KR102126371B1 - 전기화학 소자 및 그 제조 방법 - Google Patents

전기화학 소자 및 그 제조 방법 Download PDF

Info

Publication number
KR102126371B1
KR102126371B1 KR1020180107230A KR20180107230A KR102126371B1 KR 102126371 B1 KR102126371 B1 KR 102126371B1 KR 1020180107230 A KR1020180107230 A KR 1020180107230A KR 20180107230 A KR20180107230 A KR 20180107230A KR 102126371 B1 KR102126371 B1 KR 102126371B1
Authority
KR
South Korea
Prior art keywords
polymer electrolyte
gel polymer
layer
electrochemical device
electrode
Prior art date
Application number
KR1020180107230A
Other languages
English (en)
Other versions
KR20190029459A (ko
Inventor
이창규
이상영
Original Assignee
주식회사 유뱃
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유뱃, 울산과학기술원 filed Critical 주식회사 유뱃
Priority to PCT/KR2018/010542 priority Critical patent/WO2019050356A1/ko
Priority to CN201880059073.4A priority patent/CN111095648A/zh
Priority to US16/646,104 priority patent/US20200203677A1/en
Publication of KR20190029459A publication Critical patent/KR20190029459A/ko
Priority to KR1020200014718A priority patent/KR102414434B1/ko
Application granted granted Critical
Publication of KR102126371B1 publication Critical patent/KR102126371B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • H01M10/044Small-sized flat cells or batteries for portable equipment with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/281Large cells or batteries with stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/281Large cells or batteries with stacks of plate-like electrodes
    • H01M10/282Large cells or batteries with stacks of plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/112Monobloc comprising multiple compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 전기화학 반응에 의해 전기 에너지의 충전 및 방전이 가능한 전기화학 소자 및 그 제조 방법에 관한 것이다. 더욱 구체적으로 본 발명은 별도의 단자를 필요로 하지 않는 전기화학 소자 및 이를 연속적으로 생산하는 방법에 관한 발명이다.

Description

전기화학 소자 및 그 제조 방법{Electrochemical device and manufacturing method thereof}
본 발명은 전기화학 반응에 의해 전기 에너지의 충전 및 방전이 가능한 전기화학 소자 및 그 제조 방법에 관한 것이다. 더욱 구체적으로 본 발명은 별도의 단자를 필요로 하지 않는 전기화학 소자 및 이를 연속적으로 생산하는 방법에 관한 발명이다.
에너지 관련 기술은 최근 통신 기술 및 반도체 제조 기술의 발달에 따른 휴대용 전자 장치에 관한 산업이 팽창하고, 화석 연료의 고갈을 대비하고 환경 보존을 위하여 대체 에너지의 개발 요구가 급격히 증대됨에 따라 활발히 연구되고 있다. 이러한 에너지 관련 기술 중 대표적인 에너지 저장 소자인 전지는 그 중심에 있다.
전지 중 리튬 일차 전지는, 종래의 수용액계 전지에 비해서 고전압이고 에너지 밀도가 높기 때문에 소형화 및 경량화 측면에서 용이하여 광범위하게 적용되고 있다. 이러한 리튬 일차 전지는 휴대용 전자 장치의 주전원이나 백업용 전원에 주로 사용되고 있다. 또 다른 전지인 리튬 이차 전지는 가역성이 우수한 전극 재료를 이용하여 충전 및 방전이 가능한 에너지 저장 소자이다.
리튬 이차 전지는 그 응용에 따라 여러 가지 형상으로 제조되고 있다. 예를 들면 리튬 이차 전지는 원통형, 각형 및 파우치형 등으로 패키징되어 제조된다. 여기에서 파우치형 이차 전지는 경량화가 가능하기 때문에 관련 기술이 꾸준히 발전되고 있다. 통상적으로 파우치형 리튬 이차 전지는 전극 조립체를 수용하는 공간을 구비하는 파우치 외장재의 내부에 전극 조립체를 수용한 후, 파우치 외장재를 밀봉하여 파우치 베어 셀(bare cell)을 형성하고, 상기 파우치 베어 셀에 보호 회로 모듈과 같은 부속품을 부착하여 파우치 코어 팩(core pack)을 형성하여 제조될 수 있다.
그러나 이러한 파우치형 리튬 이차 전지도 패키징 측면에서 리튬 이차 전지의 형상과 크기를 제약하는 요인이 될 뿐만 아니라, 기존의 파우치형 리튬 이차 전지는 전극탭을 포함하므로 하나의 리튬 이차 전지를 제조하기 위해서는 각각의 리튬 이차 전지를 패키징하여 제조해야 하며, 제조가 어렵고 생산성이 저하되며, 다양한 전자 제품에 응용하기 어려운 문제점이 있다.
대한민국 공개특허 제10-2008-0034369(2008.04.21)
상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 전극조립체의 생산 및 패키징 과정이 연속적으로 제조가 가능하여 대량생산 및 생산 비용을 절감하는 효과가 있는 전기화학소자의 제조방법을 제공하는데 있다.
또한 본 발명은 전극조립체의 최외층을 이루는 금속 집전체와, 포장체를 이루는 금속층이 직접 밀착되어 전기적으로 연결됨으로써, 별도의 단자부를 필요로 하지 않는 전기화학소자 및 그 제조방법을 제공하고자 한다.
또한 본 발명은 단자부가 필요 없어 전지의 디자인에 제약이 없이 원형, 반원형, 삼각형, 사각형, 별형 등 다양한 형태로 제조가 가능하여 전지의 디자인이 자율화될 수 있는 전기화학소자 및 그 제조방법을 제공하고자 한다.
또한 본 발명은 연속하여 공급되며, 다수개의 셀 영역이 구비되는 포장체를 사용하고, 열에 의해 합지하여 제조함으로써, 하나의 전기화학 에너지 소자에 다수개의 셀 영역이 구비되도록 형성함으로써, 다수개의 전지 셀들을 연속하여 형성할 수 있고 이를 분할하여 다수개의 전지 셀 영역들이 구비된 전기화학소자를 한 번에 제조하거나 여러 개의 전지 셀들을 제조할 수 있으며, 여러 개의 전지 셀들이 전기적으로 직렬 또는 병렬로 연결되기 용이하도록 하는 전기화학 소자 및 그 제조 방법을 제공하고자 한다.
또한 본 발명은 프린팅 방법으로 제조가 가능한 전극조립체를 이용하여 유연성을 가지므로 플렉서블한 소자에 적용이 가능하고, 평면이 아닌 굴곡이 있는 면에도 적용이 가능한 전기화학소자를 제공하고자 한다.
또한 본 발명은 각 층의 적층 두께 및 층수 조절이 용이한 전기화학소자를 제공하고자 한다.
상기 목적을 달성하기 위한 본 발명의 일 양태는
상부시트 및 하부 시트가 마주하여 일체화되어 형성되는 공간에 수용되는 전극조립체를 포함하며,
상기 상부시트 및 하부시트는 금속층을 포함하고,
상기 상부시트 및 하부시트 중 적어도 어느 하나 이상은 상기 금속층의 가장자리에 실링층을 포함하며,
상기 전극조립체의 양극 및 음극의 집전체가 상기 상부시트 및 하부시트의 금속층과 밀착되어 전기적으로 연결되는 전기화학 소자에 관한 발명이다.
본 발명의 전기화학 소자의 일 양태에서, 상기 전극조립체와 상기 상부시트 및 하부시트의 금속층이 밀착되는 부분 중 적어도 어느 하나 이상의 부분에 접합부를 더 포함하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 하부시트 및 상부시트에서 선택되는 어느 하나 이상의 금속층과 전극조립체 사이에 도전성 접착제층, 도전성 점착제층 및 도전성 페이스트층 등에서 선택되는 어느 하나 이상의 층을 더 포함하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 상부시트 및 하부시트에서 선택되는 어느 하나 이상은 최외층에 절연층을 더 포함하고, 상기 절연층의 일부분은 개방된 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 실링층은 열에 의해 융착이 가능한 고분자 소재로 이루어진 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 실링층은 열에 의해 융착이 가능한 고분자 소재로 이루어진 층 사이에 내열소재로 이루어진 층을 한층 이상 포함하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 실링층 상부에 접착제층을 더 포함하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 실링층은 전극조립체가 위치하는 부분을 제외한 가장자리에 전극조립체의 둘레를 따라 형성된 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 전극조립체는 양극 및 음극을 포함하며, 상기 양극 및 음극 중 적어도 하나 이상은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질을 포함하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 양극은 ⅰ) 집전체 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체, ⅱ) 집전체 상에 전극 활물질 및 바인더를 포함하는 활물질층을 포함하고, 상기 활물질층 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체, 및 ⅲ) 집전체 상에 전극 활물질, 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 복합 활물질층을 포함하는 전극-전해질 복합체에서 선택되고,
상기 음극은 집전체만으로 이루어진 전극 및 상기 ⅰ) 내지 ⅲ)에서 선택되는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 양극은 상기 ⅱ) 및 ⅲ) 에서 선택되고, 상기 음극은 집전체만으로 이루어지거나, 상기 ⅰ)에서 선택되는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 활물질층 및 복합 활물질층은 도전재를 더 포함하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 양극과 음극은 실질적으로 가장자리가 일치하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 양극과 음극 사이에 적어도 하나 이상의 분리막을 더 포함하며, 상기 분리막은 양극 및 음극과 실질적으로 가장자리가 일치하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 분리막은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질을 포함하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 전극조립체는 양극에 제 1 겔 고분자 전해질을 포함하고, 음극에 제 2 겔 고분자 전해질을 포함하며, 상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 서로 상이한 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 용해도 파라미터 차이가 0.1 MPa1/2이상인 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 에너지 준위 차이가 0.01 eV 이상인 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 무기입자 및 난연제에서 선택되는 어느 하나 또는 둘 이상의 첨가제를 더 포함하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 제 1 겔 고분자 전해질은 숙시노니트릴(succinonitrile) 및 세바코니트릴(sebaconitrile)에서 선택되는 어느 하나 또는 이들의 혼합물인 양극발열 억제제를 더 포함하고,
상기 제 2 겔 고분자 전해질은 비닐렌 카보네이트, 불화에틸렌 카보네이트 및 카테콜 카보네이트에서 선택되는 어느 하나 또는 이들의 혼합물인 SEI층 안정화제를 더 포함하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 가교 고분자 매트릭스는 선형 고분자를 더 포함하여 반 상호 침투 망상(semi-IPN) 구조인 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 양극 집전체 및 음극 집전체는 각각 선택적으로 박막형태, 메쉬형태, 전도성기판의 일면 또는 양면에 박막 또는 메쉬 형태의 집전체가 적층되어 일체화된 형태 및 금속-메쉬 복합체로 이루어진 군에서 선택되는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 전기화학 소자는 상기 전극조립체가 하나 또는 둘 이상이 적층된 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 전극조립체는 하나 이상의 바이폴라 전극을 포함하는 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 실링층은 상기 실링층이 형성되지 아니한 홈이 다수개 형성되도록 다수개의 구획격벽을 더 포함하며,
상기 상부 시트 및 하부 시트가 마주하여 일체화되며 형성되는 공간에 다수개의 전극조립체가 포함되어 다수의 셀 영역들이 구비된 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 전기화학 소자는 전기화학반응이 가능한 일차전지 또는 이차전지인 것일 수 있다.
본 발명의 전기화학 소자의 일 양태에서, 상기 전기화학 소자는 리튬 일차 전지, 리튬 이차 전지, 리튬-설퍼 전지, 리튬-공기 전지, 나트륨 전지, 알루미늄 전지, 마그네슘 전지, 칼슘 전지, 아연 전지, 아연-공기 전지, 나트륨-공기 전지, 알루미늄-공기 전지, 마그네슘-공기 전지, 칼슘-공기 전지, 슈퍼 캐패시터, 염료감응 태양전지, 연료전지, 납 축전지, 니켈 카드뮴전지, 니켈 수소 축전지 및 알칼리전지 등으로 이루어진 군에서 선택되는 것일 수 있다.
또한, 본 발명의 다른 양태는 금속층 및 상기 금속층의 일면에 둘레 격벽 및 상기 둘레 격벽의 내측에 전극조립체를 수용하기 위한 공간을 구획하는 구획 격벽을 포함하는 격벽 패턴을 이루는 실링층을 포함하는 하부시트를 공급하고,
상기 하부시트의 전극조립체를 수용하기 위한 공간에 전극조립체를 적층하고,
금속층을 포함하는 상부시트를 공급하여 합지하는 단계를 포함하여, 연속적으로 제조되는 전기화학소자의 제조방법에 관한 발명이다.
본 발명의 전기화학소자의 제조방법의 일 양태에서, 상기 합지 시, 상기 전극조립체의 양극 집전체 및 음극 집전체가 각각 상기 상부시트의 금속층 및 하부시트의 금속층과 밀착되도록 합지하는 것일 수 있다.
본 발명의 전기화학소자의 제조방법의 일 양태에서, 상기 합지 후, 하부시트 및 상부시트의 금속층과 전극조립체가 밀착되는 부분을 용접 또는 납땜하여 접합부를 형성하는 단계를 더 포함하는 것일 수 있다.
본 발명의 전기화학소자의 제조방법의 일 양태에서, 상기 하부시트 및 상부시트의 금속층 상에 도전성 접착제, 도전성 점착제 및 도전성 페이스트에서 선택되는 어느 하나 이상을 도포하는 단계를 더 포함하는 것일 수 있다.
본 발명의 전기화학소자의 제조방법의 일 양태에서, 상기 합지 후, 실링층에 의해 밀봉된 부분을 절단하는 단계를 더 포함하는 것일 수 있다.
본 발명은 다수개의 전기화학소자를 연속적으로 생산할 수 있어 생산성이 매우 향상되는 효과가 있다. 즉, 프린팅 방법으로 전극조립체의 제조가 가능하고, 연속하여 공급되는 다수개의 셀 영역이 구비되는 포장체를 사용하므로 연속적으로 대량 생산이 가능한 효과가 있다.
또한 다수의 전극조립체를 적층하거나 바이폴라 형태의 전극을 사용한 전극조립체를 사용할 수 있어 용도에 따라 변경이 용이한 전기화학소자를 제조할 수 있는 효과가 있다.
또한, 분할된 전기화학소자는 직렬 또는 병렬로 연결이 용이하여 다양한 전자제품들에 응용이 될 수 있다.
또한, 포장체의 금속층과, 전극조립체의 집전체가 서로 밀착되어 모든 부위에서 전기적으로 연결되므로 별도의 단자부를 필요로 하지 않아 생산 공정이 간단해지고, 실링층끼리 밀봉된 부분을 절단하여 전지셀로 분할을 할 때 원하는 부위에서 절단하여 원하는 개수만큼 병렬로 연결된 전지셀의 제조가 가능하므로 원하는 용량의 전지를 효율적으로 제조할 수 있는 효과가 있다.
또한, 포장체의 금속층과 전극조립체의 집전체가 서로 밀착되는 부위에 용접(welding)이나 납땜 등의 방법을 통해 접합부를 형성함으로써 컨택저항을 줄이고, 전기적인 성능이 더욱 향상되는 전지를 제조할 수 있으며, 충방전 효율이 향상되고, 충격특성이 향상된 전지를 제공할 수 있다.
도 1은 본 발명의 일 양태에 따른 전기화학소자의 단면을 도시한 것이다.
도 2는 본 발명의 하부시트 및 상부시트의 일 양태를 나타낸 사시도이다.
도 3은 본 발명의 일 양태에 따른 전기화학소자의 단면을 도시한 것이다.
도 4는 본 발명의 일 양태에 따른 전기화학소자의 단면을 도시한 것이다.
도 5는 본 발명의 일 양태에 따른 전기화학소자의 단면을 도시한 것이다.
도 6은 본 발명의 일 양태에 따른 전기화학소자의 단면을 도시한 것이다.
도 7은 본 발명의 하부시트 및 상부시트의 일 양태를 나타낸 단면도이다.
도 8은 본 발명의 하부시트 및 상부시트의 일 양태를 나타낸 단면도이다.
도 9는 본 발명의 하부시트 및 상부시트의 일 양태를 나타낸 단면도이다.
도 10은 본 발명의 하부시트 및 상부시트의 일 양태를 나타낸 사시도이다.
도 11은 본 발명의 전극조립체의 일 양태를 나타낸 단면도이다.
도 12는 본 발명의 전극조립체의 일 양태를 나타낸 단면도이다.
도 13은 본 발명의 전극조립체의 일 양태를 나타낸 단면도이다.
도 14는 본 발명의 전극조립체의 일 양태를 나타낸 단면도이다.
도 15는 본 발명의 전극조립체의 일 양태를 나타낸 단면도이다.
도 16은 본 발명의 일 양태에 따른 전극조립체를 제조하는 방법을 개략적으로 설명하기 위한 단면도이다.
도 17은 본 발명의 전극조립체를 제조하는 방법을 개략적으로 설명하기 위한 사시도이다.
도 18은 본 발명의 전극조립체의 일 양태를 나타낸 단면도이다.
도 19는 본 발명의 일 양태에 따른 전극조립체를 제조하는 방법을 개략적으로 설명하기 위한 단면도이다.
이하 첨부된 도면들을 포함한 구체예 또는 실시예를 통해 본 발명을 더욱 상세히 설명한다. 다만 하기 구체예 또는 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 발명에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
[전기화학소자]
먼저, 본 발명의 전기화학소자를 도면을 참고하여 구체적으로 설명한다.
도 1 및 도 18은 본 발명의 일 양태에 따른 전기화학소자의 단면을 도시한 것이고, 도 2는 본 발명의 하부시트 및 상부시트의 일 양태를 나타낸 사시도이다.
도 1은 포장체인 하부시트(200) 및 상부시트(300)가 금속층(201, 301)을 포함하고, 상기 하부시트(200) 및 상부시트(300)에 각각 실링층(202, 302)을 포함하는 경우이고, 도 18은 포장체인 하부시트(200) 및 상부시트(300)가 금속층(201, 301)을 포함하고, 상기 하부시트(200) 및 상부시트(300) 중 어느 하나에 실링층을 포함하는 경우의 일 양태를 도시한 것이다. 도 18은 임의적으로 하부시트에 실링층(202)을 포함하는 경우를 예시하였으나 이에 제한되지 않고, 상부시트에 포함될 수 있다.
이하는 포장체에 대하여 하부시트(200) 및 상부시트(300)에 각각 실링층(202, 302)을 포함하는 도 1과 같은 양태를 참고하여 설명하지만 이는 구체적으로 설명하기 위한 예시일 뿐 이에 제한되는 것은 아니다.
도 1 및 도 2를 살피면, 본 발명의 전기화학소자(1000)는 전극조립체(100)와, 이의 표면을 감싸는 포장체로 이루어진다. 상기 포장체는 하부시트(200) 및 상부시트(300)를 포함하여 이루어진다. 또한, 상기 하부시트(200) 및 상부시트(300)는 금속층(201, 301) 및 상기 금속층의 가장자리에 형성된 실링층(202, 302)과, 상기 실링층의 내측에는 상기 실링층이 형성되지 아니한 홈(213, 313)을 포함한다.
상기 하부시트(200) 및 상부시트(300)의 금속층 및 실링층은 서로 동일한 소재로 이루어지는 것일 수 있으며, 서로 상이한 소재도 가능하다. 상기 포장체의 구체적인 일 양태는 도 7 내지 도 10에서 더욱 구체적으로 설명하기로 한다.
도 1에 도시된 바와 같이 상기 상부 시트(300) 및 하부 시트(200)의 실링층(202, 302)이 마주하여 일체화되어 형성되는 공간에 전극조립체(100)가 수용된다. 또는 도 18에 도시된 바와 같이 금속층(301)을 포함하는 상부시트(300)와 금속층(201) 및 실링층(202)을 포함하는 하부시트(200)가 마주하여 일체화되어 형성되는 공간에 전극조립체(100)가 수용된다.
상기 전극조립체(100)가 수용되는 공간은 전극조립체(100)의 크기와 같거나 전극조립체(100)보다 더 클 수 있다. 전극조립체(100)가 수용되는 공간이 전극조립체(100)보다 더 큼으로써 생기는 여유공간은 전기화학소자의 사용 중에 발생할 수 있는 가스(gas)등에 의한 내부압력 상승의 완충공간으로 작용함으로써 전기화학소자의 내구성 및 안전성을 향상시키는데 기여할 수 있다.
상기 실링층은 열에 의해 융착 및 밀폐될 수 있는 고분자 소재로 이루어진 것일 수 있으며, 더욱 구체적으로는 열가소성 수지로 이루어진 것일 수 있다. 또는 열에 의해 융착이 가능한 고분자 소재로 이루어진 층 및 내열소재로 이루어진 층이 서로 교대로 한층 이상 적층된 것일 수 있으며, 상기 내열소재는 내열수지 또는 금속으로 이루어진 것일 수 있다.
본 발명의 일 양태에 따른 전기화학소자는 전극조립체의 사면이 실링층에 의해 밀봉되는 것일 수 있다. 또한, 상기 전극조립체(100)는 구체적으로 도시되지 않았지만, 양극 및 음극을 포함하며, 상기 양극 및 음극은 분리막 또는 겔 고분자 전해질층에 의해 양극 및 음극이 분리된 것일 수 있다. 또한, 상기 전극조립체의 최외층을 이루는 양극 집전체 및 음극 집전체가 각각 상기 상부시트의 금속층 및 하부시트의 금속층과 밀착되어 전기적으로 연결되는 것을 특징으로 한다.
또한 이와 같이 셀의 모든 부분이 전기적으로 연결 가능하므로 전지 셀의 형태에 제한이 없으며, 단자부를 필요로 하지 않는다. 그러나 필요에 따라서는 단자부를 형성할 수 있으므로 이를 배제하는 것은 아니다.
또한 연속하여 제조가 가능하며 필요한 전지 셀의 용량을 고려하여 원하는 갯수만큼 절단하여 제조할 수 있다. 상기 전극조립체(100)의 구체적인 양태는 도 11 내지 도 15에서 더욱 구체적으로 설명하기로 한다.
본 발명의 전기화학소자는 도 1 및 도 18에 도시된 바와 같이 별도의 단자부를 형성하지 않으므로 제조 및 사용이 간편한 장점이 있다. 또한, 도 1 및 도 18과 같이 전극조립체(100)의 최외부를 이루는 양극 집전체 및 음극 집전체가 각각 상기 상부시트의 금속층(301) 및 하부시트의 금속층(201)과 밀착되도록 하기 위해서 전극조립체의 두께(W1)는 실링층(202, 302)의 두께와 동일하거나 또는 실링층의 두께보다 더 두꺼운 것일 수 있다.
도 3은 본 발명의 다른 양태에 따른 전기화학소자의 단면을 도시한 것이다. 도 3에 도시된 바와 같이, 본 발명의 전기화학소자(1000)는 상부시트(300)의 금속층(301) 및 하부시트(200)의 금속층(201)과 전극조립체(100)가 밀착되는 부분(W2)의 일부 또는 전부에 접합부(400)를 더 포함하는 것일 수 있다. 상기 접합부를 형성함으로써 접촉 저항(contact resistance)을 줄일 수 있으므로 전기적인 성능을 더욱 향상시키고, 충방전 효율이 향상되며, 출력 특성이 더욱 향상될 수 있는 효과가 있다. 상기 접합부(400)는 금속층과 전극조립체의 집전체가 밀착되는 부분(W2)에 형성되는 것일 수 있으며, 일부분에만 형성되거나 전부에 형성되는 것일 수 있으나, 제조가 용이한 점에서 일부분에만 형성하는 것일 수 있다. 상기 접합부(400)는 용접 및 납땜 등에 의해 형성되는 것일 수 있으며, 이에 제한되는 것은 아니다. 상기 용접은 저항 용접, 초음파 용접 및 레이저 용접 등의 방법으로 스팟 또는 스트라이프 형태로 형성되는 것일 수 있으며, 이에 제한되는 것은 아니다. 또한, 상기 납땜을 하는 경우는 금속층(201, 301)의 안쪽에, 즉 전극조립체가 밀착되는 부분에 솔더링 페이스트를 더 포함하는 것일 수 있다.
도 4는 본 발명의 다른 양태에 따른 전기화학소자의 단면을 도시한 것이다. 도 4에 도시된 바와 같이, 본 발명의 전기화학소자(1000)는 상부시트(300)의 금속층(301) 및 하부시트(200)의 금속층(201)과 전극조립체(100)가 밀착되는 부분(W2)에 도전성 접착제층, 도전성 점착제층 및 도전성 페이스트층 등에서 선택되는 어느 하나 이상의 도전성층(203, 303)을 더 포함하는 것일 수 있다. 상기 도전성 접착제층, 도전성 점착제층 및 도전성 페이스트층은 통상적으로 해당분야에서 사용되는 것이라면 제한되지 않으며, 상부시트의 금속층 및 하부시트의 금속층과, 전극조립체가 더욱 잘 밀착될 수 있도록 하고, 전기가 더욱 잘 통할 수 있도록 할 수 있다. 또한, 도시되지 않았지만 필요에 따라 상기 도 3과 같이 접합부(400)를 더 포함하는 것일 수 있다.
도 5는 본 발명의 다른 양태에 따른 전기화학소자의 단면을 도시한 것이다. 도 5에 도시된 바와 같이, 본 발명의 전기화학소자(1000)는 상부시트(300) 및 하부시트(200)에서 선택되는 어느 하나 이상의 금속층(201, 301)의 외부 표면에 각각 절연층(304, 204)을 더 포함하는 것일 수 있다. 절연층을 더 포함함으로써 금속층의 외부에서 외부물질로부터 전극조립체를 보호하고, 외부와 전기적으로 절연시킬 수 있다. 이때 도 5에 도시된 바와 같이, 상기 절연층(204, 304)은 일부분이 개방되어 절연층이 형성되지 않은 홈(205, 305)을 포함하는 것일 수 있다. 상기 홈(205, 305)은 상부시트(300)의 및 하부시트(200)의 어느 부분(W3)에 형성되어도 모두 전기가 통하므로 무방하며, 상기 홈(205, 305)을 통해 외부로 전기를 보낼 수 있다. 이때 별도의 단자가 더 포함될 수 있으나 별도의 단자 없이도 이루어질 수 있다.
본 발명의 일 양태에서 상기 절연층(204, 304)은 전기적 절연성을 갖는 재질이라면 제한되지 않고 사용될 수 있으며, 금속층의 외부에서 외부물질로부터 전극조립체를 보호하고, 외부와 전기적으로 절연시킬 수 있는 것이라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면 폴리에틸렌, 폴리프로필렌, 무연신 폴리프로필렌(Casted polypropylene, CPP), 폴리스티렌, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 폴리염화비닐리덴, 폴리아마이드, 셀룰로오스 수지 및 폴리이미드 수지 등이 사용될 수 있으며, 이에 제한되는 것은 아니다. 또한, 한층 또는 두층 이상이 적층되는 것일 수 있다. 또한, 도시되지 않았지만 필요에 따라 상기 도 3과 같이 접합부(400)를 더 포함하는 것일 수 있다.
도 6은 본 발명의 다른 양태에 따른 전기화학소자의 단면을 도시한 것이다. 도 6에 도시된 바와 같이, 본 발명의 전기화학소자(1000)는 상부시트(300)의 실링층(302) 및 하부시트(200)의 실링층(202)에서 선택되는 어느 하나 이상에 접착제층(206, 306)을 더욱 포함하는 것일 수 있다. 도 1에서 설명한 바와 같이 실링층(202, 302)은 열에 의해 융착 및 밀폐될 수 있는 고분자 소재로 이루어진 것일 수 있어 가열판 또는 가열 롤러 등을 이용하여 가열 압착함으로써 실링층(202, 302)이 용융되어 밀폐될 수 있으나, 접착력을 더욱 향상시키기 위하여 별도의 접착제층(206, 306)을 형성하는 것일 수 있다. 이때 사용되는 접착제는 통상적으로 해당분야에서 사용되는 것이라면 제한되지 않으며, 실링층에 사용되는 고분자 소재와의 접착성 및 전극조립체와의 화학적인 안정성이 우수한 접착제라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면 아크릴계 접착제, 에폭시계 접착제 및 셀룰로오스계 접착제 등을 사용할 수 있으며, 이에 제한되는 것은 아니다. 또한, 도시되지 않았지만 필요에 따라 상기 도 3과 같이 접합부(400)를 더 포함하는 것일 수 있다.
본 발명의 일 양태에서 상기 전기화학 소자는 전기화학반응이 가능한 일차전지 또는 이차전지인 것일 수 있다.
더욱 구체적으로, 리튬 일차 전지, 리튬 이차 전지, 리튬-설퍼 전지, 리튬-공기 전지, 나트륨 전지, 알루미늄 전지, 마그네슘 전지, 칼슘 전지, 나트륨-공기 전지, 알루미늄-공기 전지, 마그네슘-공기 전지, 칼슘-공기 전지, 슈퍼 캐패시터, 염료감응 태양전지, 연료전지, 납 축전지, 니켈 카드뮴전지, 니켈 수소 축전지 및 알칼리전지 등인 것일 수 있으며, 이에 제한되는 것은 아니다.
[상부시트 및 하부시트]
다음으로 본 발명의 상부시트 및 하부시트에 대하여 더욱 구체적으로 설명한다. 본 발명의 일 양태에서, 상기 하부시트(200) 및 상부시트(300)는 동일한 소재로 이루어지는 것일 수 있으며, 더욱 구체적으로 그 적층구성을 살피면 다음과 같다. 상부시트 및 하부시트는 도 2 및 도 7 내지 10에 더욱 구체적으로 예시되어 있다. 하부시트 및 상부시트는 그 구성이 동일할 수 있으므로 도 2 및 도 7 내지 10은 편의상 하부시트(200)를 기준으로 도시하였으며, 괄호 안에 기재된 숫자는 상부시트(300)의 부호를 나타낸다. 또한, 도 2 및 도 7 내지 9는 절단에 의해 제조된 하나의 전기화학소자에 포함되는 하부시트 및 상부시트를 도시한 것이며, 도 10은 본 발명의 제조방법에서 다수개의 전지셀을 제조하기 위하여 롤에서 연속적으로 공급되는 하부시트 및 상부시트의 일 예를 도시한 것이다.
상기 하부시트(200) 및 상부시트(300)는 도 2에 도시된 바와 같이, 금속층(201, 301), 상기 금속층의 가장자리에 형성된 실링층(202, 302) 및 상기 실링층의 내측에는 상기 실링층이 형성되지 아니한 홈(213, 313)을 포함하는 것일 수 있다. 상기 실링층이 형성되지 아니한 홈(213, 313)은 전극조립체(100)를 수용하기 위한 것으로, 상기 홈의 형태는 전극조립체의 둘레를 따라 형성되는 것일 수 있다. 또한 상기 홈(213, 313)의 단면적의 크기는 전극조립체(100)의 크기와 같거나 더 클 수 있다.
본 발명의 일 양태에서 상기 금속층(201, 301)은 전기화학소자의 포장체를 이루므로 기계적인 강도 및 가스와 수분 등의 유입을 방지할 수 있는 소재인 것이 바람직하다. 당업계에서 사용될 수 있는 금속이라면 특별히 제한되지 않지만 구체적으로 예를 들면, 알루미늄, 구리, 스테인레스, 니켈, 니켈도금을 실시한 철, 또는 이 금속들의 둘 이상의 합금 및 2종 이상의 금속이 적층된 클래드메탈(clad metal) 등인 것일 수 있다. 이중 알루미늄의 경우 무게가 가볍고, 기계적인 강도가 우수하며, 전극조립체 및 전해질의 전기 화학적 성질에 대한 안정성이 우수하므로 바람직하나 이에 제한되는 것은 아니다. 상기 금속층의 두께는 제한되는 것은 아니나 접합부 형성 시 가공성 및 수분 등의 침투를 방지하기 위한 관점에서 0.1 내지 200 ㎛, 더욱 구체적으로 1 내지 100 ㎛인 것일 수 있다.
본 발명의 일 양태에서 상기 실링층은 열에 의해 용융되어 실링될 수 있는 소재라면 제한되지 않고 사용될 수 있으며, 금속층과의 접착성이 우수한 소재인 것이 더욱 바람직할 수 있다. 구체적으로 예를 들면, 폴리에틸렌, 폴리프로필렌, 무연신 폴리프로필렌(Casted polypropylene, CPP), 무수말레인산이 그라프트된 폴리에틸렌, 무수말레인산이 그라프트된 폴리프로필렌, 폴리스티렌, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 폴리염화비닐리덴, 폴리아마이드, 셀룰로오스 수지 및 이들 둘 이상의 소재를 컴파운드하여 제조된 수지 등이 사용될 수 있으며, 이에 제한되는 것은 아니다. 또한, 한층 또는 두층 이상이 적층되는 것일 수 있다.
상기 실링층의 두께가 너무 얇은 경우 또는 실링하는 온도가 너무 높은 경우는 실링부에 열을 가하여 실링을 하는 과정에서 실링층(202, 302)이 너무 얇아지거나, 녹아버려 금속층(201, 301)끼리 달라붙어 쇼트가 발생할 수 있다. 따라서 도 7에 도시된 바와 같이, 본 발명의 실링층은 내열소재로 이루어진 층(215)을 더 포함함으로써 실링을 하는 과정에서 쇼트가 발생하는 것을 방지하고, 스페이서 역할을 충분히 할 수 있도록 할 수 있다. 더욱 구체적으로, 상기 실링층은 열에 의해 융착이 가능한 고분자 소재로 이루어진 층(214) 사이에 내열소재로 이루어진 층(215)을 한층 이상 포함하는 것일 수 있다. 즉, 열융착 가능한 고분자 소재/내열소재/열융착 가능한 고분자 소재 등과 같은 순으로 적층된 것일 수 있다. 그 적층 개수 및 두께는 제한되지 않는다. 상기 내열소재는 알루미늄 등의 금속 또는 나일론, 폴리에틸렌테레프탈레이트, 폴리페닐렌설파이드, 폴리프로필렌, 폴리이미드, 폴리아마이드이미드 등의 내열수지 등으로 이루어진 것일 수 있으며, 이에 제한되는 것은 아니다. 상기 내열소재의 두께는 전체 실링부의 두께(W1)보다 얇은 것이 바람직하다.
상기 도 7 내지 도 9는 본 발명의 하부시트 및 상부시트의 다른 양태를 나타낸 단면도이다.
도 7에 도시된 바와 같이, 상기 하부시트(200) 및 상부시트(300) 중 적어도 어느 하나 이상은 금속층(201, 301) 및 상기 금속층의 가장자리에 형성된 실링층(202, 302) 및 상기 실링층의 내측에는 상기 실링층이 형성되지 아니한 홈(213, 313)을 포함하고, 상기 홈(213, 313)에는 도전성 접착제층, 도전성 점착제층 및 도전성 페이스트층에서 선택되는 어느 하나 이상의 도전성층(203, 303)이 형성된 것일 수 있다. 상기 도전성 접착제층(203, 303)은 전극조립체와 금속층 간의 밀착력을 더욱 우수하게 하여 전기적인 연결을 더욱 우수하게 하기 위한 것이다. 상기 도전성 접착제층, 도전성 점착제층 및 도전성 페이스트층은 통상적으로 해당 분야에서 사용되는 것이라면 제한되지 않고 사용될 수 있다. 상기 도전성 접착제층, 도전성 점착제층 및 도전성 페이스트층에서 선택되는 어느 하나 이상의 층의 두께는 제한되지 않으나 구체적으로 예를 들면 0.1 내지 10 ㎛인 것일 수 있다.
더욱 구체적으로 상기 도전성 접착제는 금속분말, 도전성 물질 및 바인더 등의 혼합물로 이루어진 것일 수 있다. 즉, 은, 아연, 구리 등 금속 분말; 금속 섬유, 탄소 분말, 탄소섬유, 탄소나노튜브 등 탄소계 입자 등의 도전성 물질; 및 아크릴계 수지, 에폭시계 수지, 우레탄계 수지, 셀룰로오스계 수지, 접착성 폴리올레핀 수지 구체적으로, 무수말레인산이 그라프트된 폴리올레핀, 아크릴산이 그라프트된 폴리올레핀 등 고분자 물질로 이루어진 바인더의 혼합물로 이루어진 것을 사용할 수 있다. 사용하는 금속 분말 및 탄소 분말의 크기는 10nm 내지 10㎛인 것일 수 있다. 금속 섬유 및 탄소 섬유의 직경은 10 nm 내지 10㎛ 이하이며, 길이는 10㎛ 내지 30mm인 것일 수 있으며, 이에 제한되는 것은 아니다.
또한 앞서 설명한 바와 같이, 본 발명의 실링부(202, 302)는 내열소재로 이루어진 층(215)을 더 포함함으로써 실링을 하는 과정에서 쇼트가 발생하는 것을 방지하고, 스페이서 역할을 충분히 할 수 있도록 할 수 있다.
도 8에 도시된 바와 같이, 상기 하부시트(200) 및 상부시트(300)는 금속층(201, 301) 및 상기 금속층의 가장자리에 형성된 실링층(202, 302) 및 상기 실링층의 내측에는 상기 실링층이 형성되지 아니한 홈(213)을 포함하고, 상기 실링층이 형성된 반대면에 절연층(204, 304)을 더 포함하는 것일 수 있다. 이때 상기 절연층의 일부분은 개방되어 절연층이 형성되지 않은 홈(205, 305)을 포함하는 것일 수 있다. 상기 홈(205, 305)은 상부시트(300)및 하부시트(200)에서 선택되는 어느 하나 이상에 형성되는 것일 수 있으며, 일부분에 형성되는 것일 수 있다. 상기 홈(205, 305)을 통해 외부로 전기를 보낼 수 있다. 본 발명의 일 양태에서 상기 절연층은 전기적 절연성을 갖는 재질이라면 제한되지 않고 사용될 수 있으며, 금속층의 외부에서 외부물질로부터 전극조립체를 보호하고, 외부와 전기적으로 절연시킬 수 있는 것이라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면 폴리에틸렌, 폴리프로필렌, 무연신 폴리프로필렌(Casted polypropylene, CPP), 폴리스티렌, 폴리에틸렌테레프탈레이트, 폴리염화비닐, 폴리염화비닐리덴, 폴리이미드, 폴리아마이드 및 셀룰로오스 수지 등이 사용될 수 있으며, 이에 제한되는 것은 아니다. 또한, 한층 또는 두층 이상이 적층되는 것일 수 있다.
또한, 상기 절연층의 두께는 제한되는 것은 아니며, 구체적으로 예를 들면 0.1 내지 50 ㎛인 것일 수 있다.
도 9에 도시된 바와 같이, 상기 하부시트(200) 및 상부시트(300)는 금속층(201, 301) 및 상기 금속층의 가장자리에 형성된 실링층(202, 302) 및 상기 실링층의 내측에는 상기 실링층이 형성되지 아니한 홈(213, 313)을 포함하고, 상기 실링층(202, 302)의 상부에 접착제층(206, 306)을 더 포함하는 것일 수 있다. 상기 실링층(202, 302)은 열에 의해 융착 및 밀폐될 수 있는 고분자 소재로 이루어지거나, 열에 의해 융착이 가능한 고분자 소재로 이루어진 층 사이에 내열소재로 이루어진 층을 한층 이상 포함하는 것일 수 있다. 또한 가열판 또는 가열 롤러 등을 이용하여 가열 압착함으로써 실링층(202, 302)이 용융되어 밀폐될 수 있으나, 접착력을 더욱 향상시키기 위하여 별도의 접착제층(206, 306)을 형성하는 것일 수 있다. 이때 사용되는 접착제는 통상적으로 해당분야에서 사용되는 것이라면 제한되지 않으며, 실링층에 사용되는 고분자 소재와의 접착성 및 전극조립체와의 화학적인 안정성이 우수한 접착제라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면, 아크릴계 수지, 우레탄계 수지, 에폭시계 수지 등을 사용할 수 있으며, 이에 제한되는 것은 아니다.
도 10은 본 발명에서 다수개의 전기화학소자를 제조하기 위하여 롤에서 연속적으로 공급되는 하부시트 및 상부시트의 일 양태를 나타낸 사시도이다. 도 10에 도시된 바와 같이, 금속층(201, 301) 및 상기 금속층의 일면에 둘레 격벽(211, 311) 및 상기 둘레 격벽의 내측에 전극조립체를 수용하기 위한 공간(213, 313)을 구획하는 구획 격벽(212, 312)을 포함하는 격벽 패턴을 이루는 실링층(202, 302)을 포함하는 것일 수 있다. 상기 도 10은 전극조립체를 수용하기 위한 공간이 다수개 형성됨을 보이기 위한 일 양태로써 편의상 4개의 공간을 갖는 것으로 도시하였지만 이에 제한되는 것이 아니다. 또한, 도 1 또는 도 17에 도시된 바와 같이 전지 셀의 개수를 필요에 따라 절단하여 하나의 전지 셀로 이루어진 전기화학 소자(도 1 및 도 18) 또는 다수의 전지 셀로 이루어진 전기화학 소자(도 17)를 제조할 수 있다. 이때, 절단하기 용이하도록 둘레 격벽(211, 311)의 두께(W5)보다 구획 격벽(212, 312)의 두께(W4)가 더 두껍게 형성되는 것일 수 있다. 즉, 하나의 전지 셀로 이루어진 전기화학소자(1000)인 것일 수 있으며, 또는 다수개의 전지 셀이 연결된 전기화학소자(2000)인 것일 수 있다.
[전극조립체]
본 발명의 일 양태에서 상기 전극조립체는 양극 및 음극을 포함하여 하나의 세트로 할 때, 하나 이상의 세트가 적층된 것일 수 있다. 또한 상기 양극 및 음극 사이에 하나 이상의 겔 고분자 전해질층 또는 하나 이상의 분리막을 포함하는 것일 수 있다. 또는 하나의 집전체 상에 양극 및 음극이 양면에 형성되는 바이폴라 형태의 전극을 포함하는 것일 수 있다.
본 발명의 일 양태에서 상기 전극조립체는 양극 및 음극을 포함하며, 상기 양극 및 음극 중 적어도 하나 이상은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질을 포함하여 전극-전해질 복합체를 이루는 것일 수 있다. 즉, 본 발명의 전극조립체는 양극, 분리막 및 음극이 적층된 상태에서 액체전해질이 주입되는 것도 가능하나, 바람직하게는 양극 및 음극에서 선택되는 어느 하나 이상에 겔 고분자 전해질 조성물을 도포하여 양극-전해질 복합체 또는 음극-전해질 복합체로 제조되는 것일 수 있으며, 이와 같이 도포에 의해 제조가 가능하므로 연속적으로 제조가 가능한 특징이 있다.
또한, 본 발명의 일 양태의 전극조립체에서 상기 양극과 음극은 실질적으로 가장자리가 일치하는 것일 수 있다. 상기 용어 ‘실질적으로’는 오차범위가 ± 10 ㎛ 이내인 것을 의미한다. 즉, 실질적으로 가장자리가 일치한다는 것은 완전히 일치하거나 또는 오차범위가 ± 10 ㎛ 이내의 범위로 일치됨을 의미한다.
또한 본 발명의 일 양태에서 상기 전극조립체는 상기 양극과 음극 사이에 적어도 하나 이상의 분리막을 더 포함하며, 상기 분리막은 양극 및 음극과 실질적으로 가장자리가 일치하는 것일 수 있다. 또한, 상기와 같이 양극과 음극 사이에 분리막을 포함하는 경우 상기 분리막은 액체전해질 또는 겔 고분자 전해질이 포함될 수 있다.
본 발명의 일 양태에 따른 전극조립체는 코팅방법으로 양극 및 음극을 제조할 수 있으며, 양극, 분리막 및 음극이 적층된 상태에서 타발 등의 방법에 의해 전극조립체를 제조할 수 있으므로, 양극, 분리막 및 음극의 크기가 실질적으로 동일한 것일 수 있다. 구체적으로 양극 및 분리막이 적층된 상태에서 겔 고분자 전해질 조성물을 도포 및 경화하여 양극 및 분리막에 겔 고분자 전해질을 포함하도록 하고, 여기에 음극을 적층하여 제조하는 것일 수 있으며, 이와 같이 전 과정이 도포방법으로 제조되므로 연속적으로 제조가 가능하며, 제조시간이 매우 단축될 수 있다.
<양극>
본 발명의 일 양태에서 상기 양극은 다양한 양태로 이루어진 것일 수 있으며, 예를 들면 집전체만으로 이루어진 전극, 집전체 상에 양극 활물질 및 바인더를 포함하는 활물질층이 코팅된 전극, 및 집전체 상에 양극 활물질, 가교 고분자 매트릭스 및 액체전해질을 포함하는 복합 활물질층이 코팅된 복합전극에서 선택되는 것일 수 있다. 더욱 좋게는 이온의 전도도를 향상시키기 위한 관점에서 상기 양극은 액체전해질 또는 겔 고분자 전해질을 포함하는 것일 수 있다. 상기 활물질층을 포함하는 전극의 경우 활물질층 상에 액체전해질 또는 겔 고분자 전해질을 도포하여 일부 또는 전부 함침시키거나 표층에 포함되도록 하는 것일 수 있다. 또한, 가교 고분자 매트릭스로 이루어진 경우는 겔 고분자 전해질층과의 밀착력 및 계면 접착력이 더욱 향상될 수 있으므로 바람직하나 이에 제한되는 것은 아니다.
더욱 구체적으로 예를 들면, 상기 양극은 ⅰ) 집전체 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체, ⅱ) 집전체 상에 전극 활물질 및 바인더를 포함하는 활물질층을 포함하고, 상기 활물질층 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체, 및 ⅲ) 집전체 상에 전극 활물질, 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 복합 활물질층을 포함하는 전극-전해질 복합체 및 ⅳ) 상기 ⅲ)의 복합 활물질층 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체에서 선택되는 것일 수 있다.
더욱 좋게는 상기 양극은 상기 ⅱ) 및 ⅲ) 에서 선택되는 것일 수 있다.
상기 집전체는 해당 기술 분야에서 사용되는 전도성이 우수한 기판이라면 제한되지 않으며, 전도성 금속, 전도성 금속산화물 등에서 선택되는 어느 하나를 포함하는 것으로 이루어진 것일 수 있다. 또한, 집전체는 기판 전체가 전도성 재료로 이루어지거나, 절연성 기판의 일면 또는 양면에 전도성 금속, 전도성 금속 산화물, 전도성 고분자 등이 코팅된 형태인 것일 수 있다. 또한, 상기 집전체는 유연성 기판으로 이루어진 것일 수 있으며, 쉽게 굽혀질 수 있어 플렉서블한 전자소자를 제공할 수 있다. 또한, 굽혔다가 다시 원래 형태로 되돌아가는 복원력을 갖는 소재로 이루어진 것일 수 있다. 또한 상기 집전체는 박막형태, 메쉬형태, 전도성기판의 일면 또는 양면에 박막 또는 메쉬 형태의 집전체가 적층되어 일체화된 형태 및 금속-메쉬 복합체로 이루어진 군에서 선택되는 것일 수 있다. 상기 금속-메쉬 복합체는 박막형태의 금속과 메쉬형태의 금속 또는 고분자 소재를 가열 압착하여 일체화함으로써 메쉬의 구멍 사이에 금속 박막이 끼어들어가 일체화되어 구부려도 금속 박막이 깨지거나 크랙이 발생하지 않는 것을 의미한다. 이와 같이 금속-메쉬 복합체를 사용하는 경우는 전지의 굽힘 시, 또는 충방전 시 집전체에 크랙이 발생하는 것을 방지할 수 있어 더욱 바람직하나 이에 제한되는 것은 아니다. 더욱 구체적으로 예를 들면, 집전체는 알루미늄, 스테인레스 스틸, 구리, 니켈, 철, 리튬, 코발트, 티타늄, 니켈 발포체, 구리 발포체, 전도성 금속이 코팅된 폴리머 기재 및 이들의 복합체 등으로 이루어진 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 양극의 ⅱ)양태는 집전체 상에 양극 활물질 및 바인더를 포함하는 양극활물질 조성물을 도포하여 활물질층이 코팅된 것일 수 있다. 또한, 상기 활물질층 상에 겔 고분자 전해질을 이루기 위한 조성물을 도포함으로써 상기 활물질층의 내부로 함침되어 일부 또는 전부 도포되거나, 표면에 도포되어 겔 고분자 전해질이 형성된 것일 수 있다. 더욱 구체적으로, 가교 가능한 단량체 및 이의 유도체, 개시제 및 액체전해질을 포함하는 겔 고분자 전해질 조성물을 양극 상에 코팅하고, 자외선 조사 또는 열을 가하여 가교시킴으로써 가교 고분자 매트릭스의 그물 구조 내에 액체전해질 등이 균일하게 분포되는 것일 수 있으며, 용매의 증발 공정이 불필요한 것일 수 있다. 또한, 상기 가교 고분자 매트릭스는 선형 고분자를 더 포함하여 반 상호 침투 망상(semi-IPN) 구조인 것일 수 있다. 상기 겔 고분자 전해질의 구체적인 설명은 아래에서 더욱 구체적으로 설명하기로 한다.
집전체는 앞서 설명한 바와 같으며, 양극활물질 조성물은 알루미늄 등의 집전체 상에 직접 코팅 및 건조하여 양극활물질층이 형성된 양극 극판을 형성하는 것일 수 있다. 이때 코팅은 바코팅, 스핀코팅, 슬롯다이코팅, 딥코팅 등의 코팅방법 뿐만 아니라, 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅, 스텐실 프린팅 및 스크린 프린팅 등의 프린팅 방법으로 코팅되는 것일 수 있다.
또는 상기 양극활물질 조성물을 별도의 지지체상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 상기 집전체 상에 라미네이션 하여 양극활물질층이 형성된 양극을 제조하는 것일 수 있다. 양극활물질층의 두께는 제한되는 것은 아니나 0.01 ~ 500 ㎛, 더욱 구체적으로 1 ~ 200 ㎛인 것일 수 있으며, 이에 제한되는 것은 아니다.
상기 양극활물질 조성물은 제한되는 것은 아니나 양극 활물질, 바인더 및 용매를 포함하는 것일 수 있으며, 도전재를 더 포함하는 것일 수 있다.
상기 양극 활물질은 당업계에서 통상적으로 사용되는 것이라면 제한되지 않고 사용될 수 있다. 구체적으로 리튬 일차전지 또는 이차전지를 예로 들면, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. 본 발명의 양극 활물질은 분말 형태인 것일 수 있다.
구체적으로는 코발트, 망간, 니켈 등에서 선택되는 어느 하나 또는 둘 이상의 조합으로 이루어진 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있다. 제한되는 것은 아니나 구체적인 예로는 하기 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다. LiaA1-bRbD2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0 ≤ b ≤ 0.5이다); LiaE1-bRbO2-cDc(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 및 0 ≤ c ≤ 0.05이다); LiE2-bRbO4-cDc(상기 식에서, 0 ≤ b ≤0.5, 0 ≤ c ≤ 0.05이다); LiaNi1-b-cCobRcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α ≤ 2이다); LiaNi1-b-cCobRcO2-αZα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNi1-b-cCobRcO2-αZ2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNi 1-b-cMnbRcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α ≤ 2 이다); LiaNi1-b-cMnbRcO2-αZα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNi1-b-cMnbRcO2-αZ2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05 및 0 < α < 2이다); LiaNibEcGdO2 (상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5 및 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5 및 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1.8 및 0.001 ≤ b ≤ 0.1이다.); QO2 ; QS2 ; LiQS2 ; V2O5 ; LiV2O5 ; LiTO2 ; LiNiVO4 ; Li(3-f)J2(PO4)3 (0 ≤ f ≤ 2); Li(3-f)Fe2(PO4)3 (0 ≤ f ≤ 2); 및 LiFePO4 .
상기 화학식에 있어서, A는 Ni, Co, Mn 또는 이들의 조합이고; R은 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P 또는 이들의 조합이고; E는 Co, Mn 또는 이들의 조합이고; Z는 F, S, P 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합이고; Q는 Ti, Mo, Mn 또는 이들의 조합이고; T는 Cr, V, Fe, Sc, Y 또는 이들의 조합이고; J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합이다.
물론 이 화합물 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 화합물과 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 상기 코팅층은 코팅 원소 화합물로서, 코팅 원소의 옥사이드, 하이드록사이드, 코팅원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트 또는 코팅 원소의 하이드록시카보네이트를 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법, 예를 들어 스프레이 코팅, 침지법 등으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
제한되는 것은 아니나 양극활물질은 조성물 총 중량 중 20 ~ 99 중량%, 더욱 좋게는 30 ~ 95 중량%를 포함하는 것일 수 있다. 또한 평균입경이 0.001 ~ 50 ㎛, 더욱 좋게는 0.01 ~ 20 ㎛인 것일 수 있으며 이에 제한되는 것은 아니다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 집전체에 고정시키는 역할을 하는 것이다. 통상적으로 해당 분야에서 사용되는 것이라면 제한되지 않고 사용될 수 있으며, 대표적인 예로 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 단독 또는 2종 이상 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다. 제한되는 것은 아니나 바인더의 함량은 총 중량 중 0.1 ~ 20 중량%, 더욱 좋게는 1 ~ 10 중량%를 사용하는 것일 수 있다. 상기 범위에서 바인더 역할을 하기에 충분한 함량이나 이에 제한되는 것은 아니다.
상기 용매는 N-메틸 피롤리돈, 아세톤 및 물 등에서 선택되는 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것일 수 있으며, 이에 제한되지 않고 당해분야에서 통상적으로 사용되는 것이라면 사용 가능하다. 상기 용매의 함량은 제한되지 않으며, 슬러리 상태로 양극 집전체 상에 도포가 가능할 정도의 함량이라면 제한되지 않고 사용될 수 있다.
또한, 상기 양극활물질 조성물은 도전재를 더 포함하는 것일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소나노튜브, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있으며, 단독 또는 2종 이상을 혼합하여 사용할 수 있다.
상기 도전재의 함량은 양극활물질 조성물 중 0.1 ~ 20 중량%, 더욱 구체적으로 0.5 ~ 10 중량%, 더욱 구체적으로 1 ~ 5 중량%를 포함하는 것일 수 있으며, 이에 제한되는 것은 아니다. 또한, 도전재의 평균입경은 0.001 ~ 1000 ㎛, 더욱 구체적으로 0.01 ~ 100 ㎛인 것일 수 있으며, 이에 제한되는 것은 아니다.
상기 겔 고분자 전해질 조성물은 양극 상에 롤투롤 프린팅, 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅 및 스크린 프린팅 등의 프린팅 방법으로 코팅되어 연속적으로 생산이 가능하도록 하는 것일 수 있다. 상기 겔 고분자 전해질은 가교 가능한 단량체 및 이의 유도체가 개시제에 의해 광가교 또는 열가교 결합되어 가교 고분자 매트릭스를 이루는 것일 수 있다. 가교에 의해, 겔 고분자 전해질층의 기계적 강도 및 구조적 안정성이 향상되며, 앞서 설명된 양태의 양극과 결합되었을 때, 겔 고분자 전해질층과 양극 계면의 구조적 안정성이 더욱 향상될 수 있다.
상기 겔 고분자 전해질 조성물은 프린팅 공정에 적합한 점도를 갖는 것이 바람직하며, 구체적으로 예를 들면 25℃에서 브룩필드 점도계를 이용하여 측정된 점도가 0.1 ~ 10,000,000 cps, 더욱 좋게는 1.0 ~ 1,000,000 cps, 더욱 바람직하게는 1.0 ~ 100,000 cps인 것일 수 있으며, 상기 범위에서 프린팅 공정에 적용하기에 적절한 점도이므로 바람직하나 이에 제한되는 것은 아니다.
상기 겔 고분자 전해질 조성물은 전체 조성물 100 중량% 중, 가교 가능한 단량체 및 이의 유도체를 1 ~ 50 중량%, 구체적으로 2 ~ 40 중량%로 포함되는 것일 수 있으며, 이에 제한되는 것은 아니다. 개시제는 0.01 ~ 50 중량%, 구체적으로 0.01 ~ 20 중량%, 더욱 구체적으로 0.1 ~ 10 중량%인 것일 수 있으며 이에 제한되는 것은 아니다. 상기 액체전해질은 1 ~ 95 중량%, 구체적으로 1 ~ 90 중량%, 더욱 구체적으로 2 ~ 80 중량%로 포함되는 것일 수 있으며 이에 제한되는 것은 아니다.
상기 가교 가능한 단량체는 2개 이상의 관능기를 갖는 단량체 또는 2개 이상의 관능기를 갖는 단량체와 1개의 관능기를 갖는 단량체를 혼합하여 사용하는 것일 수 있으며, 광가교 또는 열가교 가능한 단량체라면 제한되지 않고 사용될 수 있다.
상기 2개 이상의 관능기를 갖는 단량체로는 구체적으로 예를 들면, 폴리에틸렌글리콜 디아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트, 트리에틸렌글리콜 디아크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 트리메틸올프로판 에톡시레이트 트리아크릴레이트, 트리메틸올프로판 에톡시레이트 트리메타크릴레이트, 비스페놀에이에톡시레이트 디아크릴레이트, 비스페놀에이에톡시레이트 디메타크릴레이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.
또한, 상기 1개의 관능기를 갖는 단량체로는 메틸메타크릴레이트, 에틸메타크릴레이트, 부틸메타크릴레이트, 메틸아크릴레이트, 부틸아크릴레이트, 에틸렌글리콜 메틸에테르아크릴레이트, 에틸렌글리콜 메틸에테르메타크레이트, 아크릴로니트릴, 비닐아세테이트, 비닐클로라이드 및 비닐플로라이드 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.
상기 개시제로는 당업계에서 통상적으로 사용되는 광개시제 또는 열 개시제라면 제한되지 않고 사용될 수 있다.
상기 액체전해질은 해리 가능한 염 및 용매를 포함하는 것일 수 있다.
상기 해리 가능한 염은 제한되는 것은 아니나 구체적으로 예를 들면, 리튬헥사플루오르포스페이트(LiPF6), 리튬테트라플루오로보레이트(LiBF4), 리튬헥사플루오르안티모네이트(LiSbF6), 리튬헥사플루오르아세네이트(LiAsF6), 리튬디플루오르메탄설포네이트(LiC4F9SO3), 과염소산리튬(LiClO4), 리튬알루미네이트(LiAlO2), 리튬테트라클로로알루미네이트(LiAlCl4), 염화리튬(LiCl), 요오드화리튬(LiI), 리튬 비스옥살레이토 보레이트(LiB(C2O4)2), 리튬트리플루오로메탄설포닐이미드(LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임) 및 이들의 유도체에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. 상기 해리 가능한 염의 농도는 0.1 ~ 10.0 M, 더욱 구체적으로 1 ~ 5 M인 것일 수 있으며, 이에 한정되는 것은 아니다.
상기 용매는 카보네이트계 용매, 니트릴계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 글림계 용매, 알코올계 용매 및 비양자성 용매 등과 같은 유기용매 및 물에서 선택되는 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것일 수 있다.
또한, 상기 겔 고분자 전해질의 가교 고분자 매트릭스는 선형 고분자를 더 포함하여 반 상호 침투 망상(semi-IPN) 구조인 것일 수 있다. 이 경우 상기 양극-전해질 결합체는 우수한 유연성을 가지며, 전지로 사용 시 굽힘 등의 응력에 강한 저항성을 보여 성능 저하 없이 정상적으로 전지를 구동할 수 있다. 따라서 플렉서블 전지 등에 적용이 더욱 유리한 것일 수 있다.
상기 선형 고분자는 상기 가교 가능한 단량체와 혼합이 용이하고, 액체 전해질을 함침시킬 수 있는 고분자라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면, 폴리비닐리덴 플루오라이드(Poly(vinylidene fluoride), PVdF), 폴리비닐리덴 플루오라이드 헥사플루오로프로필렌(Poy(vinylidene fluoride)-co-hexafluoropropylene, PVdF-co-HFP), 폴리메틸메타아크릴레이트 (Polymethylmethacryalte, PMMA), 폴리스티렌 (Polystyrene, PS), 폴리비닐아세테이트(Polyvinylacetate, PVA), 폴리아크릴로나이트릴(Polyacrylonitrile, PAN) 및 폴리에틸렌옥사이드(Polyethylene oxide, PEO) 등에서 선택되는 어느 하나 또는 둘 이상의 조합일 수 있으며, 반드시 이에 한정된 것은 아니다.
상기 선형 고분자는 상기 가교 고분자 매트릭스 중량에 대하여 1 내지 90 중량%로 포함될 수 있다. 구체적으로 1 내지 80 중량%, 1 내지 70 중량%, 1 내지 60 중량%, 1 내지 50 중량%, 1 내지 40 중량%, 1 내지 30 중량%로 포함될 수 있다. 즉, 상기 고분자 매트릭스가 반 상호 침투 망상(semi-IPN) 구조인 경우, 상기 가교 가능한 고분자와 상기 선형 고분자는 99 : 1 내지 10 : 90 중량비의 범위로 포함될 수 있다. 상기 선형 고분자가 상기 범위로 포함될 경우, 상기 가교 고분자 매트릭스는 적절한 기계적 강도를 유지하면서 유연성을 확보할 수 있다. 이에 따라, 플렉서블 전지에 적용하였을 때 다양한 외력에 의한 형태 변형에도 안정적인 전지 성능을 구현할 수 있고 전지의 형태 변형으로부터 유발될 수 있는 전지 발화, 폭발 등의 위험을 억제시킬 수 있다.
또한, 상기 겔 고분자 전해질 조성물은 필요에 따라 무기입자를 더 포함하는 것일 수 있다. 상기 무기 입자는 상기 겔 고분자 전해질 조성물의 점도 등 유변학적 특성을 제어함으로써 프린팅이 가능하도록 할 수 있다. 상기 무기 입자는 전해질의 이온전도도를 향상시키고 기계적인 강도를 향상시키기 위하여 사용될 수 있으며, 다공성 입자인 것일 수 있으나 이에 제한되는 것은 아니다. 예를 들면, 금속산화물, 탄소산화물, 탄소계 재료 및 유무기복합체 등이 사용될 수 있으며, 단독 또는 둘 이상을 혼합하여 사용하는 것일 수 있다. 더욱 구체적으로 예를 들면, SiO2, Al2O3, TiO2, BaTiO3, Li2O, LiF, LiOH, Li3N, BaO, Na2O, Li2CO3, CaCO3, LiAlO2, SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, 및 SiC 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. 제한되는 것은 아니나 상기 무기입자를 사용함으로써, 유기 용매와 친화성이 높을 뿐 아니라 열적으로도 매우 안정하여 전기화학 소자의 열적 안정성을 향상시킬 수 있다.
상기 무기 입자의 평균 직경은 제한되는 것은 아니나 0.001㎛ 내지 10㎛일 수 있다. 구체적으로 0.1 내지 10㎛, 더욱 구체적으로 0.1 내지 5㎛인 것일 수 있다. 상기 무기입자의 평균 직경이 상기 범위를 만족할 경우 전기화학소자의 우수한 기계적 강도 및 안정성을 구현할 수 있다.
상기 겔 고분자 전해질 조성물 중 상기 무기 입자의 함량이 1 ~ 50 중량%, 더욱 구체적으로 5 ~ 40 중량%, 더욱 구체적으로 10 ~ 30 중량%로 포함되는 것일 수 있으며, 앞서 설명된 점도 범위인 0.1 ~ 10,000,000 cps, 더욱 좋게는 1.0 ~ 1,000,000 cps, 더욱 바람직하게는 1.0 ~ 100,000 cps를 만족하는 함량으로 사용되는 것일 수 있으며, 이에 제한되지 않는다.
다음으로, 본 발명의 양극의 ⅲ)양태는 집전체 상에 양극 활물질, 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 복합 활물질층이 코팅된 복합전극인 것일 수 있다. 이때, 집전체 및 양극활물질은 앞서 설명한 바와 같으므로 더 이상의 설명은 생략한다.
상기 복합 활물질층은 가교 가능한 단량체 및 이의 유도체가 개시제에 의해 광가교 또는 열가교 결합되어 가교 고분자 매트릭스를 이루는 것일 수 있다.
따라서 상기 복합 활물질층은 가교 가능한 단량체 및 이의 유도체, 개시제, 양극 활물질, 액체전해질을 포함하는 복합 활물질 조성물을 집전체상에 코팅하고, 자외선 조사 또는 열을 가하여 가교시킴으로써 가교 고분자 매트릭스의 그물 구조 내에 양극활물질, 액체전해질 등이 균일하게 분포되는 것일 수 있으며, 용매의 증발 공정이 불필요한 것일 수 있다. 이때 코팅은 바코팅, 스핀코팅 등의 코팅방법 뿐만 아니라, 롤투롤 프린팅, 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅, 스텐실 프린팅 및 스크린 프린팅 등의 프린팅 방법으로 코팅되어 연속적으로 생산이 가능하도록 하는 것일 수 있다.
또는 상기 복합 활물질 조성물을 별도의 지지체상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 상기 집전체 상에 라미네이션 하여 복합 활물질층이 형성된 양극을 제조하는 것일 수 있다. 복합 활물질층의 두께는 제한되는 것은 아니나 0.01 ~ 500 ㎛, 더욱 구체적으로 0.1 ~ 200 ㎛인 것일 수 있으며, 이에 제한되는 것은 아니다.
상기 복합 활물질 조성물의 일 양태는 전체 100 중량% 중에서, 가교 가능한 단량체 및 이의 유도체 1 ~ 50 중량%, 구체적으로 1 ~ 40 중량%, 더욱 구체적으로 2 ~ 30 중량%로 포함되는 것일 수 있으며, 이에 제한되는 것은 아니다. 개시제는 0.01 ~ 50 중량%, 구체적으로 0.01 ~ 20 중량%, 더욱 구체적으로 0.1 ~ 10 중량%인 것일 수 있으며 이에 제한되는 것은 아니다. 상기 양극 활물질의 함량은 1 ~ 95 중량%, 구체적으로 1 ~ 90 중량%, 더욱 구체적으로 5 ~ 80 중량%인 것일 수 있으며 이에 제한되는 것은 아니다. 상기 액체전해질은 1 ~ 95 중량%, 구체적으로 1 ~ 90 중량%, 더욱 구체적으로 2 ~ 80 중량%로 포함되는 것일 수 있으며 이에 제한되는 것은 아니다. 또한, 필요에 따라 도전재를 더 포함할 수 있으며, 도전재의 함량은 0.1 ~ 20 중량%, 구체적으로 1 ~ 10 중량%로 포함되는 것일 수 있으며 이에 제한되는 것은 아니다.
상기 가교 가능한 단량체는 2개 이상의 관능기를 갖는 단량체 또는 2개 이상의 관능기를 갖는 단량체와 1개의 관능기를 갖는 단량체를 혼합하여 사용하는 것일 수 있으며, 광가교 또는 열가교 가능한 단량체라면 제한되지 않고 사용될 수 있다.
상기 2개 이상의 관능기를 갖는 단량체로는 구체적으로 예를 들면, 폴리에틸렌글리콜 디아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트, 트리에틸렌글리콜 디아크릴레이트, 트리에틸렌글리콜 디메타크릴레이트, 트리메틸올프로판 에톡시레이트 트리아크릴레이트, 트리메틸올프로판 에톡시레이트 트리메타크릴레이트, 비스페놀에이에톡시레이트 디아크릴레이트, 비스페놀에이에톡시레이트 디메타크릴레이트 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.
또한, 상기 1개의 관능기를 갖는 단량체로는 메틸메타크릴레이트, 에틸메타크릴레이트, 부틸메타크릴레이트, 메틸아크릴레이트, 부틸아크릴레이트, 에틸렌글리콜 메틸에테르아크릴레이트, 에틸렌글리콜 메틸에테르메타크레이트, 아크릴로니트릴, 비닐아세테이트, 비닐클로라이드 및 비닐플로라이드 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.
상기 개시제로는 당업계에서 통상적으로 사용되는 광개시제 또는 열 개시제라면 제한되지 않고 사용될 수 있다.
상기 액체전해질은 해리 가능한 염 및 용매를 포함하는 것일 수 있으며, 겔 고분자 전해질에 사용된 액체전해질과 조성이 같거나 다를 수 있다.
상기 해리 가능한 염은 제한되는 것은 아니나 구체적으로 예를 들면, 리튬헥사플루오르포스페이트(LiPF6), 리튬테트라플루오로보레이트(LiBF4), 리튬헥사플루오르안티모네이트(LiSbF6), 리튬헥사플루오르아세네이트(LiAsF6), 리튬디플루오르메탄설포네이트(LiC4F9SO3), 과염소산리튬(LiClO4), 리튬알루미네이트(LiAlO2), 리튬테트라클로로알루미네이트(LiAlCl4), 염화리튬(LiCl), 요오드화리튬(LiI), 리튬 비스옥살레이토 보레이트(LiB(C2O4)2), 리튬트리플루오로메탄설포닐이미드(LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임) 및 이들의 유도체에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. 상기 해리 가능한 염의 농도는 0.1 ~ 10.0 M, 더욱 구체적으로 1 ~ 5 M인 것일 수 있으며, 이에 한정되는 것은 아니다.
상기 용매는 카보네이트계 용매, 니트릴계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 글림계 용매, 알코올계 용매 및 비양자성 용매 등과 같은 유기용매 및 물에서 선택되는 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것일 수 있다.
상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC) 및 부틸렌 카보네이트(BC) 등이 사용될 수 있다.
상기 니트릴계 용매는 아세토니트릴(acetonitrile), 석시노니트릴(succinonitrile), 아디포니트릴(adiponitrile, 세바코니크릴(sebaconitrile) 등이 사용될 수 있다.
상기 에스테르계 용매로는 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), n-프로필 아세테이트(n-propyl acetate), 1,1-디메틸에틸 아세테이트(1,1-dimethyl acetate), 메틸프로피오네이트(methylpropionate), 에틸프로피오네이트(ethylpropionate), γ-부티로락톤(γ-butylolactone), 데카놀라이드(decanolide), 발레로락톤(valerolactone), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다.
상기 에테르계 용매로는 디메틸 에테르, 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다.
상기 글림계 용매로는 에틸렌 글리콜 디메틸에테르, 트리에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르 등이 사용될 수 있다.
상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다.
상기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
<음극>
본 발명의 일 양태에서, 상기 음극은 다양한 양태로 이루어진 것일 수 있으며, 구체적으로 예를 들면 집전체만으로 이루어진 전극, 집전체 상에 음극 활물질 및 바인더를 포함하는 활물질층이 코팅된 전극, 및 집전체 상에 음극 활물질, 가교 고분자 매트릭스 및 액체전해질을 포함하는 복합 활물질층이 코팅된 복합전극에서 선택되는 것일 수 있다. 더욱 좋게는 이온의 전도도를 향상시키기 위한 관점에서 액체전해질 또는 겔 고분자 전해질을 포함하는 것일 수 있다.
더욱 구체적으로 예를 들면, 집전체만으로 이루어진 전극, ⅰ) 집전체 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체, ⅱ) 집전체 상에 전극 활물질 및 바인더를 포함하는 활물질층을 포함하고, 상기 활물질층 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체, 및 ⅲ) 집전체 상에 전극 활물질, 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 복합 활물질층을 포함하는 전극-전해질 복합체에서 선택되는 것일 수 있다.
더욱 좋게는 음극은 집전체만으로 이루어진 전극 또는 ⅰ) 집전체 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체인 것일 수 있다.
상기 겔 고분자 전해질은 앞서 양극에서 설명한 바와 같다.
본 발명의 음극에서, 상기 집전체는 박막형태, 메쉬형태, 전도성기판의 일면 또는 양면에 박막 또는 메쉬 형태의 집전체가 적층되어 일체화된 형태 및 금속-메쉬 복합체로 이루어진 군에서 선택되는 것일 수 있다. 상기 금속-메쉬 복합체는 박막형태의 금속과 메쉬형태의 금속 또는 고분자 소재를 가열 압착하여 일체화 함으로써 메쉬의 구멍 사이에 박막이 끼어들어가 일체화되어 구부려도 금속이 깨지거나 크랙이 발생하지 않는 것을 의미한다. 이와 같이 금속-메쉬 복합체를 사용하는 경우는 전지의 굽힘 시, 또는 충방전 시 집전체에 크랙이 발생하는 것을 방지할 수 있어 더욱 바람직하나 이에 제한되는 것은 아니다. 그 재질은 리튬 금속, 알루미늄, 알루미늄 합금, 주석, 주석합금, 아연, 아연합금, 리튬알루미늄 합금 및 기타 리튬금속 합금 등의 금속 또는 고분자 및 이들의 복합체 등으로 이루어진 것일 수 있다.
본 발명의 음극은 상기 박막 또는 메쉬형태의 집전체를 그대로 사용하거나 박막, 메쉬 또는 금속-메쉬 복합체 형태의 집전체가 전도성 기판 상에 적층되어 일체화 된 것일 수 있다.
또한, 상기 집전체는 당해 분야에서 사용되는 전도성이 우수한 기판이라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면, 전도성 금속, 전도성 금속산화물 등에서 선택되는 어느 하나를 포함하는 것으로 이루어진 것일 수 있다. 또한, 집전체는 기판 전체가 전도성 재료로 이루어지거나, 절연성 기판의 일면 또는 양면에 전도성 금속, 전도성 금속 산화물, 전도성 고분자 등이 코팅된 형태인 것일 수 있다. 또한, 상기 집전체는 유연성 기판으로 이루어진 것일 수 있으며, 쉽게 굽혀질 수 있어 플렉서블한 전자소자를 제공할 수 있다. 또한, 굽혔다가 다시 원래 형태로 되돌아가는 복원력을 갖는 소재로 이루어진 것일 수 있다. 더욱 구체적으로 예를 들면, 집전체는 알루미늄, 아연, 은, 주석, 산화주석, 스테인레스 스틸, 구리, 니켈, 철, 리튬, 코발트, 티타늄, 니켈 발포체, 구리 발포체, 전도성 금속이 코팅된 폴리머 기재 및 이들의 복합체 등으로 이루어진 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 음극의 ⅱ)양태는 집전체 상에 음극 활물질 및 바인더를 포함하는 음극활물질 조성물을 도포하여 활물질층이 코팅된 것일 수 있으며, 상기 활물질층 상에 겔 고분자 전해질 조성물이 도포되어 활물질층에 일부 또는 전부 함침되어 내부 및 표면에서 선택되는 어느 하나 이상에 겔 고분자 전해질이 형성된 전극-전해질 복합체인 것일 수 있다.
집전체는 앞서 설명한 바와 같으며, 음극활물질 조성물은 금속 박막 등의 집전체 상에 직접 코팅 및 건조하여 음극활물질층이 형성된 음극 극판을 형성하는 것일 수 있다. 이때 코팅은 바코팅, 스핀코팅, 슬롯다이코팅, 딥코팅 등의 코팅방법 뿐만 아니라, 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅, 스텐실 프린팅 및 스크린 프린팅 등의 프린팅 방법으로 코팅되는 것일 수 있다.
또는 상기 음극활물질 조성물을 별도의 지지체상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 상기 집전체 상에 라미네이션 하여 음극활물질층이 형성된 음극을 제조하는 것일 수 있다. 음극활물질층의 두께는 제한되는 것은 아니나 0.01 ~ 500 ㎛, 더욱 구체적으로 0.1 ~ 200 ㎛인 것일 수 있으며, 이에 제한되는 것은 아니다.
상기 음극활물질 조성물은 제한되는 것은 아니나 음극 활물질, 바인더 및 용매를 포함하는 것일 수 있으며, 도전재를 더 포함하는 것일 수 있다.
상기 음극 활물질은 당업계에서 통상적으로 사용되는 것이라면 제한되지 않고 사용될 수 있다. 구체적으로 리튬 일차전지 또는 이차전지를 예로 들면, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. 본 발명의 음극 활물질은 분말 형태인 것일 수 있다.
더욱 구체적으로 예를 들면, 리튬과 합금 가능한 금속, 전이금속 산화물, 비전이금속산화물 및 탄소계 재료 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.
상기 리튬과 합금 가능한 금속은 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn 등이 사용될 수 있으며, 이에 제한되는 것은 아니다.
상기 전이금속 산화물은 리튬 티탄 산화물, 바나듐 산화물 및 리튬 바나듐 산화물 등인 것일 수 있으며, 단독 또는 2 이상의 혼합물인 것일 수 있다.
상기 비전이 금속 산화물은 Si, SiOx(0 < x < 2), Si-C 복합체, Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Si은 아님), Sn, SnO2, Sn-C 복합체, Sn-R(상기 R은 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Sn은 아님) 등을 들 수 있다. 상기 Q 및 R의 구체적인 원소로는, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te 및 Po 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.
상기 탄소계 재료로는 결정질 탄소, 비정질 탄소 및 이들의 조합에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 플레이크, 구형 또는 섬유형의 천연 흑연, 인조 흑연 등의 흑연이 사용될 수 있고, 상기 비정질 탄소의 예로는 소프트 카본, 하드카본, 메조페이스 피치 탄화물, 소성된 코크스 등을 사용할 수 있으며, 이에 제한되는 것은 아니다.
제한되는 것은 아니나 음극활물질은 조성물 총 중량 중 1 ~ 90 중량%, 더욱 좋게는 5 ~ 80 중량%를 포함하는 것일 수 있다. 또한 평균입경이 0.001 ~ 20 ㎛, 더욱 좋게는 0.01 ~ 15 ㎛인 것일 수 있으며 이에 제한되는 것은 아니다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 집전체에 고정시키는 역할을 하는 것이다. 통상적으로 해당 분야에서 사용되는 것이라면 제한되지 않고 사용될 수 있으며, 대표적인 예로 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 용매는 N-메틸 피롤리돈, 아세톤 및 물 등에서 선택되는 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것일 수 있으며, 이에 제한되지 않고 당해분야에서 통상적으로 사용되는 것이라면 사용 가능하다.
또한, 상기 음극활물질 조성물은 도전재를 더 포함하는 것일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 도전재의 함량은 음극활물질 조성물 중 1 ~ 90 중량%, 더욱 구체적으로 5 ~ 80 중량%를 포함하는 것일 수 있으며, 이에 제한되는 것은 아니다.
또한, 도전재의 평균입경은 0.001 ~ 100 ㎛, 더욱 구체적으로 0.01 ~ 80 ㎛인 것일 수 있으며, 이에 제한되는 것은 아니다.
다음으로, 본 발명의 음극의 ⅲ)양태는 집전체 상에 음극 활물질, 가교 고분자 매트릭스 및 액체전해질을 포함하는 복합 활물질층을 포함하는 전극-전해질 복합체인 것일 수 있다. 이때, 집전체 및 음극활물질은 앞서 설명한 바와 같으므로 더 이상의 설명은 생략한다.
상기 가교 고분자 매트릭스는 겔 고분자 전해질에 사용된 고분자 매트릭스와 종류가 동일하거나 또는 상이한 것일 수 있으나, 밀착력 및 계면 접착력을 더욱 향상시키고, 이온 전도도를 더욱 향상시키기 위한 관점에서는 동일한 고분자 및 가교밀도를 이루는 것이 바람직하다.
상기 복합 활물질층은 가교 가능한 단량체 및 이의 유도체가 개시제에 의해 광가교 또는 열가교 결합되어 가교 고분자 매트릭스를 이루는 것일 수 있다.
따라서, 상기 복합 활물질층은 가교 가능한 단량체 및 이의 유도체, 개시제, 음극 활물질, 액체전해질을 포함하는 복합 활물질 조성물을 집전체상에 코팅하고, 자외선 조사 또는 열을 가하여 가교시킴으로써 가교 고분자 매트릭스의 그물 구조 내에 음극활물질, 액체전해질 등이 균일하게 분포되는 것일 수 있으며, 용매의 증발 공정이 불필요한 것일 수 있다. 이때 코팅은 바코팅, 스핀코팅 등의 코팅방법 뿐만 아니라, 롤투롤 프린팅, 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅 및 스크린 프린팅 등의 프린팅 방법으로 코팅되어 연속적으로 생산이 가능하도록 하는 것일 수 있다.
또는 상기 복합 활물질 조성물을 별도의 지지체상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 상기 집전체 상에 라미네이션 하여 복합 활물질층이 형성된 음극을 제조하는 것일 수 있다. 복합 활물질층의 두께는 제한되는 것은 아니나 0.01 ~ 500 ㎛, 더욱 구체적으로 0.1 ~ 200 ㎛인 것일 수 있으며, 이에 제한되는 것은 아니다.
상기 복합 활물질 조성물은 상기 양극에 사용된 조성과 동일하므로 추가의 설명은 생략한다.
<분리막>
본 발명의 일 양태에서, 상기 전극조립체는 양극 및 음극 사이에 하나 이상의 분리막을 더 포함하는 것일 수 있다. 상기 분리막은 기계적 강도를 향상시키기 위한 관점에서 사용되는 것일 수 있으며, 이온 전도도를 더욱 향상시키기 위하여 액체 전해질이 함침된 것일 수 있다. 또는 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질이 포함되는 것일 수 있다.
상기 분리막은 통상적으로 해당 분야에서 사용되는 것이라면 제한되지 않고 사용될 수 있다. 예를 들어, 직포, 부직포 및 다공성막 등인 것일 수 있다. 또한 이들이 한층 또는 둘 이상이 적층된 다층막인 것일 수 있다. 분리막의 소재는 제한되지 않으나 구체적으로 예를 들면, 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리메틸펜텐, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌 및 이들의 공중합체 등으로 이루어진 군으로부터 선택된 어느 하나 또는 2종 이상의 혼합물로 형성된 것일 수 있다. 또한 그 두께는 제한되지 않으며, 통상적으로 당업계에서 사용되는 범위인 1 ~ 1000 ㎛, 더욱 구체적으로 10 ~ 800 ㎛인 것일 수 있으며, 이에 제한되지 않는다.
본 발명의 일 양태에서, 이와 같이 분리막을 포함하는 경우는 상기 전극조립체는 양극 상에 분리막을 올린 후, 상기 겔 고분자 전해질 조성물을 도포하여 함침 및 경화하고, 그 위에 음극을 적층하여 제조된 것일 수 있으며, 이에 제한되는 것은 아니다.
본 발명의 일 양태에서, 상기 전극조립체는 음극 및 양극 사이에 전해질층을 포함하여 양극과 음극이 전기적으로 단락되는 것을 방지하는 것일 수 있다. 상기 전해질층은 겔 고분자 전해질층일 수 있다. 또한, 상기 전해질층에는 기계적강도 향상을 위해 알루미나, 실리카 등의 무기입자들이 분산되어 존재할 수 있다. 또한 전해질층에는 상기의 분리막이 추가로 더 포함될 수 있다.
본 발명의 일 양태에서, 상기 전극조립체는 양극 및 음극에 사용되는 전해질이 서로 상이한 것일 수 있다. 즉, 전해질층을 이루는 성분 중 어느 하나 또는 둘 이상의 조성이 서로 상이하거나, 또는 함량이 상이한 것일 수 있다.
본 발명의 일 양태에서, 상기 전극조립체는 음극 및 양극 상에 서로 다른 조성으로 이루어지며 서로 대면되는 겔 고분자 전해질층을 더욱 포함하는 것일 수 있다. 즉, 서로 다른 조성으로 이루어진 이종(異種) 겔 고분자 전해질을 적어도 2개 이상 포함하는 것일 수 있으며, 각각의 겔 고분자 전해질은 양극 및 음극 상에 일체화된 것일 수 있다. 상기 겔 고분자 전해질에 의해 별도의 분리막을 필요로 하지 않는 것일 수 있다.
본 발명의 일 양태에서, 상기 전극조립체는 양극 상에 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 제 1 겔 고분자 전해질 층을 더 포함하고, 음극 상에 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 제 2 겔 고분자 전해질 층을 더 포함하며, 상기 제 1 겔 고분자 전해질 층 및 제 2 겔 고분자 전해질 층은 서로 다른 조성으로 이루어지며, 서로 대면되는 것일 수 있다.
상기‘서로 대면되는’것은 직접적으로 밀착되어 대면되거나, 또는 이격되어 대면되는 것을 포함한다. 또한, ‘서로 다른 조성’은 제 1 겔 고분자 전해질 층 및 제 2 겔 고분자 전해질 층을 이루는 성분 중 어느 하나 또는 둘 이상의 성분의 종류가 상이하거나 또는 함량이 상이함을 의미한다. 더욱 좋게는 에너지 준위가 상이하거나, 용해도 파라미터가 상이한 조성인 것일 수 있다.
이와 같이, 이종(異種) 겔 고분자 전해질을 적어도 2개 이상 포함함으로써 양극 및 음극에 서로 상이한 화학조성을 가져 에너지 준위 또는 용해도 파라미터가 서로 상이한 겔 고분자 전해질층을 형성할 수 있으므로, 액체 전해질 성분이 서로 섞이지 않기 때문에 이종(異種) 전해질 층을 갖는 전지 제조가 가능하고, 넓은 범위의 전위창(potential window)을 갖는 전기화학소자를 제공할 수 있다. 또한, 양극에 접촉되는 겔 고분자 전해질 층 및 음극에 접촉되는 겔 고분자 전해질층이 서로 섞이지 않고 분리되어 이루어짐으로써, 서로 다른 종류의 기능성 첨가제를 첨가할 수 있으며, 기존 한 종류의 전해질층을 사용하는 경우에 비하여 산화/환원 안정성이 우수한 전기화학 소자를 제공할 수 있으며, 전기화학 소자의 수명 특성 등의 성능이 개선될 수 있다.
더욱 구체적으로 각각의 전극(음극 및 양극)에 최적화된 전기화학 특성을 가지는 전해질로 구성되며, 각 전해질은 고분자 매트릭스에 의해 물리적 및 화학적으로 결합되어 각 겔 고분자 전해질층을 서로 합지하는 경우에도 액체 전해질 성분이 서로 섞이지 않는 전기화학 소자를 제공할 수 있다. 구체적으로, 음극에 접촉되는 겔 고분자 전해질은 환원전위가 낮고, 양극 쪽에 접촉되는 겔 고분자 전해질은 산화전위가 높은 고체전해질을 사용하여 넓은 전위창을 가지면서 부반응을 억제하고자 하며, 상기 각 겔 고분자 전해질 간의 용해도 파라미터가 서로 상이하여 섞이지 않는 전기화학 소자를 제공할 수 있다. 이와 같이 제조되는 경우는 추가의 액체 전해질 및 분리막을 필요로 하지 않으며, 겔 고분자 전해질을 사용함으로써 고체전해질을 사용하는 것에 비하여 전지의 충방전 효율 및 수명 특성이 더욱 우수한 전기화학 소자를 제공할 수 있다. 또한, 필요에 따라 분리막을 더 포함하여 전지의 내부 단락에 대한 안정성을 도모하고, 기계적인 물성을 향상시킨 전기화학 소자를 제공할 수 있다.
즉, 본 발명의 전극조립체의 일 양태는 양극 상에 제 1 겔 고분자 전해질이 코팅된 양극-전해질 결합체, 및 음극 상에 제 2 겔 고분자 전해질이 코팅된 음극-전해질 결합체를 포함하며, 상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질 은 서로 다른 조성으로 이루어지며, 서로 대면되는 것일 수 있다.
이때 상기 양극 및 음극은 각각 집전체만으로 이루어진 전극, 집전체 상에 전극 활물질 및 바인더를 포함하는 활물질층이 코팅된 전극, 및 집전체 상에 전극 활물질, 가교 고분자 매트릭스 및 액체전해질을 포함하는 복합 활물질층이 코팅된 복합전극에서 선택되는 것일 수 있으며, 이에 대해서는 앞서 설명한 바와 같다.
상기 양극-전해질 결합체는 양극 및 제 1 겔 고분자 전해질층이 일체화 된 것을 의미한다. 이때, 상기 제 1 겔 고분자 전해질층은 한층으로 이루어지거나, 또는 2 이상의 층이 적층된 형태인 것일 수 있으며, 층수는 제한되지 않는다. 또한, 일체화 된 것은 서로 중첩되어 물리적으로 결합된 것을 의미하는 것으로, 제 1 겔 고분자 전해질층은 양극 상에 코팅되어 형성되는 것일 수 있으며, 코팅에 의해 양극 표면 및 기공 사이로 코팅액이 도포되어 더욱 균일하고, 밀접하게 형성될 수 있다.
상기 제 1 겔 고분자 전해질 층은 제 1 겔 고분자 전해질 조성물이 양극 상에 롤투롤 프린팅, 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅 및 스크린 프린팅 등의 프린팅 방법으로 코팅되어 연속적으로 생산이 가능하도록 하는 것일 수 있다. 제 1 겔 고분자 전해질층은 가교 가능한 단량체 및 이의 유도체가 개시제에 의해 광가교 또는 열가교 결합되어 가교 고분자 매트릭스를 이루는 것일 수 있다. 가교에 의해, 겔 고분자 전해질층의 기계적 강도 및 구조적 안정성이 향상되며, 앞서 설명된 양태의 양극과 결합되었을 때, 겔 고분자 전해질층과 양극 계면의 구조적 안정성이 더욱 향상될 수 있다.
따라서 상기 제 1 겔 고분자 전해질층은 가교 가능한 단량체 및 이의 유도체, 개시제 및 액체전해질을 포함하는 제 1 겔 고분자 전해질 조성물을 양극 상에 코팅하고, 자외선 조사 또는 열을 가하여 가교시킴으로써 가교 고분자 매트릭스의 그물 구조 내에 액체전해질 등이 균일하게 분포되는 것일 수 있으며, 용매의 증발 공정이 불필요한 것일 수 있다. 상기 제 1 겔 고분자 전해질 조성물은 프린팅 공정에 적합한 점도를 갖는 것이 바람직하며, 구체적으로 예를 들면 25℃에서 브룩필드 점도계를 이용하여 측정된 점도가 0.1 ~ 10,000,000 cps, 더욱 좋게는 1.0 ~ 1,000,000 cps, 더욱 바람직하게는 1.0 ~ 100,000 cps인 것일 수 있으며, 상기 범위에서 프린팅 공정에 적용하기에 적절한 점도이므로 바람직하나 이에 제한되는 것은 아니다.
상기 제 1 겔 고분자 전해질 조성물은 전체 조성물 100 중량% 중, 가교 가능한 단량체 및 이의 유도체를 1 ~ 50 중량%, 구체적으로 2 ~ 40 중량%로 포함되는 것일 수 있으며, 이에 제한되는 것은 아니다. 개시제는 0.01 ~ 50 중량%, 구체적으로 0.01 ~ 20 중량%, 더욱 구체적으로 0.1 ~ 10 중량%인 것일 수 있으며 이에 제한되는 것은 아니다. 상기 액체전해질은 1 ~ 95 중량%, 구체적으로 1 ~ 90 중량%, 더욱 구체적으로 2 ~ 80 중량%로 포함되는 것일 수 있으며 이에 제한되는 것은 아니다.
가교 가능한 단량체 및 이의 유도체, 개시제 및 액체전해질의 종류는 앞서 복합 활물질 조성물에서 설명된 바와 같으므로 반복 설명을 생략한다. 또한, 제 1 겔 고분자 전해질 조성물에 사용되는 단량체는 복합 활물질 조성물에 사용된 단량체와 동일 또는 상이한 조성으로 이루어진 것일 수 있다. 더욱 좋게는 동일한 단량체를 사용하여 밀착력을 더욱 향상시키는 것일 수 있다.
또한, 상기 제 1 겔 고분자 전해질 층의 고분자 매트릭스는 선형 고분자를 더 포함하여 반 상호 침투 망상(semi-IPN) 구조인 것일 수 있다. 이 경우 상기 제 1 겔 고분자 전해질 층 및 양극-전해질 결합체는 우수한 유연성을 가지며, 전지로 사용 시 굽힘 등의 응력에 강한 저항성을 보여 성능 저하 없이 정상적으로 전지를 구동할 수 있다. 따라서 플렉서블 전지 등에 적용이 가능해진다.
상기 선형 고분자는 상기 가교 가능한 단량체와 혼합이 용이하고, 액체 전해질을 함침시킬 수 있는 고분자라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면, 폴리비닐리덴 플루오라이드(Poly(vinylidene fluoride), PVdF), 폴리비닐리덴 플루오라이드 헥사플루오로프로필렌(Poy(vinylidene fluoride)-co-hexafluoropropylene, PVdF-co-HFP), 폴리메틸메타아크릴레이트 (Polymethylmethacryalte, PMMA), 폴리스티렌 (Polystyrene, PS), 폴리비닐아세테이트(Polyvinylacetate, PVA), 폴리아크릴로나이트릴(Polyacrylonitrile, PAN) 및 폴리에틸렌옥사이드(Polyethylene oxide, PEO) 등에서 선택되는 어느 하나 또는 둘 이상의 조합일 수 있으며, 반드시 이에 한정된 것은 아니다.
상기 선형 고분자는 상기 가교 고분자 매트릭스 중량에 대하여 1 내지 90 중량%로 포함될 수 있다. 구체적으로 1 내지 80 중량%, 1 내지 70 중량%, 1 내지 60 중량%, 1 내지 50 중량%, 1 내지 40 중량%, 1 내지 30 중량%로 포함될 수 있다. 즉, 상기 고분자 매트릭스가 반 상호 침투 망상(semi-IPN) 구조인 경우, 상기 가교 가능한 고분자와 상기 선형 고분자는 99 : 1 내지 10 : 90 중량비의 범위로 포함될 수 있다. 상기 선형 고분자가 상기 범위로 포함될 경우, 상기 가교 고분자 매트릭스는 적절한 기계적 강도를 유지하면서 유연성을 확보할 수 있다. 이에 따라, 플렉서블 전지에 적용하였을 때 다양한 외력에 의한 형태 변형에도 안정적인 전지 성능을 구현할 수 있고 전지의 형태 변형으로부터 유발될 수 있는 전지 발화, 폭발 등의 위험을 억제시킬 수 있다.
또한, 제 1 겔 고분자 전해질 조성물은 필요에 따라 무기입자를 더 포함하는 것일 수 있다. 상기 무기 입자는 상기 제 1 겔 고분자 전해질 조성물의 점도 등 유변학적 특성을 제어함으로써 프린팅이 가능하도록 할 수 있다. 상기 무기 입자는 전해질의 이온전도도를 향상시키고 기계적인 강도를 향상시키기 위하여 사용될 수 있으며, 다공성 입자인 것일 수 있으나 이에 제한되는 것은 아니다. 예를 들면, 금속산화물, 탄소산화물, 탄소계 재료 및 유무기복합체 등이 사용될 수 있으며, 단독 또는 둘 이상을 혼합하여 사용하는 것일 수 있다. 더욱 구체적으로 예를 들면, SiO2, Al2O3, TiO2, BaTiO3, Li2O, LiF, LiOH, Li3N, BaO, Na2O, Li2CO3, CaCO3, LiAlO2, SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, 및 SiC 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. 제한되는 것은 아니나 상기 무기입자를 사용함으로써, 유기 용매와 친화성이 높을 뿐 아니라 열적으로도 매우 안정하여 전기화학 소자의 열적 안정성을 향상시킬 수 있다.
상기 무기 입자의 평균 직경은 제한되는 것은 아니나 0.001㎛ 내지 10㎛일 수 있다. 구체적으로 0.1 내지 10㎛, 더욱 구체적으로 0.1 내지 5㎛인 것일 수 있다. 상기 무기입자의 평균 직경이 상기 범위를 만족할 경우 전기화학소자의 우수한 기계적 강도 및 안정성을 구현할 수 있다.
상기 제 1 겔 고분자 전해질 조성물 중 상기 무기 입자의 함량이 1 ~ 50 중량%, 더욱 구체적으로 5 ~ 40 중량%, 더욱 구체적으로 10 ~ 30 중량%로 포함되는 것일 수 있으며, 앞서 설명된 점도 범위인 0.1 ~ 10,000,000 cps, 더욱 좋게는 1.0 ~ 1,000,000 cps, 더욱 바람직하게는 1.0 ~ 100,000 cps를 만족하는 함량으로 사용되는 것일 수 있으며, 이에 제한되지 않는다.
또한, 제 1 겔 고분자 전해질 조성물은 필요에 따라 난연제를 더 포함하거나, 숙시노니트릴(succinonitrile) 및 세바코니트릴(sebaconitrile)에서 선택되는 어느 하나 또는 이들의 혼합물인 양극발열 억제제를 더 포함하는 것일 수 있다. 그 함량은 제 1 겔 고분자 전해질 조성물 중 0.01 ~ 10 중량%, 더욱 구체적으로 0.1 ~ 10 중량%의 범위로 사용하는 것일 수 있으나 이에 제한되는 것은 아니다.
상기 난연제는 통상적으로 해당 분야에서 사용되는 포스페이트계 난연제라면 제한되지 않고 사용될 수 있으며, 그 함량은 제 1 겔 고분자 전해질 조성물 중 0.01 ~ 10 중량%, 더욱 구체적으로 0.1 ~ 10 중량%의 범위로 사용하는 것일 수 있으나 이에 제한되는 것은 아니다.
상기 제 1 겔 고분자 전해질 층의 두께는 0.01㎛ 내지 500㎛일 수 있다. 구체적으로 5 내지 100㎛일 수 있다. 상기 제 1 겔 고분자 전해질 층의 두께가 상기 범위를 만족할 경우 전기 화학 소자의 성능을 향상시키면서 제조과정의 용이성을 도모할 수 있으며, 이에 한정되는 것은 아니다.
또한, 상기 제 1 겔 고분자 전해질 층은 표면에서 양극 쪽으로 갈수록 가교밀도가 낮아지는 구배가 형성되는 것일 수 있다. 가교밀도 구배를 형성함으로써 충방전사이클이 더욱 향상되는 효과가 있다. 또한, 가교밀도가 높아지게 되면 기계적강도 및 구조안정성은 향상되나, 치밀한 고분자 구조로 인해 겔 고분자 전해질의 이온전도도가 하락될 수 있으나, 가교밀도 구배를 형성하는 경우 이러한 Trade-off 즉, 기계적강도 및 구조안정성뿐만 아니라 이온전도도 문제를 해결할 수 있다.
본 발명의 일 양태에서, 상기 제 1 겔 고분자 전해질 층은 2 이상의 층을 포함하는 다층구조로 이루어진 것일 수 있다. 더욱 구체적으로 제1층 및 제2층을 포함하는 2층 구조이거나, 3층으로 이루어진 것일 수 있으며, 그 층의 개수는 제한되지 않는다.
이때, 상기 2 이상의 층들은 서로 동일하거나 또는 상이한 조성으로 이루어진 것일 수 있다. 더욱 구체적으로는 양극에 직접 대면되는 제1층은 제2층에 비하여 가교밀도 또는 염의 농도를 달리한 구배가 형성된 것일 수 있다. 구체적으로 제2층이 제1층에 비하여 가교밀도가 더욱 높거나 또는 염의 농도가 더욱 높도록 하는 것일 수 있다. 이와 같이 구배를 형성하는 경우 이온전도도를 더욱 높이고, 부반응을 억제할 수 있으므로 더욱 바람직하다.
또한 필요에 따라, 2 이상의 제 1 겔 고분자 전해질 층 사이에 분리막을 더 포함하는 것일 수 있다.
본 발명의 일 양태에서, 음극-전해질 결합체는 음극 및 제 2 겔 고분자 전해질층이 일체화 된 것을 의미한다. 음극 및 제 2 겔 고분자 전해질 층은 분리되어 있을 수 있거나, 또는 제 2 겔 고분자 전해질 층의 일부 또는 전부가 음극에 침투되어 일체화된 것일 수 있다. 이때, 상기 제 2 겔 고분자 전해질층은 한층으로 이루어지거나, 2 이상의 층이 적층된 형태인 것일 수 있으며, 층수는 제한되지 않는다. 또한, 일체화 된 것은 서로 중첩되어 물리적으로 결합된 것을 의미하는 것으로, 제 2 겔 고분자 전해질층은 음극 상에 코팅되어 형성되는 것일 수 있으며, 코팅에 의해 음극 표면 및 기공 사이로 코팅액이 도포되어 더욱 균일하고, 밀접하게 형성될 수 있다.
상기 제 2 겔 고분자 전해질 층은 제 2 겔 고분자 전해질 조성물이 음극 상에 롤투롤 프린팅, 잉크젯 프린팅, 그라비아 프린팅, 그라비아 오프셋, 에어로졸 프린팅 및 스크린 프린팅 등의 프린팅 방법으로 코팅되어 연속적으로 생산이 가능하도록 하는 것일 수 있다.
제 2 겔 고분자 전해질 층은 가교 가능한 단량체 및 이의 유도체가 개시제에 의해 광가교 또는 열가교 결합되어 가교 고분자 매트릭스를 이루는 것일 수 있다. 가교에 의해, 겔 고분자 전해질층의 기계적 강도 및 구조적 안정성이 향상되고, 상기 예시된 양태의 음극과 결합되었을 때, 겔 고분자 전해질층과 음극 계면의 구조적 안정성이 더욱 향상된다.
따라서 상기 제 2 겔 고분자 전해질층은 가교 가능한 단량체 및 이의 유도체, 개시제 및 액체전해질을 포함하는 제 2 겔 고분자 전해질 조성물을 음극 상에 코팅하고, 자외선 조사 또는 열을 가하여 가교시킴으로써 가교 고분자 매트릭스의 그물 구조 내에 액체전해질 등이 균일하게 분포되는 것일 수 있으며, 용매의 증발 공정이 불필요한 것일 수 있다. 상기 제 2 겔 고분자 전해질 조성물은 프린팅 공정에 적합한 점도를 갖는 것이 바람직하며, 구체적으로 예를 들면 25℃에서 브룩필드 점도계를 이용하여 측정된 점도가 0.1 ~ 10,000,000 cps, 더욱 좋게는 1.0 ~ 1,000,000 cps, 더욱 바람직하게는 1.0 ~ 100,000 인 것일 수 있으며, 상기 범위에서 프린트 공정에 적합할 수 있는 점도가 바람직하나 이에 제한되는 것은 아니다.
상기 제 2 겔 고분자 전해질 조성물 중 가교 가능한 단량체 및 이의 유도체, 개시제, 액체전해질 및 무기 입자의 종류 및 함량에 대해서는 앞서 상기 제 1 겔 고분자 전해질 조성물에서 설명한 바와 동일하므로 추가의 설명을 생략한다.
다만, 양극과는 달리 음극에 필요한 기능성 첨가제를 포함하는 것일 수 있으며, 제 2 겔 고분자 전해질 조성물은 필요에 따라 난연제를 더 포함하거나, 비닐렌 카보네이트, 불화에틸렌 카보네이트 및 카테콜 카보네이트에서 선택되는 어느 하나 또는 이들의 혼합물인 SEI층 안정화제를 더 포함하는 것일 수 있다. 비닐렌 카보네이트(VC)는 최초 충전과정에서 안정한 SEI층을 형성하고, 탄소 층상 구조의 박리 또는 전해질과의 직접 반응을 억제함으로써 전지의 충방전 수명을 향상시키기 위하여 사용될 수 있다. 상기 기능성 첨가제의 함량은 제 1 겔 고분자 전해질 조성물 중 0.01 ~ 30 중량%, 더욱 구체적으로 0.1 ~ 10 중량%의 범위로 사용하는 것일 수 있으나 이에 제한되는 것은 아니다.
상기 제 2 겔 고분자 전해질 층의 두께는 0.01㎛ 내지 500㎛일 수 있다. 구체적으로 1 내지 100㎛, 더욱 바람직하게는 5 내지 50㎛일 수 있다. 상기 제 2 겔 고분자 전해질 층의 두께가 상기 범위를 만족할 경우 전기 화학 소자의 성능을 향상시키면서 제조과정의 용이성을 도모할 수 있으며, 이에 한정되는 것은 아니다.
또한, 상기 제 2 겔 고분자 전해질 층은 표면에서 양극 쪽으로 갈수록 가교밀도가 낮아지는 구배가 형성되는 것일 수 있다.
본 발명의 일 양태에서, 상기 제 2 겔 고분자 전해질 층은 2 이상의 층을 포함하는 다층구조로 이루어진 것일 수 있다. 더욱 구체적으로 2층 구조이거나, 3층으로 이루어진 것일 수 있으며, 그 층의 개수는 제한되지 않는다.
이때, 상기 2 이상의 층들은 서로 동일하거나 또는 상이한 조성으로 이루어진 것일 수 있다. 더욱 구체적으로는 음극에 직접 대면되는 제1층은, 제1층에 대면되는 제2층에 대하여 가교밀도 또는 염의 농도를 달리한 구배가 형성된 것일 수 있다. 구체적으로 제2층이 제1층에 비하여 가교밀도가 더욱 높거나 또는 염의 농도가 더욱 높도록 하는 것일 수 있다. 이와 같이 구배를 형성하는 경우 이온전도도를 더욱 높이고, 부반응을 억제할 수 있으므로 더욱 바람직하다.
또한 본 발명에서 제 1 겔 고분자 전해질 층 및 제 2 겔 고분자 전해질 층은 서로 다른 조성으로 이루어지는데 특징이 있다.
더욱 구체적으로는 가교 고분자의 종류를 달리 사용하거나, 유기용매의 종류를 달리 사용하거나, 해리 가능한 염의 종류를 달리 사용하거나, 또는 기능성 첨가제를 첨가하거나, 또는 조성을 달리함으로써 서로 상이한 에너지 준위를 갖도록 할 수 있다. 이에 따라 넓은 범위의 전위창(potential window)을 제공할 수 있다. 더욱 구체적으로, 양극에 결합된 제 1 겔 고분자 전해질 층은 높은 HOMO(Highest occupied molecular orbital) 에너지준위를 갖도록 조성을 하고, 음극에 결합된 제 2 겔 고분자 전해질 층은 낮은 LUMO(Lowest unoccupied molecular orbital) 에너지준위를 갖도록 조성을 함으로써 부반응 없이도 넓은 범위의 전위창을 제공할 수 있다.
더욱 구체적으로 하기 식 1 및 식 2를 만족하는 것일 수 있다.
|Ce| < |CEH| [식 1]
|Ae| < |AEL| [식 2]
상기 식 1 및 2에서 Ce는 양극 활물질의 에너지 준위이고, Ae는 음극 활물질의 에너지 준위이며, CEH는 제 1 겔 고분자 전해질 층의 HOMO의 에너지 준위이고, AEL는 제 2 겔 고분자 전해질 층의 LUMO의 에너지 준위이다.
또한, 상기 제 1 겔 고분자 전해질 층 및 제 2 겔 고분자 전해질 층은 에너지 준위 차이가 0.01 eV 이상인 것일 수 있다. 더욱 구체적으로 0.01 ~ 7 eV인 것일 수 있다.
HOMO의 에너지준위는 전자가 결합에 참여할 수 있는 가장 높은 에너지를 가지는 분자 오비탈이고, LUMO의 에너지준위는 전자의 비결합 영역에서 가장 에너지가 낮을 때의 분자 오비탈을 나타낸다. HOMO 및 LUMO 에너지준위는 양자역학에 근간을 둔 모든 방법을 이용해서 계산할 수 있으며, 대표적인 방법으로는 밀도함수이론 (density functional theory, DFT) 및 압이니시오 (ab initio) 분자궤도법이 있다.
상기 에너지 준위는 염의 종류, 염의 농도 및 용매의 종류에 따라 변경될 수 있다.
또한, 제 1 겔 고분자 전해질 층 및 제 2 겔 고분자 전해질 층에 사용된 액체 전해질이 서로 섞이지 않도록 하기 위하여, 제 1 겔 고분자 전해질 층 및 제 2 겔 고분자 전해질 층은 용해도 파라미터(solubility parameter)가 서로 상이한 조성으로 이루어지는 것이 바람직하다.
더욱 구체적으로, 상기 제 1 겔 고분자 전해질 층 및 제 2 겔 고분자 전해질 층은 용해도 파라미터 차이가 0.1 MPa1/2이상, 더욱 구체적으로 0.1 ~ 20 MPa1/2, 더욱 좋게는 1 ~ 20 MPa1/2, 더욱 좋게는 2 ~ 20 MPa1/2 차이가 나는 것이 바람직하다.
상기 용해도 파라미터는 액체 전해질에 사용되는 유기용매에 의해서 달라지는 것일 수 있다.
상기 용해도 파라미터는 서로 비상용성임을 나타내기 위한 선정 기준으로서, Charles M. Hansen의 저서 (Charles M. Hansen, "Hansen Solubility Parameters: A User's Handbook, 2nd Edition", 2nd Ed, CRC Press, 2007)에 기재된 방법에 따라 계산될 수 있다.
상기 관점에서 상기 제1겔 고분자 전해질 층은 용매로 카보네이트계 유기용매를 포함하고, 제2겔 고분자 전해질 층은 유기용매로 에테르계 유기용매를 포함하는 것일 수 있다. 더욱 구체적으로 상기 카보네이트계 용매는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC) 및 부틸렌 카보네이트(BC)에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다. 더욱 구체적으로 에틸렌 카보네이드, 프로필렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트 및 에틸메틸 카보네이트에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.
상기 에테르계 용매는 디메틸 에테르, 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란 및 테트라히드로퓨란에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.
또한, 상기 제 1 겔 고분자 전해질 층 및 제 2 겔 고분자 전해질 층의 염의 농도를 달리한 것일 수 있으며, 상기 제 1 겔 고분자 전해질 층 및 제 2 겔 고분자 전해질 층 중 적어도 한층은 염의 농도가 2 몰 이상인 것일 수 있다. 더욱 좋게는 음극에 적층되는 제 2 겔 고분자 전해질 층의 염의 농도가 제 1 겔 고분자 전해질 층의 염의 농도보다 높은 것이 바람직하며, 더욱 구체적으로 제 1 겔 고분자 전해질 층의 염의 농도는 0.1 ~ 2.5 몰이고, 제 2 겔 고분자 전해질 층의 염의 농도가 2몰 이상, 더욱 구체적으로 3 ~ 10 몰인 것일 수 있다. 제 2 겔 고분자 전해질 층의 염의 농도가 고농도일 경우 환원전위가 더 낮아지게 되어, 제 1 겔 고분자 전해질층과 제 2 겔 고분자 전해질층의 에너지 준위 차이가 더 넓어지게 될 수 있다. 또한 염의 농도가 높아질수록 cohesive energy가 증가 하게 되어, 제1 겔 고분자 전해질층과 제2 겔 고분자 전해질층의 용해도 파라미터 차이가 커지게 될 수 있다.
이때 상기 제 1 겔 고분자 전해질과 제 2 겔 고분자 전해질이 동일한 용매 및 동일한 염을 사용하고 단지 염의 농도만 다르게 하는 경우에도 에너지 준위 또는 용해도 파라미터가 달라질 수 있다.
일반적으로 사용되는 1몰의 염을 포함하는 액체전해질은, 용매화에 참여하지 않는 자유 상태의 용매 분자가 다수 존재하며, 상기 용매화에 참여하지 않는 용매 분자는 전기화학적으로 분해되기 쉬워 전지의 수명 특성 저하를 초래한다. 반면에, 본 발명은 2몰 이상의 고농도 액체전해질을 사용하므로, 염의 농도가 높아 대부분의 용매가 용매화(solvation)에 참여하게 되며, 용매화에 참여하지 않는 자유 상태의 용매 분자가 거의 존재하지 않게 되며, 이에 따라 전지의 수명 특성 향상을 도모할 수 있다.
이하는 도 11 내지 도 15를 참고하여 본 발명의 전극조립체(100)의 일 양태에 대하여 더욱 구체적으로 설명한다. 상기 도 11 내지 도 15는 본 발명의 전극조립체의 일 양태를 도시한 것으로 이에 한정되는 것은 아니다.
먼저, 본 발명의 전극조립체의 일 양태인 양극 및 음극을 하나의 세트로 하는 양태에 대하여 도 11을 참고하여 더욱 구체적으로 설명한다. 도 11에 도시된 바와 같이, 본 발명의 전극조립체(100)는 양극 집전체(11)상에 양극 활물질층(12)이 적층된 양극(10) 및 음극 집전체(21)로 이루어진 음극(20)을 포함하며, 양극 및 음극 사이에 전해질층(50)을 포함하는 것일 수 있다. 양극 집전체(11) 및 음극 집전체(21)는 앞서 설명한 바와 같으며, 상기 양극 활물질층(12)은 양극 활물질 및 바인더를 포함하는 활물질층 또는 양극 활물질, 가교 고분자 매트릭스 및 액체전해질을 포함하는 복합 활물질층으로 이루어진 것일 수 있다.
또한, 상기 양극 상에 앞서 설명한 바와 같이 제 1 겔 고분자 전해질 층이 적층되거나, 일부 또는 전부 함침되어 일체화 되는 것일 수 있으며, 상기 음극 상에 제 2 겔 고분자 전해질층이 적층되는 것일 수 있다.
상기 전해질층(50)은 액상의 전해질 또는 겔 고분자 전해질층인 것일 수 있으며, 이에 제한되는 것은 아니다. 또한 도시되지 않았지만 상기 전해질층(50)과 음극(20) 사이 및 상기 전해질층(50)과 양극(10) 사이에서 선택되는 어느 하나 또는 모두에 하나 이상의 분리막을 더 포함하는 것일 수 있다.
도 12에 도시된 바와 같이, 본 발명의 전극조립체(100)는 양극 집전체(11)상에 양극 활물질층(12)이 적층된 양극(10), 음극 집전체(21)로 이루어진 음극(20) 및 분리막(30)을 포함하는 것일 수 있다. 상기 양극 집전체(11), 음극 집전체(21) 및 분리막(30)은 앞서 설명한 바와 같으며, 상기 양극 활물질층(12)은 양극 활물질 및 바인더를 포함하는 활물질층 또는 양극 활물질, 가교 고분자 매트릭스 및 액체전해질을 포함하는 복합 활물질층으로 이루어진 것일 수 있다. 또한, 상기 양극 상에 앞서 설명한 바와 같이 제 1 겔 고분자 전해질 층이 적층되거나, 일부 또는 전부 함침되어 일체화 되는 것일 수 있으며, 상기 음극 상에 제 2 겔 고분자 전해질층이 적층되는 것일 수 있다.
또한 도시되지 않았지만 상기 분리막은 전해질이 함침된 것일 수 있다. 상기 전해질은 액상의 전해질 또는 겔 고분자 전해질인 것일 수 있으며, 이에 제한되는 것은 아니다.
도 13에 도시된 바와 같이, 본 발명의 전극조립체(100)는 양극 집전체(11)상에 양극 활물질층(12)이 적층된 양극(10) 및 음극 집전체(21)상에 음극 활물질층(22)이 적층된 음극(20)을 포함하며, 양극 및 음극 사이에 전해질층(50)을 포함하는 것일 수 있다. 상기 양극 집전체(11) 및 음극 집전체(21)는 앞서 설명한 바와 같으며, 상기 양극 활물질층(12) 및 음극 활물질층(22)은 양극 활물질 및 바인더를 포함하는 활물질층 또는 양극 활물질, 가교 고분자 매트릭스 및 액체전해질을 포함하는 복합 활물질층으로 이루어진 것일 수 있다. 또한, 상기 양극 상에 앞서 설명한 바와 같이 제 1 겔 고분자 전해질 층이 적층되거나, 일부 또는 전부 함침되어 일체화 되는 것일 수 있으며, 상기 음극 상에 제 2 겔 고분자 전해질층이 적층되거나, 일부 또는 전부 함침되어 일체화 되는 것일 수 있다.
상기 전해질층(50)은 액상의 전해질 또는 겔 고분자 전해질층인 것일 수 있으며, 이에 제한되는 것은 아니다. 또한 도시되지 않았지만 상기 전해질층(50)과 음극(20) 사이 및 상기 전해질층(50)과 양극(10) 사이에서 선택되는 어느 하나 또는 모두에 하나 이상의 분리막을 더 포함하는 것일 수 있다.
도 14에 도시된 바와 같이, 본 발명의 전극조립체(100)는 양극 집전체(11)상에 양극 활물질층(12)이 적층된 양극(10), 음극 집전체(21)상에 음극 활물질층(22)이 적층된 음극(20) 및 분리막(30)을 포함하는 것일 수 있다. 상기 양극 집전체(11), 음극 집전체(21) 및 분리막(30)은 앞서 설명한 바와 같으며, 상기 양극 활물질층(12) 및 음극 활물질층(22)은 양극 활물질 및 바인더를 포함하는 활물질층 또는 양극 활물질, 가교 고분자 매트릭스 및 액체전해질을 포함하는 복합 활물질층으로 이루어진 것일 수 있다.
또한, 상기 양극 상에 앞서 설명한 바와 같이 제 1 겔 고분자 전해질 층이 적층되거나, 일부 또는 전부 함침되어 일체화 되는 것일 수 있으며, 상기 음극 상에 제 2 겔 고분자 전해질층이 적층되거나, 일부 또는 전부 함침되어 일체화되는 것일 수 있다.
또한 도시되지 않았지만 상기 분리막은 전해질이 함침된 것일 수 있다. 상기 전해질은 액상의 전해질 또는 겔 고분자 전해질인 것일 수 있으며, 이에 제한되는 것은 아니다.
도 15에 도시된 바와 같이, 본 발명의 전극조립체(100)는 양극 집전체(11)상에 양극 활물질층(12)이 적층된 양극(10), 바이폴라 집전체(41)상에 음극 활물질층(42) 및 양극활물질층(43)이 적층된 바이폴라 전극(40) 및 음극 집전체(21)상에 음극 활물질층(22)이 적층된 음극(20)을 포함하며, 양극과 바이폴라 전극 사이 및 음극과 바이폴라전극 사이에 전해질층(50)을 포함하는 것일 수 있다. 또한 도시되지 않았지만 양극 활물질층(12)과 음극 활물질층(42)의 사이 및 양극활물질층(43)과 음극 활물질층(22) 사이에는 하나 이상의 분리막을 더 포함하는 것일 수 있다. 상기 분리막은 전해질이 함침된 것일 수 있다. 상기 전해질은 액상의 전해질 또는 겔 고분자 전해질인 것일 수 있으며, 이에 제한되는 것은 아니다. 또한 상기 바이폴라 전극은 하나 이상이 적층된 것일 수 있으며, 개수는 제한되지 않는다. 상기 양극 집전체(11), 음극 집전체(21) 및 바이폴라 집전체(41)는 앞서 설명한 집전체와 같으며, 상기 양극 활물질층(12, 43) 및 음극 활물질층(22, 42)은 양극 활물질 및 바인더를 포함하는 활물질층 또는 양극 활물질, 가교 고분자 매트릭스 및 액체전해질을 포함하는 복합 활물질층으로 이루어진 것일 수 있다.
또한, 상기 양극 상에 앞서 설명한 바와 같이 제 1 겔 고분자 전해질 층이 적층되거나, 일부 또는 전부 함침되어 일체화 되는 것일 수 있으며, 상기 음극 상에 제 2 겔 고분자 전해질층이 적층되거나, 일부 또는 전부 함침되어 일체화 되는 것일 수 있다.
상기 전해질층(50)은 액상의 전해질 또는 겔 고분자 전해질층인 것일 수 있으며, 이에 제한되는 것은 아니다. 또한 도시되지 않았지만 상기 전해질층(50)과 음극(20) 사이, 상기 전해질층(50)과 바이폴라전극(40)사이, 상기 전해질층(50)과 양극(10) 사이 및 상기 전해질층(50)과 바이폴라전극(40)사이에서 선택되는 어느 하나 또는 둘 이상에 하나 이상의 분리막을 더 포함하는 것일 수 있다.
[제조방법]
이하는 본 발명의 전기화학소자를 제조하는 방법에 대하여 구체적으로 설명한다. 본 발명의 제조방법은 연속적으로 다수개의 전지셀을 동시에 제조할 수 있으며, 절단에 의해 도 1 내지 6에 도시한 바와 같은 단일 전기화학소자를 용이하게 제조할 수 있는 장점이 있다. 또한 도 17에 도시된 바와 같이 다수의 셀 영역들이 구비된 전기화학 소자를 용이하게 제조할 수 있는 장점이 있다.
도 10, 도 16 및 도 19에 도시된 바와 같이, 금속층(201) 및 상기 금속층의 일면에 둘레 격벽(211) 및 상기 둘레 격벽의 내측에 전극조립체를 수용하기 위한 공간(213)을 구획하는 구획 격벽(212)을 포함하는 격벽 패턴을 이루는 실링층(202)을 포함하는 하부시트(200)를 공급하고, 상기 하부시트(200)의 전극조립체를 수용하기 위한 공간(213)에 전극조립체(100)를 올리고, 상기 하부시트(200)와 동일한 구성의 상부시트(300) 또는 도 19와 같이 실링층이 없이 금속층을 포함하는 상부시트(300)를 공급하고, 밀봉되도록 합지하는 단계를 포함한다.
이때 상기 전극조립체(100)는 양극과 음극, 분리막 및 전해질의 크기가 동일한 것일 수 있다. 상기 크기가 동일하다는 것은 앞서 설명한 바와 같이 실질적으로 가장자리가 일치하는 것을 의미한다. 또한 전극조립체(100)에 있어서 분리막의 크기는 음극의 크기보다 크거나 같을 수 있으며, 양극의 크기는 음극의 크기보다 같거나 작을 수 있다.
본 발명의 일 양태에서, 상기 전극조립체는 각각의 롤러에서부터 연속적으로 공급되는 양극, 분리막 및 음극이 적층된 상태에서 타발을 하여 제조되는 것일 수 있으며, 양극, 분리막 및 음극의 크기가 실질적으로 동일한 것일 수 있다. 더욱 구체적으로 양극 및 분리막이 적층된 상태에서 겔 고분자 전해질 조성물을 도포하여 함침 및 경화한 후, 음극을 적층하고, 적층된 상태에서 타발을 하여 일정한 형상의 전극조립체를 제조하는 것일 수 있다.
또한, 본 발명의 일 양태에서, 상기 하부시트 및 상부시트는 각각의 롤러에서부터 연속적으로 공급되는 것일 수 있으며, 상기 합지는 가열판 또는 가열롤러 등 통상의 가열 가압수단(500)을 이용하는 것일 수 있다. 상기 가열 가압에 의해 실링층의 고분자 소재가 녹아 서로 붙어서 밀폐되며, 하부시트의 금속층과 상부시트의 금속층이 전극조립체의 최외층인 집전체와 밀착되어 전기적으로 연결될 수 있다. 상기 가열 가압 시 온도 및 압력은 실링층에 사용되는 고분자 소재의 융점 이상의 온도인 것이 바람직하며, 고분자 소재의 종류에 따라 달라질 수 있으므로 제한되지 않는다.
이때 도시되지 않았지만 필요에 따라 상기 상부시트 및 하부시트의 전극조립체를 수용하기 위한 공간(213)에 해당하는 금속층 상에 도전성 접착제, 도전성 점착제 및 도전성 페이스트에서 선택되는 어느 하나 이상을 도포하는 단계를 더 포함하는 것일 수 있다. 또한 필요에 따라 상기 실링층의 상부에 접착제를 도포하는 단계를 더 포함하는 것일 수 있다.
다음으로 상기 가열 가압 수단(500)을 지나 합지된 후, 하부시트 및 상부시트의 금속층과 전극조립체가 밀착되는 부분을 용접수단(401)을 이용하여 용접 또는 납땜을 하는 단계를 더 포함하여 접합부(400)를 형성하는 것일 수 있다. 상기 용접은 저항 용접, 초음파 용접 및 레이저 용접 등의 방법으로 스팟 또는 스트라이프 형태로 형성되는 것일 수 있으며, 이에 제한되는 것은 아니다. 상기 납땜의 경우는 금속층과 전극조립체가 밀착되는 부분에 솔더링 페이스트를 더 포함할 수 있다.
다음으로 절단수단(600)을 이용하여 상기 실링층에 의해 밀봉된 부분을 절단하는 단계를 포함하여 도 1 내지 6과 같이 하나의 전지 셀로 이루어진 전기화학소자(1000)를 제조할 수 있다. 또한 도 17과 같이 다수개의 전지 셀이 병렬로 연결된 전기화학소자(2000)를 제조할 수도 있다. 이때 절단을 위한 방법은 통상적으로 해당 분야에서 사용되는 것이라면 제한되지 않으며, 구체적으로 예를 들면 레이저 커팅이나, 금형 타발, 다이커팅 등에 의해 이루어질 수 있으며 제한되지 않는다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.
1000 : 전기화학소자
100 : 전극조립체
10 : 양극
20 : 음극
11 : 양극 집전체
12 :양극 활물질층
21 : 음극 집전체
22 : 음극 활물질층
30 : 분리막
40 : 바이폴라 전극
41 : 바이폴라 집전체
42 : 음극 활물질층
43 : 양극활물질층
50 : 전해질층
200 : 하부시트
300 : 상부시트
201, 301 : 금속층
202, 302 : 실링층
203, 303 : 도전성층
213, 313 : 실링층이 형성되지 않은 홈
304, 204 : 절연층
205, 305 : 절연층이 형성되지 않은 홈
206, 306 : 접착제층
211, 311 : 둘레 격벽
211, 212, 311, 312 : 구획 격벽
213, 313 : 전극조립체를 수용하기 위한 공간
214 : 열융착 가능한 고분자 소재 층
215 : 내열소재 층
400 : 접합부
500 : 가열가압 수단
401 : 용접수단
600 : 절단수단

Claims (36)

  1. 상부시트 및 하부 시트가 마주하여 일체화되어 형성되는 공간에 수용되는 전극조립체를 포함하며,
    상기 전극조립체는 양극 및 음극을 포함하며, 상기 양극 및 음극 중 적어도 하나 이상은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질을 포함하고,
    상기 양극은 ⅱ) 집전체 상에 전극 활물질 및 바인더를 포함하는 활물질층을 포함하고, 상기 활물질층 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체, 및 ⅲ) 집전체 상에 전극 활물질, 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 복합 활물질층을 포함하는 전극-전해질 복합체에서 선택되고,
    상기 음극은 집전체만으로 이루어지거나, ⅰ) 집전체 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체에서 선택되며,
    상기 상부시트 및 하부시트는 금속층을 포함하고,
    상기 상부시트 및 하부시트 중 적어도 어느 하나 이상은 상기 금속층의 가장자리에 실링층을 포함하며,
    상기 전극조립체의 양극 및 음극의 집전체가 상기 상부시트 및 하부시트의 금속층과 밀착되어 전기적으로 연결되는 전기화학 소자.
  2. 제 1항에 있어서,
    상기 전극조립체와 상기 상부시트 및 하부시트의 금속층이 밀착되는 부분 중 적어도 어느 하나 이상의 부분에 접합부를 더 포함하는 것인 전기화학 소자.
  3. 제 1항에 있어서,
    상기 하부시트 및 상부시트에서 선택되는 어느 하나 이상의 금속층과 전극조립체 사이에 도전성 접착제층, 도전성 점착제층 및 도전성 페이스트층에서 선택되는 어느 하나 이상의 도전성층을 더 포함하는 것인 전기화학 소자.
  4. 제 1항에 있어서,
    상기 상부시트 및 하부시트에서 선택되는 어느 하나 이상은 최외층에 절연층을 더 포함하고, 상기 절연층의 일부분은 개방된 것인 전기화학 소자.
  5. 제 1항에 있어서,
    상기 실링층은 열에 의해 융착이 가능한 고분자 소재로 이루어진 것인 전기화학 소자.
  6. 제 1항에 있어서,
    상기 실링층은 열에 의해 융착이 가능한 고분자 소재로 이루어진 층 사이에 내열소재로 이루어진 층을 한층 이상 포함하는 것인 전기화학 소자.
  7. 제 1항에 있어서,
    상기 실링층 상부에 접착제층을 더 포함하는 것인 전기화학 소자.
  8. 제 1항에 있어서,
    상기 실링층은 전극조립체가 위치하는 부분을 제외한 가장자리에 전극조립체의 둘레를 따라 형성된 것인 전기화학 소자.
  9. 삭제
  10. 삭제
  11. 삭제
  12. 제 1항에 있어서,
    상기 활물질층 및 복합 활물질층은 도전재를 더 포함하는 것인 전기화학 소자.
  13. 제 1항에 있어서,
    상기 양극과 음극은 실질적으로 가장자리가 일치하는 것인 전기화학 소자.
  14. 제 13항에 있어서,
    상기 양극과 음극 사이에 적어도 하나 이상의 분리막을 더 포함하며, 상기 분리막은 양극 및 음극과 실질적으로 가장자리가 일치하는 것인 전기화학 소자.
  15. 제 14항에 있어서,
    상기 분리막은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질을 포함하는 것인 전기화학 소자.
  16. 제 1항에 있어서,
    상기 전극조립체는 양극에 제 1 겔 고분자 전해질을 포함하고, 음극에 제 2 겔 고분자 전해질을 포함하며, 상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 서로 상이한 것인 전기화학 소자.
  17. 제 16항에 있어서,
    상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 용해도 파라미터 차이가 0.1 MPa1/2이상인 것인 전기화학 소자.
  18. 제 16항에 있어서,
    상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 에너지 준위 차이가 0.01 eV 이상인 것인 전기화학 소자.
  19. 제 16항에 있어서,
    상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 무기입자 및 난연제에서 선택되는 어느 하나 또는 둘 이상의 첨가제를 더 포함하는 것인 전기화학 소자.
  20. 제 16항에 있어서,
    상기 제 1 겔 고분자 전해질은 숙시노니트릴(succinonitrile) 및 세바코니트릴(sebaconitrile)에서 선택되는 어느 하나 또는 이들의 혼합물인 양극발열 억제제를 더 포함하고,
    상기 제 2 겔 고분자 전해질은 비닐렌 카보네이트, 불화에틸렌 카보네이트 및 카테콜 카보네이트에서 선택되는 어느 하나 또는 이들의 혼합물인 SEI층 안정화제를 더 포함하는 것인 전기화학 소자.
  21. 제 1항에 있어서,
    상기 가교 고분자 매트릭스는 선형 고분자를 더 포함하여 반 상호 침투 망상(semi-IPN) 구조인 것인 전기화학 소자.
  22. 제 1항에 있어서,
    상기 양극 집전체 및 음극 집전체는 각각 선택적으로 박막형태, 메쉬형태, 전도성기판의 일면 또는 양면에 박막 또는 메쉬 형태의 집전체가 적층되어 일체화된 형태 및 금속-메쉬 복합체로 이루어진 군에서 선택되는 것인 전기화학 소자.
  23. 제 1항에 있어서,
    상기 전기화학 소자는 상기 전극조립체가 하나 또는 둘 이상이 적층된 것인 전기화학 소자.
  24. 제 1항에 있어서,
    상기 전극조립체는 하나 이상의 바이폴라 전극을 포함하는 것인 전기화학 소자.
  25. 제 1항에 있어서,
    상기 실링층은 상기 실링층이 형성되지 아니한 홈이 다수개 형성되도록 다수개의 구획격벽을 더 포함하며,
    상기 상부 시트 및 하부 시트가 마주하여 일체화되며 형성되는 공간에 다수개의 전극조립체가 포함되어 다수의 셀 영역들이 구비된 전기화학 소자.
  26. 제 1항에 있어서,
    상기 전기화학 소자는 전기화학반응이 가능한 일차전지 또는 이차전지인 것인 전기화학 소자.
  27. 제 26항에 있어서,
    상기 전기화학 소자는 리튬 일차 전지, 리튬 이차 전지, 리튬-설퍼 전지, 리튬-공기 전지, 나트륨 전지, 알루미늄 전지, 마그네슘 전지, 칼슘 전지, 아연 전지, 아연-공기 전지, 나트륨-공기 전지, 알루미늄-공기 전지, 마그네슘-공기 전지, 칼슘-공기 전지, 슈퍼 캐패시터, 염료감응 태양전지, 연료전지, 납 축전지, 니켈 카드뮴전지, 니켈 수소 축전지 및 알칼리전지로 이루어진 군에서 선택되는 것인 전기화학 소자.
  28. 금속층 및 상기 금속층의 일면에 둘레 격벽 및 상기 둘레 격벽의 내측에 전극조립체를 수용하기 위한 공간을 구획하는 구획 격벽을 포함하는 격벽 패턴을 이루는 실링층을 포함하는 하부시트를 공급하고,
    상기 하부시트의 전극조립체를 수용하기 위한 공간에 전극조립체를 적층하고,
    금속층을 포함하는 상부시트를 공급하여 합지하는 단계를 포함하여, 연속적으로 제조되며,
    상기 전극조립체는 양극 및 음극을 포함하며, 상기 양극 및 음극 중 적어도 하나 이상은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질을 포함하고,
    상기 양극은 ⅱ) 집전체 상에 전극 활물질 및 바인더를 포함하는 활물질층을 포함하고, 상기 활물질층 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체, 및 ⅲ) 집전체 상에 전극 활물질, 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 복합 활물질층을 포함하는 전극-전해질 복합체에서 선택되고,
    상기 음극은 집전체만으로 이루어지거나, ⅰ) 집전체 상에 겔 고분자 전해질이 도포된 전극-전해질 복합체에서 선택되는 것인, 전기화학소자의 제조방법.
  29. 제 28항에 있어서,
    상기 합지 시, 상기 전극조립체의 양극 집전체 및 음극 집전체가 각각 상기 상부시트의 금속층 및 하부시트의 금속층과 밀착되도록 합지하는 것인 전기화학소자의 제조방법.
  30. 제 28항에 있어서,
    상기 합지 후, 하부시트 및 상부시트의 금속층과 전극조립체가 밀착되는 부분을 용접 또는 납땜하여 접합부를 형성하는 단계를 더 포함하는 전기화학소자의 제조방법.
  31. 제 28항에 있어서,
    상기 하부시트 및 상부시트의 금속층 상에 도전성 접착제, 도전성 점착제 및 도전성 페이스트에서 선택되는 어느 하나 이상을 도포하는 단계를 더 포함하는 전기화학소자의 제조방법.
  32. 제 28항에 있어서,
    상기 합지 후, 실링층에 의해 밀봉된 부분을 절단하는 단계를 더 포함하는 전기화학소자의 제조방법.
  33. 상부시트 및 하부 시트가 마주하여 일체화되어 형성되는 공간에 수용되는 전극조립체를 포함하며,
    상기 전극조립체는 양극 및 음극을 포함하며, 상기 양극 및 음극 중 적어도 하나 이상은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질을 포함하고,
    상기 전극조립체는 양극에 제 1 겔 고분자 전해질을 포함하고, 음극에 제 2 겔 고분자 전해질을 포함하며, 상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 서로 상이하며,
    상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 용해도 파라미터 차이가 0.1 MPa1/2이상이고,
    상기 상부시트 및 하부시트는 금속층을 포함하고,
    상기 상부시트 및 하부시트 중 적어도 어느 하나 이상은 상기 금속층의 가장자리에 실링층을 포함하며,
    상기 전극조립체의 양극 및 음극의 집전체가 상기 상부시트 및 하부시트의 금속층과 밀착되어 전기적으로 연결되는 전기화학 소자.
  34. 상부시트 및 하부 시트가 마주하여 일체화되어 형성되는 공간에 수용되는 전극조립체를 포함하며,
    상기 전극조립체는 양극 및 음극을 포함하며, 상기 양극 및 음극 중 적어도 하나 이상은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질을 포함하고,
    상기 전극조립체는 양극에 제 1 겔 고분자 전해질을 포함하고, 음극에 제 2 겔 고분자 전해질을 포함하며, 상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 서로 상이하며,
    상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 에너지 준위 차이가 0.01 eV 이상이고,
    상기 상부시트 및 하부시트는 금속층을 포함하고,
    상기 상부시트 및 하부시트 중 적어도 어느 하나 이상은 상기 금속층의 가장자리에 실링층을 포함하며,
    상기 전극조립체의 양극 및 음극의 집전체가 상기 상부시트 및 하부시트의 금속층과 밀착되어 전기적으로 연결되는 전기화학 소자.
  35. 금속층 및 상기 금속층의 일면에 둘레 격벽 및 상기 둘레 격벽의 내측에 전극조립체를 수용하기 위한 공간을 구획하는 구획 격벽을 포함하는 격벽 패턴을 이루는 실링층을 포함하는 하부시트를 공급하고,
    상기 하부시트의 전극조립체를 수용하기 위한 공간에 전극조립체를 적층하고,
    금속층을 포함하는 상부시트를 공급하여 합지하는 단계를 포함하여, 연속적으로 제조되며,
    상기 전극조립체는 양극 및 음극을 포함하며, 상기 양극 및 음극 중 적어도 하나 이상은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질을 포함하고,
    상기 전극조립체는 양극에 제 1 겔 고분자 전해질을 포함하고, 음극에 제 2 겔 고분자 전해질을 포함하며, 상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 서로 상이하며,
    상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 용해도 파라미터 차이가 0.1 MPa1/2이상인, 전기화학소자의 제조방법.
  36. 금속층 및 상기 금속층의 일면에 둘레 격벽 및 상기 둘레 격벽의 내측에 전극조립체를 수용하기 위한 공간을 구획하는 구획 격벽을 포함하는 격벽 패턴을 이루는 실링층을 포함하는 하부시트를 공급하고,
    상기 하부시트의 전극조립체를 수용하기 위한 공간에 전극조립체를 적층하고,
    금속층을 포함하는 상부시트를 공급하여 합지하는 단계를 포함하여, 연속적으로 제조되며,
    상기 전극조립체는 양극 및 음극을 포함하며, 상기 양극 및 음극 중 적어도 하나 이상은 가교 고분자 매트릭스, 용매 및 해리 가능한 염을 포함하는 겔 고분자 전해질을 포함하고,
    상기 전극조립체는 양극에 제 1 겔 고분자 전해질을 포함하고, 음극에 제 2 겔 고분자 전해질을 포함하며, 상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 서로 상이하며,
    상기 제 1 겔 고분자 전해질 및 제 2 겔 고분자 전해질은 에너지 준위 차이가 0.01 eV 이상인, 전기화학소자의 제조방법.
KR1020180107230A 2017-09-11 2018-09-07 전기화학 소자 및 그 제조 방법 KR102126371B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/KR2018/010542 WO2019050356A1 (ko) 2017-09-11 2018-09-10 전기화학 소자 및 그 제조 방법
CN201880059073.4A CN111095648A (zh) 2017-09-11 2018-09-10 电化学元件及其制造方法
US16/646,104 US20200203677A1 (en) 2017-09-11 2018-09-10 Electrochemical element and manufacturing method therefor
KR1020200014718A KR102414434B1 (ko) 2018-09-07 2020-02-07 전기화학 소자 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170115918 2017-09-11
KR1020170115918 2017-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200014718A Division KR102414434B1 (ko) 2018-09-07 2020-02-07 전기화학 소자 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20190029459A KR20190029459A (ko) 2019-03-20
KR102126371B1 true KR102126371B1 (ko) 2020-06-25

Family

ID=66036285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180107230A KR102126371B1 (ko) 2017-09-11 2018-09-07 전기화학 소자 및 그 제조 방법

Country Status (3)

Country Link
US (1) US20200203677A1 (ko)
KR (1) KR102126371B1 (ko)
CN (1) CN111095648A (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469412B2 (en) * 2018-05-02 2022-10-11 Lg Energy Solution, Ltd. Anode for lithium metal battery, manufacturing method of the same, lithium metal battery including the same
CN110911723A (zh) * 2018-09-18 2020-03-24 宁德时代新能源科技股份有限公司 二次电池
KR20220023964A (ko) * 2019-04-10 2022-03-03 10644137 캐나다 인코포레이티드 하이브리드 에너지 장치, 시스템 및 그 방법
TWI693683B (zh) * 2019-05-15 2020-05-11 輝能科技股份有限公司 化學系統之封裝結構
US20210020944A1 (en) * 2019-07-16 2021-01-21 Lionano Se Inc. Electrodes for lithium-ion batteries and other applications
US20220216523A1 (en) * 2020-02-05 2022-07-07 Ubatt Inc. Thin lithium battery and method for manufacturing same
US11855258B2 (en) * 2020-06-08 2023-12-26 Cmc Materials, Inc. Secondary battery cell with solid polymer electrolyte
US11881580B2 (en) * 2021-03-19 2024-01-23 Global Graphene Group, Inc. Flame-resistant bipolar electrodes, bipolar lithium batteries, and manufacturing method
CN113471631B (zh) * 2021-07-05 2024-04-19 宁德新能源科技有限公司 电化学装置及包含该电化学装置的电子装置
JP2023170509A (ja) * 2022-05-19 2023-12-01 トヨタ自動車株式会社 亜鉛二次電池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230812A (ja) * 2014-06-04 2015-12-21 セイコーインスツル株式会社 電気化学セル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225292A (en) * 1992-01-16 1993-07-06 Globe-Union Inc. Internally folded expanded metal electrode for battery construction
CA2173330C (en) * 1993-10-08 2006-04-11 Martin Klein Bipolar electrochemical battery of stacked wafer cells
CA2235884C (fr) * 1997-04-23 2009-04-14 Hydro-Quebec Piles au lithium ultra-minces et a l'etat solide et procede de fabrication
KR20080034369A (ko) 2006-10-16 2008-04-21 삼성에스디아이 주식회사 파우치형 리튬 이차전지
WO2010054261A1 (en) * 2008-11-07 2010-05-14 Seeo, Inc Multiple electrolyte electrochemical cells
EP2246923A1 (en) * 2009-02-13 2010-11-03 Panasonic Corporation Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2013232569A (ja) * 2012-05-01 2013-11-14 Taiyo Yuden Co Ltd 電気化学デバイス
KR101612062B1 (ko) * 2014-05-08 2016-04-27 울산과학기술원 복합 전극-복합 전해질 합체, 이의 제조 방법, 및 이를 포함하는 전기 화학 소자
JP6694246B2 (ja) * 2014-08-18 2020-05-13 昭和電工パッケージング株式会社 薄型蓄電デバイス及びその製造方法
JP6487712B2 (ja) * 2015-02-23 2019-03-20 昭和電工パッケージング株式会社 蓄電デバイス

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230812A (ja) * 2014-06-04 2015-12-21 セイコーインスツル株式会社 電気化学セル

Also Published As

Publication number Publication date
CN111095648A (zh) 2020-05-01
US20200203677A1 (en) 2020-06-25
KR20190029459A (ko) 2019-03-20

Similar Documents

Publication Publication Date Title
KR102126371B1 (ko) 전기화학 소자 및 그 제조 방법
KR101455663B1 (ko) 리튬 이온 2차 배터리
US7008722B2 (en) Polymer-gel lithium ion battery
EP2996188B1 (en) Electrode assembly and lithium secondary battery comprising the same
US8828605B2 (en) Lithium-ion secondary battery
JP4735579B2 (ja) 非水電解質電池
JP4752574B2 (ja) 負極及び二次電池
KR102170434B1 (ko) 이종 겔 고분자 전해질을 포함하는 전기화학 소자
KR20140079712A (ko) 2차 전지
US20030072996A1 (en) Separation for a lithium ion secondary battery, method for producing the same, and a lithium ion secondary battery using the same
EP2575201A1 (en) Non-aqueous electrolyte secondary battery comprising lithium vanadium phosphate and lithium nickel composite oxide as positive electrode active material
CN102088067A (zh) 隔膜和电池
US10547090B2 (en) Battery cell including electrode lead containing gas adsorbent
US11430988B2 (en) Electrode and secondary battery including the same
KR102510888B1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함한 리튬 이차전지
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
KR101936074B1 (ko) 전해액 내장 부재를 포함하는 전지셀
KR102278772B1 (ko) 집전체가 노출된 전기화학소자 및 이의 제조방법
CN111527627B (zh) 制造负极的方法以及由此获得的负极
KR102414434B1 (ko) 전기화학 소자 및 그 제조 방법
CN113785424A (zh) 薄型锂电池及其制造方法
JP4501180B2 (ja) 非水系ポリマ二次電池
KR20180058305A (ko) 천공된 전극을 포함하고 있는 전지셀 제조방법
WO2003100901A1 (en) Lithium secondary battery and its fabrication
KR20230048711A (ko) 리튬 이차전지용 전극 및 이의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right