TW202300489A - 製備呋呫并苯并咪唑及其晶型之方法 - Google Patents

製備呋呫并苯并咪唑及其晶型之方法 Download PDF

Info

Publication number
TW202300489A
TW202300489A TW111131870A TW111131870A TW202300489A TW 202300489 A TW202300489 A TW 202300489A TW 111131870 A TW111131870 A TW 111131870A TW 111131870 A TW111131870 A TW 111131870A TW 202300489 A TW202300489 A TW 202300489A
Authority
TW
Taiwan
Prior art keywords
degrees
crystalline
dichloride salt
tumors
formula
Prior art date
Application number
TW111131870A
Other languages
English (en)
Inventor
桂格 偉蒂
馬克思 胡伯斯
大衛 塔里亞費瑞
Original Assignee
瑞士商巴塞利亞藥業國際股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商巴塞利亞藥業國際股份有限公司 filed Critical 瑞士商巴塞利亞藥業國際股份有限公司
Publication of TW202300489A publication Critical patent/TW202300489A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4245Oxadiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/26Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one amino group bound to the carbon skeleton, e.g. lysine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Steroid Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本發明提供了用於製備具有式I之化合物和其藥學上可接受的鹽之方法,
Figure 111131870-A0101-11-0001-1
該方法包括使具有式II之化合物去保護

Description

製備呋呫并苯并咪唑及其晶型之方法
本發明涉及可用於製備某些可用於治療增殖性病症的化合物之方法,以及可用於該方法的中間體。本發明還涉及如本文所述的具有式I之化合物的結晶鹽、其製備方法、其藥物組成物、以及其在治療增殖性病症和疾病中之用途。
WO 2011/012577、WO 2012/098207、WO 2012/098203、WO 2012/113802、WO 2012/130887、WO 2015/173341和WO 2017/068182描述了具有以下結構(在此指定為式I)的化合物及其在治療增殖性病症如癌症中之用途,以及其製備方法。
Figure 02_image001
(I)
該化合物係具有活性部分的前藥,該活性部分在下文示為具有式B的化合物。
Figure 02_image009
(B)
WO 2011/012577描述了產生具有式I化合物之方法,其中使用苄氧基胺基甲酸酯基團來保護賴胺酸部分上的胺基基團。現在已經發現使用其他胺基甲酸酯保護基團,特別是使用胺基甲酸三級丁酯(BOC)而不是苄氧基胺基甲酸酯保護基團為商業生產帶來出人意料的優點。
另外,當根據WO 2011/012577中描述的通用程序合成時,作為二氯化物鹽的具有式I之化合物被作為無定形固體分離。現已發現具有式I之化合物的二氯化物鹽可以以晶型分離,從而為藥物加工提供優勢。
在第一方面,本發明提供了製備具有式I之化合物或其藥學上可接受的鹽的方法
Figure 02_image001
(I)
該方法包括使具有式II之化合物去保護
Figure 02_image003
(II) 其中每個R 3獨立地表示三級烷基基團。
具有式II之化合物可以藉由以下方式來製備:使具有式III之化合物
Figure 02_image013
(III) 其中R 1表示離去基團;並且 其中每個R 3獨立地表示三級烷基基團;
與具有式IV之化合物反應
Figure 02_image015
(IV)。
具有式III之化合物(其中R 1表示氯)可以藉由以下方式來製備:使具有式V之化合物
Figure 02_image017
(V) 其中R 2表示OH;並且 其中每個R 3獨立地表示三級烷基基團;
與具有式VI之化合物反應
Figure 02_image019
(VI) 其中R 1a表示氯。
在另一個方面,本發明提供了用於製備具有式II之化合物之方法,該方法包括使具有式III之化合物與具有式IV之化合物反應。
在另一個方面,本發明提供了用於製備具有式III之化合物(其中R 1表示氯)之方法,該方法包括使具有式V之化合物與具有式VI之化合物反應。
在另一個方面,本發明提供了具有式II之化合物。
在另一個方面,本發明提供了具有式III之化合物。
R 1表示離去基團,其可由具有式IV之化合物的苯并咪唑氮原子選擇性取代。此類離去基團包括氯;溴;碘;活化的OH基團,例如磺酸酯(如甲磺酸酯、三氟甲磺酸酯、甲苯磺酸酯、乙磺酸酯、苯磺酸酯);羰基,例如三氟乙酸酯;其他的反應性酯,例如硝酸酯和高氯酸酯、硝基苯基醚、亞磷酸烷基酯和磷酸烷基酯。較佳的是,R 1係氯、溴或磺酸酯,更較佳的是溴或氯,最較佳的是氯。
每個R 3獨立地表示三級烷基基團,例如,-C(R 4) 3,其中每個R 4獨立地表示C 1-C 8烷基。較佳的是,每個R 4獨立地表示甲基、乙基或丙基,更較佳的是甲基。最較佳的是,每個R 3表示三級丁基。
在一個實施方式中,每個R 3表示三級丁基並且R 1表示氯、溴或磺酸酯。
在另一個實施方式中,每個R 3表示三級丁基並且R 1表示氯。 步驟1:胺基化合物VI用胺基甲酸烷基酯保護的化合物V的醯化 方案 1
Figure 02_image021
一級胺醯化形成醯胺的合適的反應條件係熟習該項技術者熟知的。該反應通常涉及用合適的活化劑“活化”羧酸,參見例如,Montalbetti等人, Tetrahedron[四面體] 61 (2005), 10827-10852。通常從羧酸形成醯胺可以藉由醯基鹵、醯疊氮、醯基咪唑、酐、或活性酯如芳族酯或磷酸酯進行。該反應可以經由包括以下的兩個步驟進行:羧酸的活化,隨後與醯胺偶合;或取決於試劑,藉由一鍋法進行。
合適的醯基鹵包括醯基氯、醯基氟和醯基溴,其中醯基氯通常是較佳的。用於形成醯氯的合適試劑包括亞硫醯氯、草醯氯、三氯化磷、三氯氧磷、五氯化磷、氰尿醯氯、特戊醯氯和氯甲酸異丙酯。用於形成醯基氟的合適試劑包括在吡啶存在下的氰尿醯氟和在胡寧氏鹼存在下的N,N-四甲基氟甲脒六氟磷酸鹽(TFFH),並且用於形成醯基溴的合適試劑包括1-溴-N,N-三甲基-1-丙烯基胺。
用於形成酐的合適試劑包括二環己基碳二亞胺(DCC)、二異丙基碳二亞胺(DIC)和1-乙基-3-(3’-二甲基胺基)碳二亞胺(EDC)。
用於形成活性酯的合適的試劑包括鏻試劑例如苯并三唑-1-基-氧基-三-(二甲基胺基)-鏻六氟磷酸鹽(BOP)或苯并三唑-1-基-氧基-三-吡咯啶基-鏻六氟磷酸鹽(PyBop®),脲鹽例如O-(1H-苯并三唑-1-基)-N,N,N’N’-四甲基脲六氟磷酸鹽(HBTU)、其四氟硼酸鹽等效物(TBTU)或吡啶鎓類似物(HATU),和2,4,6-三丙基-1,3,5,2,4,6-三氧雜三膦雜環-2,4,6-三氧化物(T3P®)。
肼通常用於形成醯疊氮並且羰基二咪唑(CDI)通常用於形成醯基咪唑。
較佳的活化劑係DIC、DCC和T3P®。
該反應可以包括助劑例如4-(N,N-二甲基胺基)吡啶(DMAP)或羥基苯并三唑。例如,當使用酐或T3P®作為活化劑時,DMAP也可以包含在反應中並且可以改善轉化,特別是當使用混合酐時。通常,技術人員能夠確定助劑是否有用,並且選擇合適的替代物。
該反應可以在合適的溶劑中進行,通常是有機溶劑,包括酮(例如丙酮、甲基乙基酮(2-丁酮)或環己酮)、四氫呋喃(THF)或2-甲基四氫呋喃、甲醯胺(例如二甲基甲醯胺(DMF))、鹵代烷(例如二氯甲烷(DCM))、酯(例如乙酸乙酯)、醚(例如二異丙醚(DIPE))、芳香族溶劑(例如對二甲苯和甲苯)、或其混合物。在本發明的上下文中,較佳的是該溶劑係乙酸乙酯/DIPE、DMF、甲苯或DCM。通常,熟習該項技術者能夠選擇合適的溶劑。
在一個較佳的實施方式中,該活化劑係DCC,較佳的是其中該溶劑係DCM,視情況以DMAP作為助劑。在另一個較佳的實施方式中,該活化劑係T3P®,較佳的是其中該溶劑係甲苯,視情況以DMAP作為助劑。
該反應可以在一種合適的鹼例如2,4,6-三甲基吡啶(TMP)、或三級胺(例如二異丙基乙胺(DIPEA)或三乙胺(TEA))的存在或不存下進行。當該活化劑係酐例如DCC時,鹼係視情況的,在另一方面,當該活化劑係鏻試劑例如T3P®時,鹼的存在可以是有益的,並且在這種情況下,該鹼較佳的是TEA。
當該活化劑係酐例如DCC時,該反應通常藉由兩個步驟(活化和偶合)進行。通常來自第一步驟的反應產物例如藉由過濾處理以除去所得的脲。在第一步驟中,反應通常在環境溫度下進行,但可以是例如-20°C至溶劑的沸點。較佳的是該溫度係-10°C至50°C,更較佳的是15°C至25°C。換言之,該溫度通常至少是-20°C,較佳的是至少-10°C,更較佳的是至少15°C。該溫度將不會高於該溶劑的沸點並且較佳的是高至50°C,更較佳的是高至25°C。達到所需轉化水平所需的時間將取決於使用的溫度而變化,例如從15分鐘高至幾小時。在第二個步驟中,溫度和反應時間的可能性範圍與第一步驟相同。通常壓力係環境壓力。
當該活化劑係鏻試劑例如T3P®時,該反應可以藉由一鍋反應進行。這可以導致處理成本的降低,並且因此從商業生產的角度來看是有利的。一般而言,該反應在如下溫度下進行,例如,-20°C至20°C,例如至少-20°C,例如高至20°C。當不使用助劑時,該反應較佳的是在該範圍的較低端進行,這樣可以提高反應選擇性,例如在-20°C至0°C,較佳的是-15°C至-5°C,更較佳的是約-10°C進行。換言之,該溫度通常至少是-20°C,較佳的是至少-15°C。同樣地,該溫度通常是高至0°C,較佳的是高至-5°C。當使用助劑例如DMAP時,該反應較佳的是在該範圍的較高端例如在0°C至20°C,較佳的是5°C至15°C,更較佳的是約10°C進行。換言之,該溫度通常至少是0°C,較佳的是至少5°C。同樣地,該溫度通常是高至20°C,更較佳的是高至15°C。達到所需轉化水平所需的時間將取決於使用的溫度而變化,並且可能會在例如從1小時到24小時之間變化。當使用助劑時,反應時間通常會更短,而且當不使用助劑時,反應時間通常會更長。通常壓力係環境壓力。
具有式V和VI之化合物係可商購的。具有式V之化合物具有CAS登記號2483-69-8(R 2係OH,R 3係三級丁基)。具有式VI之化合物具有CAS登記號2631-71-2(R 1a係氯)和23442-14-0(R 1a係溴)。 步驟2:在化合物III上的離去基團R 1被化合物IV的苯并咪唑部分的親核取代 方案2
Figure 02_image023
要注意的是,由於分子內偶合,難以根據方案1藉由化合物VI與化合物V的偶合製備具有式III之化合物(其中R 1不是氯)。然而,具有式III之化合物(其中R 1係溴)可以藉由溴化,根據WO 2011/012577中例如實例1中描述的方法來製備。同樣地,技術人員可以使用標準技術製備具有式III之化合物(其中R 1係離去基團例如碘、活化的OH基團、羰基反應性酯、硝基苯基醚、烷基亞磷酸酯和烷基磷酸酯)。
離去基團R 1被具有式IV之化合物親核取代的合適反應條件係熟習該項技術者熟知的。
該反應通常在合適的鹼的存在下進行,儘管也可以使用中性條件,並且在一些情況下也可以使用酸性條件。鹼性條件係較佳的,其中該鹼通常是無機鹼例如碳酸鹽,較佳的是碳酸鉀。要注意的是,親核鹼的使用可能導致腈基的不希望的水解,除非仔細控制條件並因此較佳的是非親核鹼。一般而言,技術人員能夠確定鹼是否有用,選擇合適的鹼,並找到適宜的溫和鹼性條件以最小化並較佳的是避免水解腈基。
該反應可以在合適的鹼,通常為有機鹼,較佳的是非質子溶劑(例如丙酮、DMSO或DMF,較佳的是DMF)中進行。
該等反應參數可以被熟習該項技術者優化,但是通常該溫度係例如25°C至45°C,較佳的是35°C至42°C,例如通常是至少25°C,較佳的是至少35°C,例如通常高至45°C,較佳的是高至42°C。達到所需轉化水平所需的時間將取決於使用的溫度而變化,其可以是例如1小時至24小時。使用較高溫度時轉化通常會更快。通常壓力係環境壓力。
具有式IV之化合物可以使用WO 2011/012577和WO 2004/103994中描述的方法來獲得。 步驟3:裂解化合物II的胺基甲酸酯保護基團以獲得化合物I 方案 3
Figure 02_image025
具有式II之化合物的去保護涉及除去–C(=O)OR 3保護基團以留下一級胺基團而不改變該分子的任何其他部分。用於從一級胺基團除去胺基甲酸酯保護基團(包括三級丁基胺基甲酸酯)的合適的條件和試劑詳細地描述於保護基團手冊“Greene's Protective Groups in Organic Synthesis[有機合成中的格林氏保護基團]”,第五版 Peter G. M. Wuts(John Wiley & Sons, Inc.[約翰威利父子公司], 美國新澤西州霍博肯, 2014)。鑒於本領域的廣泛知識,技術人員能夠選擇合適的條件、溶劑和試劑來進行該去保護步驟。
通常該反應包括能夠裂解羰基-氮鍵的親核試劑。
通常在酸性條件下進行去保護,但是在上述手冊中也描述了合適的非酸性條件。合適的酸包括鹽酸、三氟乙酸、碘化三甲基甲矽烷、溴化鋅,較佳的是鹽酸。去保護可以藉由胺基甲酸酯的水解而發生,儘管在無水條件下的去保護也在上述手冊中進行了描述。
該反應可以在合適的溶劑中進行,通常為有機溶劑例如非質子溶劑(較佳的是丙酮或四氫呋喃)。
該溫度可以是在-20°C和該溶劑的沸點之間,例如0°C至50°C。通常,該溫度係例如20°C至30°C,例如至少20°C,例如高至30°C。達到所需轉化水平所需的時間將取決於使用的溫度而變化,並且可以是例如高至25小時。通常壓力係環境壓力。
具有式I之化合物可以根據WO 2011/012577中描述的方法轉化成具有式I之化合物的藥學上可接受的鹽。該等鹽係例如作為酸加成鹽形成,較佳的是與有機或無機酸形成。適合的無機酸係例如氫鹵酸(諸如鹽酸)、硫酸、或磷酸。適合的有機酸係例如羧酸、膦酸、硫酸或胺基磺酸,例如乙酸、丙酸、辛酸、癸酸、十二烷酸、乙醇酸、乳酸、富馬酸、琥珀酸、己二酸、庚二酸、辛二酸、壬二酸、蘋果酸、酒石酸、檸檬酸、胺基酸(諸如穀胺酸或天冬胺酸)、馬來酸、羥基馬來酸、甲基馬來酸、環己烷羧酸、金剛烷羧酸、苯甲酸、水楊酸、4-胺基水楊酸、鄰苯二甲酸、苯乙酸、苦杏仁酸、肉桂酸、甲烷-或乙烷-磺酸、2-羥基乙烷磺酸、乙烷-1,2-二磺酸、苯磺酸、2-萘磺酸、1,5-萘-二磺酸、2-甲基苯磺酸、3-甲基苯磺酸或4-甲基苯磺酸、甲基硫酸、乙基硫酸、十二烷基硫酸、N-環己基胺基磺酸、N-甲基-胺基磺酸、N-乙基-胺基磺酸或N-丙基-胺基磺酸、或其他的有機質子酸(諸如抗壞血酸)。
較佳的藥學上可接受的鹽係氯化物鹽,特別是具有式I之化合物的二氯化物鹽。
本發明的方法還可以包括適用時使用具有式II、III、IV、V和VI之化合物的鹽,並且對具有式II、III、IV、V和VI之化合物的提及包括其鹽。
在WO 2011/012577中描述了用於產生具有式I之化合物之方法,其中苄基酯基團被用於保護賴胺酸部分上的胺基團。揭露的本方法提供了具有約90%(面積)純度、約81%鏡像異構物過量(ee)和約50%產率的具有式I之化合物,如對比實例1中所示。出人意料的是,現在已經發現,藉由使用三級丁氧基羰基酯來保護胺基,可以以高純度和顯著更高產率獲得具有式I之化合物。 [表1]:數據比較
   產率 純度 光學純度
對比實例1 50% 90%-91% 81%ee
實例3 83% 99.6% > 99.6%ee
還發現具有式II之化合物可以在一鍋反應中去保護並作為二氯化物鹽結晶成有利的晶型(在此稱為“晶型E”)。這可以藉由進行以下的去保護步驟來實現:使用HCl和甲醇作為溶劑,隨後在0°C至10°C、較佳的是3°C至8°C、更較佳的是約5°C攪拌。換言之,該溫度通常為至少0°C,較佳的是至少3°C。同樣地,該溫度通常高至10°C,較佳的是高至8°C。
在另一個方面,本發明提供了具有式I之化合物的結晶二氯化物鹽。具有式I之化合物的晶型可以藉由各種技術來表徵,包括使用CuKα輻射的X射線粉末繞射法(XRPD)。 晶型E
具有用於將二氯化物鹽配製成固體配製物以給予患者的有利物理性質的一種多晶型係在此稱為“晶型E”的多晶型。已經發現晶型E在常溫下示出高的多晶型穩定性(參見實例5a),它表現出高達85%RH的化合物的1%吸水率(參見實例5f)和良好的溶解性(參見實例5g)。許多其他多晶型(包括實例中描述的晶型F和晶型G)未示出多晶型穩定性並且通常不易用於藥物加工。
因此,在一個實施方式中,當使用CuKα輻射測量時,具有式I之化合物的結晶鹽(晶型E)具有在6.0度2θ(± 0.2度2θ)包含峰的XRPD圖。較佳的是,具有式I之化合物的結晶二氯化物鹽(晶型E)具有在6.0、9.4和9.9度2θ(± 0.2度2θ)包含峰的XRPD圖。更較佳的是,具有式I之化合物的結晶鹽(晶型E)具有在6.0、9.4、9.9、10.7、17.4、21.4、25.8和28.4度2θ(± 0.2度2θ)包含峰的XRPD圖。甚至更較佳的是,具有式I之化合物的結晶鹽(晶型E)具有在6.0、9.4、9.9、10.7、11.6、11.9、17.4、21.4、22.4、23.0、24.2、24.6、25.8和28.4度2θ(± 0.2度2θ)包含峰的XRPD圖。
較佳的是,正交晶原始晶胞參數被定義為a = 4.813 ± 0.001 Å,b = 20.02 ± 0.01 Å,c = 59.40 ± 0.02 Å,V = 5724 ± 5 Å 3
具有式I之化合物的結晶二氯化物鹽(晶型E)也可以使用IR和/或固態NMR數據結合一個或多個XRPD峰來確認。在這種情況下,該結晶二氯化物鹽(晶型E)較佳的是具有在1701、1665、1335、1241、1170、942、924、864、699和628 cm -1(± 2cm -1)包含峰的IR譜,該等峰被鑒定為將晶型E與其他的多晶型區別的峰。同樣地,該結晶二氯化物鹽較佳的是具有參考外部四甲基矽烷(TMS)標準測量的 13C CP MAS(14 kHz)NMR譜和/或參考([D6]DMSO,內標)的在[D6]-DMSO中的 13C NMR譜,如在下表(表5)中所示。
在另一個實施方式中,具有式I之化合物的結晶二氯化物鹽(晶型E)藉由以下來表徵:在6.0度2θ(± 0.2度2θ)包含峰的XRPD圖以及以上IR譜峰。在另一個實施方式中,晶型E以如下來表徵:在6.0度2θ(± 0.2度2θ)包含峰的XRPD圖,以及以上IR譜峰,和/或下表(表5)中的兩組NMR譜峰的至少一個。在另一個實施方式中,晶型E以如下來表徵:在6.0、9.4和9.9度2θ(± 0.2度2θ)包含峰的XRPD圖,以及以上IR譜峰,和/或下表(表5)的兩組NMR譜峰中的至少一個。在另一個實施方式中,晶型E以如下來表徵:在6.0、9.4、9.9、10.7、17.4、21.4、25.8和28.4度2θ(± 0.2度2θ)包含峰的XRPD圖,以及以上的IR譜峰,和/或下表(表5)的兩組NMR譜峰中的至少一個。在另一個實施方式中,晶型E以如下來表徵:在6.0、9.4、9.9、10.7、11.6、11.9、17.4、21.4、22.4、23.0、24.2、24.6、25.8和28.4度2θ(± 0.2度2θ)包含峰的XRPD圖,以及以上的IR譜峰,和/或下表(表5)的兩組NMR譜峰中的至少一個。
同樣地,上述涉及表徵晶型E的不同方式的任何實施方式可以以任何組合相互組合。
晶型E可以藉由冷卻結晶例如伴隨攪拌從2-丁酮/甲醇、1,4-二㗁𠮿/甲醇或乙酸乙酯/甲醇的混合物中製備。它也可以藉由使具有式I之化合物在醇如甲醇、乙醇或2-丙醇、乙酸乙酯或乙腈或該等溶劑的混合物中漿化來獲得。也可以由溶劑混合物獲得,該溶劑混合物由上述溶劑之一和另一種溶劑例如醚(例如三級丁基甲基醚、1,4-二㗁𠮿)、酮(例如2-丁酮)或鹵烴(例如1,2-二氯乙烷)構成。它也可以由具有式I之化合物(遊離鹼)藉由在合適的溶劑中用氯化氫處理而獲得。轉化時間取決於溫度,並且通常溫度越高,結晶越快。例如,在室溫下可能需要幾天,有時高至兩週,而在回流時,結晶可以在幾個小時內完成。
在另一個方面,本發明提供了用於製備具有式I之化合物的結晶鹽(晶型E)之方法,該方法包括以下步驟:從溶劑中結晶具有式I之化合物的二氯化物鹽的步驟,其中所述溶劑係乙腈、甲醇、乙醇、乙酸乙酯、異丙醇或其混合物,或包含乙腈、甲醇、乙醇、乙酸乙酯和/或異丙醇的溶劑混合物。較佳的是,該溶劑係乙腈、甲醇、或乙醇或其混合物,或包含乙腈、甲醇和/或乙醇的溶劑混合物。較佳的溶劑混合物係乙腈、甲醇和乙醇中的兩者或三者的混合物,以及甲醇和甲基三級丁基醚、甲醇和甲苯、甲醇和乙腈、甲醇和2-丁酮、甲醇和二㗁𠮿、以及甲醇和乙酸乙酯的混合物。更較佳的溶劑混合物係乙腈、甲醇和乙醇中的兩者或三者的混合物,以及甲醇和甲基三級丁基醚、甲醇和甲苯、以及甲醇和乙腈的混合物。在一個實施方式中,該溶劑係乙腈或包含乙腈的溶劑混合物。在另一個實施方式中,該溶劑係甲醇或包含甲醇的溶劑混合物。在另一個實施方式中,該溶劑係乙醇或包含乙醇的溶劑混合物。在另一個實施方式中,該溶劑係乙腈、甲醇或乙醇或其混合物。
該方法可包括將溶劑和作為二氯化物鹽的具有式I之化合物組合並使具有式I之化合物的二氯化物鹽例如藉由使混合物靜置而結晶的步驟。可替代地,該方法可包括將溶劑和作為遊離鹼的具有式I之化合物與鹽酸一起組合並使具有式I之化合物的二氯化物鹽例如藉由使混合物靜置而結晶的步驟。
在另一個方面,本發明提供了一種藥物組成物,其包含與一種藥學上可接受的載體、稀釋劑或賦形劑相組合的、藥學上有效量的具有式I之化合物的結晶二氯化物鹽(晶型E)。
在另一個方面,本發明提供了用於治療增殖性病症或疾病的、具有式I之化合物的結晶二氯化物鹽(晶型E)。
在另一個方面,本發明提供了具有式I之化合物的晶體二氯化物鹽(晶型E)在製造用於治療增殖性病症或疾病的藥物中之用途。
在另一個方面,本發明提供了治療增殖性病症或疾病之方法,該方法包括將具有式I之化合物的結晶二氯化物鹽(晶型E)給予對其有需要的患者。 系統A + M
可以用於將二氯化物鹽配製成固體配製物以給予患者的另一種晶型係此處稱為“系統A + M”的晶型。
具有式I之化合物的二氯化物鹽的這種晶型(系統A + M)係不常見的,其在於它具有吸收水並以可逆且可預測的方式改變其多晶型的能力。在這個意義上說,晶型係一種多晶型系統,其取決於多晶型系統所暴露的濕度展現出特定的多晶型。具體而言,多晶型系統在0和100%相對濕度(RH)下展現出特定的多晶型(除非另有說明,所有相對濕度的提及均指1 atm/25°C的相對濕度),兩種極端之間具有連續的可再現多晶型。雖然系統A + X展現出不同的多晶型(水合物),但系統本身已被發現係多晶型穩定的,其在於多晶型變化係可逆的和可預測的。另外它示出了良好的溶解性(參見實例8d)。許多其他多晶型(包括實例中描述的晶型F和晶型G)未示出多晶型穩定性並且通常不易用於藥物加工。
多晶型系統可以藉由使晶型經歷零濕度直到晶型本質上不含水分來識別。然後晶型將展現在此稱為晶型A0的多晶型。可替代性,多晶型系統可以藉由使晶型經受高濕度(≥ 95% Rh)直到多晶型不再吸收任何進一步的水分來識別。然後該晶型將展現在此稱為混合物A2 + M11的多晶型,其為兩種多晶型A2和M11的混合物。其他多晶型和晶型混合物存在於這兩種極端形式之間,取決於晶型內存在的水分量。
因此,在一個實施方式中,本發明提供了具有式I之化合物的結晶二氯化物鹽(晶型A0),當該結晶鹽本質上不含水分時,當使用CuKα輻射測量時,該結晶二氯化物鹽具有在3.9度2θ(±0.2度2θ)包含峰的XRPD圖。較佳的是,具有式I之化合物的結晶二氯化物鹽(晶型A0)具有在3.9、7.9和9.7度2θ(± 0.2度2θ)包含峰的XRPD圖。更較佳的是,具有式I之化合物的結晶二氯化物鹽(晶型A0)具有在3.9、7.9、9.7、11.2和23.9度2θ(± 0.2度2θ)包含峰的XRPD圖。甚至更較佳的是,具有式I之化合物的結晶二氯化物鹽(晶型A0)具有在3.9、7.9、9.7、11.2、23.9、25.0和25.5度2θ(±0.2度2θ)包含峰的XRPD圖。
“本質上無水分”係指例如零或可忽略的水分,例如0.1%水分(w/w)或更低,較佳的是零水分。這可以藉由在約195°C將晶型加熱例如至少2.5 h或更長時間(例如至少4 h)來實現。
在另一個實施方式中,本發明提供了具有式I之化合物的結晶二氯化物鹽(混合物A2 + M11),當該結晶鹽被暴露於100%濕度中一段時間以使其不再吸收任何另外的水分時,當使用CuKα輻射測量時,該結晶二氯化物鹽具有在2.7度2θ(± 0.2度2θ)包含峰的XRPD圖。較佳的是,具有式I之化合物的結晶二氯化物鹽(混合物A2 + M11)具有在2.7、8.3和9.4度2θ(± 0.2度2θ)包含峰的XRPD圖。更較佳的是,具有式I之化合物的結晶二氯化物鹽(混合物A2 + M11)具有在2.7、8.3、9.4、14.8和19.7度2θ(± 0.2度2θ)包含峰的XRPD圖。甚至更較佳的是,具有式I之化合物的結晶二氯化物鹽(混合物A2 + M11)具有在2.7、8.3、9.4、14.8、19.7和24.1度2θ(±0.2度2θ)包含峰的XRPD圖。
使晶型經受高濕度(≥ 95%RH)直至多晶型不再吸收任何進一步的水分可能需要使晶型在25°C經受≥ 95%RH至少一週或甚至更長時間,例如2週或更長。
在中等水平的濕度下在該系統中的三種常見的多晶型在本文中被稱為混合物A1 + M1(其通常以約1%至約20% Rh存在)、混合物A1 + M4(通常為約10%至約50% Rh)、和晶型M3 + M5(通常為約50%至約90% RH)。
因此,在另一個實施方式中,本發明提供了具有式I之化合物的結晶二氯化物鹽(混合物A1 + M1),當使用CuKα輻射測量時,該結晶二氯化物鹽具有在3.6度2θ(± 0.2度2θ)包含峰的XRPD圖。較佳的是,具有式I之化合物的結晶二氯化物鹽(混合物A1 + M1)具有在3.6、4.0和8.1度2θ(± 0.2度2θ)包含峰的XRPD圖。更較佳的是,具有式I之化合物的結晶二氯化物鹽(混合物A1 + M1)具有在3.6、4.0、8.1、9.4、11.0、21.1和24.5度2θ(±0.2度2θ)包含峰的XRPD圖。
同樣地,在另一個實施方式中,本發明提供了具有式I之化合物的結晶二氯化物鹽(混合物A1 + M4),當使用CuKα輻射測量時,該結晶二氯化物鹽具有在3.4度2θ(± 0.2度2θ)包含峰的XRPD圖。較佳的是,具有式I之化合物的結晶二氯化物鹽(混合物A1 + M4)具有在3.4、4.0和8.1度2θ(± 0.2度2θ)包含峰的XRPD圖。更較佳的是,具有式I之化合物的結晶二氯化物鹽(混合物A1 + M4)具有在3.4、4.0、8.1、11.1、16.5和24.0度2θ(±0.2度2θ)包含峰的XRPD圖。
同樣地,在另一個實施方式中,本發明提供了具有式I之化合物的結晶二氯化物鹽(晶型M3+M5),當使用CuKα輻射測量時,該結晶二氯化物鹽具有在3.0度2θ(± 0.2度2θ)包含峰的XRPD圖。較佳的是,具有式I之化合物的結晶二氯化物鹽(晶型M3 + M5)具有在3.0、3.6和9.4度2θ(± 0.2度2θ)包含峰的XRPD圖。更較佳的是,具有式I之化合物的結晶二氯化物鹽(晶型M3 + M5)具有在3.0、3.6、9.4、11.1、12.7、15.3、23.6和24.5度2θ(± 0.2度2θ)包含峰的XRPD圖。
在中等濕度水平下的系統內的其他多晶型以及系統的分離組分的表徵在實例中被描述和表徵。要注意的是,晶型F和G不是系統A + M的一部分,但會在單個組分的分離過程中發生。
以上描述的涉及表徵系統A + M的不同方式的任何實施方式可以以任何組合相互組合。
在另一個方面,本發明提供了一種藥物組成物,其包含與一種藥學上可接受的載體、稀釋劑或賦形劑相組合的、藥學上有效量的具有式I之化合物的結晶二氯化物鹽(系統A+M)。
在另一個方面,本發明提供了用於治療增殖性病症或疾病的、具有式I之化合物的結晶二氯化物鹽(系統A+M)。
在另一個方面,本發明提供了具有式I之化合物的晶體二氯化物鹽(系統A+M)在製造用於治療增殖性病症或疾病的藥物中之用途。
在另一個方面,本發明提供了治療增殖性病症或疾病之方法,該方法包括將具有式I之化合物的結晶二氯化物鹽(系統A+M)給予對其有需要的患者。
如在此在治療疾病或病症的上下文中所使用的術語“治療”總體上涉及人或動物(例如在獸醫應用)的治療和療法,其中獲得一些希望的治療效果,例如,抑制疾病或病症的進展,並且包括降低進展的速率、停止進展的速率、緩解疾病或病症的症狀、改善疾病或病症、以及治癒疾病或病症。也包括作為預防措施的治療(即,預防)。例如,用於尚未發展出所述疾病或病症、但處於發展所述疾病或病症風險的患者,被術語“治療”涵蓋。例如,治療包括癌症的預防、降低癌症發病率、緩解癌症症狀等。
如在此所使用,術語“治療有效量”涉及化合物,或者包括化合物的材料、組成物或劑型,當根據所希望的治療方案給藥時,其對於產生一些所希望的治療效果係有效的,與合理的益處/風險比相稱。
如熟習該項技術者熟知的,具有式I之化合物或其藥學上可接受的衍生物可以藥物組成物的形式給予。適合的組成物和劑量例如揭露於WO 2004/103994 A1第35-39頁中,該專利藉由引用明確地結合在此。組成物可以經鼻、經頰、經直腸、口服或藉由胃腸外給予。腸胃外給藥包括例如靜脈內、肌內和皮下給予溫血動物,尤其是人。更具體地,較佳的是用於靜脈內給予或口服給予的組成物。如果適用的話,組成物包含活性成分和一種或多種藥學上可接受的賦形劑。藥學上可接受的賦形劑包括熟習該項技術者已知的稀釋劑、載體和助流劑等。用於口服給予的組成物的實例包括但不限於:含有1 mg活性成分、98 mg稀釋劑例如甘露醇和1 mg助流劑例如硬脂酸鎂或5 mg活性成分、94 mg稀釋劑例如甘露醇和1 mg助流劑例如硬脂酸鎂的硬膠囊。例如,對於靜脈內施用,活性成分可以被凍乾並且在給予之前立即用合適的稀釋劑例如鹽溶液重構。
具有式I之化合物或其藥學上可接受的衍生物可以單獨或與一種或多種其他治療劑組合給予。可能的組合療法可採取以下形式:固定組合,或者本發明的化合物與交錯或彼此獨立給予的一種或多種其他治療劑的給予,或者固定組合與一種或多種其他治療劑的組合給予。
除此之外或另外地,具有式I之化合物或其藥學上可接受的衍生物可以與化學療法(細胞毒性療法)、靶向療法、內分泌療法、生物製劑、放射療法、免疫療法、手術介入或該等療法的組合結合給予以用於腫瘤療法。如上所述,在其他治療策略的背景下長期療法與輔助療法同樣可行。其他可能的療法係在腫瘤消退之後維持患者狀態的療法或甚至例如在處於風險中的患者中的化學預防療法。
根據式 (I) 的化合物可以用於人或動物體的預防或尤其是治療性處理,特別是用於治療增殖性疾病或病症,例如腫瘤性疾病。此類腫瘤性疾病的實例包括但不限於:上皮性瘤,鱗狀細胞瘤,基底細胞瘤,移行細胞乳頭狀瘤和癌,腺瘤和腺癌,附屬器和皮膚附件腫瘤,黏液表皮樣腫瘤,囊性腫瘤,黏液性和漿液性腫瘤,導管、小葉和髓質腫瘤,腺泡細胞腫瘤,複雜的上皮性瘤,特化性腺腫瘤,副神經節瘤和血管球瘤,痣和黑色素瘤,軟組織腫瘤和肉瘤,纖維瘤性腫瘤,黏液瘤性腫瘤,脂肪瘤性腫瘤,肌瘤性腫瘤,複雜的混合和基質腫瘤,纖維上皮性瘤,滑膜樣腫瘤,間皮腫瘤,生殖細胞腫瘤,滋養細胞腫瘤,中腎瘤,血管瘤,淋巴管瘤,骨性和軟骨瘤性腫瘤,巨細胞瘤,雜類骨腫瘤,牙源性腫瘤,神經膠質瘤,神經上皮瘤性腫瘤,腦膜瘤,神經鞘瘤,顆粒細胞瘤和肺泡軟組織肉瘤,霍奇金和非霍奇金淋巴瘤,其他淋巴網狀組織腫瘤,漿細胞瘤,肥大細胞瘤,免疫增殖性疾病,白血病,雜類骨髓增殖性病症,淋巴增殖性病症以及骨髓增生異常綜合症。
在一個尤其較佳的實施方式中,該疾病係癌症。就累及的身體的器官和部位而言,癌症的實例包括但不限於:腦、乳房、子宮頸、卵巢、結腸、直腸(包括結腸和直腸,即結直腸癌)、肺(包括小細胞肺癌、非小細胞肺癌、大細胞肺癌和間皮瘤)、內分泌系統、骨、腎上腺、胸腺、肝、胃、腸(包括胃癌)、胰腺、骨髓、血液惡性腫瘤(例如淋巴瘤、白血病、骨髓瘤或淋巴惡性腫瘤)、膀胱、尿路、腎、皮膚、甲狀腺、腦、頭、頸、前列腺和睾丸。
較佳的是,該癌症選自下組,該組由以下組成:腦癌(例如神經膠質母細胞瘤)、乳癌、前列腺癌、子宮頸癌、卵巢癌、胃癌、結直腸癌、胰腺癌、肝癌、腦癌、神經內分泌癌、肺癌、腎癌、血液惡性腫瘤、黑色素瘤和肉瘤。
在一個實施方式中,待治療的癌症係腫瘤,較佳的是實性瘤。
在另一個實施方式中,該腫瘤性疾病係腦腫瘤,例如,腦瘤,該腦腫瘤包括但不限於神經膠質腫瘤和非神經膠質腫瘤,星形細胞瘤(包括多形性神經膠質母細胞瘤和未指定的神經膠質瘤),少突神經膠質瘤,室管膜瘤,腦膜瘤,成血管細胞瘤,聽神經瘤,顱咽管瘤,原發性中樞神經系統淋巴瘤,生殖細胞腫瘤,腦下垂體瘤,松果體區腫瘤,原始神經外胚層瘤(PNET),成神經管細胞瘤,血管周皮細胞瘤,包括腦膜瘤、脊索瘤和遺傳驅動的腦腫瘤的脊髓腫瘤,該遺傳驅動的腦腫瘤包括神經纖維瘤病、外周神經鞘瘤和結節性硬化症。較佳的是,腦腫瘤係指神經膠質母細胞瘤(還稱為多形性神經膠質母細胞瘤)。
劑量可以在很寬的範圍內變化,並且當然將在每個特定情況下適合個體要求。通常,在口服給予的情況下,每人約10 mg至1000 mg具有通式I之化合物的日劑量應該是合適的,儘管也可以在必要時超出或減少上述上限。
術語“具有式I之化合物的二氯化物鹽”和“具有式I之化合物的二鹽酸鹽”可互換使用,並且均指具有式I之化合物的2xHCl鹽。
本文引用了許多出版物以更全面地描述和揭露本發明和本發明所屬領域的現狀。該等參考文獻各自藉由引用以其全文在此結合入本揭露中,其程度如同每個單獨的參考文獻特定地並且單獨地指明為藉由引用而結合。
現在將以非限制性實例的方式描述本發明。
[ 1]
圖1示出了NMR指定的原子編號。 [ 2]
圖2示出了具有式I之化合物的二氯化物鹽的晶型E在室溫下的X射線粉末繞射(XRPD)繞射圖。 [ 3]
圖3示出具有式I之化合物的二氯化物鹽的晶型E的Pawley(WPPD)計算之圖形表示。呈現了全粉末圖分解計算的圖形表示,其中上面的線示出來自高解析度XRPD的觀察數據。黑色中線表示計算出的粉末圖,並且圖的最底部的黑色棒狀表示具有h、k、l指數的峰值位置。灰色底線表示計算的與(基線校正的)觀察點之間的差異。 [ 4]
圖4示出了具有式I之化合物的二氯化物鹽的晶型E之熱重分析(TGA),其具有在約130°C(±2°C)和276°C(±2°C)處的吸熱峰。 [ 5]
圖5示出了具有式I之化合物的二氯化物鹽的晶型E的差示掃描量熱法(DSC),其具有在約130°C(±2°C)和276°C(±2°C)處的吸熱峰值以及高於這個溫度的分解。 [ 6]
圖6示出了使用溫度廓線25→200→25°C;10°C/min的加熱速率和快速冷卻的具有式I之化合物的二氯化物鹽的晶型E的循環DSC。吸熱(130°C ± 2°C)表明固體-固體轉變,這係可逆的(冷卻時在97°C ± 2°C放熱)。 [ 7]
圖7示出了具有式I之化合物的二氯化物鹽在180°C的結晶高溫晶型E1之XRPD繞射圖。 [ 8]
圖8示出了具有式I之化合物的二氯化物鹽的晶型E的具有式I之化合物之FTIR譜。 [ 9]
圖9示出了具有式I之化合物的二氯化物鹽的晶型E之FTIR譜在1830 cm -1與400 cm -1之間的放大。 [ 10]
圖10示出了具有式I之化合物的二氯化物鹽的晶型E之魔角旋轉固態碳13{質子去耦}核磁共振( 13C{ 1H} MAS-NMR)譜。 [ 11]
圖11示出了具有式I之化合物的二氯化物鹽的晶型E之等溫(24.1°C)動態蒸汽吸附分析。 [ 12]
圖12示出了晶型A0之XRPD繞射圖。 [ 13]
圖13示出了晶型A1之XRPD繞射圖。 [ 14]
圖14示出了混合物A1 + M1之XRPD繞射圖。 [ 15]
圖15示出了混合物A1 + M4之XRPD繞射圖。 [ 16]
圖16示出了混合物M3 + M5之XRPD繞射圖。 [ 17]
圖17示出了混合物A2 + M4之XRPD繞射圖。 [ 18]
圖18示出了混合物A2 + M11之XRPD繞射圖。 [ 19]
圖19示出了以下的XRPD繞射圖之疊加圖(從下到上):F:晶型A1 + M4,E:在40°C 75% RH(M3 + M5)1週後,D:在40°C/75% RH(M3 + M5)2.5週後,C:在40°C/75% RH(M5)4週後,B:在40°C/75% RH 4週後和25°C/95% RH(A2 + M4)2天后,A:40°C/75% RH 4週後和25°C/95% RH(A2 + M11)1週後。 [ 20]
圖20示出了晶型A2之XRPD繞射圖。 [ 21]
圖21示出了混合物A2 + A3之XRPD繞射圖。 [ 22]
圖22示出了晶型M1之XRPD繞射圖。 [ 23]
圖23示出了晶型M2之XRPD繞射圖。 [ 24]
圖24示出了晶型M3 + M5之XRPD繞射圖。 [ 25]
圖25示出了晶型M4之XRPD繞射圖。 [ 26]
圖26示出了晶型M5之XRPD繞射圖。 [ 27]
圖27示出了晶型M8之XRPD繞射圖。 [ 28]
圖28示出了晶型M9之XRPD繞射圖。 [ 29]
圖29示出了混合物M10 + M4之XRPD繞射圖。 [ 30]
圖30示出了晶型M11之XRPD繞射圖。 [ 31]
圖31示出了晶型M12之XRPD繞射圖。 [ 32]
圖32示出了晶型M13之XRPD繞射圖。 [ 33]
圖33示出了晶型F之XRPD繞射圖。 [ 34]
圖34示出了晶型G之XRPD繞射圖。 [ 35]
圖35示出了具有式I之化合物之等溫(24.9°C)動態蒸汽吸附測量,呈現相對樣品重量(%)對相對濕度。起始形式為混合物A1 + M4,並且濕度廓線為0→95→0%RH,每步階為10% RH,直至每步階達到質量平衡。95% RH時最大質量變化為34%。沒有觀察到滯後現象。 [ 36]
圖36示出了晶型E之熱力學pH依賴性溶解度。 [ 37]
圖37A示出了晶型A1 + M4之熱力學pH依賴性溶解度。圖37B示出了晶型A2 + M11之熱力學pH依賴性溶解度。 [ 38]
圖38示出了根據WO 2011/012577的方法產生的並且描述於WO 2011/012577的第36頁最後一段中的具有式I之化合物的二氯化物鹽之XRPD繞射圖。上部的XRPD圖係來自儲存在5°C的樣品,下部XRPD圖係來自儲存在-60°C的樣品。 實例實例1–具有式III之化合物的合成 實例 1a: 具有式 III R 1= Cl R 3= 三級丁基)的化合物藉由用 DCC 活化的合成
在室溫下,將在水(280 mL)中的磷酸(85%,57 mL)溶液添加至N2,N6-雙(三級-丁氧基羰基)-L-賴胺酸二環己基胺鹽(438 g,0.831 mol,2.5當量)在二異丙醚(DIPE,1 L)中的懸浮液中並且攪拌直到固體溶解。將有機相用磷酸(85%,20 mL)和水(160 mL)的混合物洗滌,然後用水(4 × 160 mL)洗滌。經無水硫酸鈉乾燥後,濃縮雙(三級-丁氧基羰基)-L-賴胺酸(遊離酸)的溶液。將濃縮物用二氯甲烷(DCM,421 mL)稀釋。在室溫中添加二環己基碳二亞胺(88.5 g,0.429 mol,1.25當量)在DCM(100 mL)中的溶液並且將反應混合物攪拌15 min。將所得的懸浮液過濾,將餅用DCM(3 × 50 mL)洗滌。將4-胺基苯甲醯甲基氯化物(56.2 g,0.331 mol,1.0當量)添加至合併的濾液中並且將混合物攪拌4 h。濾除不溶物,並且將濾液在真空下濃縮。將濃縮物用4-甲基-2-戊酮(MIBK,279 mL)稀釋,加熱至約45°C。邊冷卻邊添加庚烷(836 mL)。將懸浮液冷卻至10°C,攪拌並且過濾。將固體用MIBK/庚烷和庚烷洗滌並且乾燥。將粗產物從MIBK/庚烷結晶並且乾燥以提供119.4 g標題化合物(72%),純度為≥ 99.5%,以及≥ 99%ee。 實例 1b :具有式 III 之化合物( R 1= Cl R 3= 三級丁基 ) 藉由用 T3P® 活化的合成
將N2,N6-雙(三級丁氧基羰基)-L-賴胺酸(85% w/w,216 g,531 mmol,1.5當量)溶解在甲苯(1500 g)中。添加在甲苯(600 g)中的4-胺基苯甲醯甲基氯化物(60 g,354 mmol,1.0當量)和4-(二甲基胺基)吡啶(DMAP,4.32 g,35.4 mmol,0.1當量)的溶液。將混合物冷卻至-15°C至-10°C。添加三乙胺(143 g,1.42 mol,4.0當量),隨後經2 h在-15°C至-10°C添加2,4,6-三丙基-1,3,5,2,4,6-三氧雜三膦雜環-2,4,6-三氧化物(T3P®,495 g的50%的在甲苯中的溶液,778 mmol,2.2當量)在甲苯(360 g)中的溶液。將混合物攪拌17 h並且升溫至約-5°C。添加水(1524 g)並且在室溫下分離相。將有機相用鹽酸(pH 1.0)洗滌,然後用鹽酸(pH = 0.5,5%w/w乙醇)和用飽和碳酸氫鈉水溶液洗滌。將溶液過濾並且允許其靜置。將懸浮液在30°C-35°C,50 mbar濃縮,冷卻至約20°C並且攪拌。將固體過濾,用甲苯洗滌並且乾燥以提供138.5 g的標題化合物(79%),純度為99.3%,以及≥ 99%ee。 實例2–具有式II之化合物(R 3係三級丁基)的合成
將3-{[4-(1H-苯并咪唑-2-基)-1,2,5-㗁二唑-3-基]胺基}丙腈(47 g,185 mmol,1.00當量)溶解於DMF(1.6 L)中。添加N-[4-(2-氯乙醯基)苯基]-N2,N6-二-Boc-L-賴胺酸醯胺(98 g,197 mmol,1.06當量)和碳酸鉀(49.5 g,358 mmol,1.94當量)。將混合物加熱至40°C持續5 h。在0°C-5°C將懸浮液過濾並且將濾液添加至氯化銨水溶液(2.5% w/w,7 L)中。將懸浮液過濾並且將固體乾燥。將粗產物懸浮在THF(188 mL)和水(100 mL)中。在回流(約65°C)下添加甲醇(3.4 L)。將該懸浮液攪拌1小時並冷卻至室溫。過濾產物,用甲醇洗滌固體並乾燥。將固體在THF(188 mL)和甲醇(3.4 L)中加熱至回流,並且在2 h內冷卻至約10°C。將懸浮液過濾,用甲醇洗滌並且乾燥以提供121 g的標題化合物(91%),純度為99.8%。 實例3–具有式I之化合物(二鹽酸化物)的合成
將具有式II(R 3係三級丁基)(119 g,166.4 mmol,1.00當量)的化合物懸浮在四氫呋喃(785 mL)中並且加熱至30°C。在3 h內添加水性鹽酸(30% w/w,170 g)。將混合物攪拌48 h,冷卻至10°C,並且添加四氫呋喃(785 mL)。將所得的懸浮液過濾,將餅用四氫呋喃洗滌並且在高至55°C乾燥以提供95.8 g(97.8%)粗產物。在約43°C將粗產物(75 g)溶解在水(75 mL)和四氫呋喃(112 mL)中。在約40°C添加四氫呋喃(2.85 L)並且將懸浮液在約50°C攪拌1小時。冷卻至10°C後,將產物過濾,用四氫呋喃洗滌並且在約50°C乾燥以提供68 g的純化的產物。將純化的產物(67 g)溶解在水(201 mL)中並且將所得的溶液過濾。將水蒸發。將產物進一步在高至50°C乾燥以給出62.9 g的標題化合物(83%),純度為99.6%。 對比實例1(根據WO 2011/012577)
S-{5-苄氧羰基胺基-5-[4-(2-{2-[4-(2-氰乙基胺基)呋呫-3-基]-苯并咪唑-1-1-基}-乙醯基)-苯基胺基甲醯基]-戊基}-胺基甲酸苄酯在THF/MeOH/HCl的混合物中用氫氣在Pd/C 10%的存在下氫化約5h。在處理、層析分析和鹽形成後,產生具有式I之化合物的二鹽酸化物,純度為90%–91%,81%ee(產率:50%)。 實例4–具有式I之化合物的結晶二氯化物鹽(晶型E)的製備
下面的一些實例描述了使用晶種製備晶型E。添加晶種的主要目的是加速形成多晶型。應認為在沒有晶種的情況下,該實例仍然會產生晶型E。要注意的是,實例4d、4f、4g、4h、4i和4k不使用晶種,實例4l、4m、4n、4o和4p也是如此。 藉由漿液結晶 實例 4a :從甲醇 / 甲基 - 三級丁基醚( MTBE
在65°C,將0.20 g的具有式I之化合物溶解在8 mL甲醇中,將該溶液過濾。添加10 mg晶型E的晶種並且將混合物經30 min攪拌。經2 h-3 h,逐滴添加12 mL MTBE,將獲得的混合物冷卻至5°C-15°C並且在5°C-15°C攪拌約40 h。將混合物過濾並且將餅在真空下乾燥,以提供0.18 g的固體晶型E。 實例 4b :從甲醇 / 乙腈
在30°C-45°C,將4 g具有式I之化合物(混合物A1 + M1)溶解在40 mL甲醇中。將溶液過濾並且將200 mg晶型E的晶種填充至溶液中。攪拌後,形成了懸浮液,將其經約15 h加熱至回流並且濃縮至12 mL。添加20 mL乙腈,將懸浮液緩慢地冷卻至0°C-10°C並且過濾。將餅在約50°C在真空下乾燥,提供3.4 g固體的晶型E。 實例 4c :從甲醇 / 甲苯
在30°C-45°C,將2 g具有式I之化合物(混合物A1 + M1)溶解在20 mL甲醇中和來自最後一批的母液中。將溶液過濾,用100 mg晶型E接種並且逐滴添加至50 mL的熱甲苯(80°C-90°C)中。將所得的懸浮液濃縮(蒸餾出約20 mL),進一步加熱至沸點並且然後緩慢冷卻至0°C-10°C。將懸浮液過濾並且將餅在50°C真空乾燥,以給出1.5 g的晶型E。 實例 4d :從甲醇(室溫漿液)
將65 g的具有式I之化合物(混合物A1 + M1)溶解在485 mL甲醇中並且在15°C-25°C攪拌。將溶液攪拌持續約14天。在攪拌過程中,形成了懸浮液。將懸浮液過濾,將餅用甲醇洗滌並且在約50°C真空乾燥,以提供46 g的晶型E。 實例 4e :從甲醇(回流的漿液)
在30°C-45°C,將2 g的具有式I之化合物(混合物A1 + M4)溶解在20 mL甲醇中。將溶液過濾,用晶型E接種並且回流持續約15 h。將懸浮液濃縮至約10 mL的體積,冷卻至0-10°C並且過濾。將餅在50°C真空乾燥,以給出1.37 g的晶型E。 實例 4f :從乙醇
將5 g的具有式I之化合物(混合物A1 + M1)在100 mL乙醇中回流持續總計11 h。將混合物冷卻至室溫,過濾並且將餅在45°C真空乾燥,以提供4.45 g的晶型E。 實例 4g :從乙腈,回流
將15 g的具有式I之化合物(混合物A1 + M1)在300 mL的乙腈中回流持續總計11 h。將懸浮液冷卻至室溫並且過濾,並且將餅在65°C真空乾燥,以提供13 g的晶型E。 實例 4h :從乙酸乙酯,漿液在室溫( RT )和 50°C
將20.4 mg的具有式I之化合物(混合物A1 + M1)在1 mL的乙酸乙酯中在室溫攪拌持續兩週。之後將樣品離心,並且分離固體和母液。潮濕的固體被分析為晶型E和晶型F的混合物,呈小多晶型。將潮濕的固體在室溫真空(5 mbar)乾燥約18 h並且分析為晶型E。
將28.4 mg的具有式I之化合物(混合物A1 + M1)在1 mL的乙酸乙酯中在約50°C攪拌持續兩週。之後將樣品離心,並且分離固體和母液。潮濕的固體被分析為晶型E和F的混合物,呈小多晶型。將潮濕的固體在室溫真空(5 mbar)乾燥約18 h並且分析為晶型E。 實例4i:從2-丙醇
將27.5 mg的具有式I之化合物(混合物A1 + M1)在0.9 mL的2-丙醇中在50°C攪拌持續約兩週。之後將樣品離心,並且分離固體和母液。潮濕的固體被分析為晶型E。將潮濕的固體在室溫真空(5 mbar)乾燥約18 h並且分析為晶型E。 實例 4j :從乙酸乙酯
將19.8 mg的具有式I之化合物(混合物A1 + M1)在0.6 mL的乙酸乙酯中在20°C攪拌約兩週。之後將樣品離心,並且分離固體和母液。潮濕的固體被分析為晶型E。將潮濕的固體在40°C/75% RH進一步處理2天並且分析為晶型E。 實例 4k :從乙腈, 20°C
將18.0 mg的具有式I之化合物(晶型A1 + M1)在0.6 mL的乙腈中在20°C攪拌約兩週。之後將樣品離心,並且分離固體和母液。潮濕的固體被分析為晶型E。將潮濕的固體在40°C/75% RH進一步處理2天並且分析為晶型E。
在第二次試驗中,該潮濕的固體係18.0 mg的具有式I之化合物,將其在0.6 mL的乙腈中在20°C攪拌約兩週。之後將樣品離心,並且分離固體和母液。潮濕的固體被分析為晶型E。將潮濕的固體在室溫真空(5 mbar)乾燥約18 h並且分析為晶型E。 實例 4l 從乙腈, 50°C
將18.0 mg的具有式I之化合物(晶型A1 + M1)在0.6 mL的乙腈中在50°C攪拌約兩週。之後將樣品離心,並且分離固體和母液。潮濕的固體被分析為晶型E。將潮濕的固體在40°C/75% RH進一步處理2天並且分析為晶型E。 藉由冷卻結晶 實例 4m :從 2- 丁醇 / 甲醇
將35.5 mg的具有式I之化合物(混合物A1 + M1)添加至1.2 mL的2-丁醇/甲醇的混合物中,產生漿液,將該漿液在約60°C攪拌一小時。之後,將樣品在60°C保持1小時並且允許其冷卻至約5°C,冷卻速率為約1°C/h。將樣品保持在約5°C持續約24 h。將潮濕的固體過濾並分析為晶型E。 實例 4n :從 4- 二㗁 𠮿 / 甲醇
將32.5 mg的具有式I之化合物(混合物A1 + M1)添加在0.5 mL的甲醇/1,4-二㗁𠮿的混合物中,產生漿液,將該漿液在約60°C攪拌一小時。之後,將樣品在60°C保持1小時並且允許其冷卻至約5°C,冷卻速率為約1°C/h。將樣品保持在約5°C持續約24 h。將潮濕的固體過濾並分析為晶型E。 實例 4o :從乙酸乙酯 / 甲醇
將32.5 mg的具有式I之化合物(混合物A1 + M1)添加至0.75 mL的乙酸乙酯/甲醇的混合物中,產生漿液,將該漿液在約60°C攪拌一小時。之後,將樣品在約60°C保持一小時並且允許其冷卻至約5°C,冷卻速率為約1°C/h。將樣品保持在約5°C持續約24 h。將潮濕的固體過濾並分析為晶型E。 具有II之化合物的一鍋去保護和結晶 實例 4p
將0.5 g的具有式II之化合物(R 3係三級丁基)懸浮在5 mL甲醇中。在20°C-25°C添加2.4莫耳當量的在MeOH中的HCl,並且在約5°C將懸浮液攪拌約9天。將懸浮液過濾並且將獲得的餅在真空下乾燥以提供0.3 g的晶型E。 從遊離鹼結晶實例4q
將76 g的具有式I之化合物的二氯化物鹽(混合物A1 + M4)溶解在280 mL水和280 mL甲醇的混合物中。在10°C-15°C,將溶液添加至24.2 g碳酸鉀、140 mL水和140 mL甲醇的溶液中。將反應混合物在室溫攪拌約2小時。將懸浮液過濾,將餅用甲醇洗滌,並且在350 mL的水和350 mL的甲醇中漿化。將懸浮液過濾,將餅用70 mL的水洗滌並且在45°C真空乾燥,以提供65 g具有式I之化合物(遊離鹼)。
使1 g具有式I之化合物(遊離鹼)與在甲醇溶液中的鹽酸在65°C反應。添加10 mg晶型E的晶種,將混合物緩慢冷卻至8°C-10°C,攪拌約16 h,過濾並且將獲得的餅真空乾燥以提供0.44 g的晶型E。 實例5–具有式I之化合物的結晶二氯化物鹽(晶型E)的表徵 實例 5a :藉由 XRPD 表徵
使用高通量XRPD設置獲得XRPD圖。將板安裝在配備有Hi-Star面積檢測器的Bruker GADDS繞射儀上。XRPD平臺的校準係使用二十二酸銀作為長d-間距,以及剛玉作為短d-間距。數據收集在1.5º和41.5º之間的2θ區域使用單色CuKα輻射在室溫進行,這係XRPD圖中最獨特的部分。每個孔的繞射圖收集在兩個2θ範圍內(第一幀1.5º ≤ 2θ ≤ 21.5º,和第二幀19.5º ≤ 2θ ≤ 41.5º),每幀曝光時間為90 s。沒有將背景減除或曲線平滑應用於XRPD圖。在XRPD分析過程中使用的載體材料對X射線透明,並且僅輕微有助於背景。
圖2中示出了室溫下具有式I之化合物的二氯化物鹽的晶型(晶型E)的XRPD並且其繞射圖峰示於表2中。使用P222空間群對高解析度XRPD圖的評價進行編索引。對純形式的反射強度編索引產生正交晶系,並允許提取晶胞參數。
晶體學參數係基於具有式I之化合物的二氯化物鹽的晶型的Pawley計算(全粉末圖分解,WPPD)。粉末繞射圖的峰的所有強度和2θ值可以指定給正交晶原始晶胞(P),晶胞參數為:a = 4.8 Å,b = 20.02 Å,c = 59.40 Å,V = 5724 Å 3(a = 4.813 ± 0.001 Å,b = 20.02 ± 0.01 Å,c = 59.40 ± 0.02 Å,V = 5724 ± 5 Å 3)。該晶型的粉末圖還可以以較低對稱性索引,例如單斜的(a = 10.08 Å;b = 59.42 Å;c =5.16 Å;β = 97.28 Å;V = 3065 Å 3)和若干三斜的。但是,通常應用最高對稱性。在這種情況下,最高對稱性係正交晶的。計算和測量的繞射圖的比較示出了如圖3所示的極好的一致性。 [表2.]具有式I之化合物的二氯化物鹽的晶型E的27個最豐富峰的繞射圖峰位置、d-間距和相對強度的X射線粉末繞射(XRPD)列表
角度 [2θ] d-間距[Å] 強度[相對%]
6.0 14.76 49
9.4 9.42 69
9.9 8.89 81
10.7 8.26 100
11.6 7.61 55
11.9 7.43 56
12.6 7.03 25
17.4 5.10 64
18.5 4.79 46
19.9 4.45 31
21.4 4.15 68
22.4 3.96 53
23.0 3.86 54
23.8 3.73 45
24.2 3.68 51
24.6 3.61 56
25.8 3.45 79
26.4 3.37 35
28.4 3.14 75
32.8 2.73 42
34.2 2.62 25
與晶型E類似地,測定高溫多晶型E1的XRPD,並且繞射圖峰(圖10)示出在表3中。 [表3.]具有式I之化合物的二氯化物鹽的結晶高溫晶型E1的繞射圖峰位置、d-間距和相對強度的X-射線粉末繞射(XRPD)列表
角度 [2θ] d-間距[Å] 強度[相對%]
6.0 14.79 55
9.0 9.85 9
9.4 9.46 57
9.9 8.91 77
10.7 8.29 100
11.6 7.64 53
11.9 7.41 72
12.6 7.02 24
17.4 5.10 89
18.5 4.79 50
19.9 4.45 42
20.5 4.32 26
21.0 4.23 30
21.2 4.18 42
21.4 4.15 70
22.4 3.97 78
23.0 3.86 65
23.8 3.74 72
24.2 3.68 84
24.6 3.62 77
24.8 3.59 39
25.4 3.50 46
25.8 3.46 67
25.9 3.44 65
26.4 3.38 51
26.8 3.32 27
27.8 3.21 25
28.4 3.14 86
29.1 3.07 20
29.5 3.03 33
實例 5b :藉由差示掃描量熱法( DSC )、熱重分析( TGA )和變溫 XRPD 的表徵
熱重分析(TGA,圖4)示出了大量吸熱,其表明在約276°C(± 2°C)伴隨著分解的熔化事件。在約130°C(± 2°C)的少量吸熱意味著在熔化之前發生固體-固體向晶型變化的轉變,該轉變係在高溫可逆形成的。這種行為由差示掃描量熱法(DSC,圖5)以及變溫XRPD研究證實。
進行循環DSC(圖6)以研究在約130°C(± 2°C)的吸熱的性質。加熱至200°C,隨後快速冷卻至室溫(RT)(25°C- > 200°C- > 25°C)。冷卻後的DSC熱分析圖示出在約97°C(± 2°C)的小量的放熱,這意味著固體形式逆轉變為晶型E1(XRPD圖,圖7)。固體的XRPD數據示出25°C固體形式沒有變化,這證實了冷卻時的放熱係固體逆轉變。變溫(VT)XRPD數據(關於VT XRPD實驗細節參見實例8a)證實了上述特性。 實例 5c :實驗熱分析(包括 DSC TGA TGA SDTA TGA MS
熔融特性由DSC熱分析圖獲得,用熱通量DSC822e儀器(Mettler-Toledo GmbH[梅特勒 托利多公司],瑞士)記錄。用一小塊銦校準了DSC822e的溫度和焓(m.p. = 156.6°C;ΔHf = 28.45 J.g-1)。將樣品密封在標準的40 μL鋁盤中,以10°C/min的加熱速率進行穿針孔並在DSC中從25°C加熱至300°C。在測量過程中,使用乾燥的N 2氣,以50 mL/min的流速清洗DSC設備。
藉由熱重分析/同時差示溫度/熱分析(TGA/SDTA)測定由於溶劑或水分損失導致的從晶體中的質量損失。在TGA/SDTA851e儀器(Mettler-Toledo GmbH[梅特勒-托利多有限公司],瑞士)中加熱期間監測樣品重量,得出重量對溫度曲線。TGA/SDTA851e用銦和鋁校準溫度。將樣品稱量到100 μL鋁坩堝中並密封。將密封件穿針孔並將坩堝以10°C/min的加熱速率在TGA中從25°C加熱至300°C。使用乾燥的N2氣吹掃。
藉由質譜儀Omnistar GSD 301 T2(Pfeiffer Vacuum GmbH[普發真空公司],德國)分析從TGA樣品放出的氣體。後者係一種四極桿質譜儀,其可分析0-200 amu範圍內的質量。 實例 5d :藉由 FTIR 表徵
使用配備有ATR探針的Thermo Fischer Scientific FT-IR Nicolet 6700光譜儀記錄FT-IR譜。
FTIR分析證實了具有式I之化合物的結構,其如在表4中詳述和在圖8中描繪,並且如圖9在約1800 cm -1與400 cm -1之間放大。具有式I之化合物的二氯化物鹽的晶型的特徵IR振動已被鑒定為1701 cm -1、1665 cm -1、1335 cm -1、1241 cm -1、1171 cm -1、942 cm -1、924 cm -1、864 cm -1、699 cm -1、628 cm -1(± 2 cm -1)。 [表4.]  具有式I之化合物的二氯化物鹽的晶型的主要IR振動
根據文獻 [1]的IR振動(cm -1)和其指定 觀察到的振動[cm –1]
3500-3100 N-H(醯胺)伸縮 3282、3183、3093*
3080-2840 C-H(芳香族和脂肪族的)伸縮 3093*、3056、3024、2936
3000-2000 NH 3 +伸縮 2630、2574、2505
2260-2240 CN伸縮 2250
1740-1630 C=O伸縮 1701,1665
1630-1510 N-H變形和 N-C=O不對稱伸縮 1626*、1596*、1543*、1507*
1690-1520 C=N伸縮 1626*、1596*、1543*、1507*
1625-1575 1525-1450 C-C(芳香族的)骨架振動 1626*、1596* 1507*、1457
*若干可能的指定 實例 5e :藉由固態 13 C{ 1H} MAS-NMR 表徵:
在Bruker Avance III 400MHz固態NMR儀器上進行魔角旋轉固態碳13核磁共振( 13C{ 1H} MAS-NMR)(見圖10),該儀器配備有寬孔(89 mm室溫孔)9.4特斯拉磁鐵。雙共振魔角樣品旋轉(MAS)探針用於外徑為4.0 mm的轉子尺寸。該探針雙倍調諧至觀察到的核頻率 - 在本研究中的 13C為100.61 MHz, 1H為400.13 MHz。磁場的均勻性係藉由在4 mm的ZrO 2旋轉器上的金剛烷樣品勻場設置, 13C線寬(全寬半最大高度)為小於2 Hz。化學位移參考藉由使用四甲基矽烷的 1H信號(CDCl 3
  
1E. Pretsch, P. Bühlmann, M. Badertscher;Structure Determination of Organic Compounds, Tables of Spectral Data[有机化合物的结构测定、谱数据表]; 第四版,改版增补版; Springer[斯普林格] 2009. – Spectroscopic methods in organic chemistry[有机化学中的光谱方法] Hesse, Meier和Zeeh 第二版 Thieme[Thieme出版社] 2008 斯图加特和纽约。 < 1%v/v)的取代方法進行,其化學位移設定為0 ppm。這係IUPAC推薦的程序。所有的測量都是在MAS旋轉器上側向噴吹另外的氮氣流(在5°C 1200 L/h)下進行的,以進行溫度控制。由於MAS空氣軸承的摩擦加熱,真實的樣品溫度比此高約15°C。對於魔角樣品旋轉,旋轉頻率設置為14 kHz。掃描次數為1024次,循環延遲時間為5 s,接觸時間為2 ms,採集時間為33 ms,處理參數為tdeff = 0和lb = 5 Hz。
表5列出了所研究的具有式I之化合物的二氯化物鹽的晶型的碳13化學位移。圖1描繪了碳13化學位移的NMR指定的原子數。 表5.晶型E的 13C{ 1H} MAS-NMR位移(± 0.2 ppm的13C化學位移),參考使用四甲基矽烷的 1H信號(TMS < 1%v/v,在CDCl 3中)的取代方法(其化學位移設置為0 ppm)。還示出了 13C{1H} NMR位移,參考[D6]-DMSO的液體[D6]-DMSO(其化學位移設置為39.52 ppm*)。
# 13C化學位移在[D 6]-DMSO中的高解析度(液體) 13C化學位移 CP MAS 14 kHz
1 N - -
2 C 140.9 137.4 [a]
3 N - -
4 C 141.5 141.4 [a]
5 CH ar 119.9 118.8 [b]
6 CH ar 123.3 121.8 [b]
7 CH ar 124.8 124.2 [b]
8 CH ar 111.2 109.5
9 C ar 136.1 134.8 [a]
10 C 137.7 137.4 [a]
11 N - -
13 N - -
14 C 155.8 156.2
15 NH - -
16 CH 2 40.1 40.3
17 CH 2 16.7 19.0
18 CN 119.1 119.6
19 CN - -
20 CH 2 51.8 49.1
21 C=O 191.3 196.2
22 C ar 129.6 128.1
23 CH ar 129.6 131.2 [c]
24 CH ar 119.0 121.2
25 C ar 143.6 144.0 [a]
26 CH ar 119.0 121.2
27 CH ar 129.6 128.9 [c]
28 NH - -
29 C=O 168.3 167.1
30 CH 52.7 55.2
31 CH 2 30.3 34.6 [d]
32 CH 2 21.1 25.0 [d]
33 CH 2 26.2 26.6 [d]
34 CH 2 38.1 39.5
35 NH 3 + - -
36 NH 3 + - -
[a] [b] [c] [d]具有相同上標的信號可以交換。 *H.E. Gottlieb, V. Kotlyar, A. Nudelman J. Org. Chem[ 有機化學雜誌 ],62 , 1997, 7512-7515 實例 5f :藉由 DVS 表徵
不同形式固體材料的吸濕性差異提供了相對濕度增加時其相對穩定性的量度。使用來自Surface Measurement Systems[表面測量系統公司](英國倫敦)的DVS-1系統獲得吸濕等溫線。在約25°C的恒定溫度,相對濕度在吸附-解吸過程中發生變化(見具體實驗)。在DVS實驗結束時,藉由XRPD測量樣品。
圖11描繪了具有式I之化合物的二氯化物鹽的晶型E的動態蒸汽吸附(DVS)分析。它示出:高達85% RH的化合物的吸水率為1%並且高達95% RH的化合物的吸水率為約4%。 實例5g:溶解度
在非緩衝水中以及使用標準Merck Titriplex®緩衝液進行熱力學pH依賴性溶解度測定(Merck Titrisol®緩衝液pH 3,具有檸檬酸鹽和HCl;Merck Titrisol®緩衝液pH 4,具有檸檬酸鹽和HCl;Merck Titrisol®緩衝液pH 5,具有檸檬酸鹽和NaOH;Merck Titrisol®緩衝液pH 6,具有檸檬酸鹽和NaOH;Merck Titrisol®緩衝液pH 7,具有磷酸鹽;為了緩衝在pH 4.5,使用pH 4和5的緩衝液的50/50混合物;為了緩衝在pH 5.5,使用pH 5和6的緩衝液的50/50混合物)。
對於每個實驗,用多晶型材料、根據目標pH的緩衝溶劑和磁力攪拌棒製備8 mL螺旋帽小瓶。每個pH數據點一式三份測定,目標pH為3、4、4.5、5、5.5和7。測量pH(飛世爾pH計(Fisherbrand pH meter Hydrus 400),在測量之前進行三點校準)並用1 M NaOH溶液調節。在攪拌下使混合物在室溫下平衡24 h。24 h後,監測pH並且將漿液以3000 rpm離心10 min以分離固體和液體並且過濾(0.45微米盤式過濾器)。如有必要,將分離的濾液在樣品溶劑中稀釋以落入HPLC測試的校準曲線內。具有式I之化合物的濃度藉由具有二極體陣列檢測分析(HPLC-DAD)的高效液相層析法測定。校準曲線係從在水/THF/TFA(50/50/0.05 v/v/v)的樣品溶液中的兩種獨立製備的具有式I之化合物的儲備溶液中獲得的。
在帶有DAD檢測器的Agilent 1100上進行280 nm波長的HPLC測試。確定了11 μg/mL的LOQ,線性度為高至約0.7 mg/mL。每個樣品稀釋到約0.5 mg/mL或者如果濃度小於或等於約0.5 mg/mL,也作為整值測量。 實例6–具有式I的化合物的結晶二氯化物鹽(A + M)的製備 實例 6a :具有式I的化合物的粗二氯化物鹽
將根據實例2提供的程序製備的111.6 g(156 mmol)具有式II之化合物(R 3係三級丁基)懸浮在738 mL的THF中並且加熱至約33°C。添加160 g的30%水性HCl並且將混合物攪拌約18 h。將混合物冷卻至約10°C並且添加738 mL的THF。將懸浮液過濾,將濾餅用120 mL的THF洗滌並且在約40°C真空乾燥以提供90 g的具有式I之化合物。 實例 6b :純化和結晶
在約40°C-50°C將具有式I的粗化合物(2.6 kg)溶解在水(2.7 L)和四氫呋喃(5.5 L)中。在約40°C-50°C,緩慢添加四氫呋喃(90 L)。將所得的懸浮液攪拌,然後冷卻至約10°C並且進一步攪拌。將懸浮液過濾,將濾餅用THF洗滌並且乾燥。將所得的固體(2.4 kg)溶解在7.3 L水中,將溶液過濾並且將過濾器用2.3 L的水洗滌。將過濾的溶液和洗滌液在約30°C減壓蒸發至乾燥。將殘餘物進一步在50°C減壓乾燥,以提供2.2 kg的呈混合物A1 + M1的具有式I之化合物。
通常,系統A + M中產生其他晶型的起點係混合物A1 + M1(圖14)和混合物A1 + M4(圖15)。圖19給出了當混合物A1 + M4暴露於氣候室條件時觀察到的XRPD圖的疊加圖。在40°C/75% RH,在1週後以及還在2.5週後觀察混合物M3 + M5(圖24)。在40°C/75% RH處理混合物A1 + M4 4週後,觀察到晶型M5(圖26)。在40°C/75% RH4週後以及在25°C/95% RH 2天后,獲得了混合物A2 + M4(圖17)。在40°C/75% RH 4週後以及在25°C/95% RH 1週後,獲得了混合物A2 + M11(圖18)。 實例7–具有式I之化合物的系統A + M中的結晶二氯化物鹽的具體晶型的製備 晶型 A0 的製備實例7a
藉由加熱混合物A1 + M1持續2.5 h至195°C獲得了晶型A0(圖12,表6)。 實例 7b
藉由加熱晶型M1持續4 h至195°C獲得了晶型A0。 晶型 A1 的製備 實例 7c
藉由允許晶型A0在環境條件下靜置持續約11天獲得了晶型A1(圖13,表7)。 實例 7d
藉由在以下溶劑系統中對混合物A1 + M1冷卻結晶獲得了晶型A1:水和甲醇/水(50 : 50)。將80 μL各自的溶劑添加至約4 mg的混合物A1 + M1中。將溫度升高至60°C並且在60°C保持60 min。以20°C/min的冷卻速率冷卻至20°C後,在攪拌下使混合物維持在20°C持續24 h。藉由真空(5 mbar)下的溶劑蒸發獲得晶型F。將晶型F暴露於40°C/75% RH的氣候室條件下67 h,產生晶型A1。 實例 7e
藉由在甲醇中對混合物A1 + M1冷卻結晶獲得了晶型A1。
將80 μL的甲醇添加至約4 mg的混合物A1 + M1中。將溫度升高至60°C並且在60°C保持60 min。以20°C/min的冷卻速率冷卻至2°C後,在攪拌下使混合物維持在2°C持續24 h。藉由真空(5 mbar)下的溶劑蒸發獲得晶型F。將晶型F暴露於40°C/75% RH的氣候室條件下67 h,產生晶型A1。 混合物 A1 + M1 的製備圖14和表19中描繪了XRPD繞射圖。 實例 7f
將23.2 mg的具有式I之化合物,即混合物A1 + M4添加在0.60 mL的乙醚中,產生漿液,將該漿液在20°C攪拌兩週。之後,將樣品離心,藉由過濾分離液體,並將固體部分在真空下乾燥(5 mbar)。對固體分析並發現其為混合物A1 + M1。 實例 7g
將22.7 mg的具有式I之化合物,即混合物A1 + M4添加至0.60 mL的三級丁基甲基醚中,產生漿液,將該漿液在20°C攪拌兩週。之後,將樣品離心,藉由過濾分離液體,並將固體部分在真空下乾燥(5 mbar)。對固體分析並發現其為混合物A1 + M1。 混合物A1 + M4的製備
圖15和表20中描繪了XRPD繞射圖。 實例 7h
藉由將20 mg混合物A1 + M1暴露於至少40% RH持續至少3 min來形成混合物A1 + M4。 實例 7i
在20°C,將23.2 mg的混合物A1 + M1漿化於0.60 mL的乙醚中持續兩週。藉由離心和過濾分離得到的潮濕的固體,並分析且發現為混合物A1 + M4。 實例 7j
在20°C將22.7 mg的混合物A1 + M1漿化於0.60 mL的三級丁基甲基醚中持續兩週。藉由離心和過濾分離得到的潮濕的固體,並分析且發現為混合物A1 + M4。 實例 7k
在20°C將24.2 mg的混合物A1 + M1漿化於0.60 mL的正庚烷中持續兩週。藉由離心和過濾分離得到的潮濕的固體,並分析且發現為混合物A1 + M4。 實例 7l
在20°C,將18.9 mg的混合物A1 + M1漿化於0.60 mL的甲苯中持續兩週。藉由離心和過濾分離得到的潮濕的固體,並分析且發現為混合物A1 + M4。 實例 7m
在50°C將18.9 mg的混合物A1 + M1漿化於0.40 mL的二異丙醚中持續兩週。藉由離心和過濾分離得到的潮濕的固體,並分析且發現為混合物A1 + M4。 實例 7n
在50°C將22.8 mg的混合物A1 + M1漿化於0.40 mL的正庚烷中持續兩週。藉由離心和過濾分離得到的潮濕的固體,並分析且發現為混合物A1 + M4。 實例 7o
在50°C,將24.9 mg的混合物A1 + M1漿化於0.40 mL的甲苯中持續兩週。藉由離心和過濾分離得到的潮濕的固體,並分析且發現為混合物A1 + M4。 混合物 A1 + M4 + M5 的製備 實例 7p
藉由將混合物A1 + M4暴露於60%至80% RH約3 min來形成混合物A1 + M4 + M5。 混合物 A2 + M4 的製備
圖17和表21中描繪了XRPD繞射圖。 實例 7q
在40°C/75% RH儲存混合物A1 + M4持續4週和在25°C/95% RH儲存2天后,獲得了混合物A2 + M4。 混合物 M3 + M5 的製備
圖16和表11中描繪了XRPD繞射圖。 實例 7r
在40°C/75% RH儲存混合物A1 + M4持續1週和2.5週之間的時間後觀察到混合物M3 + M5。 混合物 A2 + M11 的製備
圖18和表22中描繪了XRPD繞射圖。 實例 7s
在40°C 75% RH儲存混合物A1 + M4持續4週和在25°C/95% RH儲存1週後獲得了混合物A2 + M11(圖19)。 晶型 A2 的製備
圖20和表20中描繪了XRPD繞射圖。 實例 7t
藉由在以下所有不同的溶劑系統中對混合物A1 + M1冷卻結晶獲得了晶型A2:1,4-二㗁𠮿/水(50 : 50)、異丙醇/水(50 : 50)、乙腈/水(50 : 50)、乙醇/水(50 : 50)、異丙醇、和丙酮/水(50 : 50)。將80 μL各自的溶劑添加至約4 mg的混合物A1 + M1中。將溫度升高至60°C並且在60°C保持60 min。以20°C/min的冷卻速率冷卻至20°C後,在攪拌下使混合物維持在20°C持續24 h。藉由真空(5 mbar)下的溶劑蒸發獲得晶型F。將晶型F暴露於40°C/75% RH的氣候室條件下67 h,產生晶型A2。 實例 7u
藉由在以下溶劑系統中對混合物A1 + M1冷卻結晶獲得了晶型A2:甲醇和乙醇。將80 μL各自的溶劑添加至約4 mg的混合物A1 + M1中。將溫度升高至60°C並且在60°C保持60 min。以20°C/min的冷卻速率冷卻至20°C後,在攪拌下使混合物維持在20°C持續24 h。藉由真空(5 mbar)下的溶劑蒸發獲得晶型G。將晶型G暴露於40°C/75% RH的氣候室條件下67 h,產生晶型A2。 晶型 M1 的製備
圖22和表9中描繪了XRPD繞射圖。 實例 7v
藉由在以下所有不同的溶劑系統中對混合物A1 + M1冷卻結晶獲得了晶型M1:水、1,4-二㗁𠮿/水(50 : 50)、乙酸乙酯/二甲亞碸(50 : 50)、異丙醇/水(50 : 50)、乙腈/水(50 : 50)、乙醇/水(50 : 50)和四氫呋喃/水(50 : 50)。將80 μL各自的溶劑添加至約4 mg的混合物A1 + M1中。將溫度升高至60°C並且在60°C保持60 min。以2°C/min的冷卻速率冷卻至2°C後,在攪拌下使混合物維持在2°C持續24 h。藉由真空(5 mbar)下的溶劑蒸發獲得晶型F。將晶型F暴露於40°C/75% RH的氣候室條件下67 h,產生晶型M1。 實例 7w
藉由在以下不同的溶劑系統中對混合物A1 + M1冷卻結晶獲得了晶型M1:對二甲苯/甲醇(50 : 50)和2-丁酮/甲醇(50 : 50)。將80 μL各自的溶劑添加至約4 mg的混合物A1 + M1中。將溫度升高至60°C並且在60°C保持60 min。以2°C/min的冷卻速率冷卻至2°C後,在攪拌下使混合物維持在2°C持續24 h。藉由真空(5 mbar)下的溶劑蒸發獲得晶型G。將晶型G暴露於40°C/75% RH的氣候室條件下67 h,產生晶型M1。 實例 7x
藉由在以下不同的溶劑系統中對混合物A1 + M1冷卻結晶獲得了晶型M1:四氫呋喃/甲醇(50 : 50)和2 四氫呋喃/乙酸乙酯(50 : 50)。將80 μL各自的溶劑添加至約4 mg的混合物A1 + M1中。將溫度升高至60°C並且在60°C保持60 min。以20°C/min的冷卻速率冷卻至20°C後,在攪拌下使混合物維持在20°C持續24 h。藉由真空(5 mbar)下的溶劑蒸發獲得晶型G。將晶型G暴露於40°C/75% RH的氣候室條件下67 h,產生晶型M1。 實例 7y
藉由在以下所有不同的溶劑系統中對混合物A1 + M1冷卻結晶獲得了晶型M1:乙腈/水(50 : 50)、四氫呋喃/水(50 : 50)、甲醇/水(50 : 50)、丙酮/水(50 : 50)、2 丁酮/水(50 : 50)、乙酸乙酯/甲醇(50 : 50)和四氫呋喃/甲醇(50 : 50)。將80 μL各自的溶劑添加至約4 mg的混合物A1 + M1中。將溫度升高至60°C並且在60°C保持60 min。以20°C/min的冷卻速率冷卻至2°C後,在攪拌下使混合物維持在2°C持續24 h。藉由真空(5 mbar)下的溶劑蒸發獲得晶型F。將晶型F暴露於40°C/75% RH的氣候室條件下67 h,產生晶型M1。 晶型 M2 的製備
從混合物A1 + M4,藉由用反溶劑添加進行碰撞結晶(crash-crystallisation)獲得晶型M2(圖23,表10)。 實例 7z
在所有以下不同的溶劑系統中,藉由用混合物A1 + M1的反溶劑添加進行碰撞結晶獲得晶型M2:溶劑:1-丁醇/水(9.6 : 90.4 v/v)和每個反溶劑:乙腈、2-丁酮、四氫呋喃或乙酸乙酯。儲備溶液在200 μL溶劑中製備,具有式I之化合物的濃度在過濾之前平衡24小時後在環境溫度下達到飽和,或具有170 mg/mL的截留濃度。
對於每個實驗,將反溶劑添加到每個溶劑小瓶中,溶劑與反溶劑比例為1 : 0.25。在不發生沈澱的情況下,該比率增加到1 : 1,並且如果再次沒有發生沈澱,則該比例增加到1 : 4(對於所有晶型M2製劑),在添加之間等待60 min的時間(直至第三次添加)。由於沒有足夠的固體沈澱分離,樣品保持在5°C三天。沒有出現沈澱。將溶劑在200 mbar蒸發至乾。
使用不同的溶劑系統,獲得了不同的中間體多晶型,即非晶型(來自反溶劑乙腈、2-丁酮)、晶型M1(四氫呋喃)和混合物F + M1(乙酸乙酯)。將測量板在加速老化條件(40°C/75% RH)下儲存65 h後,所有該等樣品都轉化為多晶型M2。 晶型 M4 的製備
從混合物A1 + M4,主要藉由在pH 4下的漿液試驗獲得了晶型M4(圖25,表12)。 實例 7aa
將151.4 mg的具有式I之化合物(混合物A1 + M4)懸浮在600 µL的pH 4緩衝液(Merck Titrisol®緩衝液pH 4,具有檸檬酸鹽和HCl)中。初始pH係約3.2。15 min後,將pH用25 µL 0.1 M NaOH調節至約4.1。2 h-4 h後,將pH調節至3.8。添加10 µL 0.1 M NaOH和200 µL的pH 4緩衝液。將漿液在室溫攪拌24 h(包括添加次數)。獲得的漿液示出約pH 4.0。使用1微米盤式過濾器進行過濾。獲得呈濾餅的晶型M4。 實例 7bb
將198.3 mg的混合物A1 + M4懸浮在1000 µL的pH 4緩衝液(Merck Titrisol®緩衝液pH 4,具有檸檬酸鹽和HCl)中。初始pH係約2.9。15 min後,將pH用50 µL 0.1 M NaOH調節至約3.8。將漿液在室溫攪拌24 h(包括添加次數)。獲得了約pH 3.8的渾濁的溶液。使用1微米盤式過濾器進行過濾。獲得呈濾餅的晶型M4。 實例 7cc
將245.4 mg的混合物A1 + M4懸浮在1000 µL的pH4緩衝液(Merck Titrisol®緩衝液pH 4,具有檸檬酸鹽和HCl)中。初始pH係約3.1。15 min後,將pH用50 µL 0.1 M NaOH調節至約3.9。將漿液攪拌30-45分鐘並將pH調節至約3.9。添加10 µL的0.1 M NaOH以產生約pH 4.1。將漿液在室溫攪拌24 h(包括添加次數)。獲得的漿液示出約pH 4.0。使用0.2 μm離心過濾器進行過濾。獲得呈濾餅的晶型M4。 晶型 M5 的製備
圖26和表13中描繪了XRPD繞射圖。 實例 7dd
藉由在40°C/75% RH儲存具有式I之化合物即混合物A1 + M1或A1 + M4持續4週獲得了晶型M5。 晶型 M8 的製備
從混合物A1 + M4,主要藉由在pH 7.5下的漿液試驗獲得了晶型M8(圖27,表14)。要注意的是,該等實驗使用含有替代性反離子的緩衝液。儘管不能完全忽視在多晶型中存在的痕量反離子,但在XRPD繞射圖中沒有可見的可歸因於該等無機物質的繞射峰(無機物通常在高2θ角才清晰可見並且通常是非常尖銳的峰)。 實例 7ee
將Merck Titrisol®緩衝液pH 7(具有磷酸鹽)和Merck Titrisol®緩衝液pH 8(具有硼酸鹽和HCl)以1 : 1(v/v)的比例混合以給出具有pH 7.5的緩衝液。藉由將26.9 mg的混合物A1 + M4添加至5.0 mL的上述pH 7.5緩衝液中製備懸浮液。所得的pH係約7.3。15 min後,將pH用10 µL 0.1 M NaOH調節至約pH7.4。將混合物在室溫下攪拌24 h(包括添加次數)。獲得了pH約7.5的漿液。使用1微米盤式過濾器進行過濾。獲得呈濾餅的晶型M8。 實例 7ff
製備了16.4 mg的混合物A1 + M4在5.0 mL的上述pH 7.5緩衝液中的懸浮液。初始pH係約7.5。將所得的混合物在室溫下攪拌24 h。獲得了約pH 7.4的漿液。使用1微米盤式過濾器進行過濾。獲得呈濾餅的晶型M8。 晶型 M9 的製備
從混合物A1 + M4,主要藉由在pH 4.5至5.5的範圍內的漿液試驗獲得了晶型M9(圖28,表15)。要注意的是,該等實驗使用含有替代性反離子的緩衝液。儘管不能完全忽視在多晶型中存在的痕量反離子,但在XRPD繞射圖中沒有可見的可歸因於該等無機物質的繞射峰(無機物通常在高2θ角才清晰可見並且通常是非常尖銳的峰)。 實例 7gg
將150.5 mg的混合物A1 + M4懸浮在5.0 mL的Merck Titrisol®緩衝液(pH 5,含有檸檬酸和NaOH)中。初始pH係約4.2。15 min後,將pH用70 µL 0.1 M NaOH調節至約pH 4.9。將混合物在室溫下攪拌24 h(包括添加次數)。獲得了約pH 5.1的漿液。使用1微米盤式過濾器進行過濾。獲得呈濾餅的晶型M9。 實例 7hh
將32 mg的混合物A1 + M4懸浮在5.0 mL的Merck Titrisol®緩衝液(pH 5,含有檸檬酸和NaOH)中。初始pH係約5.0。將混合物在室溫下攪拌24 h(包括添加次數)。獲得了約pH 5.0的漿液。使用1微米盤式過濾器進行過濾。獲得呈濾餅的晶型M9。 實例 7ii
將Merck Titrisol®緩衝液pH 5(含有檸檬酸鹽和NaOH)與Merck Titrisol®緩衝液pH 6(含有檸檬酸鹽和NaOH)以1 : 1(v/v)的比例混合以產生pH 5.5的緩衝液。將34 mg的具有式I之化合物(混合物A1 + M4)懸浮在5.0 mL的上述pH 5.5緩衝液中。初始pH係約5.6。將混合物在室溫下攪拌24 h(包括添加次數)。獲得了約pH 5.5的漿液。使用1微米盤式過濾器進行過濾。獲得呈濾餅的晶型M9。 晶型 M11 的製備
在過飽和實驗中藉由將pH從3改變為7,從混合物A1 + M4和晶型E獲得了晶型M11(圖30,表16)。要注意的是,該等實驗使用含有替代性反離子的緩衝液。儘管不能完全忽視在多晶型中存在的痕量反離子,但在XRPD繞射圖中沒有可見的可歸因於該等無機物質的繞射峰(無機物通常在高2θ角才清晰可見並且通常是非常尖銳的峰)。 實例 7kk
將約210 mg的晶型E懸浮在1.00 mL Merck Titrisol®緩衝液pH 3(含有檸檬酸鹽和HCl)中並且添加20 µL 0.1 M NaOH。過濾該飽和溶液(0.2 µm離心過濾器)。在藉由添加270 µL的0.1 M NaOH調節至pH 7之前將溶液保持在室溫下持續24 h。出現固體沈澱。用0.2 μm離心過濾器過濾懸浮液並獲得呈濾餅的晶型M11。當使用350 μL的0.1 M NaOH將pH調節至pH 7時,使用未過濾的溶液獲得相同的結果。 實例7ll
將約420 mg的混合物A1 + M4懸浮在1.00 mL pH 3緩衝液中並且添加40 µL的0.1 M NaOH。過濾飽和溶液(0.2 μm離心過濾器)並在室溫下保持24 h,之後藉由添加300 μL的0.1 M NaOH調節至pH 7。出現固體沈澱。用0.2 μm離心過濾器過濾懸浮液並獲得呈濾餅的晶型M11。當使用350 μL的0.1 M NaOH將pH調節至pH 7時,使用未過濾的溶液獲得相同的結果。 晶型 M12 的製備
在約pH 7的不同的漿液實驗中從混合物A1 + M4觀察到晶型M12(圖31,表17)。要注意的是,該等實驗使用含有替代性反離子的緩衝液。儘管不能完全忽視在多晶型中存在的痕量反離子,但在XRPD繞射圖中沒有可見的可歸因於該等無機物質的繞射峰(無機物通常在高2θ角才清晰可見並且通常是非常尖銳的峰)。 實例 7mm
將約30 mg的混合物A1 + M4或晶型E懸浮在5.0 mL的Merck Titrisol®緩衝液pH 7(含有磷酸鹽)中。初始pH係約6.9。攪拌15 min後,將pH用10 µL 0.1 M NaOH調節至約7.0。將混合物在室溫下攪拌24 h(包括添加次數)。獲得了約pH 7.0的漿液。使用0.45微米盤式過濾器進行過濾。獲得呈濾餅的晶型M12。 晶型 M13 的製備
在過飽和實驗中藉由將pH從3改變為5從混合物A1 + M4和晶型E中獲得了晶型M13(圖32,表18)。要注意的是,該等實驗使用含有替代性反離子的緩衝液。儘管不能完全忽視在多晶型中存在的痕量反離子,但在XRPD繞射圖中沒有可見的可歸因於該等無機物質的繞射峰(無機物通常在高2θ角才清晰可見並且通常是非常尖銳的峰)。 實例 7nn
將約210 mg的晶型E懸浮在1.0 mL Merck Titrisol®緩衝液pH 3(含有檸檬酸鹽和HCl)中並且添加20 µL 0.1 M NaOH。過濾飽和溶液(0.2 μm離心過濾器)並在室溫下保持24 h,之後藉由添加約50 μL的0.1 M NaOH調節至pH 5。出現固體沈澱。用0.2 μm離心過濾器過濾懸浮液並獲得呈濾餅的晶型M13。當使用70 μL的0.1 M NaOH將pH調節至pH 5時,使用未過濾的溶液獲得相同的結果。 實例7oo
將約410 mg的混合物A1 + M4懸浮在1.00 mL Merck Titrisol®緩衝液pH 3(含有檸檬酸鹽和HCl)中並且添加40 µL 0.1 M NaOH。過濾飽和溶液(0.2 μm離心過濾器)並在室溫下保持24 h,之後藉由添加60 μL的0.1 M NaOH調節至pH 5。出現固體沈澱。用0.2 μm離心過濾器過濾懸浮液並獲得呈濾餅的晶型M13。當使用80 μL的0.1 M NaOH將pH調節至pH 5時,使用未過濾的溶液獲得相同的結果
注意:儘管晶型F和G在上述實例中在A + M系統內在製備一些多晶型時作為中間體形式描述,但溶劑顯現在其物理穩定性中起重要作用。根據所使用的溶劑,晶型F和G可以是溶劑化的或無水形式。 實例8–具有式I之化合物的結晶二氯化物鹽(A + M)的表徵 實例 8a :藉由 XRPD 表徵
如在實例5a中描繪的進行XRPD分析。該等包括在A + M系統中自然產生的混合物、以及如所述的經分離的特定A或M多晶型的XRPD峰。數據包括了多晶型A0、A1、A2、M1、M2、M3 + M5、M4、M5、M8、M9、M10+M4、M11、M12、M13以及常觀察的混合物A1 + M4、A2 + M4和A2 + M11。也觀察到晶型M6和M7,但僅作為與不是A + M系統的一部分的其他多晶型的混合物。 [表6.]晶型A0的XRPD峰位置的列表。
角度[2θ] d-間距[Å] 強度[相對%]
3.9 22.40 100
7.9 11.18 91
9.7 9.11 79
11.2 7.90 82
23.9 3.72 75
25.0 3.55 83
25.5 3.48 82
[表7.]晶型A1的XRPD峰位置的列表。
角度[2θ] d-間距[Å] 強度[相對%]
4.0 21.95 58
8.1 10.96 52
9.4 9.38 65
11.1 7.99 24
12.7 6.98 23
15.3 5.80 53
18.3 4.84 11
20.8 4.26 31
24.3 3.65 100
25.5 3.48 30
[表8.]晶型A2的XRPD峰位置的列表
角度[2θ] d-間距[Å] 強度[相對%]
3.9 22.4 35
8.2 10.74 54
9.4 9.38 100
11.6 7.63 15
12.7 6.98 31
14.7 6.00 43
15.5 5.71 37
19.8 4.48 34
24.1 3.68 92
25.1 3.55 50
25.6 3.47 41
[表9.]晶型M1的XRPD峰位置的列表
角度[2θ] d-間距[Å] 強度[相對%]
3.6 24.38 100
7.9 11.23 25
9.5 9.34 19
15.5 5.72 17
24.5 3.62 34
[表10.]晶型M2的XRPD峰位置的列表
角度[2θ] d-間距[Å] 強度[相對%]
3.5 24.93 100
9.4 9.42 15
[表11.]混合物M3 + M5的XRPD峰位置的列表
角度[2θ] d-間距[Å] 強度 [相對%]
3.0 29.61 92
3.6 24.38 99
9.4 9.38 66
11.1 7.99 48
12.7 6.96 46
15.3 5.77 56
23.6 3.76 70
24.5 3.63 100
[表12.]晶型M4的XRPD峰位置的列表
角度[2θ] d-間距[Å] 強度 [相對%]
3.2 27.41 55
6.5 13.5 34
8.6 10.25 38
9.8 9.00 34
11.2 7.90 40
11.9 7.43 29
13.3 6.63 34
16.5 5.38 58
18.7 4.75 57
20.5 4.32 39
23.7 3.76 100
25.2 3.53 45
27.8 3.20 41
31.7 2.82 31
[表13.]晶型M5的XRPD峰位置的列表
角度[2θ] d-間距[Å] 強度 [相對%]
3.7 24.11 100
7.5 11.77 25
9.4 9.38 46
15.3 5.77 27
19.8 4.47 14
24.3 3.65 65
[表14.]晶型M8的XRPD峰位置的列表
角度[2θ] d-間距[Å] 強度 [相對%]
7.3 12.03 100
9.6 9.22 60
10.8 8.17 69
13.1 6.77 70
15.1 5.88 51
16.0 5.53 47
16.5 5.35 34
19.3 4.59 27
20.8 4.26 28
24.2 3.67 66
25.5 3.49 60
26.2 3.40 43
27.7 3.22 43
        
31.7 2.82 30
        
[表15.]晶型M9的XRPD峰位置的列表
角度[2θ] d-間距[Å] 強度 [相對%]
3.2 27.75 27
6.5 13.67 88
9.7 9.07 59
10.3 8.55 62
15.8 5.61 87
18.1 4.88 45
19.2 4.62 54
21.1 4.21 51
23.1 3.85 57
25.0 3.56 100
26.8 3.33 56
[表16.]晶型M11的XRPD峰位置的列表。
角度[2θ] d-間距[Å] 強度 [相對%]
2.7 32.21 100
15.5 5.71 21
20.4 4.34 25
23.6 3.76 35
[表17.]晶型M12的XRPD峰位置的列表。
角度[2θ] d-間距[Å] 強度 [相對%]
7.3 12.03 100
9.5 9.26 56
11.3 7.79 25
12.4 7.14 66
13.5 6.55 28
14.8 5.99 50
15.6 5.68 24
17.6 5.04 51
19.8 4.48 37
21.1 4.21 41
        
23.4 3.79 29
24.3 3.66 63
25.9 3.44 27
26.7 3.34 31
27.5 3.24 73
27.9 3.19 87
29.6 3.02 32
32.1 2.79 42
[表18.]晶型M13的XRPD峰位置的列表。
角度[2θ] d-間距[Å] 強度 [相對%]
3.1 28.1 73
8.6 10.29 36
11.0 8.05 32
13.3 6.63 28
16.3 5.43 53
17.5 5.07 20
18.4 4.82 44
23.5 3.77 100
25.5 3.49 34
28.0 3.18 63
28.6 3.12 57
[表19.]混合物A1 + M1的XRPD峰位置的列表。
角度[2θ] d-間距[Å] 強度 [相對%]
3.6 24.65 76
4.0 22.17 91
8.1 10.9 73
9.4 9.42 56
11.0 8.05 57
21.1 4.21 56
24.5 3.63 100
[表20.]混合物A1 + M4的XRPD峰位置的列表。
角度[2θ] d-間距[Å] 強度 [相對%]
3.4 25.8 92
4.0 22.17 67
8.1 10.85 50
11.1 7.93 50
16.5 5.38 54
24.0 3.7 100
[表21.]混合物A2 + M4的XRPD峰位置的列表。
角度[2θ] d-間距[Å] 強度 [相對%]
3.01 28.84 100
6.9 12.87 27
8.5 10.44 52
9.4 9.38 62
12.6 7.01 40
14.8 5.99 42
15.4 5.74 48
19.8 4.48 45
22.7 3.91 35
24.3 3.66 80
24.9 3.57 60
[表22.]混合物A2 + M11的XRPD峰位置的列表。
角度[2θ] d-間距[Å] 相對強度[%]
2.7 32.21 100
8.3 10.69 31
9.4 9.38 39
14.8 5.99 31
19.7 4.49 30
24.1 3.69 37
[表23.]晶型F的XRPD峰位置的列表。
角度[2θ] d-間距[Å] 相對強度[%]
2.3 39.0 45
8.0 11.0 58
8.8 10.1 65
11.0 8.1 15
13.4 6.6 20
14.1 6.3 32
15.6 5.7 47
16.9 5.3 21
17.7 5.0 19
19.5 4.6 27
20.5 4.3 12
21.5 4.1 26
23.5 3.8 100
24.3 3.7 41
25.1 3.5 41
26.1 3.4 35
27.1 3.3 21
[表24.]晶型G的XRPD峰位置的列表。
角度[2θ] d-間距[Å] 相對強度[%]
2.3 39.04 42
2.5 34.74 44
5.3 16.53 37
7.9 11.12 100
8.7 10.11 49
9.4 9.38 18
10.1 8.71 25
10.7 8.29 54
12.3 7.21 42
13.4 6.59 82
14.3 6.17 35
16.1 5.51 50
17.7 4.99 40
18.9 4.70 47
19.4 4.57 34
20.0 4.43 43
20.6 4.31 63
21.6 4.11 65
22.3 3.97 33
23.0 3.86 74
23.7 3.75 51
24.4 3.64 45
25.4 3.51 45
26.3 3.39 55
26.9 3.31 26
31.3 2.85 22
32.3 2.76 44
實例 8b :實驗高解析度 X 射線粉末繞射(包括可變濕度和變溫 XRPD 實驗)
對於可變濕度(VH)和變溫(VT)實驗,使用ANSYCO HT室,安裝在用布喇格-布倫塔諾幾何(Bragg-Brentano geometry)設計並配備LynxEye固態檢測器的D8 Advance系統繞射儀(Bruker[布魯克公司])內。用於收集數據的輻射係由鍺晶體單色化的CuKα1(λ = 1.54056 Å)。將材料放置在安裝於室內的固定樣品架上。
VH-XRPD:濕度局部施加,從10%變化到70%(露點)。在4º-30º(2θ)範圍內收集圖,VH-XRPD的步階為0.0145º(2θ),每步階測量時間為1.2秒。在每個步階的濕度穩定後60秒啟動數據收集(每個RH值的數據收集時間約40 min)。所有圖均在室溫下採集,約295 K。
VT-XRPD:溫度變化率為10°C/min,在每個溫度開始數據收集之前的平衡時間為8 min。在以下範圍收集圖:4°–34.5°(2θ),步階為0.0107°(2θ)並且每步階的測量時間為1秒(針對T = 25°C、50°C、80°C、100°C和110°C)或1.5 sec(針對T = 40°C、60°C、115°C-180°C)。每個溫度的數據收集時間為48 min或70 min,這取決於每步階的測量時間。
將晶型A1 + M4在40°C/75% RH放置於氣候室實驗4週,然後在25°C/95% RH儲存兩週。在此研究期間,最初晶型A1 + M4在1週後轉變為M3 + M5,在4週後轉變為晶型M5,並且在4週和2天后轉變為晶型A2 + M4,最後才轉變為晶型A2 + M11(圖19)。 實例 8c :藉由 DVS 表徵
有關實驗細節,請參見實例5f。圖35描繪了具有式I之化合物的二氯化物鹽的結晶系統A + M的DVS分析。它示出:高達85% RH的化合物的吸水率為約22%並且高達95% RH的化合物的吸水率為低於約34%。 實例 8d :溶解度
按照實例5g針對晶型E所述,測定了晶型A1 + M4的熱力學pH依賴性溶解度,除了目標pH為1、2、3(兩種不同的緩衝液)、4、4.5、5、5.5、6、6.5、7.5、8、9.5、10.5、11.5和12.5。另外使用的緩衝液係Merck Titrisol®緩衝液pH 1(具有甘胺酸和HCl);Merck Titrisol®緩衝液pH 2(具有檸檬酸鹽和HCl);Merck Titrisol®緩衝液pH 8(具有硼酸鹽和HCl);Merck Titrisol®緩衝液pH 9(具有硼酸、KCl和NaOH);Merck Titrisol®緩衝液pH 10(具有硼酸、KCl和NaOH);Merck Titrisol®緩衝液pH 11(具有硼酸、KCl和NaOH);Merck Titrisol®緩衝液pH 12(具有磷酸鹽和NaOH);Merck Titrisol®緩衝液pH 13(具有KCl和NaOH);針對不具有HCl的pH 3的第二緩衝液,將80.3 mL的檸檬酸(21.01 g一水合檸檬酸在1 L去離子水中)與19.7 mL的0.2 M 磷酸氫二鈉(35.6 g在1 L去離子水中)混合。為了在pH 6.5緩衝,使用pH 6和7的緩衝液的50/50混合物;為了緩衝在pH 7.5,使用pH 7和8的緩衝液的50/50混合物;為了緩衝在pH 9.5,使用pH 9和10的緩衝液的50/50混合物;為了緩衝在pH 10.5,使用pH 10和11的緩衝液的50/50混合物;為了緩衝在pH 11.5,使用pH 11和12的緩衝液的50/50混合物;為了緩衝在pH 12.5,使用pH 12和13的緩衝液的50/50混合物。確定了約8 ug/mL的LOQ。
對晶型A2 + M11的熱力學pH依賴性溶解度如實例5g針對晶型E所述(除了確定18 μg/mL的LOQ)進行測定。
Figure 111131870-A0101-11-0004-5

Claims (36)

  1. 一種具有式I之化合物的結晶二氯化物鹽
    Figure 03_image001
    (I)。
  2. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於6.0度2θ(± 0.2度2θ)的峰。
  3. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於6.0、9.4及9.9度2θ(± 0.2度2θ)的峰。
  4. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於6.0、9.4、9.9、10.7、17.4、21.4、25.8及28.4度2θ(± 0.2度2θ)的峰。
  5. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於6.0、9.4、9.9、10.7、11.6、11.9、17.4、21.4、22.4、23.0、24.2、24.6、25.8及28.4度2θ(± 0.2度2θ)的峰。
  6. 如請求項1所述之結晶二氯化物鹽,其中該正交晶原始晶胞參數係a = 4.813 ± 0.001 Å,b = 20.02 ± 0.01 Å,c = 59.40 ± 0.02 Å,V = 5724±5 Å 3
  7. 如請求項1所述之結晶二氯化物鹽,該結晶二氯化物鹽具有在1701、1665、1335、1241、1170、942、924、864、699及628 cm -1(± 2 cm -1)處包含峰的IR譜,及/或具有以TMS為參考物的 13C CP MAS(14 kHz)NMR譜及/或在[D6]-DMSO中得到的 13C NMR譜,該等NMR譜包含下表中的峰: [D 6]-DMSO CP MAS 14 kHz - - 140.9 137.4 [a] - - 141.5 141.4 [a] 119.9 118.8 [b] 123.3 121.8 [b] 124.8 124.2 [b] 111.2 109.5 136.1 134.8 [a] 137.7 137.4 [a] - - - - 155.8 156.2 - - 40.1 40.3 16.7 19.0 119.1 119.6 - - 51.8 49.1 191.3 196.2 129.6 128.1 129.6 131.2 [c] 119.0 121.2 143.6 144.0 [a] 119.0 121.2 129.6 128.9 [c] - - 168.3 167.1 52.7 55.2 30.3 34.6 [d] 21.1 25.0 [d] 26.2 26.6 [d] 38.1 39.5 - - - -
    [a][b][c][d]具有相同上標的訊號可以交換。
  8. 一種用於製備如請求項1至7中任一項所述的結晶二氯化物鹽之方法,該方法包括以下步驟:從乙腈、甲醇、乙醇、乙酸乙酯、或異丙醇或其混合物,或包含乙腈、甲醇、乙醇、乙酸乙酯及/或異丙醇的溶劑混合物中結晶該具有式I之化合物的該二氯化物鹽。
  9. 一種用於製備如請求項1至7中任一項所述的結晶二氯化物鹽之方法,其包括以下步驟:從乙腈、甲醇或乙醇或其混合物,或包含乙腈、甲醇及/或乙醇的溶劑混合物中結晶該具有式I之化合物的該二氯化物鹽。
  10. 如請求項1所述之結晶二氯化物鹽,當該結晶鹽本質上不含水分時,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.9度2θ(± 0.2度2θ)的峰。
  11. 如請求項1所述之結晶二氯化物鹽,當該結晶鹽本質上不含水分時,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.9、7.9及9.7度2θ(± 0.2度2θ)的峰。
  12. 如請求項1所述之結晶二氯化物鹽,當該結晶鹽本質上不含水分時,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.9、7.9、9.7、11.2及23.9度2θ(± 0.2度2θ)的峰。
  13. 如請求項1所述之結晶二氯化物鹽,當該結晶鹽本質上不含水分時,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.9、7.9、9.7、11.2、23.9、25.0及25.5度2θ(± 0.2度2θ)的峰。
  14. 如請求項1所述之結晶二氯化物鹽,當該結晶鹽暴露於100%濕度一段時間以使其不再吸收任何另外的水分時,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於2.7度2θ(± 0.2度2θ)的峰。
  15. 如請求項1所述之結晶二氯化物鹽,當該結晶鹽暴露於100%濕度一段時間以使其不再吸收任何另外的水分時,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於2.7、8.3及9.4度2θ(± 0.2度2θ)的峰。
  16. 如請求項1所述之結晶二氯化物鹽,當該結晶鹽被暴露於100%濕度一段時間以使其不再吸收任何另外的水分時,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於2.7、8.3、9.4、14.8及19.7度2θ(± 0.2度2θ)的峰。
  17. 如請求項1所述之結晶二氯化物鹽,當該結晶鹽暴露於100%濕度一段時間以使其不再吸收任何另外的水分時,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於2.7、8.3、9.4、14.8、19.7及24.1度2θ(± 0.2度2θ)的峰。
  18. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.6度2θ(± 0.2度2θ)的峰。
  19. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.6、4.0及8.1度2θ(± 0.2度2θ)的峰。
  20. 如請求項1所述之結晶二氯化物鹽,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.6、4.0、8.1、9.4、11.0、21.1及24.5度2θ(± 0.2度2θ)的峰。
  21. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.4度2θ(± 0.2度2θ)的峰。
  22. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.4、4.0及8.1度2θ(± 0.2度2θ)的峰。
  23. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.4、4.0、8.1、11.1、16.5及24.0度2θ(± 0.2度2θ)的峰。
  24. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.0度2θ(± 0.2度2θ)的峰。
  25. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.0、3.6及9.4度2θ(± 0.2度2θ)的峰。
  26. 如請求項1所述之結晶二氯化物鹽,當使用CuKα輻射測量時,該結晶二氯化物鹽的X射線粉末繞射圖包含位於3.0、3.6、9.4、11.1、12.7、15.3、23.6及24.5度2θ(± 0.2度2θ)的峰。
  27. 一種藥物組成物,其包含藥學上有效量的如請求項1至7及10至26中任一項所述的具有式I之化合物的結晶二氯化物鹽與藥學上可接受的載體、稀釋劑或賦形劑的組合。
  28. 一種如請求項1至7及10至26中任一項所述的具有式I之化合物的結晶二氯化物鹽之用途,其係用於製造供治療增殖性病症或疾病用的藥物。
  29. 如請求項28所述之具有式I之化合物的結晶二氯化物鹽之用途,其中該增殖性病症或疾病係選自以下項的腫瘤性疾病:上皮性瘤,鱗狀細胞瘤,基底細胞瘤,移行細胞乳頭狀瘤及癌瘤,腺瘤及腺癌,附屬器及皮膚附肢腫瘤,黏液表皮樣腫瘤,囊性腫瘤,黏液性及漿液性腫瘤,導管、小葉及髓質腫瘤,腺泡細胞腫瘤,複雜的上皮性瘤,特化性腺腫瘤,副神經節瘤及血管球瘤,痣及黑色素瘤,軟組織腫瘤及肉瘤,纖維瘤性腫瘤,黏液瘤性腫瘤,脂肪瘤性腫瘤,肌瘤性腫瘤,複雜的混合及基質腫瘤,纖維上皮性瘤,滑膜樣腫瘤,間皮腫瘤,生殖細胞腫瘤,滋養細胞腫瘤,中腎瘤,血管瘤,淋巴管瘤,骨性及軟骨瘤性腫瘤,巨細胞瘤,雜類骨腫瘤,牙源性腫瘤,神經膠質瘤,神經上皮瘤性腫瘤,腦膜瘤,神經鞘瘤,顆粒細胞瘤及肺泡軟組織肉瘤,霍奇金及非霍奇金淋巴瘤,其他淋巴網狀組織腫瘤,漿細胞瘤,肥大細胞瘤,免疫增殖性疾病,白血病,雜類骨髓增殖性病症,淋巴增殖性病症以及骨髓增生異常症候群。
  30. 如請求項28所述之具有式I之化合物的結晶二氯化物鹽之用途,其中該增殖性病症或疾病係癌症。
  31. 如請求項28項所述之具有式I之化合物的結晶二氯化物鹽之用途,其中該增殖性病症或疾病係癌症,其中就累及的身體的器官及部位而言,該癌症選自腦、乳房、子宮頸、卵巢、結腸、直腸(包括結腸及直腸,即結腸直腸癌)、肺(包括小細胞肺癌、非小細胞肺癌、大細胞肺癌及間皮瘤)、內分泌系統、骨、腎上腺、胸腺、肝、胃、腸(包括胃癌)、胰腺、骨髓、血液惡性腫瘤(例如淋巴瘤、白血病、骨髓瘤或淋巴惡性腫瘤)、膀胱、尿路、腎、皮膚、甲狀腺、腦、頭、頸、前列腺及睾丸。
  32. 如請求項28所述之具有式I之化合物的結晶二氯化物鹽之用途,其中該增殖性病症或疾病係選自下組的癌症,該組由以下組成:腦癌、乳癌、前列腺癌、子宮頸癌、卵巢癌、胃癌、結腸直腸癌、胰腺癌、肝癌、腦癌、神經內分泌癌、肺癌、腎癌、血液惡性腫瘤、黑色素瘤及肉瘤。
  33. 如請求項28所述之具有式I之化合物的結晶二氯化物鹽之用途,其中該增殖性病症或疾病係腫瘤性疾病,該腫瘤性疾病係選自以下的腦腫瘤:神經膠質腫瘤及非神經膠質腫瘤、星形細胞瘤(包括多形性神經膠質母細胞瘤及未指定的神經膠質瘤)、寡樹突神經膠細胞瘤、室管膜瘤、腦膜瘤、血管母細胞瘤、聽神經瘤、顱咽管瘤、原發性中樞神經系統淋巴瘤、生殖細胞腫瘤、腦下垂體瘤、松果體區腫瘤、原始神經外胚層瘤(PNET)、髓母細胞瘤、血管外皮細胞瘤、包括腦膜瘤、脊索瘤及遺傳驅動的腦腫瘤的脊髓腫瘤,該遺傳驅動的腦腫瘤包括神經纖維瘤病、外周神經鞘瘤及結節性硬化症。
  34. 如請求項28所述之具有式I之化合物的結晶二氯化物鹽之用途,其中該增殖性病症或疾病係腫瘤性疾病,該腫瘤性疾病係多形性神經膠質母細胞瘤。
  35. 如請求項28所述之具有式I之化合物的結晶二氯化物鹽之用途,其中該待治療的癌症係實性瘤。
  36. 如請求項28所述之具有式I之化合物的結晶二氯化物鹽之用途,其中對增殖性病症或疾病的該治療係對人的增殖性病症或疾病的治療。
TW111131870A 2017-04-26 2018-04-25 製備呋呫并苯并咪唑及其晶型之方法 TW202300489A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP17168283 2017-04-26
EP17168283.4 2017-04-26
EP17172753 2017-05-24
EP17172753.0 2017-05-24

Publications (1)

Publication Number Publication Date
TW202300489A true TW202300489A (zh) 2023-01-01

Family

ID=62028032

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111131870A TW202300489A (zh) 2017-04-26 2018-04-25 製備呋呫并苯并咪唑及其晶型之方法
TW107113946A TWI776885B (zh) 2017-04-26 2018-04-25 製備呋呫并苯并咪唑及其晶型之方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107113946A TWI776885B (zh) 2017-04-26 2018-04-25 製備呋呫并苯并咪唑及其晶型之方法

Country Status (10)

Country Link
US (1) US11891382B2 (zh)
EP (1) EP3615529B1 (zh)
JP (2) JP7191298B2 (zh)
KR (2) KR102648947B1 (zh)
CN (2) CN116947836A (zh)
BR (1) BR112019021400A2 (zh)
CA (1) CA3058695A1 (zh)
MX (2) MX2019012257A (zh)
TW (2) TW202300489A (zh)
WO (1) WO2018197475A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210868A1 (en) 2017-05-16 2018-11-22 Basilea Pharmaceutica International AG Novel dosage principle for drugs useful for treating neoplastic diseases
EP3713565A1 (en) 2017-11-20 2020-09-30 Basilea Pharmaceutica International AG Pharmaceutical combinations for use in the treatment of neoplastic diseases
US20220370418A1 (en) 2019-09-09 2022-11-24 Basilea Pharmaceutica International AG Pharmaceutical combinations comprising a furazanobenzimidazoles and a cd40 agonist for use in the treatment of neoplastic diseases
WO2022053549A1 (en) 2020-09-10 2022-03-17 Basilea Pharmaceutica International AG Use of c-myc as a biomarker of drug response

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183271B1 (en) * 1984-11-30 1990-05-16 Shosuke Okamoto Lysin derivative and proteinase inhibitor
JPS62501502A (ja) * 1985-01-18 1987-06-18 イミユーンテツク・フアーマシユーテイカルズ 免疫調節性ペプチド
US4851423A (en) 1986-12-10 1989-07-25 Schering Corporation Pharmaceutically active compounds
WO1991000858A1 (en) 1989-07-07 1991-01-24 Schering Corporation Pharmaceutically active compounds
IL113472A0 (en) 1994-04-29 1995-07-31 Lilly Co Eli Non-peptidyl tachykinin receptor antogonists
US5691364A (en) 1995-03-10 1997-11-25 Berlex Laboratories, Inc. Benzamidine derivatives and their use as anti-coagulants
CA2214685C (en) 1995-03-10 2008-05-20 Berlex Laboratories, Inc. Benzamidine derivatives their preparation and their use as anti-coagulants
AU6966696A (en) 1995-10-05 1997-04-28 Warner-Lambert Company Method for treating and preventing inflammation and atherosclerosis
AU2139097A (en) 1996-03-01 1997-09-16 Eli Lilly And Company Methods of treating or preventing sleep apnea
AU2207897A (en) 1996-03-11 1997-10-01 Eli Lilly And Company Methods of treating or preventing interstitial cystitis
SE9804465D0 (sv) 1998-12-22 1998-12-22 Amersham Pharm Biotech Ab A method for the removal/purification of serum albumins and means for use in the method
JP4598278B2 (ja) 1999-04-28 2010-12-15 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Ppar受容体リガンドとしてのジアリール酸誘導体
WO2001001986A1 (en) 1999-07-02 2001-01-11 Lipton Stuart A Method of reducing neuronal injury or apoptosis
JP2001039034A (ja) 1999-08-03 2001-02-13 Mitsui Chemicals Inc 光記録媒体
JP2001199983A (ja) 2000-01-18 2001-07-24 Teijin Ltd ベンズイミダゾール誘導体
US20020165244A1 (en) 2000-01-31 2002-11-07 Yuhong Zhou Mucin synthesis inhibitors
US6613917B1 (en) 2000-03-23 2003-09-02 Allergan, Inc. Amines substituted with a dihydronaphthalenyl, chromenyl, or thiochromenyl group, an aryl or heteroaryl group and an alkyl group, having retinoid-like biological activity
JP2002161084A (ja) 2000-11-28 2002-06-04 Sumitomo Pharmaceut Co Ltd 複素環誘導体
WO2002078708A1 (en) 2001-03-15 2002-10-10 Janssen Pharmaceutica N.V. Hiv inhibiting pyrazinone derivatives
US20030166932A1 (en) 2002-01-04 2003-09-04 Beard Richard L. Amines substituted with a dihydronaphthalenyl, chromenyl, or thiochromenyl group, an aryl or heteroaryl group and an alkyl group, having retinoid-like biological activity
SG159380A1 (en) 2002-02-06 2010-03-30 Vertex Pharma Heteroaryl compounds useful as inhibitors of gsk-3
GB0206861D0 (en) 2002-03-22 2002-05-01 Glaxo Group Ltd Medicaments
CN100497495C (zh) 2002-04-16 2009-06-10 富士胶片株式会社 着色组合物和喷墨记录方法
US20040002524A1 (en) 2002-06-24 2004-01-01 Richard Chesworth Benzimidazole compounds and their use as estrogen agonists/antagonists
AU2003267540A1 (en) 2002-08-13 2004-02-25 Sirus Pharmaceuticals Ltd Biodegradable polymer
US20060084682A1 (en) 2002-12-13 2006-04-20 Heerding Dirk A Thrombopoietin mimetics
US7375228B2 (en) 2003-03-17 2008-05-20 Takeda San Diego, Inc. Histone deacetylase inhibitors
WO2004087637A1 (en) 2003-03-31 2004-10-14 Takasago International Corporation Production of n-alkylamide compounds
MXPA05011642A (es) 2003-04-30 2005-12-15 Pharmacia Corp Compuestos que tienen un resto biciclico condensado para unirse al surco menor del adn de doble hebra.
US7385061B2 (en) 2003-05-23 2008-06-10 Basilea Pharmaceutica Ag Furazanobenzimidazoles
EP1640449A4 (en) 2003-06-27 2009-03-25 Asahi Chemical Ind CELL DIFFERENTIATION INHIBITOR AGENT, CELL CULTURE METHOD USING THE SAME, CULTURE MEDIUM AND CULTIVATED CELL LINE
EP1651631A1 (en) 2003-08-01 2006-05-03 Genelabs Technologies, Inc. Bicyclic imidazol derivatives against flaviviridae
US20050164300A1 (en) 2003-09-15 2005-07-28 Plexxikon, Inc. Molecular scaffolds for kinase ligand development
DE10349587A1 (de) 2003-10-24 2005-05-25 Merck Patent Gmbh Benzimidazolylderivate
MXPA06004641A (es) 2003-11-05 2006-06-27 Hoffmann La Roche Derivados de fenilo como agonistas para.
DE602004031037D1 (de) 2003-11-19 2011-02-24 Array Biopharma Inc Heterocyclische inhibitoren von mek
PE20060530A1 (es) 2004-06-04 2006-06-28 Arena Pharm Inc Aril y heteroaril derivados sustituidos como moduladores del metabolismo de la glucosa
JP2006204292A (ja) 2004-12-27 2006-08-10 Asahi Kasei Corp ヒト胚性幹細胞分化抑制剤
JP4406601B2 (ja) 2004-12-27 2010-02-03 旭化成株式会社 組織幹細胞増殖剤
EP1836169B9 (en) 2004-12-28 2012-07-04 Kinex Pharmaceuticals, LLC Compositions and methods of treating cell proliferation disorders
US7968574B2 (en) 2004-12-28 2011-06-28 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
WO2006092430A1 (de) 2005-03-03 2006-09-08 Universität des Saarlandes Selektive hemmstoffe humaner corticoidsynthasen
WO2006094209A2 (en) 2005-03-03 2006-09-08 Sirtris Pharmaceuticals, Inc. N-benzimidazolylalkyl-substituted amide sirtuin modulators
WO2006124874A2 (en) 2005-05-12 2006-11-23 Kalypsys, Inc. Inhibitors of b-raf kinase
WO2007011721A1 (en) 2005-07-15 2007-01-25 Kalypsys, Inc. Inhibitors of mitotic kinesin
BRPI0615133A2 (pt) 2005-08-23 2011-05-03 Irm Llc compostos imunossupressores, composições farmacêuticas contendo os mesmos assim como referido uso
US7547782B2 (en) 2005-09-30 2009-06-16 Bristol-Myers Squibb Company Met kinase inhibitors
US20100016319A1 (en) 2005-11-29 2010-01-21 Toray Industries, Inc. A Corporation Of Japan Arylmethylene urea derivative and use thereof
US7678818B2 (en) 2006-02-07 2010-03-16 Hoffmann-La Roche Inc. Anthranilamide and 2-amino-heteroarene-carboxamide compounds
US8748627B2 (en) 2006-02-15 2014-06-10 Abbvie Inc. Acetyl-CoA carboxylase (ACC) inhibitors and their use in diabetes, obesity and metabolic syndrome
CN101479249B (zh) 2006-06-29 2012-10-10 霍夫曼-拉罗奇有限公司 苯并咪唑衍生物、其制备方法、它们作为fxr激动剂的用途及含有它们的药物制剂
ES2500165T3 (es) 2006-06-29 2014-09-30 Kinex Pharmaceuticals, Llc Composiciones de biarilo y métodos para modular una cascada de quinasas
EP1878724A1 (en) 2006-07-15 2008-01-16 sanofi-aventis A regioselective palladium catalyzed synthesis of benzimidazoles and azabenzimidazoles
US20080249081A1 (en) 2006-10-24 2008-10-09 Roger Olsson Compounds for the treatment of pain and screening methods therefor
US7820605B2 (en) 2006-10-27 2010-10-26 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
JP5358962B2 (ja) 2007-02-06 2013-12-04 住友化学株式会社 組成物及び該組成物を用いてなる発光素子
JP2010518064A (ja) 2007-02-12 2010-05-27 メルク・シャープ・エンド・ドーム・コーポレイション Adおよび関連状態の治療のためのピペラジン誘導体
AU2008216842A1 (en) 2007-02-12 2008-08-21 Merck Sharp & Dohme Corp. Piperidine derivatives
WO2008108944A2 (en) 2007-03-01 2008-09-12 Mallinckrodt Inc. Integrated photoactive small molecules and uses thereof
CA2681813A1 (en) 2007-03-27 2009-01-08 Paratek Pharmaceuticals, Inc. Transcription factor modulating compounds and methods of use thereof
US8039505B2 (en) 2007-04-11 2011-10-18 University Of Utah Research Foundation Compounds for modulating T-cells
CA2682676A1 (en) 2007-04-19 2008-10-30 Novartis Ag Nicotinic acid derivatives as modulators of metabotropic glutamate receptor-5
WO2008153701A1 (en) 2007-05-24 2008-12-18 Schering Corporation Compounds for inhibiting ksp kinesin activity
ES2602615T3 (es) 2007-06-12 2017-02-21 Achaogen, Inc. Agentes antibacterianos
MX2009013753A (es) 2007-06-26 2010-01-26 Sanofi Aventis Una sintesis regioselectiva catalizada por cobre de bencimidazoles y azabencimidazoles.
KR20090071679A (ko) 2007-12-28 2009-07-02 에스케이 주식회사 벤즈아미드 유도체를 포함하는 암 질환의 예방 및 치료용약학 조성물
US20090270418A1 (en) 2008-01-09 2009-10-29 Marianne Sloss Pyrazole pyrazine amine compounds as kinase inhibitors, compositions thereof and methods of treatment therewith
AU2009212135B2 (en) 2008-02-07 2014-08-21 Massachusetts Eye & Ear Infirmary Compounds that enhance Atoh-1 expression
WO2010009139A2 (en) 2008-07-14 2010-01-21 Gilead Colorado, Inc. Imidazolyl pyrimidine inhibitor compounds
AU2009271019A1 (en) 2008-07-14 2010-01-21 Gilead Sciences, Inc. Fused heterocyclyc inhibitors of histone deacetylase and/or cyclin-dependent kinases
WO2010033701A2 (en) 2008-09-19 2010-03-25 Genzyme Corporation Inhibitors of sphingosine kinase 1
WO2010059618A1 (en) 2008-11-21 2010-05-27 High Point Pharmaceuticals, Llc Adamantyl benzamide compounds
GB0821994D0 (en) 2008-12-02 2009-01-07 Ge Healthcare Ltd In viva imaging method
EP2400845B1 (en) 2009-02-27 2017-02-22 Siga Technologies, Inc. Thienopyridine derivatives for the treatment and prevention of dengue virus infections
AP2012006094A0 (en) 2009-06-30 2012-02-29 Siga Technologies Inc Treatment and prevention of dengue virus infections.
EP2459553B1 (en) 2009-07-27 2014-10-01 Basilea Pharmaceutica AG Furazanobenzimidazoles as prodrugs to treat neoplastic or autoimmune diseases
WO2011058139A1 (en) 2009-11-12 2011-05-19 Selvita Sp. Z O. O. A compound, a process for its preparation, a pharmaceutical composition, use of a compound, a method for modulating or regulating serine/threonine kinases and a serine/threonine kinases modulating agent
JP2013047189A (ja) 2009-12-25 2013-03-07 Kyorin Pharmaceutical Co Ltd 新規パラバン酸誘導体及びそれらを有効成分とする医薬
WO2011145669A1 (ja) 2010-05-19 2011-11-24 大日本住友製薬株式会社 アミド誘導体
JP6126528B2 (ja) 2010-07-07 2017-05-10 ザ・ボード・オブ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・テキサス・システムThe Board Of Regents Of The University Of Texas System 神経新生促進化合物
WO2012016133A2 (en) 2010-07-29 2012-02-02 President And Fellows Of Harvard College Ros1 kinase inhibitors for the treatment of glioblastoma and other p53-deficient cancers
JP2013230986A (ja) 2010-08-25 2013-11-14 Kyorin Pharmaceutical Co Ltd 新規ヒダントイン誘導体及びそれらを有効成分とする医薬
WO2012045883A1 (en) 2010-10-08 2012-04-12 Oryzon Genomics S.A. Cyclopropylamine inhibitors of oxidases
DK2835131T3 (en) 2010-12-14 2017-12-04 Electrophoretics Ltd Casein kinase 1 delta inhibitors (CK1 delta)
WO2012087976A2 (en) 2010-12-21 2012-06-28 Intermune, Inc. Novel inhibitors of hepatitis c virus replication
US9637773B2 (en) 2011-01-13 2017-05-02 Enzo Life Sciences, Inc. Compounds and methods for detection of enzymes that remove formyl, succinyl, methyl succinyl or myristoyl groups from ε-amino lysine moieties
PT2666016T (pt) 2011-01-21 2017-04-03 Basilea Pharmaceutica Ag Utilização de bubr1 como um biomarcador da resposta farmacológica a furazanobenzimidazolos
CA2822540A1 (en) 2011-01-21 2012-07-26 Basilea Pharmaceutica Ag Stathmin as a biomarker for furazanobenzimidazoles
PT2666014T (pt) * 2011-01-21 2016-12-22 Basilea Pharmaceutica Ag Utilização de glu-tubulina como um biomarcador da resposta farmacológica a furazanobenzimidazolos
WO2012113802A1 (en) 2011-02-24 2012-08-30 Basilea Pharmaceutica Ag Use of acetylated tubulin as a biomarker of drug response to furazanobenzimidazoles
AU2012234297B2 (en) 2011-03-29 2016-03-03 Basilea Pharmaceutica Ag Use of phospho-Akt as a biomarker of drug response
JP5931187B2 (ja) 2011-06-17 2016-06-08 シェンヤン・シノケム・アグロケミカルズ・アールアンドディー・カンパニーリミテッドShenyang Sinochem Agrochemicals R&D Co., Ltd. 置換シアノアニリン化合物、その調製法及び使用
US20140073634A1 (en) 2012-08-24 2014-03-13 Institute For Applied Cancer Science/The University of Texas MD Anderson Cancer Center Heterocyclic modulators of hif activity for treatment of disease
JPWO2014174745A1 (ja) 2013-04-26 2017-02-23 国立大学法人京都大学 Eg5阻害剤
CN104211639A (zh) 2013-06-05 2014-12-17 中国科学院上海药物研究所 一类炔基杂环类化合物及其应用
WO2015173341A1 (en) 2014-05-13 2015-11-19 Basilea Pharmaceutica Ag Dosage principle for anti-cancer furazanylbenzimidazoles
CN105267214B (zh) 2014-07-21 2019-04-30 沈阳化工研究院有限公司 N-杂芳基苯胺类化合物作为制备抗肿瘤药物的应用
WO2016025129A1 (en) 2014-08-14 2016-02-18 Alhamadsheh Mamoun M Conjugation of pharmaceutically active agents with transthyretin ligands through adjustable linkers to increase serum half-life
CN105753863B (zh) 2015-09-11 2018-07-31 东莞市真兴贝特医药技术有限公司 氧代二氢咪唑并吡啶类化合物及其应用
CN108139405B (zh) 2015-10-22 2022-06-10 巴斯利尔药物国际股份公司 Eb1作为药物应答的生物标记物的用途
EP3405554B1 (en) 2016-01-22 2019-12-25 Chevron Oronite Company LLC Lubricating oil composition containing a mixture of olefin copolymer dispersant-type viscosity improver and amine compound
WO2018055235A1 (en) 2016-09-21 2018-03-29 University Of Helsinki Isoxazole-amides for treating cardiac diseases
CN108524482B (zh) 2017-03-02 2022-11-25 中国科学院上海药物研究所 2-(取代苯氨基)苯甲酸类fto抑制剂治疗白血病的用途
WO2018210868A1 (en) 2017-05-16 2018-11-22 Basilea Pharmaceutica International AG Novel dosage principle for drugs useful for treating neoplastic diseases
WO2019018119A1 (en) 2017-07-18 2019-01-24 Pairnomix, Llc METHODS FOR TREATING EPILEPSY AND DISORDERS ASSOCIATED WITH KCNTI
EP3713565A1 (en) 2017-11-20 2020-09-30 Basilea Pharmaceutica International AG Pharmaceutical combinations for use in the treatment of neoplastic diseases

Also Published As

Publication number Publication date
CN110536890A (zh) 2019-12-03
CA3058695A1 (en) 2018-11-01
TWI776885B (zh) 2022-09-11
US20210115032A1 (en) 2021-04-22
US11891382B2 (en) 2024-02-06
TW201900641A (zh) 2019-01-01
MX2021011775A (es) 2023-01-10
KR20240038149A (ko) 2024-03-22
JP2023018078A (ja) 2023-02-07
CN116947836A (zh) 2023-10-27
EP3615529B1 (en) 2024-06-05
KR102648947B1 (ko) 2024-03-18
JP2020517620A (ja) 2020-06-18
EP3615529A1 (en) 2020-03-04
MX2019012257A (es) 2019-12-16
BR112019021400A2 (pt) 2020-04-28
KR20190141147A (ko) 2019-12-23
WO2018197475A1 (en) 2018-11-01
CN110536890B (zh) 2023-08-15
JP7191298B2 (ja) 2022-12-19

Similar Documents

Publication Publication Date Title
TWI776885B (zh) 製備呋呫并苯并咪唑及其晶型之方法
JP2021130697A (ja) 3−[5−(2−フルオロフェニル)−[1,2,4]オキサジアゾール−3−イル]−安息香酸の結晶形
ES2750676T3 (es) Sal de omecamtiv mecarbil y proceso de preparación de la sal
CN108601355B (zh) 制备激酶抑制剂及其中间体的方法
JP6554617B2 (ja) 1−(5−(2,4−ジフルオロフェニル)−1−((3−フルオロフェニル)スルホニル)−4−メトキシ−1h−ピロール−3−イル)−n−メチルメタンアミン塩の新規な結晶形
US11673860B2 (en) Crystalline siponimod fumaric acid and polymorphs thereof
US20160354351A1 (en) Solid state forms of vemurafenib hydrochloride
ES2814499T3 (es) Formas en estado sólido de sales de Nilotinib
TW201107317A (en) Amide derivatives
TW202039494A (zh) 巨環化合物及其用途
ES2770303T3 (es) Moduladores de receptores de glucocorticoides no esteroideos para la administración local de fármacos
AU2019206118B2 (en) Salts and polymorphs of a substituted imidazopyridinyl-aminopyridine compound
WO2018033631A9 (en) Morphic forms of marizomib and uses thereof
WO2023136942A1 (en) Synthetic intermediates and improved processes for preparing rock inhibitors