TW202205722A - 具有固體聚合物電解質之二次電池單元 - Google Patents
具有固體聚合物電解質之二次電池單元 Download PDFInfo
- Publication number
- TW202205722A TW202205722A TW110120549A TW110120549A TW202205722A TW 202205722 A TW202205722 A TW 202205722A TW 110120549 A TW110120549 A TW 110120549A TW 110120549 A TW110120549 A TW 110120549A TW 202205722 A TW202205722 A TW 202205722A
- Authority
- TW
- Taiwan
- Prior art keywords
- lithium
- polymer
- cellulosic
- solid polymer
- polymer electrolyte
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一種二次電池單元,其包括第一電極材料之陰極、第二電極材料之陽極及安置於該陰極與該陽極之間的固體聚合物電解質層。該固體聚合物電解質包括與該陰極接觸之第一表面及與該陽極接觸之第二表面。該固體聚合物電解質層包括纖維素聚合物基質。該纖維素聚合物基質包括該纖維素聚合物之網路。鋰離子分散於該纖維素聚合物基質中。陶瓷顆粒分散於該纖維素聚合物基質中。該等陶瓷顆粒包括金屬氧化物。一或多種塑化劑分散於該纖維素聚合物基質中。一或多種聚合物網路與該纖維素聚合物基質接觸。該一或多種聚合物網路包括含丙烯酸酯之聚合物。
Description
本發明大體上係關於電極,且更特定言之係關於一種具有固體聚合物電解質之二次電池單元。
二次電能單元,諸如用於可充電電池中之彼等單元,促進電能之重複放電及再充電。在二次電池或單元中,促進在正電極及負電極處之能量儲存的化學反應係可逆的。二次電池或單元之電極能夠藉由向其中施加電荷多次再生(亦即,再充電)。
在一實施例中,固體聚合物電解質前驅體組合物包括(i)一或多種有機溶劑;(ii)溶解於該一或多種有機溶劑中之一或多種纖維素聚合物;(iii)溶解或分散於該一或多種有機溶劑中之一或多種可聚合組分;(iv)溶解或分散於該一或多種有機溶劑中之一或多種光引發劑,其中該一或多種光引發劑中之至少一者在用光照射之後促進該一或多種可聚合組分中之至少一者的聚合;(v)溶解或分散於該一或多種有機溶劑中之一或多個鋰離子源,其中各鋰離子源包括鋰離子鹽或鋰離子錯合物;(vi)溶解或分散於該一或多種有機溶劑中之一或多種塑化劑;及(vii)溶解或分散於該一或多種有機溶劑中之一或多種陶瓷顆粒,其中該等陶瓷顆粒包括金屬氧化物。
在另一實施例中,一種製備固體聚合物電解質前驅體組合物之方法包括將一或多種纖維素聚合物溶解於一或多種有機溶劑中,藉此製備聚合物於溶劑之溶液。將一或多種可聚合組分與該聚合物於溶劑中之溶液組合。將一或多種光引發劑與該聚合物於溶劑中之溶液組合,其中該一或多種光引發劑中之至少一者在用光照射之後促進該一或多種可聚合組分中之至少一者的聚合。將一或多個鋰離子源與該聚合物於溶劑中之溶液組合。各鋰離子源包括鋰離子鹽或鋰離子錯合物。將一或多種塑化劑與該聚合物於溶劑中之溶液組合。將一或多種陶瓷顆粒與該聚合物於溶劑中之溶液組合。該等陶瓷顆粒包括金屬氧化物。
在又一實施例中,二次電池單元包括第一電極材料之陰極、第二電極材料之陽極及安置於該陰極與該陽極之間的固體聚合物電解質層。該固體聚合物電解質包括與該陰極接觸之第一表面及與該陽極接觸之第二表面。該固體聚合物電解質層包括纖維素聚合物基質。該纖維素聚合物基質包括該纖維素聚合物之網路。鋰離子分散於該纖維素聚合物基質中。陶瓷顆粒分散於該纖維素聚合物基質中。該等陶瓷顆粒包括金屬氧化物。一或多種塑化劑分散於該纖維素聚合物基質中。一或多種聚合物網路與纖維素聚合物基質接觸(例如至少部分延伸至纖維素聚合物基質之網路中)。該一或多種聚合物網路包括含丙烯酸酯之聚合物。
在又一實施例中,一種製備半互穿聚合物網路固體聚合物電解質之方法包括製備前驅體。藉由將一或多種纖維素聚合物與一或多種有機溶劑組合來製備該前驅體。將一或多種可聚合組分與一或多種有機溶劑組合。將一或多種光引發劑與一或多種有機溶劑組合。將一或多種光引發劑中之至少一者在用光照射之後促進一或多種可聚合組分中之至少一者的聚合。將一或多個鋰離子源與一或多種有機溶劑組合。各鋰離子源包括鋰離子鹽或鋰離子錯合物。將一或多種塑化劑與一或多種有機溶劑組合。將一或多種陶瓷顆粒與一或多種有機溶劑組合。該等陶瓷顆粒包括金屬氧化物。將該前驅體之至少一部分施加至基板之表面。將所施加之前驅體暴露於光(例如,用光照射)。
大多數二次電池使用液體電解質促進陽極與陰極之間的電荷轉移。然而,該等電解質具有若干缺點。舉例而言,液體電解質可能有毒及/或可燃,使得電解質之滲漏會導致相當大的傷害。一些替代電電解質已在研發中。然而,此等電解質材料通常由於在室溫下機械穩定性較差及/或離子導電性較低而不適用於多種應用。添加陶瓷陶瓷顆粒不足以增加導電性。
本發明認識到,用作電化學電池中電極之間的隔板及電解質兩者之材料應包括以下特性: (1)與單元中所用電極材料之化學相容性;(2)足以耐受製造及使用之嚴格要求的機械強度;(3)能夠以適當厚度製備(例如,可能需要薄材料以最小化離子傳輸距離且最大化離子傳輸速率);及(4)在室溫下之高離子導電性。本發明中所描述之獨特半互穿聚合物網路固體聚合物電解質(半IPN SPE)及相關前驅體組合物解決先前技術之問題且提供上文鑑別之所需特性。
本發明中所描述之半IPN SPE在室溫下提供10- 3
西門子/公分(S/cm)或與其接近之離子導電率,且因此可用於代替先前液體電解質。半IPN SPE具有高熱穩定性,其促進具有簡化的殼體模組及冷卻系統的二次單元的生產,由此減少含有此類單元的電池的重量及體積且增加此類電池的能量密度。如本發明中所描述而製備之複數個單元可在單一部件中組合(例如堆疊),從而促進具有大容量及/或提供高電壓之電池的製備。本發明中所描述之製備方法與諸如卷軸式製造之高產量方法相容。此等製備方法亦可在相對較低的溫度下進行,從而相比於先前電解質製備策略產生成本節約及改良的安全性。半IPN SPE具有高電化學穩定性且適用於高電壓應用(例如攜帶型電動工具、電動車輛等)。舉例而言,本發明中所描述之半IPN SPE可提供寬電化學窗口(例如,高達5 V或更高),其有助於使用高電壓電極材料。
某些實施例可包括上述技術優勢中之任一者、一些或全部。一或多個其他技術優勢對於熟習此項技術者而言自本文中所包括之圖式、描述及申請專利範圍可為顯而易見的。
在開始時應理解,儘管下文說明了本發明之實施例之例示性實施方案,但無論當前已知與否,可使用任何數目之技術來實施本發明。本發明決不應受限於下文所說明之例示性實施方案、圖式及技術。另外,圖式未必按比例繪製。
如上文所描述,攜帶型電子裝置的最近發展已伴隨著對具有改良的特性(例如,較低成本、增加的能量密度、改良的安全性等)的可充電電池的增加的需求。相較於其他電池類型(例如,鎳-金屬氫化物)之電能儲存容量或能量密度,鋰金屬及鋰離子二次次要典型地具有增加之電能儲存容量或能量密度。為方便起見,術語「鋰二次單元」及「鋰單元」在本文中用以指鋰-金屬及鋰-離子型電池及二次單元兩者。
先前的鋰二次單元可包括插入於單元之電極與液體電解質之間的多孔介電隔板或隔膜,其提供離子導電性使得電荷可在電極之間轉移。共同用於鋰單元中的液體電解質通常提供可接受的離子導電性以獲得充分單元效能。然而,液體電解質之使用有幾個缺點。舉例而言,液體電解質易自密封它們之單元洩漏。此等電解質可包括有害材料。因此,洩漏不僅可導致降低之單元效能(亦即,歸因於離子導電性之損失),且亦導致對人們及/或環境之損害。採用液體電解質之單元亦往往會具有更嚴格的尺寸限制,使得具有液體電解質之單元往往會大於可能的期望值或形狀對於給定目的係不切實際的。其他前述電解質通常缺乏許多電池應用(例如攜帶型電子裝置、攜帶型電動工具、衛星技術、電動車輛等)所需的電氣及機械特性之適當組合。舉例而言,前述液體電解質之替代物通常缺乏足夠大的離子導電率及/或足夠機械強度以用於大部分應用中之可靠效能。
本發明中所描述的非習知半互穿聚合物網路固體聚合物電解質(半IPN SPE)藉由提供比液體電解質更安全且對於現代應用具有足夠機械強度及離子導電率之電解質而提供對包括上文所描述之彼等的前述電解質之技術問題的解決方案。本發明中所描述之組合物及方法之例示性優點可至少部分地源於包括於半IPN SPE前驅體中之組分之出人意料的協同效應。纖維素聚合物用於在半IPN SPE中形成聚合物基質,因為纖維素聚合物之每個醣單元中的豐富氧原子,所以可有效溶解鋰離子。然而,由此類纖維素基質製備之膜的機械特性(例如強度及穩定性)可因添加鋰離子而降低。在一例示性實施例中,為了實現所需機械特性,另一聚合物網路可適當地與如本文所述之纖維素聚合物基質組合以增加由此等材料製備之固體聚合物電解質的機械強度及穩定性。在另一例示性實施例中,添加陶瓷顆粒不僅改良半IPN SPE之機械特性且亦提高半IPN SPE之離子傳導率。對離子導電率之改良可使用本發明中所描述之方法實現,其中陶瓷顆粒在製備半IPN SPE膜之前維持在良好分散狀態。舉例而言,可製備穩定纖維素漿液,其中陶瓷顆粒在形成半IPN SPE之前保持良好(例如均勻)分散。半 IPN 固體聚合物電解質
圖1說明例示性半IPN固體聚合物電解質100。電解質100通常由前驅體102製備,其包括(a)一或多種聚合物104(例如一或多種纖維素聚合物);(b)一或多種光化學或可熱聚合組分106;(c)一或多個鋰離子源108(例如一或多種鋰鹽及/或鋰錯合物);(d)一或多種有機溶劑110;(e)一或多種塑化劑112;(f)一或多種光引發劑114;及(g)一或多種金屬氧化物奈米顆粒116。在一些實施例中,前驅體102可進一步包括低分子量乙烯系主鏈聚合物118。前驅體102之各種組分104、106、108、110、112、114、116、118之實例更詳細地描述於下文中。雖然下文針對各種組分104、106、108、110、112、114、116、118描述說明性實例,但應理解,鑒於本發明,其他可能的該等組分104、106、108、110、112、114、116、118對於熟習此項技術者將為顯而易見的。
如下文關於圖3更詳細地描述,前驅體102之組分之子集103(亦即子集103包括組分104、106、110、112、114、116及/或118中之一或多者)可首先組合(例如在適合條件下經由混合)。舉例而言,子集103之組分可在預定條件下(例如,在室溫下)混合以使得熱化學反應(例如,熱還原)不會過早地進行至可察覺的程度。在一些實施例中,子集103包括除前驅體102的一或多個鋰離子源108之外的全部。組分的子集103可製備成「預混合」溶液,且鋰離子源108(例如,鋰鹽及/或錯合物)可隨後在室溫下或在適當加熱下以受控方式添加至預混合溶液中。所得前驅體102可施加至基板且加熱及/或暴露於光120,如圖1中所示,以產生半IPN SPE 100膜(例如薄膜)。下文關於圖3更詳細地描述用於製備半IPN SPE 100膜之例示性方法。
下表1說明前驅體102之例示性組成。前驅體102包括溶解及/或分散於液體溶劑110中之組分104、106、108、112、114、116及視情況118。前驅體中所包括之各組分104、106、108、110、112、114、116、118之量的例示性範圍顯示於表1中。在一例示性實施例中,前驅體102包括41%乙酸丙酸纖維素(CAP) (亦即,聚合物104)、11%聚乙二醇(200)二丙烯酸酯(SR 259)及6%烷氧基化新戊四醇四丙烯酸酯(SR 494) (亦即,作為可聚合組分106之丙烯酸單體)、19%碘化鋰(亦即,鋰離子源108)、6%聚己內酯三醇(亦即,塑化劑112)及溶解及/或分散於一或多種溶劑110中之17%二氧化鈦顆粒(亦即,陶瓷顆粒116)。表 1
:前驅體102之例示性組合物。
組分 | 重量%(組分質量/前驅體102之總質量) |
聚合物104 | 1 - 50 |
可聚合組分106 | 1 - 50 |
鋰離子源108 | 1 - 60 |
溶劑110 | 50 - 95 |
塑化劑112 | 0.1 - 10 |
光引發劑114 | 0.1 - 10 |
陶瓷顆粒116 | 1 - 25 |
乙烯系主鏈聚合物118 | 1 - 10 |
如上文及下文關於圖3更詳細地描述,半IPN SPE 100可在基板上製備為薄膜(例如具有幾微米至數十微米之厚度)。可選擇前驅體102中之組分之相對量以不僅促進所得半IPN SPE 100中之改良的機械及電特性,且亦允許可靠且高效的薄膜加工。舉例而言,固體聚合物電解質前驅體102可包括至少5%固體(例如,除溶劑110以外的所有組分)及至多(且包括)90%固體。在一些實施例中,前驅體102包括至少15%固體及至多(且包括)50%固體。在一些實施例中,固體及有機溶劑110之總量可經選擇以針對特定沈積方法調節前驅體102之黏度(例如以製備前驅體102之薄膜)。舉例而言,前驅體102可為具有至少1厘泊(cP)及至多(且包括) 5,000 cP之黏度的混合物。在一些實施例中,前驅體102之黏度為至少3 cP且至多(且包括)50 cP。上文所描述之例示性黏度值均在約25℃下量測。
半IPN SPE 100通常包括一或多種纖維素聚合物網路(亦即聚合物104之網路),如圖1中所示。半IPN SPE 100亦包括一或多種線性或分支聚合物106a(亦即,經由使可聚合組分106聚合產生之聚合物,其可在暴露於光之後藉由光引發劑114促進),所述光引發劑「穿透」或在分子尺度上至少部分延伸至聚合物網路中之一者中。在一些實施例中,半IPN SPE 100膜包括25-60重量%之一或多種聚合物104、10-25重量%之可聚合組分106(及/或自其衍生之聚合物106a)、20-35重量%之鋰源108、1-10重量%之塑化劑112、0.1-5重量%之光引發劑114(及/或自其衍生之副產物)及10-25重量%之陶瓷顆粒116。 上文提供之重量%值係基於半IPN SPE 100中之組分104、106、108、112、114及116之總質量。半IPN SPE 100可為薄膜(例如,具有小於500微米之厚度)。在一些實施例中,半IPN SPE 100具有小於150微米之厚度。在一些實施例中,半IPN SPE 100具有小於100微米之厚度。在一些實施例中,半IPN SPE 100具有在約10微米至小於100微米範圍內的厚度。半IPN SPE 100的離子導電率可大於或等於1×10- 4
S/cm。在一些實施例中,離子導電率大於或等於5×10- 4
S/cm。在一些實施例中,離子導電率大於或等於1×10- 3
S/cm。
圖2說明使用圖1的半IPN SPE 100製備的例示性鋰電池200(例如二次單元或電池)。單元200包括由SPE 100分隔之第一電極202及第二電極204。第一電極202及第二電極204可為用於二次單元或電池中的任何適當電極材料。舉例而言,第一電極202可經組態以充當陰極(亦即正電極)且可為任何適當陰極材料,諸如鋰、氧化鋰鈷、磷酸鋰鐵、氧化鋰錳或其類似物。第二電極204可經組態以充當陽極(亦即,負電極)且可為任何適當陽極材料,諸如鋰、石墨、含石墨材料、含矽材料或其類似物。半IPN可具有小於200微米之厚度206。在一些實施例中,半IPN SPE 100具有小於150微米之厚度206。在一些實施例中,半IPN SPE 100具有小於100微米之厚度206。在一些實施例中,半IPN SPE 100具有在約10微米至小於100微米範圍內的厚度206。例示性聚合物
104
在一些實施例中,電解質前驅體102之一或多種聚合物104包括一或多種纖維素聚合物。舉例而言,聚合物104可包括一或多種纖維素酯聚合物。聚合物104可為有機聚合物。單一聚合物104可用於前驅體102中。然而,在一些實施例中,使用聚合物104之混合物。當前驅體102包括多種不同聚合物104時,兩種或兩種以上不同聚合物104可以相同量或不同量存在。在一些實施例中,聚合物104包括一或多種纖維素酯及一或多種乙酸纖維素聚合物中之一者或兩者。在一些實施例中,聚合物104包括藉由用塑化劑112中之至少一者改質初始纖維素酯形成之經改質纖維素酯。
聚合物104之實例包括但不限於乙酸纖維素、鄰苯二甲酸乙酸纖維素、乙酸丁酸纖維素、乙酸丙酸纖維素、丙酸纖維素、丁酸纖維素、偏苯三甲酸乙酸纖維素、鄰苯二甲酸羥丙基甲基纖維素、甲基纖維素、乙基纖維素、羥乙基纖維素、羥丙基甲基纖維素、羧甲基纖維素及此等中之兩者或多於兩者之混合物。在一些實施例中,聚合物104限於羧甲基纖維素、乙酸丁酸纖維素、乙酸丙酸纖維素、丙酸纖維素及乙酸纖維素中之一或多者。
在一些實施例中,聚合物104包括纖維素聚合物,諸如具有直接連接至聚合物主鏈之游離羥基的纖維素酯,以提供基於聚合物104中存在之總羥基,量為至少1%、或至少2%且至多(且包括)5%的游離羥基含量。聚合物104中之剩餘羥基可經酯化以使得存在相對較低游離羥基含量。
在前驅體102之組合物中,聚合物104可以至少1重量%且至多(且包括)50重量%存在於前驅體102中(其中重量%係基於前驅體102之組分104、106、108、110、112、114、116、118之總重量)。在一些實施例中,聚合物104可以至少2重量%且至多(且包括)15重量%之量存在於前驅體102中。在一些實施例中,聚合物104可以至少3重量%且至多(且包括)10重量%之量存在於前驅體102中。例示性可聚合組分 106
可聚合組分106通常包括一或多種相對較小分子(例如單體、寡聚物或其類似物),其可組合形成較大分子(例如大分子或聚合物)。可聚合組分106可包括一或多種光化學可聚合材料。術語「光化學可聚合」組分在本文中用於指如下分子,其可例如在暴露於光(例如,具有特定波長範圍及/或強度)後經由共價鍵結而組合形成較大分子。舉例而言,「光化學可聚合」組分106可為在用具有適當特性之光(例如,紫外(UV)、可見或紅外輻射)照射時在一或多種適當光引發劑114存在下聚合的丙烯酸酯材料或環氧樹脂。如下文進一步描述,光引發劑114在暴露於光之後可促進可聚合組分106之聚合。
可聚合組分106可組合形成線性大分子及/或三維大分子(例如,交聯聚合物)。可聚合組分106可經由自由基聚合、酸催化(陽離子)聚合或兩者之組合來組合(例如聚合、固化等)。
可聚合組分106可包括可參與光聚合反應之任何材料,例如光聚合單體、寡聚物或聚合物,或作為光引發劑或共引發劑之任何材料。此類可聚合組分106可經設計以參與自由基光固化,其中自由基在暴露於光時產生,或參與經酸催化之光固化,其中酸藉由暴露於光而產生以用於環氧化合物之反應及固化,或兩者。
可聚合組分106可包括一或多種可自由基聚合化合物。此類可聚合組分106之實例包括烯系不飽和可聚合單體及/或寡聚物及聚合物,諸如單官能性或多官能性丙烯酸酯(例如甲基丙烯酸酯)。此類可自由基聚合化合物包括至少一個烯系不飽和可聚合鍵且可包括兩個或更多個此類不飽和部分。此等材料包括至少一個烯系不飽和可聚合鍵且通常能夠進行加成(例如或自由基)聚合。經由自由基聚合來反應之可聚合組分106之實例包括單丙烯酸酯、二丙烯酸酯及聚丙烯酸酯及甲基丙烯酸酯,包括但不限於丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸異丙酯、丙烯酸正己酯、丙烯酸硬脂酯、丙烯酸烯丙酯、甘油二丙烯酸酯、甘油三丙烯酸酯、乙二醇二丙烯酸酯、二乙二醇二丙烯酸酯、三乙二醇二甲基丙烯酸酯、1,3-丙二醇二丙烯酸酯、1,3-丙二醇二甲基丙烯酸酯、1,4-丁二醇二丙烯酸酯、1,6-己二醇二丙烯酸酯、新戊二醇二丙烯酸酯、新戊二醇二甲基丙烯酸酯、三羥甲基丙烷三丙烯酸酯、1,2,4-丁三醇三甲基丙烯酸酯、1,4-環己二醇二丙烯酸酯、新戊四醇三丙烯酸酯、新戊四醇四丙烯酸酯、新戊四醇四甲基丙烯酸酯、二新戊四醇六丙烯酸酯、山梨糖醇六丙烯酸酯、雙[l-(2-丙烯醯氧基)]-對乙氧基苯基-二甲基甲烷、雙[l-(3-丙烯醯氧基-2-羥基)]-對丙氧基苯基二甲基-甲烷及異氰尿酸三甲基丙烯酸參-羥乙酯。用作可聚合組分106之聚乙二醇的雙丙烯酸酯及雙甲基丙烯酸酯通常具有200至約500之分子量。經由自由基聚合來反應之可聚合組分106之其他實例包括丙烯酸酯單體及丙烯酸酯寡聚物之可共聚合混合物。可聚合組分106之其他實例包括乙烯基化合物,諸如苯乙烯及苯乙烯衍生物、鄰苯二甲酸二烯丙酯、丁二酸二乙烯酯、己二酸二乙烯酯及鄰苯二甲酸二乙烯酯。一般而言,可聚合組分106可包括上文所描述之自由基可聚合材料中之任兩者或更多者之混合物。
可聚合組分106中之一或多者可為經酸催化之可聚合化合物。可參與經酸催化之反應的可聚合組分106之實例包括光可聚合環氧材料(例如具有至少一個可經由開環反應聚合之環氧乙烷環之有機化合物)。此類環氧材料(亦稱作「環氧化物」)可包括單體環氧化合物及聚合環氧化物。用作可聚合組分106之環氧化物可為脂族、環脂族、芳族或雜環。此類材料通常包括平均每分子至少一個可聚合環氧基。在一些實施例中,此類材料包括每分子約1.5至約2個可聚合環氧基。藉由環氧材料中環氧基之總數除以所存在之含環氧基之分子之總數來測定每分子之環氧基之「平均」數。可用作可聚合組分106之聚合環氧材料包括具有末端環氧基之線性聚合物(例如,聚氧伸烷基二醇之二縮水甘油醚),具有骨架(主鏈)環氧乙烷單元之聚合物(例如,聚丁二烯聚環氧化物)以及具有側環氧基之聚合物(例如,甲基丙烯酸縮水甘油酯聚合物或共聚物)。
用作可聚合組分106之環氧材料可自低分子量單體材料變化至高分子量聚合物。此等環氧材料可具有廣泛多種主鏈結構及取代基(或側接)基團。舉例而言,此類環氧材料之主鏈可為任何類型,且主鏈上之取代基可為在室溫下實質上不干擾陽離子光固化之任何基團。可能取代基之說明性實例包括(但不限於)鹵基、酯基、醚基、磺酸酯基、矽氧烷基、硝基及磷酸酯基。用作可聚合組分106之環氧材料的分子量可在至少58至約100,000(公克/莫耳)範圍內。在一些實施例中,分子量大於100,000。
用作可聚合組分106之例示性環氧材料包括縮水甘油醚(例如雙酚-A-二縮水甘油醚(DGEBA))、雙酚S及雙酚F之縮水甘油醚、丁二醇二縮水甘油醚、雙酚A擴展型縮水甘油醚、酚醛縮水甘油醚(例如環氧酚醛清漆)、甲酚-甲醛縮水甘油醚(例如環氧甲酚酚醛清漆)、環氧化烯烴、1,2-環氧辛烷、1,2,13,14-十四烷二環氧化物、1,2,7,8-辛烷二環氧化物、環氧十八烷、表氯醇、氧化苯乙烯、乙烯基環己烯氧化環己烯(oxicyclohexene oxide)、縮水甘油、甲基丙烯酸縮水甘油酯、雙酚A之二縮水甘油醚、乙烯基環己烯二氧化物、3,4-環氧基環己基甲基-3,4-環氧基環己烯羧酸酯、3,4-環氧基-6-甲基環己基甲基-3,4-環氧基-6-甲基-環己烯羧酸酯、己二酸雙(3,4-環氧基-6-甲基環己基甲基)酯、雙(2,3-環氧基-環戊基)醚、經聚丙二醇改質之脂族環氧基、二戊烯二氧化物、環氧化聚丁二烯、含有環氧基官能基之聚矽氧樹脂、阻燃劑環氧樹脂、酚醛酚醛清漆之1,4-丁二醇二縮水甘油醚、間苯二酚二縮水甘油醚、2-(3,4-環氧基環己基-5,5-螺-3,4-環氧基)環己烷-間二㗁烷、2-(3,4-環氧基環己基-5,5-螺-3,4-環氧基)環己烷-間二㗁烷、乙烯基環己烯一氧化物、1,2-環氧十六烷、烷基縮水甘油醚、丁基縮水甘油醚、甲苯基縮水甘油醚、對三級丁基苯基縮水甘油醚、多官能縮水甘油醚,諸如1,4-丁二醇之二縮水甘油醚、新戊二醇之二縮水甘油醚、環己烷二甲醇之二縮水甘油醚、三羥甲基乙烷三縮水甘油醚、三羥甲基丙烷三縮水甘油醚、脂族多元醇之聚縮水甘油醚、聚二醇二環氧化物,雙酚F環氧化物及9,9-雙-4-(2,3-環氧基丙氧基)-苯基茀酮。
儘管可聚合組分106之量不受特別限制,但此等組分106可以至少1重量%且至多(且包括)75重量%之量存在於前驅體102中(其中重量%係基於前驅體102之組分104、106、108、110、112、114、116、118之總重量)。在一些實施例中,可聚合組分106以至少5重量%且至多(且包括)50重量%之量存在。在一些實施例中,可聚合組分106以至少5重量%且至多(且包括)10重量%之量存在。可聚合組分106之量通常可基於前驅體102之所需特性(例如前驅體102中之組分的溶解度)及/或半IPN SPE 100之所得機械特性(例如機械強度)進行調節。例示性鋰離子源 108
鋰離子源108可包括任何一或多種鋰鹽及/或鋰離子錯合物(例如,有機及/或無機鹽及/或錯合物)。用作鋰離子源108之適合無機鹽之代表性實例為鹼金屬鹽。無機鹽可包括鋰陽離子及弱鹼之陰離子。此類陰離子可具有相對較大陰離子半徑。此類陰離子之實例為I-
、Br-
、SCN-
、CIO4 -
、BF4 -
、PF6 -
、AsF6 -
、CF3
COO-
、CF3
SO3 -
、N(SO2
CF3
)2 -
及其類似物。適合的無機鋰鹽之其他實例包括LiSCN、(CF3
SO2
)2
NLi、(CF3
SO2
)3
CLi及其類似物。用作鋰離子源108的鋰鹽及錯合物的實例包含硝酸鋰(LiNO3)、碘化鋰(LiI)、硫化鋰(Li2
S)、過氯酸鋰(LiClO4
)、三氟甲磺酸鋰(LiCF3
SO3
)、六氟砷酸鋰(V)(LiAsF6
)、六氟磷酸鋰(LiPF6
)以及四氟硼酸鋰(LiBF4
)。在一些實施例中,用作鋰離子源108的鋰鹽限於LiAsF6
、LiCF3
SO3
、LiPF6
、LiBF4
或此等鹽中的一或多者的混合物。鋰離子源可以約1重量%至約80重量%之濃度存在於前驅體102中(其中重量%係基於前驅體102之組分104、106、108、110、112、114、116、118之總重量)。在一些實施例中,鋰離子源108以約5重量%至約40重量%之濃度存在於前驅體102中。鋰離子源108之重量%可基於給定鹽之結構及分子量進行調節。例示性溶劑 110
前驅體102之溶劑110通常可為能夠溶解及/或分散組分104、106、108、112、114、116及118之任何溶劑(例如有機溶劑)。在大部分實施例中,至少聚合物104溶解於(亦即,可溶於)溶劑110中。在一些實施例中,前驅體組合物102中所用之一或多種溶劑110中之每一者的沸點大於或等於90℃。在一些實施例中,前驅體組合物102中所用之一或多種溶劑110中之每一者的沸點為至少100℃。在一些實施例中,前驅體組合物102中所用之一或多種溶劑110中之每一者的沸點為至少150℃。在一些實施例中,前驅體組合物102中所用之一或多種溶劑110中之每一者的沸點大於約200℃。一般而言,溶劑110之沸點小於500℃。若溶劑110包括兩種或多於兩種不同有機溶劑,則有機溶劑中之任兩者之間的沸點差值可大於10℃。
溶劑110之實例包括一或多種羥基有機溶劑(例如醇)或非羥基溶劑。雖然溶劑110通常可包括一級及/或二級醇以及一元醇及/或多元醇,但在一些實施例中,用作溶劑110之醇不含烯烴不飽和度。換言之,在一些實施例中,醇溶劑110不包括碳-碳雙鍵。羥基溶劑110之實例包括不具有脂環族及芳族碳-碳部分、具有脂環族及芳族碳-碳部分中任一者或兩者的直接鏈或分支鏈醇。適合的直接鏈一級醇溶劑110之代表性實例包括乙醇、2-丙醇、2-丁醇、1-戊醇、1-己醇、1-辛醇、2-乙基-己醇、1-癸醇、乙二醇、丙二醇及苄醇。分支鏈醇溶劑110之代表性實例包括異丁醇、異戊醇及二級丁基甲醇。二級醇溶劑110之代表性實例包括異丙醇、二級丁醇、二級戊醇、二乙基甲醇、甲基異丁基甲醇、甲基-3-庚醇、二異丁基甲醇、十二醇-Z、甲基烯丙基甲醇、環己醇、甲基環己基甲醇、苯基甲基甲醇及類似材料。可使用此等醇溶劑110中之任一者之組合。
在一些實施例中,溶劑110包括在同一分子中具有醚及醇官能基之二醇醚。此類二醇醚溶劑110之代表性實例包括2-甲氧基乙醇、2-乙氧基乙醇、二乙二醇單乙醚(卡必醇)及甲氧基異丙醇。溶劑110可包括此等或類似材料之混合物。溶劑110之其他實例包括(但不限於)二甲基甲醯胺(DMF)、二甲亞碸(DMSO)、酮溶劑、酯溶劑、碳酸酯溶劑及其類似物。
前驅體102中可包括任何適當量之一或多種溶劑110。溶劑110可以至少50重量%且至多(且包括)95重量%之量存在於前驅體102中(其中重量%係基於前驅體102之組分104、106、108、110、112、114、116、118之總重量)。在一些實施例中,溶劑110以至少70重量%且至多(且包括)90重量%之量存在於前驅體102中。在一些實施例中,溶劑110以至少75重量%且至多(且包括)90重量%之量存在於前驅體102中。
在一些實施例中,可基於組分104、106、108、110、112、114、116、118中之一或多者在溶劑110中之相對溶解度來選擇溶劑110。在一些實施例中,可至少部分地基於聚合物104在溶劑110中之預期溶解度來選擇溶劑。舉例而言,可測定聚合物104及溶劑之溶解度參數(例如總漢森(Hansen)參數)。溶劑110可經選擇使得此等參數指示聚合物104應可溶於溶劑110中。舉例而言,一或多種聚合物104及一或多種溶劑110之溶解度參數可在預定範圍內。在一些實施例中,溶劑110之總溶解度參數等於或大於一或多種聚合物104之總溶解度參數。在此類實施例中,若使用溶劑110之混合物,則此混合物之總溶解度參數等於或大於聚合物104之總溶解度參數。可進一步選擇溶劑110以維持具有特定範圍之預定總溶解度參數,即使在前驅體102沈積期間溶劑之概況發生變化時(例如,當在如關於圖3之步驟318所描述製備前驅體102之膜期間溶劑蒸發時)。
各種分子之溶解度參數通常可由製造商資訊確定(當可用時)、由類似材料之研究評估及/或經由溶解度研究確定。舉例而言,有機溶劑混合物之總漢森參數可使用個別有機溶劑組分於溶液中之體積分率的總和來計算。總漢森參數為溶解度參數之實例且提供關於一種材料是否預期溶解於另一材料中之資訊。每個分子賦予三個漢森參數,其各自通常以Mpa0 . 5
量測:(1) δD
參數表示來自分子之間的色散鍵的能量;(2) δP
參數表示來自分子之間的極性鍵的能量;且(3) δH
參數表示來自分子之間的氫鍵的能量。總漢森溶解度參數(δ)由δ=δD 2
+δP 2
+δPH 2
給出。三個漢森參數(δD
、δP
、δH
)可視為一個點在三維空間中之座標,亦稱為「漢森空間」。兩個分子在此三維空間中越接近,其越可能溶解於彼此中(亦即,可溶於彼此中)。舉例而言,為確定溶劑110及聚合物104之總漢森參數是否指示聚合物104將溶解於溶劑110中,可基於溶劑110及聚合物104之δD
、δP
及δH
值確定相對能量差值(例如漢森空間中溶劑及聚合物104之(δD
、δP
、δH
)座標之間的差值)。例示性塑化劑 112
任何一或多種塑化劑112可用於前驅體102中。一或多種塑化劑112通常經選擇以降低聚合物104之熔融溫度及/或熔融黏度。塑化劑112可為單體或聚合物。在一些實施例中,塑化劑112包括至少一種磷酸酯塑化劑、苯甲酸酯塑化劑、己二酸酯塑化劑、鄰苯二甲酸酯塑化劑、乙醇酸酯塑化劑、檸檬酸酯塑化劑及/或羥基官能化塑化劑。在一些實施例中,塑化劑112包括以下中之一或多者:磷酸三苯酯、磷酸三甲苯酯、磷酸甲苯基二苯酯、磷酸辛基二苯酯、磷酸二苯基聯苯酯、磷酸三辛酯、磷酸三丁酯、鄰苯二甲酸二乙酯、鄰苯二甲酸二甲氧基乙酯、鄰苯二甲酸二甲酯、鄰苯二甲酸二辛酯、鄰苯二甲酸二丁酯、鄰苯二甲酸二-2-乙基己酯、鄰苯二甲酸丁基苯甲酯、鄰苯二甲酸二苯甲酯、羥乙酸丁基苯二甲醯基丁酯、羥乙酸乙基苯二甲醯基乙酯、羥乙酸甲基苯二甲醯基乙酯、檸檬酸三乙酯、檸檬酸三正丁酯、檸檬酸乙醯基三乙酯、檸檬酸乙醯基三正丁酯及檸檬酸乙醯基-三正-(2-乙基己基)酯。
在一些實施例中,塑化劑112包括:(1)至少一種酸殘基,包括鄰苯二甲酸、己二酸、偏苯三甲酸、丁二酸、苯甲酸、壬二酸、對苯二甲酸、間苯二甲酸、丁酸、戊二酸、檸檬酸及/或磷酸之殘基;及(2)具有脂族、環脂族或芳族醇之一或多個殘基的醇殘基,該脂族、環脂族或芳族醇含有至多約20個碳原子。在一些實施例中,塑化劑112包括醇殘基,諸如硬脂醇、月桂醇、苯酚、苯甲醇、對苯二酚、兒茶酚、間苯二酚、乙二醇、新戊二醇、1,4-環己烷二甲醇及二乙二醇殘基。在一些實施例中,塑化劑112包含以下中之至少一者:苯甲酸酯、鄰苯二甲酸酯、磷酸酯、伸芳基-雙(磷酸二芳基酯)以及間苯二甲酸酯。在一些實施例中,塑化劑包含二乙二醇二苯甲酸酯(DEGDB)。
在一些實施例中,塑化劑112包括含有(1) C2-10二酸殘基,諸如丙二酸、丁二酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸及癸二酸;及(2) C2-10二醇殘基之脂族聚酯。在一些實施例中,塑化劑112包括二醇殘基,諸如C2-C10二醇(例如乙二醇、二乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、新戊二醇、1,5-戊二醇、1,6己二醇、1,5-戊二醇、三乙二醇及四乙二醇)中之至少一者的殘基。
在一些實施例中,塑化劑112包括聚二醇,諸如聚乙二醇、聚丙二醇及聚丁二醇。此等聚二醇可包括來自低分子量二聚體及三聚體及/或高分子量寡聚物及聚合物之分子。在一些實施例中,塑化劑112中所包含之聚二醇之分子量可在約200至約2,000範圍內。
在一些實施例中,塑化劑112包括以下中之至少一者:Resoflex® R296塑化劑、Resoflex® 804塑化劑、山梨糖醇六丙酸酯(SHP)、木糖醇五丙酸酯(XPP)、木糖醇五乙酸酯(XPA)、葡萄糖五乙酸酯(GPP)、葡萄糖五丙酸酯(GPA)及阿拉伯糖醇五丙酸酯(APP)。在一些實施例中,塑化劑112包括以下中之一或多者:(1)約5重量%至約95重量%之C2-C12碳水化合物有機酯,其中碳水化合物包括約1至約3個單醣單元;及(2)約5重量%至約95重量%之C2-C12多元醇酯,其中多元醇衍生自C5或C6碳水化合物。在一些實施例中,塑化劑112之多元醇酯不包括或含有一種多元醇乙酸酯或多種多元醇乙酸酯。
在一些具體實例中,塑化劑112包括至少一種碳水化合物酯,且碳水化合物酯之碳水化合物部分衍生自以下中之一或多者:葡萄糖、半乳糖、甘露糖、木糖、阿拉伯糖、乳糖、果糖、山梨糖、蔗糖、纖維二糖、纖維三糖及棉子糖。在一些實施例中,使用一或多種塑化劑112改質聚合物104(例如纖維素酯)。塑化劑112可以約1重量%至10重量%之量存在於前驅體102中(其中重量%係基於前驅體102之組分104、106、108、110、112、114、116、118之總重量)。在一些實施例中,塑化劑112包括不超過約5重量%之前驅體102。例示性光引發劑 114
前驅體102之光引發劑114可包括一或多種用於自由基聚合之光引發劑,光引發劑在可聚合組分106中之至少一者存在下產生自由基。此類自由基光引發劑114包括能夠在暴露於光聚合輻射,諸如紫外線或可見光輻射時產生自由基之任何化合物。例示性自由基光引發劑114可為三𠯤化合物、噻噸酮化合物、安息香化合物、咔唑化合物、二酮化合物、硼酸鋶化合物、重氮化合物、聯咪唑化合物及此等化合物之任何組合。光引發劑114可包括二苯甲酮化合物諸如二苯甲酮、苯甲酸苄醯酮、苯甲酸甲基苄醯酯、4-苯基二苯甲酮、羥基二苯甲酮、丙烯酸化二苯甲酮、4,4'-雙(二甲胺基)二苯甲酮、4,4'-雙(二乙胺基)二苯甲酮、蒽醌化合物及苯乙酮化合物(例如2,2'-二乙氧基苯乙酮、2,2'-二丁氧基苯乙酮、2-羥基-2-甲基苯丙酮、對三級丁基三氯苯乙酮、對三級丁基二氯苯乙酮、二苯甲酮、4-氯-苯乙酮、4,4'-二甲基胺基二苯甲酮、4,4'-二氯二苯甲酮、3,3'-二甲基-2-甲氧基二苯甲酮、2,2'-二氯-4-苯氧基苯乙酮、2-甲基-1-(4-(甲基硫代)苯基)-2-(N-𠰌啉基)丙-1-酮及2-苄基-2-二甲基胺基-1-(4-(N-𠰌啉基)苯基)-丁烷-1-酮)。可用作光引發劑114之其他化合物包括三𠯤化合物、二苯甲酮化合物、苯乙酮化合物、噻噸酮化合物、安息香化合物、咔唑化合物、二酮化合物、硼酸鋶化合物、重氮化合物及聯咪唑化合物。
前驅體102之光引發劑114可包括一或多種用於酸聚合之光引發劑。各種化合物可用於產生適合的酸以參與可聚合組分106(例如且尤其上文所描述之環氧可聚合組分106)之聚合。此類「光酸產生劑」本質上可為酸性,而其他可為非離子型。酸產生劑之實例包括鎓鹽酸產生劑,諸如重氮鹽(例如聚芳基重氮鹽)、鏻鹽、錪鹽及/或鋶鹽。實例錪及鋶鹽包括二芳基錪及三芳基鋶鹽。此類鹽中之相對陰離子包括錯合金屬鹵化物,諸如四氟硼酸鹽、六氟銻酸鹽、三氟甲烷磺酸鹽、六氟砷酸鹽、六氟磷酸鹽及芳烴磺酸鹽。鎓鹽可為具有一或多個鎓鹽部分之寡聚或聚合化合物。
上文所描述之光引發劑114可以約0.1重量%至約10重量%範圍內之量單獨或組合分散於前驅體102中(其中重量%係基於前驅體102之組分104、106、108、110、112、114、116、118之總重量)。
在一些實施例中,陶瓷顆粒116(下文所述)可充當光引發劑114。舉例而言,TiO2
及/或ZnO顆粒可起作用以引發光聚合反應。例示性陶瓷顆粒 116
如上所述,陶瓷顆粒116向半IPN SPE 100提供改良的機械強度及離子導電性。特定言之,發現陶瓷顆粒116在半IPN SPE 100之離子導電性及機械強度方面提供出乎意料的大幅增加(參見下文所描述之實驗實例)。陶瓷顆粒116可包括金屬氧化物顆粒,諸如TiO2
、Al2
O3、SiO2
、ZrO2、SnO2
、WO3
、Ta2
O3
或此等之組合。
陶瓷顆粒116可具有任何形狀。舉例而言,陶瓷顆粒116可具有球體、橢圓、四面體、錐體、立方八面體、圓柱體、多面體、多臂及/或立方體形狀。陶瓷顆粒116可為具有約1 nm至約100 nm之特徵大小(例如,直徑)的奈米顆粒。在一些實施例中,陶瓷顆粒116之直徑在約0.5 nm至約100 nm範圍內。在一些實施例中,陶瓷顆粒116之直徑在約1 nm至約5 nm範圍內。上文所描述之例示性粒徑範圍可為來自陶瓷顆粒116之量測粒徑之群組的平均粒徑。在一些情況下,平均粒徑係指數目平均直徑。「平均直徑」可為D50粒徑(亦即,其中所量測之一半顆粒具有較大直徑且一半具有較小直徑)。
陶瓷顆粒116通常以約1重量%至約25重量%之量分散於前驅體102中(其中重量%係基於前驅體102之組分104、106、108、110、112、114、116、118之總重量)。在一些實施例中,陶瓷顆粒116以約2重量%至約7重量%之量包括於前驅體102中。在一些實施例中,陶瓷顆粒116以約3重量%至約5重量%之量包括於前驅體102中。例示性乙烯基主鏈聚合物 118
如上文所描述,在一些實施例中,前驅體包括一或多種具有乙烯系主鏈且分子量小於約100,000之聚合物118。在一些實施例中,聚合物118之分子量小於50,000。在一些實施例中,聚合物118之分子量小於25,000。此類聚合物118之實例包括聚(甲基丙烯酸烷酯)、聚(丙烯酸烷酯)、聚(乙酸乙烯酯)、聚(α烯烴)、聚(苯乙烯磺酸酯)、聚苯乙烯、聚(丙烯酸)(及其鹽)、聚(甲基丙烯酸)(及其鹽)及其類似物。此等視情況選用之乙烯系主鏈聚合物118可以約1重量%至10重量%範圍內之量存在於前驅體102中(其中重量%係基於前驅體102之組分104、106、108、110、112、114、116、118之總重量)。製備半 IPN SPE 之例示性方法及包含其之電極
圖3說明用於製備圖1之半IPN SPE 100之例示性製程300。方法300可在步驟302開始,其中一或多種聚合物104與一或多種溶劑110組合。舉例而言,可將預定量之聚合物104(例如乙酸纖維素)添加至一定體積之溶劑110中。如上文所描述,溶劑110可經選擇以使得聚合物104溶解於溶劑110中。具有溶解於溶劑110中之聚合物104的所得溶液可具有在0.1重量%至30重量%之間的聚合物104濃度(其中重量%係基於聚合物104之質量/聚合物於溶劑中之溶液之總質量)。
在步驟304,製備陶瓷顆粒116。陶瓷顆粒116可使用任何適當方法製備。舉例而言,陶瓷材料之粉末可經球磨以製備陶瓷顆粒116。在一些實施例中,陶瓷顆粒116以預製備形式獲得以使得不需要步驟304。
在步驟306,製備陶瓷顆粒116之漿液。舉例而言,陶瓷顆粒116可與一定體積之用於在步驟302溶解聚合物104之溶劑110及/或其他溶劑110組合。陶瓷顆粒116及溶劑110可經由球磨方法組合以將陶瓷顆粒116分散於溶劑110中。陶瓷顆粒116之此初始漿液可隨後與在步驟302製備之全部或一部分聚合物於溶劑中之溶液組合。舉例而言,來自步驟302之聚合物於溶劑中之溶液可與初始漿液組合。在一些實施例中,來自步驟302之聚合物於溶劑中之溶液之第一部分可與接近陶瓷顆粒116研磨過程末端之初始漿液組合以製備陶瓷顆粒116之漿液。在完成研磨過程之後,聚合物於溶劑中之溶液之第二部分可與此混合物組合。聚合物104與陶瓷顆粒116之質量比可在約1至約600之範圍內。在一些實施例中,聚合物104與陶瓷顆粒116之質量比在約1至約400之範圍內。
在步驟308,塑化劑112與來自步驟306之混合物組合。舉例而言,塑化劑112可藉助於機械攪拌器/混合器及/或球磨經由混合與混合物組合。一般而言,為待分散或溶解於混合物內之塑化劑112提供充分混合。塑化劑112與聚合物104之質量比通常在約0.001至約32範圍內。
在步驟310,將可聚合組分106與來自步驟308之混合物組合。舉例而言,可聚合組分106可經由混合(例如,使用機械混合器及/或球磨機)與混合物組合。聚合物104與可聚合組分106之質量比在約0.1至約20範圍內。
在步驟312,將鋰離子源108與來自步驟310之混合物組合。舉例而言,鋰離子源108可經由混合(例如,使用機械混合器及/或球磨機)與混合物組合。在一些實施例中,鋰離子源108首先溶解於溶劑110中之一或多者中,且所得鋰於溶劑中之溶液與來自步驟310之混合物組合。鋰離子源108與聚合物104之質量比在約0.01及100範圍內。如以上關於圖1所描述,在一些實施例中,在步驟312添加鋰離子源108延遲至需要製備半IPN SPE 100時之稍後時間。舉例而言,可首先製備(例如,藉由執行步驟302、304、306、308、310、314及/或316)前驅體103之預混合部分103(參見圖1)。此預混合前驅體部分103可儲存在適當儲存條件下(例如,在不存在可誘導可聚合組分106及/或光引發劑114之任何反應的光的情況下)且必要時使用。
在步驟314,光引發劑112與來自步驟312之混合物組合。舉例而言,光引發劑112可經由混合(例如,使用機械混合器及/或球磨機)與混合物組合。光引發劑112與可聚合組分106之質量比在約0.001至約10範圍內。在一些實施例中,在步驟314添加光引發劑112可延遲直至需要製備SPE 100為止。舉例而言,在需要製備半IPN SPE 100之前,可儲存一部分無光引發劑112之前驅體102(或預混合前驅體部分103)而不存在發生光化學反應到可觀程度之風險。
在步驟316,乙烯系主鏈聚合物118可視情況與來自步驟314之混合物組合。舉例而言,乙烯系主鏈聚合物118可經由混合(例如,使用機械混合器及/或球磨機)與混合物組合。聚合物104與乙烯系主鏈聚合物118之質量比在約1重量%至約10重量%範圍內。
在步驟318,將來自程序步驟之前驅體102之一或多個層施加至基板。基板可為任何適當材料(例如,鋁)。可使用任何適當的方法將前驅體102施加至基板。此類方法之實例包括(但不限於)氣刀塗佈、凹板塗佈、料斗塗佈、滾塗、噴塗、電化學塗佈、噴墨印刷及柔版印刷。在一些實施例中,前驅體102之層可以所要圖案接觸印刷(例如,以製備呈所要圖案之半IPN SPE 100之薄膜及/或以製備具有適當大小、形狀、圖案等之單元200)。此類接觸印刷方法可有助於擴大規模以在相對較低成本下大量製備半IPN SPE 100。舉例而言,此接觸印刷方法可涉及將前驅體102之層施加至供體構件且經由施加熱及/或壓力轉移至接收器構件。黏接層可存在於前驅體102之層與接收器構件之間。一般而言,在進行至步驟320之前,可使所施加之前驅體102高溫(例如約100℃)乾燥一段時間。
在步驟320,固化在步驟318施加之前驅體102。舉例而言,前驅體102可暴露於熱及/或光。舉例而言,步驟318之前驅體102層可用光(例如,UV光)照射預定時間(例如,在約1秒至10分鐘或大於10分鐘範圍內)。一般而言,固化過程可進行到製備無黏性半IPN SPE 100所需的時間。在聚合之後,半IPN SPE 100可進一步乾燥且加熱退火持續一段時間(例如在100℃至150℃下持續一或多個小時)。所得半IPN SPE 100可為薄膜(例如,具有小於200微米之厚度)。在一些實施例中,半IPN SPE 100具有小於150微米之厚度。在一些實施例中,半IPN SPE 100具有小於100微米之厚度。在一些實施例中,半IPN SPE 100具有在約10微米至小於100微米範圍內的厚度。
在步驟322,使用來自步驟320之半IPN SPE 100製備單元(例如圖2中所說明之鋰單元200)。舉例而言,SPE膜100可安置(例如包夾)於兩個電極202、204之間以獲得與圖2中所說明之單元200相同或類似的單元。在一些實施例中,可製備且適當組合(例如串聯堆疊)多個單元200以製備具有所需電壓之電池。可提供適當電觸點以用於對單元200進行放電及充電。
在步驟322製備之單元200可具有任何適當的組態。舉例而言,單元200可基於所使用之電極之類型而組態。舉例而言,單元200之電極202、204中之一或兩者可為阻擋電極,鋰離子不穿過該等電極。阻擋電極的實例包含鋁箔或不鏽鋼箔。此類箔之厚度可在約5微米至約50微米範圍內。具有阻擋電極作為電極202、204之單元200可用於離子導電率量測。在一些情況下,電極202、204中之一者或兩者可為鋰金屬箔。鋰金屬箔之厚度可為約25微米至約100微米。可使用具有鋰箔電極202、204之單元200例如以確定半IPN SPE 100之電化學穩定性窗,以確定與半IPN SPE 100之存在相關之鋰電鍍及/或剝離行為,及其類似者。在一些實施例中,陰極202可為任何其他適當陰極材料(例如厚度為約20微米至200微米的氧化鋰鎳錳鈷),且陽極204可為任何適當陽極材料(例如厚度為約20微米至200微米的石墨,或如上文所描述的鋰金屬)。
作為一實例,可藉由將前驅體102塗佈在金屬箔(例如鋁箔、不鏽鋼箔或其類似物)或其他表面(例如玻璃)上來製備單元200。前驅體102之膜可隨後用適當功率及波長之光(例如UV光)照射一段時間(例如以活化光引發劑114)。隨後固化且乾燥(例如,在50℃至100℃之溫度下)該膜以產生厚度在約五微米至約500微米範圍內之薄膜半IPN SPE 100。該膜半IPNM SPE 100可自金屬箔或其他表面移除(例如,經由剝離)。隨後將該膜半IPN SPE 100包夾在陽極204與陰極202之間。
如上文所描述,陰極202可包括任何陰極活性材料及/或組分。舉例而言,陰極活性材料可包括氧化鋰鈷(LiCoO2
)、磷酸鋰鐵(LiFePO4
)、氧化鋰鎳錳鈷(LiNix
Mny
Coz
O2
)、氧化鋰鎳鈷鋁(LiNix
Coy
Alz
O2
)或其混合物。其他陰極組分可包括導電碳、聚合物黏合劑、其他添加劑及此等之任何組合。聚合物黏合劑可包括(例如)聚(偏二氟乙烯)、聚(四氟乙烯)、羧甲基纖維素、聚(丙烯酸)、苯乙烯-丁二烯橡膠或此等中之任何一或多者的混合物。陰極202可為具有任何適當厚度的膜。在一些實施例中,陰極202具有約20至約500微米之厚度。
亦如上文所描述,陽極204可由任何陽極活性材料及/或其他陽極組分組成。陽極活性材料可包括例如石墨、石墨烯、碳奈米管、碳黑、矽、摻雜矽、氧化矽(SiOx
)、錫、氧化錫、鈦酸鋰(Li4
Ti5
O12
)或其混合物。其他陰極組分可包括導電碳、聚合物黏合劑及/或其他添加劑中之任一者。聚合物黏合劑可包括(例如)聚(偏二氟乙烯)、聚(四氟乙烯)、羧甲基纖維素、聚(丙烯酸)、苯乙烯-丁二烯橡膠或其混合物。陽極204可為具有任何適當厚度之膜。在一些實施例中,陽極204具有約20至約500微米之厚度。
在將半IPN SPE 100的膜包夾在陰極202與陽極204之間之後,施加壓力以將半IPN SPE 100層壓在陰極與陽極之間以形成完整的單元200。此層壓過程可產生在半IPN SPE 100與陰極及陽極之間形成的適當界面。所施加之壓力可在約1至108
牛頓/平方公尺(N/m2
)範圍內。在一些實施例中,所施加之壓力在約103
至105
N/m2
範圍內。可在施加壓力的同時施加熱量。熱量可例如經由電加熱及/或紅外加熱提供。經由此加熱達成之溫度可在約25℃至250℃範圍內。在一些實施例中,在施加壓力至包夾在陰極202與陽極204之間的半IPN 100期間之溫度可在約40℃至約80℃範圍內。
可將層壓膜切割成適當成形之片件以產生具有所需形狀之單元200。舉例而言,單元200可具有矩形形狀(例如,用作袋狀單元)或圓柱形或環形圓盤形狀(例如,用作鈕扣單元)。舉例而言,對於袋狀單元,鋁/銅突片可焊接至單元200之陰極202及陽極204。所得單元200可堆疊且置放於真空密封之袋中。對於圓柱形單元,單元可經捲繞以形成圓筒且置放於圓柱形罐中,隨後密封。對於鈕扣單元,單元200之環形盤置放於鈕扣單元殼體中,將其捲曲以得到鈕扣單元。此等類型之單元中之任一者可連接至標準充電放電電路以執行充電放電操作,或連接至恆電位器或介電光譜儀以用於阻抗譜量測。
在一些實施例中,可直接在陰極202上製備半IPN SPE 100。舉例而言,單元200可製備成用前驅體102塗佈陰極202(如上文所描述)。塗佈有前驅體之陰極202可用適當功率及波長之光(例如UV光或微波照射)照射一段時間(例如以活化光引發劑114)。隨後固化且乾燥(例如,在50℃至100℃之溫度下)該膜以產生厚度在約五微米至約500微米範圍內之薄膜半IPN SPE 100。在一些實施例中,半IPN SPE 100膜之厚度在約50至150微米範圍內。可藉由如上文所描述施加壓力及/或熱量將所得結構(亦即,塗佈有半IPN SPE 100膜之陰極202)與陽極204層壓。所得單元200可切割且組裝成任何單元類型,如上文所描述。
在一些實施例中,可直接在陽極204上製備半IPN SPE 100。舉例而言,單元200可製備成用前驅體102塗佈陽極204(如上文所描述)。塗佈有前驅體之陽極204可用適當功率及波長之光(例如UV光或微波照射)照射一段時間(例如以活化光引發劑114)。隨後固化且乾燥(例如,在50℃至100℃之溫度下)該膜以產生厚度在約五微米至約500微米範圍內之薄膜半IPN SPE 100。在一些實施例中,半IPN SPE 100膜之厚度在約50至150微米範圍內。可藉由如上文所描述施加壓力及/或熱量將所得結構(亦即,塗佈有半IPN SPE 100膜之陽極204)與陰極202層壓。所得單元200可切割且組裝成任何單元類型,如上文所描述。
在一些實施例中,半IPN SPE 100可製備成獨立的膜且層壓於陰極202與陽極204之間,如上文所描述。舉例而言,半IPN SPE 100可預塗佈於適當集電器上,諸如金屬片或箔。在一些情況下,前驅體混合物可與陰極及陽極膜組合且原位固化。實驗實例
例示性半IPN SPE 100之製備描述於下文實例中。在此等實例中,煙霧狀二氧化矽顆粒之初始粒度為10至20 nm。煙霧狀氧化鋁顆粒之初始粒度為80 nm。煙霧狀二氧化鈦(亦即二氧化鈦)顆粒之初始粒度為21 nm。煙霧狀二氧化鈦顆粒為具有較小部分金紅石之80-90%銳鈦礦。實例 1 : 使用乙酸纖維素
(CA
)及可聚合寡聚物製備半 IPN 固體聚合物電解質前驅體。
藉由在攪拌下將乙酸纖維素(0.72 g)溶解於2-甲氧基乙醇(7.73 g)中來製備纖維素酯溶液。在完全溶解之後,將纖維素酯溶液(8.45 g)與聚(乙二醇) 200二丙烯酸酯(SR 259,0.20 g)、乙氧基化(15)三羥甲基丙烷三丙烯酸酯(SR 9035, 0.04 g)、LiClO4
(0.24 g)及光引發劑2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯於丙酮中之9重量%溶液(0.09 g)組合。經由攪拌使所得溶液均質化。
此前驅體組合物中之組分的重量百分比為:8.0% CA、2.6% LiClO4
、2.2% SR 259、0.4% SR 9035及0.1% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯。在乾燥形式中,此前驅體組合物中之組分為59.7% CA、19.8% LiClO4
、16.6% SR 259、3.3% SR 9035及0.7% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯。實例 2 : 使用乙酸丙酸纖維素
(CAP
)及可聚合寡聚物製備半 IPN 固體聚合物電解質前驅體。
藉由在攪拌下將乙酸丙酸纖維素(0.68 g)溶解於1-甲氧基-2-丙醇(6.13 g)中來製備纖維素酯溶液。在完全溶解之後,將纖維素酯溶液(6.8 g)與聚(乙二醇) 200二丙烯酸酯(SR 259,0.20 g)、乙氧基化(15)三羥甲基丙烷三丙烯酸酯(SR 9035,0.05 g)、LiClO4
(0.24 g)及2-苄基-2-(二甲胺基) -4'-(N-𠰌啉基)丁醯苯於丙酮中之9重量%溶液(0.10 g)組合。經由攪拌使溶液均質化。
此例示性前驅體組合物中之組分的重量百分比為9.1% CAP、3.3% LiClO4
、2.2% SR 259、0.6% SR 9035及0.1% 2-苄基-2-(二甲胺基) -4'-(N-𠰌啉基)丁醯苯。在乾燥形式中,此例示性前驅體組合物中之組分的重量百分比為57.4% CAP、20.5% LiClO4
、17.0% SR 259、4.3% SR 9035及0.8% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯。實例 3 : 使用乙酸丙酸纖維素
(CAP
)、可聚合寡聚物及聚己內酯三醇塑化劑製備半 IPN 固體聚合物電解質前驅體。
藉由在攪拌下將乙酸丙酸纖維素(16.30 g)溶解於二甲基甲醯胺(83.7 g)中來製備纖維素酯溶液。在完全溶解之後,將第一纖維素酯溶液(16.3%,6.24 g)與聚(乙二醇) 200二丙烯酸酯(SR 259,0.29 g)、烷氧基化新戊四醇四丙烯酸酯(SR 494,0.145 g)、聚己內酯三醇(Mw=300 0.076 g)、碘化鋰(0.48 g)、2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯(0.01 g)及1-甲氧基-2-丙醇(2.83 g)組合。經由攪拌使溶液均質化。
此例示性前驅體組合物中組分之重量百分比為10.1% CAP、4.8% LiI、2.9% SR 259、1.4% SR 494、0.8%聚(己內酯三醇)、0.1% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯、28.1% 1-甲氧基-2-丙醇及51.8%二甲基甲醯胺。在乾燥形式中,此例示性前驅體組合物中之組分的重量百分比為50.2% CAP、23.9% LiI、14.3% SR 259、7.2% SR 494、3.1%聚己內酯三醇及0.8% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯。實例 4 : 具有乙酸丙酸纖維素
(CAP
)、可聚合寡聚物及二氧化矽之半 IPN 固體聚合物電解質前驅體 102 。
藉由在攪拌下將乙酸丙酸纖維素(CAP,16.30 g)溶解於二甲基甲醯胺(83.7 g)中來製備纖維素酯溶液。在完全溶解之後,藉由組合第一纖維素酯溶液(16.3%,31.18 g)與聚(乙二醇) 200二丙烯酸酯(SR 259,1.45 g)、烷氧基化新戊四醇四丙烯酸酯(SR 494,0.73 g)、聚己內酯三醇(Mw=300,0.72 g)及1-甲氧基-2-丙醇(11.25 g)來製備第二溶液。經由攪拌使溶液均質化。單獨地,將碘化鋰(0.24 g)與煙霧狀二氧化矽(0.22 g)組合,且將此固體混合物均質化以分散二氧化矽顆粒。將固體混合物(0.46 g)與以上4.54 g之第二溶液組合且經由攪拌均質化。
此例示性前驅體組合物中組分之重量百分比為10.2% CAP、4.8% LiI、2.9% SR 259、1.5% SR 494、1.4%聚(己內酯三醇)、0.1% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯、22.5% 1-甲氧基-2-丙醇、52.2%二甲基甲醯胺及4.4%二氧化矽。在乾燥形式中,此例示性前驅體組合物中之組分的重量百分比為40.2% CAP、19.1% LiI、11.5% SR 259、5.7% SR 494、5.7%聚己內酯三醇、0.5% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯及17.2%二氧化矽。實例 5 : 具有乙酸丙酸纖維素
(CAP
)、可聚合寡聚物及氧化鋁之半 IPN 奈米 複合物 固體聚合物電解質前驅體組合物。
藉由在攪拌下將乙酸丙酸纖維素(CAP,16.30 g)溶解於二甲基甲醯胺(83.7 g)中來製備纖維素酯溶液。單獨地,將碘化鋰(1.10 g )與氧化鋁(1.00 g)組合,且將所得固體混合物均質化以分散氧化鋁顆粒。將纖維素酯溶液(16.3%,3.12 g)與聚(乙二醇) 200二丙烯酸酯(SR 259,0.14 g)、烷氧基化新戊四醇四丙烯酸酯(SR 494,0.07 g)、聚己內酯三醇(Mw=300 0.04 g)、2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯(0.06 g)、碘化鋰及氧化鋁之固體混合物(0.46 g)及1-甲氧基-2-丙醇(1.19 g)組合。經由攪拌使漿液均質化。
此例示性前驅體組合物中組分之重量百分比為10.1% CAP、4.8% LiI、2.9% SR 259、1.4% SR 494、0.8%聚(己內酯三醇)、0.1% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯、23.7% 1-甲氧基-2-丙醇、51.8%二甲基甲醯胺及4.4%氧化鋁。在乾燥形式中,重量百分比為如下:41.2% CAP、19.6% LiI、11.8% SR 259、5.9% SR 494、3.1%聚己內酯三醇、0.5% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯及17.9%氧化鋁。實例 6 : 具有乙酸丙酸纖維素、可聚合寡聚物、二氧化鈦及氧化鋁之半 IPN 奈米複合物固體聚合物電解質前驅體組合物。
藉由在攪拌下將乙酸丙酸纖維素(CAP,16.30 g)溶解於二甲基甲醯胺(83.7 g)中來製備纖維素酯溶液。在完全溶解之後,藉由組合第一纖維素酯溶液(16.3%,31.18 g)與聚(乙二醇) 200二丙烯酸酯(SR 259,1.45 g)、烷氧基化新戊四醇四丙烯酸酯(SR 494,0.73 g)、聚己內酯三醇,Mw=300(0.72 g)、2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯(0.06 g)及1-甲氧基-2-丙醇(11.25 g)製備第二溶液。經由攪拌使溶液均質化。單獨地,將碘化鋰(0.24 g)與氧化鋁(0.11 g)及二氧化鈦(0.11 g)組合。使所得固體混合物均質化以分散此等顆粒。將第二溶液(4.54 g)添加至碘化鋰、氧化鋁及二氧化鈦之固體混合物(0.46 g)中。在攪拌下使所得漿液均質化。
在此實例中,前驅體組合物中組分之重量百分比為10.2% CAP、4.8% LiI、2.9% SR 259、1.5% SR 494、1.4%聚(己內酯三醇)、0.1% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯、22.5% 1-甲氧基-2-丙醇、52.2%二甲基甲醯胺、2.2%氧化鋁及2.2%二氧化鈦。在乾燥形式中,此實例中之組分的重量百分比為40.2% CAP、19.1% LiI、11.5% SR 259、5.7% SR 494、5.7%聚己內酯三醇、0.5% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯、8.6%氧化鋁及8.6%二氧化鈦。實例 7 : 具有乙酸丙酸纖維素、可聚合寡聚物及二氧化鈦之半 IPN 奈米複合物固體聚合物電解質前驅體組合物。
藉由在攪拌下將乙酸丙酸纖維素(16.30 g)溶解於二甲基甲醯胺(83.7 g)中來製備纖維素酯溶液。在完全溶解之後,藉由組合第一纖維素酯溶液(16.3%,31.18 g)與聚(乙二醇),二丙烯酸酯(SR 259,1.45 g)、烷氧基化新戊四醇四丙烯酸酯(SR 494,0.73 g)、聚己內酯三醇(Mw=300(0.72 g)、2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯(0.06 g)及1-甲氧基-2-丙醇(11.25 g)來製備第二溶液。在攪拌下使溶液均質化。單獨地,將碘化鋰(0.24 g)與二氧化鈦(0.22 g)組合,且將所得固體混合物均質化以分散顆粒。將第二溶液(4.54 g)添加至碘化鋰及二氧化鈦之固體混合物(0.46 g)中。經由攪拌使漿液均質化。
此例示性前驅體組合物中組分之重量百分比為10.2% CAP、4.8% LiI、2.9% SR 259、1.5% SR 494、1.4%聚(己內酯三醇)、0.1% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯、22.5% 1-甲氧基-2-丙醇、52.2%二甲基甲醯胺及4.4%二氧化鈦。在乾燥形式中,此例示性前驅體組合物中之組分的重量百分比為40.2% CAP、19.1% LiI、11.5% SR 259、5.7% SR 494、5.7%聚己內酯三醇、0.5% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯及17.2%二氧化鈦。實例 8 : 具有 乙酸丙酸纖維素 、可聚合寡聚物、二氧化鈦及雙 ( 己二酸 2 - 乙基己酯 ) 作為塑化劑之半 IPN 奈米複合物固體聚合物電解質前驅體組合物。
藉由在攪拌下將乙酸丙酸纖維素(12.23 g)溶解於1-甲氧基-2-丙醇(87 g)中來製備纖維素酯溶液。完全溶解後,向溶液中添加己二酸雙(2-乙基己基)酯(0.80 g),且經由攪拌使溶液均質化。藉由將第一纖維素酯溶液(12.2%,32.60 g)與聚(乙二醇) 200二丙烯酸酯(SR 259,1.20 g)、烷氧基化新戊四醇四丙烯酸酯(SR 494,0.6 g)及二乙二醇單乙醚乙酸酯(4.80 g)組合來製備第二溶液。經由攪拌使溶液均質化。單獨地,藉由在攪拌下將乙酸丙酸纖維素(3.10 g)溶解於1-甲氧基-2-丙醇(96.90 g)中來製備第三纖維素酯溶液。完全溶解後,將二氧化鈦(3.00 g)與第三纖維素酯溶液(9.68 g)及1-甲氧基-2-丙醇(4.00 g)組合。在攪拌下使所得漿液均質化以分散顆粒。將碘化鋰(0.24 g)與二氧化鈦(0.22 g)組合,且將所得固體混合物均質化以分散顆粒。單獨地,將二氧化鈦漿液(0.57 g)、第二溶液(2.00)、碘化鋰(0.21 g)及2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯於丙酮(0.06 g)中之5%溶液組合。經由攪拌使所得漿液均質化。
此例示性前驅體組合物中之組分的重量百分比為7.2% CAP、0.5%己二酸雙(2-乙基己基)酯、7.3% LiI、2.2% SR 259、1.1% SR 494、0.1% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯、3.6%二氧化鈦、67.5% 1-甲氧基-2-丙醇、8.7%二乙二醇單乙醚乙酸酯及1.9%丙酮。在乾燥形式中,此實例中之組分的重量百分比為32.7% CAP、2.1%己二酸雙(2-乙基己基)酯、33.2% LiI、10.0% SR 259、5.0% SR 494、0.4% 2-苄基-2-(二甲胺基)-4'-(N-𠰌啉基)丁醯苯及16.6%二氧化鈦。實例 9 : 半 IPN 固體聚合物電解質之製備及離子導電率測試
將以上實例之前驅體組合物塗佈於鋁基板上以獲得對應的半IPN固體聚合物電解質膜。在塗佈該等膜之前,將基板浸沒於5重量% KOH水溶液中30秒,用水沖洗三次,用異丙醇沖洗且乾燥。在不同濕覆蓋率下將前驅體組合物刮塗至經清潔之鋁箔表面上,得到在約75 µm至150 µm之範圍內的乾膜厚度。在100℃下乾燥各塗層五分鐘,隨後在氮氣或氬氣流動下使用Xe-Hg 1000 W燈暴露於UV光15秒以使可聚合組分(例如丙烯酸酯)光聚合。樣品隨後在100℃至150℃之溫度下乾燥且退火1至2小時以獲得乾燥半IPN固體聚合物電解質膜。
典型地,乾燥半IPN固體聚合物電解質膜包括25-60重量%的圖1之聚合物組分104、2-7重量%的圖1之塑化劑112、20-35重量%之圖1之鋰鹽及/或錯合物108、10-25重量%的可聚合組分106(或其副產物)、10-25重量%的圖1之陶瓷顆粒116,及1-5重量%的圖1的光引發劑114(或其副產物)。
藉由將膜安置(例如,包夾)於兩個鋁電極之間且以10 mV之交流(AC)電壓及1 MHz至1 mHz之頻率掃描記錄電化學阻抗譜來測試例示性半IPN固體聚合物電解質膜之離子導電率。根據波德圖之平台區中所量測到之阻抗值(R)基於以下來測定離子導電率值(σ):
其中l
為膜之厚度且A
為膜之接觸面積。在室溫下(例如在約25℃下)測定離子導電率。
圖4展示包含使用上文所描述之實例3至8之不同前驅體組合物製備之半IPN SPE之單元的波德圖400。
下表2展示針對上文所述之不同例示性固體聚合物電解質膜測定的離子導電率。表2中之資訊表明,經由在電解質前驅體中包括陶瓷顆粒而達成改良之離子導電性。相較於由實例3之前驅體製備的不含陶瓷顆粒之固體聚合物電解質膜,由實例4-7之前驅體製備的固體聚合物電解質膜中之每一者具有增加的離子導電率。表 2
:陶瓷顆粒對離子導電率之例示性影響
實例3 | 實例4 | 實例5 | 實例6 | 實例7 | |
陶瓷顆粒類型 | 無 | SiO2 | Al2 O3 | Al2 O3 & TiO2 | TiO2 |
SR 259 二丙烯酸酯(wt%) | 14.3 | 11.5 | 11.8 | 11.5 | 18.0 |
SR 494 四丙烯酸酯(wt%) | 7.2 | 5.7 | 5.9 | 5.7 | 9.0 |
Irgacure 369 (wt%) | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 |
CAP-482-20 (wt%) | 50.2 | 40.2 | 41.2 | 40.2 | 63.0 |
聚(己內酯)三醇(wt%) | 3.8 | 5.7 | 3.1 | 5.7 | 9.0 |
LiI (wt%) | 23.9 | 19.1 | 19.6 | 19.1 | 23.0 |
陶瓷顆粒 (wt%) | 0.0 | 17.2 | 17.9 | 17.2 (各8.6 ) | 21.0 |
厚度(µm) | 140 | 172 | 175 | 77 | 139 |
離子導電率(S/cm) | 1 x 10-5 | 2 x 10-5 | 2 x 10-4 | 1 x 10-4 | 1.5 x 10-4 |
下表3展示例如針對上文所述之具有不同類型塑化劑的固體聚合物電解質膜測定的離子導電率。表3中之資訊表明經由包括己二酸雙(2-乙基己基)酯作為塑化劑代替聚己內酯三醇達成之改良的離子導電性。表 3
:塑化劑對離子導電率之例示性影響
實例 10 : 半 IPN 固體聚合物電解質之動態機械分析
實例7 | 實例8 | |
聚己內酯三醇 | 己二酸雙(2-乙基己基)酯 | |
SR 259二丙烯酸酯(wt%) | 18.0 | 10 |
SR 494四丙烯酸酯(wt%) | 9.0 | 5 |
Irgacure 369 (wt%) | 0.5 | 0.4 |
CAP-482-20 (wt%) | 63.0 | 32.7 |
塑化劑(wt%) | 9.0 | 2.1 |
LiI (wt%) | 23.0 | 33.2 |
TiO2 (wt%) | 21.0 | 16.6 |
厚度(µm) | 139 | 94 |
離子導電率(S/cm) | 1 x 10-4 | 7 x 10-4 |
藉由動態機械分析(DMA)在張力下在2 ℃/min之溫度掃描下、在1 Hz(6.28 rad/s)之頻率下、在0.4%之應變下且在3.0公克之施加力下測試例示性半IPN固體聚合物電解質膜之機械及熱特性。圖5展示針對使用實例1至8之前驅體組合物製備之半IPN SPE之DMA資料的圖500。如圖5中所示,本發明中所述之固體聚合物電解質具有135℃之高玻璃轉移溫度,此使得此等半IPN SPE適用於高溫應用。此外,半IPN SPE展現約0.45 GPa之儲存模數,其適用於固體聚合物電解質膜。
可對本文中所描述之系統、設備及方法作出修改、添加或省略。可整合或分離系統及設備之組件。此外,可藉由更多、更少或其他組件執行系統及設備之操作。該等方法可包括更多、更少或其他步驟。另外,可以任何合適次序執行步驟。另外,可使用任何合適邏輯來執行系統及設備之操作。如此文件中所使用,「每一」係指集合之每一成員或集合之子集的每一成員。
本文中,除非另外明確指示或上下文另外指示,否則「或」為包括性且並非排他性的。因此,除非另外明確指示或上下文另外指示,否則本文中「A或B」意謂「A、B或兩者」。此外,除非另外明確指示或上下文另外指示,否則「及」為聯合及各自兩者。因此,除非另外明確指示或上下文另外指示,否則本文中「A及B」意謂「A及B,聯合地或各自地」。
本發明之範圍涵蓋一般熟習此項技術者將瞭解的本文中描述或說明之實例實施例的全部改變、取代、變化、更改及修改。本發明之範疇不限於本文中所描述或說明的例示性實施例。此外,儘管本發明將本文各別實施例描述及說明為包括特定組件、元件、特徵、功能、操作或步驟,但此等實施例中之任一者可包括一般熟習此項技術者將瞭解的本文中任何地方描述或說明的組件、元件、特徵、功能、操作或步驟中之任一者的任何組合或排列。此外,所附申請專利範圍中對經調適以、經配置以、能夠、經組態以、經啟用以、經操作以或可操作以執行一特定功能的設備或系統或設備或系統之組件的提及涵蓋只要彼設備、系統或組件因此經調適、經配置、能夠、經組態、經啟用、經操作或可操作,彼設備、系統、組件(不管其或彼特定功能)便經激活、接通或解鎖。另外,儘管本發明將具體實施例描述或說明為提供特定優點,但具體實施例可提供此等優點中之無一者、一些或全部。
除非本文中另外指明或上下文中明顯矛盾,否則在描述本發明之上下文中(尤其在以下申請專利範圍之上下文中)使用之術語「一(a)」與「一(an)」及「該」及相似指示物均應解釋為涵蓋單數及複數。除非另外指示,否則術語「包含(comprising)」、「具有(having)」、「包括(including)」及「含有(containing)」應解釋為開放式術語(亦即,意謂「包括(但不限於)(including, but not limited to)」)。除非另外指示,否則本文中值範圍之列舉僅意欲充當單獨提及屬於該範圍內之各獨立值的簡寫方法,且各獨立值併入至本說明書中,如同在本文中單獨列舉一般。使用本文所提供之任何及所有實例或例示性語言(例如「諸如」)僅意欲更好地解釋本發明且不對申請專利範圍之範疇造成限制。
100:半IPN固體聚合物電解質/電解質/半IPN SPE/SPE膜
102:前驅體
103:前驅體102之組分之子集/子集
104:聚合物
106:光化學或可熱聚合組分
106a:線性或分支聚合物
108:鋰離子源
110:有機溶劑
112:塑化劑
114:光引發劑
116:金屬氧化物奈米顆粒
118:低分子量乙烯系主鏈聚合物
120:加熱及/或暴露於光
200:單元/鋰單元
202:電極/鋰箔電極/陰極
204:電極/鋰箔電極/陽極
206:厚度
300:製程/方法
302:步驟
304:步驟
306:步驟
308:步驟
310:步驟
312:步驟
314:步驟
316:步驟
318:步驟
320:步驟
322:步驟
400:波德圖
500:圖
為了幫助理解本發明,現結合附圖提及以下描述,其中:
圖1為示出根據本揭示案之說明性實施例,用於製備半互穿網路固體聚合物電解質膜之前驅體組合物的圖式;
圖2為使用圖1的固體聚合物電解質膜製備的例示性單元的圖式;
圖3為用於製備圖1的前驅體及固體聚合物電解質膜的例示性方法的流程圖;
圖4為具有半互穿網路固體聚合物電解質膜之電池的阻抗對頻率響應之波德圖(Bode plot),該半互穿網路固體聚合物電解質膜使用不同前驅體組合物製備;及
圖5為針對例示性固體聚合物電解質膜之動態機械分析測試之圖。
300:製程/方法
302:步驟
304:步驟
306:步驟
308:步驟
310:步驟
312:步驟
314:步驟
316:步驟
318:步驟
320:步驟
322:步驟
Claims (20)
- 一種二次電池單元,包含: 包含第一電極材料之陰極; 包含第二電極材料之陽極;及 安置於該陰極與該陽極之間的固體聚合物電解質層,該固體聚合物電解質包含與該陰極接觸之第一表面及與該陽極接觸之第二表面,該固體聚合物電解質層進一步包含: 纖維素聚合物基質,該纖維素聚合物基質包含纖維素聚合物之網路; 分散於該纖維素聚合物基質中之鋰離子; 分散於該纖維素聚合物基質中之陶瓷顆粒,其中該等陶瓷顆粒包含金屬氧化物; 分散於該纖維素聚合物基質中之一或多種塑化劑;及 與該纖維素聚合物基質接觸之一或多種聚合物網路,該一或多種聚合物網路包含交聯含丙烯酸酯之聚合物。
- 如請求項1之二次電池單元,該固體聚合物電解質層進一步包含分散於該纖維素聚合物基質中或與該纖維素聚合物基質接觸之一或多種乙烯系主鏈聚合物,該一或多種乙烯系主鏈聚合物包含乙烯系主鏈及小於100,000公克/莫耳之分子量。
- 如請求項1之二次電池單元,其中該固體聚合物電解質層包含25重量%至60重量%之該纖維素聚合物基質、10重量%至25重量%之該含丙烯酸酯之聚合物、20重量%至35重量%之鋰離子源、2重量%至7重量%之該一或多種塑化劑及10重量%至25重量%之該等陶瓷顆粒。
- 如請求項1之二次電池單元,其中該固體聚合物電解質層之離子導電率為至少1×10- 4 西門子/公分。
- 如請求項1之二次電池單元,其中該等陶瓷顆粒包含氧化鈦、氧化鋁、氧化矽、氧化鋯、氧化錫、氧化鎢及氧化鉭中之一或多者的奈米顆粒。
- 如請求項1之二次電池單元,其中該纖維素聚合物基質之該纖維素聚合物包含纖維素酯、乙酸纖維素及乙酸丙酸纖維素中之一或多者。
- 如請求項1之二次電池單元,該固體聚合物電解質層進一步包含一或多個鋰離子源,該一或多個鋰離子源選自由以下組成之群:硝酸鋰(LiNO3)、碘化鋰(LiI)、硫化鋰(Li2 S)、過氯酸鋰(LiClO4 )、三氟甲磺酸鋰(LiCF3 SO3 )、六氟砷酸鋰(V)(LiAsF6 )、六氟磷酸鋰(LiPF6 )及四氟硼酸鋰(LiBF4 )。
- 一種固體聚合物電解質,包含: 纖維素聚合物基質,該纖維素聚合物基質包含纖維素聚合物之網路; 分散於該纖維素聚合物基質中之鋰離子; 分散於該纖維素聚合物基質中之陶瓷顆粒,其中該等陶瓷顆粒包含金屬氧化物; 分散於該纖維素聚合物基質中之一或多種塑化劑;及 與該纖維素聚合物基質接觸之一或多種聚合物網路,該一或多種聚合物網路包含交聯含丙烯酸酯之聚合物。
- 如請求項8之固體聚合物電解質,其進一步包含分散於該纖維素聚合物基質中或與該纖維素聚合物基質接觸之一或多種乙烯系主鏈聚合物,該一或多種乙烯系主鏈聚合物包含乙烯系主鏈及小於100,000公克/莫耳之分子量。
- 如請求項8之固體聚合物電解質,其進一步包含25重量%至60重量%之該纖維素聚合物基質、10重量%至25重量%之該含丙烯酸酯之聚合物、20重量%至35重量%之鋰離子源、2重量%至7重量%之該一或多種塑化劑及10重量%至25重量%之該等陶瓷顆粒。
- 如請求項8之固體聚合物電解質,其中該固體聚合物電解質之離子導電率為至少1×10- 4 西門子/公分。
- 如請求項8之固體聚合物電解質,其中該等陶瓷顆粒包含氧化鈦、氧化鋁、氧化矽、氧化鋯、氧化錫、氧化鎢及氧化鉭中之一或多者的奈米顆粒。
- 如請求項8之固體聚合物電解質,其中該纖維素聚合物基質之該纖維素聚合物包含纖維素酯、乙酸纖維素及乙酸丙酸纖維素中之一或多者。
- 如請求項8之固體聚合物電解質,其進一步包含一或多個鋰離子源,該一或多個鋰離子源選自由以下組成之群:硝酸鋰(LiNO3)、碘化鋰(LiI)、硫化鋰(Li2 S)、過氯酸鋰(LiClO4 )、三氟甲磺酸鋰(LiCF3 SO3 )、六氟砷酸鋰(V)(LiAsF6 )、六氟磷酸鋰(LiPF6 )及四氟硼酸鋰(LiBF4 )。
- 一種製備半互穿聚合物網路固體聚合物電解質之方法,該方法包含: 藉由以下步驟製備前驅體: 將一或多種纖維素聚合物與一或多種有機溶劑組合; 將一或多種可聚合組分與該一或多種有機溶劑組合; 將一或多種光引發劑與該一或多種有機溶劑組合,其中該一或多種光引發劑中之至少一者在用光照射之後促進該一或多種可聚合組分中之至少一者的聚合; 將一或多個鋰離子源與該一或多種有機溶劑組合,每一鋰離子源包含鋰離子鹽或鋰離子錯合物; 將一或多種塑化劑與該一或多種有機溶劑組合;及 將一或多種陶瓷顆粒與該一或多種有機溶劑組合,其中該等陶瓷顆粒包含金屬氧化物; 將該前驅體之至少一部分施加至基板之表面;及 將所施加之前驅體暴露於光,藉此形成該半互穿聚合物網路固體聚合物電解質。
- 如請求項15之方法,其進一步包含向該所施加之前驅體施加熱量。
- 如請求項15之方法,其進一步包含,在將該所施加之前驅體暴露於光之後: 移除該半互穿聚合物網路固體聚合物電解質; 將該半互穿聚合物網路固體聚合物電解質安置於陰極層與陽極層之間,藉此形成陰極-電解質-陽極夾心結構;及 向該陰極-電解質-陽極夾心結構施加壓力。
- 如請求項17之方法,其進一步包含在向該陰極-電解質-陽極夾心結構施加壓力的同時,將熱量施加至該陰極-電解質-陽極夾心結構。
- 如請求項15之方法,其中該基板為用於二次電池單元中之陽極或陰極。
- 如請求項15之方法,其中該半互穿聚合物網路固體聚合物電解質包含: 纖維素聚合物基質,該纖維素聚合物基質包含纖維素聚合物之網路; 分散於該纖維素聚合物基質中之鋰離子; 分散於該纖維素聚合物基質中之陶瓷顆粒,其中該等陶瓷顆粒包含金屬氧化物; 分散於該纖維素聚合物基質中之一或多種塑化劑;及 與該纖維素聚合物基質接觸之一或多種聚合物網路,該一或多種聚合物網路包含交聯含丙烯酸酯之聚合物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/895,769 | 2020-06-08 | ||
US16/895,769 US11855258B2 (en) | 2020-06-08 | 2020-06-08 | Secondary battery cell with solid polymer electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202205722A true TW202205722A (zh) | 2022-02-01 |
TWI771043B TWI771043B (zh) | 2022-07-11 |
Family
ID=78818495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110120549A TWI771043B (zh) | 2020-06-08 | 2021-06-07 | 具有固體聚合物電解質之二次電池單元 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11855258B2 (zh) |
EP (1) | EP4162557A1 (zh) |
JP (1) | JP7560579B2 (zh) |
KR (1) | KR20230022977A (zh) |
CN (1) | CN115917822A (zh) |
TW (1) | TWI771043B (zh) |
WO (1) | WO2021252337A1 (zh) |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3611656B2 (ja) * | 1994-11-22 | 2005-01-19 | 日清紡績株式会社 | イオン導電性高分子固体電解質、組成物及び製造方法 |
JP3475595B2 (ja) * | 1995-08-03 | 2003-12-08 | 日清紡績株式会社 | イオン導電性高分子固体電解質電池 |
JP3233602B2 (ja) | 1996-11-18 | 2001-11-26 | サムスン・ディスプレイ・デバイセス・カンパニー・リミテッド | 固体高分子電解質 |
US5837752A (en) | 1997-07-17 | 1998-11-17 | Massachusetts Institute Of Technology | Semi-interpenetrating polymer networks |
US6124060A (en) | 1998-05-20 | 2000-09-26 | Honda Giken Kogyo Kabushiki Kaisha | Solid polymer electrolytes |
US6524498B1 (en) | 1999-03-23 | 2003-02-25 | Nisshinbo Industries, Inc. | Electrolyte composition for electric double layer capacitor, solid polymer electrolyte composition for polarizable electrode, polarizable electrode, and electric double layer capacitor |
US6645675B1 (en) | 1999-09-02 | 2003-11-11 | Lithium Power Technologies, Inc. | Solid polymer electrolytes |
WO2001089020A1 (en) * | 2000-05-19 | 2001-11-22 | Korea Institute Of Science And Technology | A hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods |
SG103298A1 (en) | 2000-06-16 | 2004-04-29 | Nisshin Spinning | Polymer battery and method of manufacture |
JP2002175837A (ja) | 2000-12-06 | 2002-06-21 | Nisshinbo Ind Inc | 高分子ゲル電解質及び二次電池並びに電気二重層キャパシタ |
US7077983B2 (en) | 2002-12-31 | 2006-07-18 | University Of Chicago | Polymer nanocomposites for lithium battery applications |
US8119273B1 (en) | 2004-01-07 | 2012-02-21 | The United States Of America As Represented By The Department Of Energy | Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same |
DE102007030604A1 (de) | 2007-07-02 | 2009-01-08 | Weppner, Werner, Prof. Dr. | Ionenleiter mit Granatstruktur |
WO2014147648A1 (en) * | 2013-03-19 | 2014-09-25 | Council Of Scientic & Industrial Reserach | High-ionic conductivity electrolyte compositions comprising semi-interpenetrating polymer networks and their composites |
KR101576277B1 (ko) * | 2013-06-13 | 2015-12-09 | 국립대학법인 울산과학기술대학교 산학협력단 | 전해질-전극 합체, 이의 제조 방법, 및 이를 포함하는 전기 화학 소자 |
FR3035544B1 (fr) * | 2015-04-21 | 2017-04-14 | Rhodia Operations | Electrolyte polymere solide et dispositifs electrochimiques le comprenant |
WO2017065035A1 (ja) * | 2015-10-15 | 2017-04-20 | 日本碍子株式会社 | 全固体リチウム電池 |
TWI643378B (zh) | 2016-10-13 | 2018-12-01 | 輝能科技股份有限公司 | 電性絕緣器及其應用之電池 |
US20200112050A1 (en) * | 2017-03-29 | 2020-04-09 | University Of Maryland, College Park | Solid-state hybrid electrolytes, methods of making same, and uses thereof |
KR102657448B1 (ko) * | 2017-07-26 | 2024-04-16 | 주식회사 엘지에너지솔루션 | 이차전지용 고분자 전해질 및 이를 포함하는 리튬 이차전지 |
KR102126371B1 (ko) * | 2017-09-11 | 2020-06-25 | 주식회사 유뱃 | 전기화학 소자 및 그 제조 방법 |
CN109119694A (zh) * | 2018-07-26 | 2019-01-01 | 上海大学 | 含多重网络结构的锂电池 |
JP2021534566A (ja) * | 2018-08-08 | 2021-12-09 | ブライトボルト, インク.Brightvolt, Inc. | 充電式リチウムバッテリ向けの固体ポリマーマトリックス電解質(pme)及びこれで作られたバッテリ |
US11637317B2 (en) * | 2020-06-08 | 2023-04-25 | Cmc Materials, Inc. | Solid polymer electrolyte compositions and methods of preparing same |
-
2020
- 2020-06-08 US US16/895,769 patent/US11855258B2/en active Active
-
2021
- 2021-06-07 WO PCT/US2021/036133 patent/WO2021252337A1/en unknown
- 2021-06-07 JP JP2022575333A patent/JP7560579B2/ja active Active
- 2021-06-07 TW TW110120549A patent/TWI771043B/zh active
- 2021-06-07 KR KR1020237000808A patent/KR20230022977A/ko unknown
- 2021-06-07 CN CN202180041279.6A patent/CN115917822A/zh active Pending
- 2021-06-07 EP EP21821693.5A patent/EP4162557A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TWI771043B (zh) | 2022-07-11 |
JP7560579B2 (ja) | 2024-10-02 |
JP2023528642A (ja) | 2023-07-05 |
CN115917822A (zh) | 2023-04-04 |
US11855258B2 (en) | 2023-12-26 |
US20210384553A1 (en) | 2021-12-09 |
WO2021252337A1 (en) | 2021-12-16 |
KR20230022977A (ko) | 2023-02-16 |
EP4162557A1 (en) | 2023-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI780746B (zh) | 固體聚合物電解質組合物及其製備方法 | |
KR101747468B1 (ko) | 화학 방사선 및 전자 빔 방사선 경화성 전극 결합제 및 그를 포함하는 전극 | |
CN111492508B (zh) | 电极及制作方法、电极元件和非水电解质蓄电元件 | |
KR20180042844A (ko) | 배터리용 나노다공성 세퍼레이터 및 그 제조 방법 | |
JP7137929B2 (ja) | ゲル電解質用組成物 | |
CN102005611A (zh) | 聚合物电解质及其制备方法与应用 | |
CN111490230B (zh) | 电极及其制造方法,电极元件,非水电解液蓄电元件 | |
JP7007466B2 (ja) | 二次固体Li金属電池のための複合ポリマー電解質(CPE)膜及びその製造方法 | |
CN111490229A (zh) | 电极及其制造方法,电极元件,电化学元件 | |
WO2024031853A1 (zh) | 正极极片及其制备方法、电极组件、电池单体和电池 | |
TW201822395A (zh) | 蓄電裝置電極用黏合劑 | |
CN114497432B (zh) | 电极及制作方法、电极元件和非水电解质蓄电元件 | |
TWI771043B (zh) | 具有固體聚合物電解質之二次電池單元 | |
JP6971844B2 (ja) | 電気化学キャパシタ | |
JP2001256826A (ja) | 高分子電解質エレメント、高分子電解質エレメントロールの製造法、高分子電解質エレメントロール及び電池の製造法 | |
JP2016122594A (ja) | 燃料電池用水性触媒ペースト組成物、及び燃料電池 |