如下:
形成初始字線,初始字線填充滿第二間隙i(參考圖29),即初始字線位於相鄰位線204上的通道區II和第二摻雜區III側壁的絕緣層206之間。其中,可通過沉積製程形成初始字線。
去除部分初始字線,剩餘初始字線作為字線207,字線207僅環繞位於通道區II側壁的絕緣層206。
初始字線自對準地填充滿第二間隙i,有利於後續自對準地形成尺寸精確的字線207,無需通過蝕刻製程來設計字線207的尺寸,有利於簡化字線207的形成步驟,且通過調控第二間隙i的尺寸,即可獲得小尺寸的字線207。
進一步地,形成第四介質層,第四介質層填充滿位於第二摻雜區III側壁的絕緣層206之間的間隙,然後去除位於第二摻雜區III頂面的絕緣層206。具體的,形成第四介質層和去除部分絕緣層206的步驟與上述實施例的步驟相同,在此不再贅述。在其他實施例中,也可以在形成第四介質層之前,去除位於第二摻雜區側壁和頂面的絕緣層,然後形成露出第一摻雜區頂面的第四介質層。
本實施例中,進一步地還可以在第二摻雜區III頂面形成電容接觸層和電容結構,具體地,形成電容接觸層和電容結構的步驟與上述實施例的步驟相同,在此不再贅述。
綜上所述,通過形成第一介質層213和第二介質層223,以第二介質層223為遮罩對第一介質層213進行蝕刻,以形成第二間隙i;採用沉積製程,在第二間隙i中自對準地形成尺寸精確的字線207,無需通過蝕刻製程來設計字線207的尺寸,有利於簡化字線207的形成步驟,且通過調控第二間隙i的尺寸,即可獲得小尺寸的字線207。
相應地,本發明另一實施例還提供一種半導體結構,由上述任一實施例提供的半導體結構的製作方法製備。
參考圖24和圖25,半導體結構包括:基底,基底包括半導體阱層11;位線104,位於半導體阱層11上;半導體通道105,位於位線104表面,在沿基底指向位線104的方向Z上,半導體通道105包括依次排列的第一摻雜區I、通道區II以及第二摻雜區III,第一摻雜區I與位線104相接觸。
本實施例中,基底、位線104和半導體通道105具有相同的半導體元素,則半導體通道105與位線104利用同一膜層結構形成,該膜層結構由半導體元素構成,使得半導體通道105與位線104為一體結構,從而改善半導體通道105與位線104之間的介面態缺陷,改善半導體結構的性能。
其中,半導體元素可以包括矽、碳、鍺、砷、鎵、銦中的至少一種。具體地,基底、位線104和半導體通道105的材料類型可以為元素半導體材料或者晶態無機化合物半導體材料。元素半導體材料可以矽或者鍺;晶態無機化合物半導體材料可以為碳化矽、鍺化矽、砷化鎵或者鎵化銦等。
具體地,第一摻雜區I、通道區II和第二摻雜區III摻雜有相同類型的摻雜離子,且摻雜離子在第一摻雜區I中的摻雜濃度與在通道區II和第二摻雜區III中的摻雜濃度一致,則半導體通道105構成的器件為無接面電晶體,有利於避免採用超陡峭源汲濃度梯度摻雜製程,在奈米尺度範圍內製作超陡峭PN接面的現象,因而可以避免摻雜突變所產生的閾值電壓漂移和漏電流增加等問題,還有利於抑制短通道效應,在幾奈米的尺度範圍內仍然可以工作,因而有助於進一步提高半導體結構的積體密度和電學性能。其中,摻雜離子為N型離子或P型離子中的一者。
通道區II在位線104上的正投影小於第二摻雜區III在位線104上的正投影,且小於第一摻雜區I在位線104上的正投影。因而,在不採用蝕刻製程的前提下,在垂直於位線104指向半導體通道105的方向Z的截面中,有利於形成截面面積更加小的通道區II,以提高字線107對通道區II的控制能力,從而更容易控制GAA電晶體的導通或者關斷。
在一些例子中,在垂直於方向Z的截面中,通道區II的寬度W和通道區II的長度L不高於10nm,有利於保證電晶體具有較小的閾值電壓。此外,在方向Z上,通道區II的高度為30nm~50nm。
結合參考圖6和圖24至圖25,半導體結構還包括:第一介質層113,環繞第一摻雜區I設置,且同一位線104上相鄰第一摻雜區I側壁的第一介質層113之間具有第一間隔。
具體地,第一介質層113可以包括第五介質層153和第六介質層163,第五介質層153位於相鄰位線104的間隔中,且位於相鄰位線104上的相鄰第一摻雜區I的間隔中;第六介質層163位於同一位線104上相鄰第一摻雜區I的側壁,且位於第五介質層153的側壁。第一介質層113用於實現相鄰半導體通道105和相鄰位線104之間的電絕緣。
半導體結構還包括:絕緣層106,至少覆蓋通道區II側壁表面。本實施例中,絕緣層106僅覆蓋通道區II側壁表面。在其他實施例中,絕緣層可覆蓋通道區和第二摻雜區兩者的側壁表面。
半導體結構還包括:字線107,環繞位於通道區II側壁的絕緣層106,且相鄰字線107之間具有第二間隔;隔離層109,至少位於第一間隔和第二間隔中,且隔離層109遠離基底的頂面不低於第二摻雜區III遠離基底的頂面。
具體地,隔離層109可以包括第二介質層123和第三介質層133,第二介質層123位於第一間隔和第二間隔中,且第二介質層123遠離基底的頂面不低於第二摻雜區III遠離基底的頂面;第三介質層133覆蓋第二摻雜區III側壁。
在一些例子中,第二介質層123頂面與第二摻雜區III頂面齊平,且隔離層109還包括第四介質層143。繼續參考圖25,第四介質層143位於第二介質層123和第三介質層133共同構成頂面,以及位於相鄰第三介質層133構成的間隔中。其中,第二介質層123、第三介質層133和第四介質層143的材料相同,共同構成隔離層109,實現相鄰半導體通道105以及相鄰位線104之間的電絕緣。在其他例子中,第二介質層、第三介質層和第四介質可以為一體成型結構,則隔離層的緻密度較高,內部缺陷少,有利於增強隔離層對相鄰半導體通道以及相鄰位線之間的隔離效果。
在其他實施例中,當絕緣層覆蓋通道區以及第二摻雜區兩者的側壁表面時,隔離層包括第二介質層和第四介質層,其中第二介質層位於第一間隔和第二間隔中,且第二介質層遠離基底的頂面不低於第二摻雜區遠離基底的頂面;第四介質層位於第二介質層和絕緣層構成的間隔中,以及位於相鄰絕緣層構成的間隔中,且第四介質層覆蓋第二介質層頂面。
進一步地,絕緣層106的週邊在位線104上的正投影小於第三介質層133的週邊在位線104上的正投影。
半導體結構還可以包括:電容接觸層108,位於第二摻雜區III頂面,電容接觸層108在位線104上的正投影覆蓋第二摻雜區III在位線104上的正投影,且電容接觸層108具有摻雜離子,摻雜離子在電容接觸層108中的摻雜濃度大於在第二摻雜區II中的摻雜濃度。
由於電容接觸層108與第二摻雜區III摻雜有相同類型的摻雜離子,且摻雜離子在電容接觸層108中的摻雜濃度大於在第二摻雜區III中的摻雜濃度,有利於進一步提高電容接觸層108的導電性。此外,電容接觸層108在位線104上的正投影覆蓋第二摻雜區III在位線104上的正投影,有利於增大電容接觸層108與後續其他導電結構之間的接觸面積,從而降低電容接觸層108與後續其他導電結構之間的接觸電阻。
半導體結構還可以包括:電容結構(圖中未示出),電容結構位於電容接觸層108和第四介質層143共同構成的表面。
綜上所述,在垂直於位線104指向半導體通道105的方向Z的截面中,通道區II的截面面積小於第一摻雜區I和第二摻雜區II的截面面積,有利於降低半導體通道105構成的電晶體的閾值電壓,使得電晶體在較低的閾值電壓下,實現導通或者關斷。此外,半導體通道105構成的器件為無接面電晶體,有利於避免採用超陡峭源汲濃度梯度摻雜製程,因而可以避免摻雜突變所產生的閾值電壓漂移和漏電流增加等問題,還有利於抑制短通道效應,從而進一步提高半導體結構的積體密度和電學性能。
本領域的普通技術人員可以理解,上述各實施方式是實現本發明的具體實施例,而在實際應用中,可以在形式上和細節上對其作各種改變,而不偏離本發明的精神和範圍。任何本領域技術人員,在不脫離本發明的精神和範圍內,均可作各自更動與修改,因此本發明的保護範圍應當以申請專利範圍限定的範圍為準。
10:初始半導體層 11、21:半導體阱層 100:基底 102:第一遮罩層 103:第六介質膜 104、204:位線 105、205:半導體通道 106、206:絕緣層 107、207:字線 108:電容接觸層 109:隔離層 110:基板 112:第二遮罩層 113、213:第一介質層 120:緩衝層 123、223:第二介質層 130:保護層 133:第三介質層 143:第四介質層 153、253:第五介質層 163、263:第六介質層 I:第一摻雜區 II:通道區 III:第二摻雜區 L:長度 W:寬度 a:第一溝槽 b:第一開口 c:第二開口 d:第二溝槽 e:第一間隙 f:通孔 g:第三間隙 h:洞穴結構 i:第二間隙
一個或多個實施例通過與之對應的附圖中的圖片進行示例性說明,除非有特別申明,附圖中的圖不構成比例限制。
圖1至圖25為本發明一實施例提供的半導體結構的製作方法各步驟對應的結構示意圖;
圖26至圖31為本發明又一實施例提供的半導體結構的製作方各步驟對應的結構示意圖。
11:半導體阱層
104:位線
105:半導體通道
106:絕緣層
107:字線
113:第一介質層
133:第三介質層
143:第四介質層
153:第五介質層
163:第六介質層
I:第一摻雜區
II:通道區
III:第二摻雜區

Claims (10)

  1. 一種半導體結構的製作方法,其特徵在於,包括: 提供基底; 在所述基底上形成位線,以及在所述位線遠離所述基底的表面形成半導體通道,在沿所述基底指向所述位線的方向上,所述半導體通道包括依次排列的第一摻雜區、通道區以及第二摻雜區; 形成第一介質層,所述第一介質層環繞所述半導體通道側壁,且位於同一所述位線上相鄰所述半導體通道側壁的所述第一介質層之間具有第一間隙; 形成第二介質層,所述第二介質層填充滿所述第一間隙,且所述第二介質層的材料和所述第一介質層的材料不同; 去除部分所述第一介質層至露出所述通道區側壁; 形成絕緣層,所述絕緣層至少覆蓋所述通道區側壁表面,且所述絕緣層與所述第二介質層介電層之間具有第二間隙; 形成字線,所述字線填充滿所述第二間隙。
  2. 如請求項1所述的半導體結構的製作方法,其特徵在於,去除部分所述第一介質層至露出所述通道區側壁的步驟包括: 蝕刻部分所述第一介質層至露出所述第二摻雜區側壁; 形成第三介質層,所述第三介質層環繞所述第二摻雜區側壁和位於所述第二介質層側壁,位於所述第二摻雜區側壁的所述第三介質層和位於所述第二介質層側壁的所述第三介質層共同圍成通孔,所述通孔底部露出所述第一介質層,且所述第三介質層的材料和所述第一介質層的材料不同; 去除所述通孔露出的位於所述通道區側壁的所述第一介質層,剩餘所述第一介質層環繞所述第一摻雜區側壁, 優選地,形成所述絕緣層的步驟包括: 對露出的所述通道區側壁進行熱氧化處理,以形成所述絕緣層,且所述絕緣層覆蓋剩餘所述通道區的側壁表面, 優選地,形成所述字線的步驟包括: 形成初始字線,所述初始字線填充滿所述第二間隙和所述通孔,且所述初始字線還位於相鄰所述位線上的所述通道區側壁的所述絕緣層之間; 去除位於所述通孔中的所述初始字線,剩餘所述初始字線作為所述字線, 優選地,形成所述字線後,所述方法還包括:形成第四介質層,所述第四介質層填充滿所述通孔。
  3. 如請求項1所述的半導體結構的製作方法,其特徵在於,所述去除部分所述第一介質層至露出所述通道區側壁的步驟中,還包括去除位於所述第二摻雜區側壁的所述第一介質層;所述形成所述絕緣層的步驟中,所述絕緣層還覆蓋所述第二摻雜區側壁, 優選地,形成所述字線的步驟包括: 形成初始字線,所述初始字線填充滿所述第二間隙,且所述初始字線還位於相鄰所述位線上的所述半導體通道部分側壁的所述絕緣層之間; 去除部分所述初始字線,剩餘所述初始字線作為所述字線,所述字線僅環繞位於所述通道區側壁的所述絕緣層。
  4. 如請求項1所述的半導體結構的製作方法,其特徵在於,形成所述位線和所述半導體通道的步驟包括: 在所述基底上形成第一遮罩層; 以所述第一遮罩層為遮罩蝕刻所述基底,形成多個第一溝槽; 去除所述第一遮罩層,在所述第一溝槽中形成第五介質層; 在所述第五介質層和剩餘所述基底共同構成的頂面上形成第二遮罩層; 以所述第二遮罩層為遮罩蝕刻所述基底和所述第五介質層,形成多個第二溝槽、所述位線和所述半導體通道,且在垂直於所述基底表面的方向上,所述第二溝槽的深度小於所述第一溝槽的深度; 去除所述第二遮罩層, 優選地,所述第一遮罩層具有多個相互分立的第一開口,所述第二遮罩層具有多個相互分立的第二開口,且所述第一開口的延伸方向垂直於所述第二開口的延伸方向, 優選地,在垂直於所述半導體通道側壁的方向上,所述第一開口的開口寬度與所述第二開口的開口寬度的比值為2~1,且相鄰所述第一開口之間的間距等於相鄰所述第二開口之間的間距, 優選地,形成所述第一介質層的步驟包括: 形成第六介質層,所述第六介質層位於所述第二溝槽的側壁,剩餘所述第五介質層和所述第六介質層共同組成所述第一介質層,且位於所述第二溝槽側壁的所述第六介質層之間具有所述第一間隙。
  5. 如請求項1所述的半導體結構的製作方法,其特徵在於,還包括: 採用外延成長製程,在所述第二摻雜區頂面形成電容接觸層,且所述電容接觸層在所述位線上的正投影覆蓋所述第二摻雜區在所述位線上的正投影。
  6. 一種半導體結構,其特徵在於,包括: 基底; 位線,位於所述基底上; 半導體通道,位於所述位線表面,在沿所述基底指向所述位線的方向上,所述半導體通道包括依次排列的第一摻雜區、通道區以及第二摻雜區,所述第一摻雜區與所述位線相接觸; 第一介質層,環繞所述第一摻雜區設置,且同一所述位線上相鄰所述第一摻雜區側壁的所述第一介質層之間具有第一間隔; 絕緣層,至少覆蓋所述通道區側壁表面; 字線,環繞位於所述通道區側壁的所述絕緣層,且相鄰所述字線之間具有第二間隔; 隔離層,至少位於所述第一間隔和所述第二間隔中,且所述隔離層遠離所述基底的頂面不低於所述第二摻雜區遠離所述基底的頂面。
  7. 如請求項6所述的半導體結構,其特徵在於,所述基底、所述位線和所述半導體通道具有相同的半導體元素。
  8. 如請求項6所述的半導體結構,其特徵在於,所述第一摻雜區、所述通道區和所述第二摻雜區摻雜有相同類型的摻雜離子,且所述摻雜離子在所述第一摻雜區中的摻雜濃度與在所述通道區和所述第二摻雜區中的摻雜濃度一致,所述摻雜離子為N型離子或P型離子中的一者, 優選地,所述半導體結構還包括:電容接觸層,位於所述第二摻雜區頂面,所述電容接觸層在所述位線上的正投影覆蓋所述第二摻雜區在所述位線上的正投影,且所述電容接觸層具有所述摻雜離子,所述摻雜離子在所述電容接觸層中的摻雜濃度大於在所述第二摻雜區中的摻雜濃度。
  9. 如請求項6所述的半導體結構,其特徵在於,所述通道區在所述位線上的正投影小於所述第二摻雜區在所述位線上的正投影,且小於所述第一摻雜區在所述位線上的正投影。
  10. 如請求項6所述的半導體結構,其特徵在於,所述隔離層包括第二介質層和第三介質層,所述第二介質層位於所述第一間隔和所述第二間隔中,且所述第二介質層遠離所述基底的頂面不低於所述第二摻雜區遠離所述基底的頂面;所述第三介質層覆蓋所述第二摻雜區側壁, 優選地,所述絕緣層的週邊在所述位線上的正投影小於所述第三介質層的週邊在所述位線上的正投影。
TW111121996A 2021-07-01 2022-06-14 半導體結構及其製作方法 TWI803350B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110746053.8A CN115568204A (zh) 2021-07-01 2021-07-01 半导体结构及其制作方法
CN202110746053.8 2021-07-01

Publications (2)

Publication Number Publication Date
TW202303861A true TW202303861A (zh) 2023-01-16
TWI803350B TWI803350B (zh) 2023-05-21

Family

ID=82020978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111121996A TWI803350B (zh) 2021-07-01 2022-06-14 半導體結構及其製作方法

Country Status (6)

Country Link
US (1) US11569240B2 (zh)
JP (1) JP2023548613A (zh)
KR (1) KR20230087591A (zh)
CN (1) CN115568204A (zh)
TW (1) TWI803350B (zh)
WO (1) WO2023273079A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115867026B (zh) * 2023-02-23 2023-07-18 北京超弦存储器研究院 半导体结构、存储器及其制造方法、电子设备
CN116390485B (zh) * 2023-06-06 2023-10-24 长鑫存储技术有限公司 半导体结构及其制备方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355230B2 (en) 2004-11-30 2008-04-08 Infineon Technologies Ag Transistor array for semiconductor memory devices and method for fabricating a vertical channel transistor array
KR100673012B1 (ko) * 2005-09-02 2007-01-24 삼성전자주식회사 이중 게이트형 수직 채널 트랜지스터들을 구비하는다이내믹 랜덤 억세스 메모리 장치 및 그 제조 방법
KR100990549B1 (ko) 2008-05-02 2010-10-29 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법
KR100985883B1 (ko) * 2008-06-20 2010-10-08 주식회사 하이닉스반도체 4f2 트랜지스터를 갖는 반도체 소자 및 그 제조방법
US7968876B2 (en) 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
KR101133701B1 (ko) * 2010-09-10 2012-04-06 주식회사 하이닉스반도체 매립비트라인을 구비한 반도체장치 제조 방법
US20120080725A1 (en) 2010-09-30 2012-04-05 Seagate Technology Llc Vertical transistor memory array
KR101820022B1 (ko) * 2010-11-11 2018-01-19 삼성전자주식회사 수직 채널 트랜지스터를 갖는 반도체 소자 및 그 제조방법
KR101802220B1 (ko) * 2010-12-20 2017-11-29 삼성전자주식회사 수직형 채널 트랜지스터를 포함하는 반도체 소자 및 그 제조 방법
KR20130075348A (ko) 2011-12-27 2013-07-05 에스케이하이닉스 주식회사 매립비트라인을 구비한 반도체장치 및 그 제조 방법
KR20130103942A (ko) * 2012-03-12 2013-09-25 에스케이하이닉스 주식회사 무접합 수직 게이트 트랜지스터를 갖는 반도체 소자 및 그 제조 방법
US9023723B2 (en) * 2012-05-31 2015-05-05 Applied Materials, Inc. Method of fabricating a gate-all-around word line for a vertical channel DRAM
CN109461756B (zh) * 2017-09-06 2021-05-14 中国科学院微电子研究所 Mram及其制造方法及包括mram的电子设备
CN109461738B (zh) 2017-09-06 2021-03-26 中国科学院微电子研究所 半导体存储设备及其制造方法及包括存储设备的电子设备
TWI653712B (zh) * 2017-11-07 2019-03-11 華邦電子股份有限公司 半導體結構及其製造方法
CN108461496B (zh) 2018-05-09 2023-09-29 长鑫存储技术有限公司 集成电路存储器及其形成方法、半导体集成电路器件
CN108493188B (zh) 2018-05-09 2023-10-13 长鑫存储技术有限公司 集成电路存储器及其形成方法、半导体集成电路器件
CN208127209U (zh) 2018-05-09 2018-11-20 长鑫存储技术有限公司 集成电路存储器及半导体集成电路器件
CN208655642U (zh) 2018-09-05 2019-03-26 长鑫存储技术有限公司 半导体存储器
CN110957319A (zh) 2018-09-27 2020-04-03 长鑫存储技术有限公司 集成电路存储器及其形成方法、半导体集成电路器件
CN111354738A (zh) 2018-12-21 2020-06-30 芯恩(青岛)集成电路有限公司 一种三维有结半导体存储器件及其制造方法
US10629615B1 (en) 2019-01-04 2020-04-21 Macronix International Co., Ltd. Semiconductor structure having doped active pillars in trenches
KR20210012710A (ko) 2019-07-26 2021-02-03 에스케이하이닉스 주식회사 수직형 메모리 장치 및 수직형 메모리 장치 제조 방법
US11315936B2 (en) 2019-08-29 2022-04-26 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device and manufacturing method thereof
CN211719592U (zh) 2020-04-27 2020-10-20 长鑫存储技术有限公司 半导体结构和存储器

Also Published As

Publication number Publication date
JP2023548613A (ja) 2023-11-17
CN115568204A (zh) 2023-01-03
TWI803350B (zh) 2023-05-21
EP4135037A1 (en) 2023-02-15
US20230005923A1 (en) 2023-01-05
US11569240B2 (en) 2023-01-31
WO2023273079A1 (zh) 2023-01-05
KR20230087591A (ko) 2023-06-16

Similar Documents

Publication Publication Date Title
KR101316959B1 (ko) 전기적 절연을 제공하는 방법 및 전기적 절연을 포함하는 반도체 구조물
KR100772935B1 (ko) 트랜지스터 및 그 제조 방법
WO2023130883A1 (zh) 半导体结构及其制造方法
TWI803350B (zh) 半導體結構及其製作方法
US20080111194A1 (en) Semiconductor device including a finfet
US10177154B2 (en) Structure and method to prevent EPI short between trenches in FinFET eDRAM
WO2023284098A1 (zh) 半导体结构及其制作方法
KR101095825B1 (ko) 반도체 소자 및 그 제조 방법
WO2023279719A1 (zh) 半导体结构的制备方法及半导体结构
US20230020711A1 (en) Semiconductor structure and method for manufacturing same
TWI806672B (zh) 半導體結構及其製作方法
US20230413536A1 (en) Semiconductor structure and manufacturing method thereof
TWI802451B (zh) 半導體結構及其製造方法
TWI813363B (zh) 半導體結構及其製造方法
RU2807501C1 (ru) Полупроводниковая структура и способ ее изготовления
WO2023133993A1 (zh) 半导体结构及半导体结构的制备方法
JP7483891B2 (ja) 半導体構造及びその製造方法
US20230345698A1 (en) Semiconductor structure and manufacturing method thereof
RU2817107C1 (ru) Полупроводниковая структура и способ ее изготовления
WO2023221177A1 (zh) 半导体结构及其制作方法
US20220406915A1 (en) Semiconductor structure and fabrication method thereof
JP2024521863A (ja) 半導体構造及びその製造方法