TW202201908A - 雙模鎖相迴路電路、振盪電路及振盪電路的控制方法 - Google Patents

雙模鎖相迴路電路、振盪電路及振盪電路的控制方法 Download PDF

Info

Publication number
TW202201908A
TW202201908A TW110122968A TW110122968A TW202201908A TW 202201908 A TW202201908 A TW 202201908A TW 110122968 A TW110122968 A TW 110122968A TW 110122968 A TW110122968 A TW 110122968A TW 202201908 A TW202201908 A TW 202201908A
Authority
TW
Taiwan
Prior art keywords
circuit
signal
current
digital code
clock
Prior art date
Application number
TW110122968A
Other languages
English (en)
Other versions
TWI783547B (zh
Inventor
章晉祥
簡佑勛
Original Assignee
円星科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 円星科技股份有限公司 filed Critical 円星科技股份有限公司
Publication of TW202201908A publication Critical patent/TW202201908A/zh
Application granted granted Critical
Publication of TWI783547B publication Critical patent/TWI783547B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0231Astable circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0807Details of the phase-locked loop concerning mainly a recovery circuit for the reference signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/087Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/037Bistable circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • H03L7/0893Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump the up-down pulses controlling at least two source current generators or at least two sink current generators connected to different points in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/091Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector using a sampling device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0991Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator being a digital oscillator, e.g. composed of a fixed oscillator followed by a variable frequency divider
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0991Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator being a digital oscillator, e.g. composed of a fixed oscillator followed by a variable frequency divider
    • H03L7/0992Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator being a digital oscillator, e.g. composed of a fixed oscillator followed by a variable frequency divider comprising a counter or a frequency divider
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/183Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between fixed numbers or the frequency divider dividing by a fixed number
    • H03L7/187Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between fixed numbers or the frequency divider dividing by a fixed number using means for coarse tuning the voltage controlled oscillator of the loop
    • H03L7/189Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between fixed numbers or the frequency divider dividing by a fixed number using means for coarse tuning the voltage controlled oscillator of the loop comprising a D/A converter for generating a coarse tuning voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L2207/00Indexing scheme relating to automatic control of frequency or phase and to synchronisation
    • H03L2207/06Phase locked loops with a controlled oscillator having at least two frequency control terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Analogue/Digital Conversion (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

一種鎖相迴路電路包含相位頻率偵測電路、數位碼產生電路、分頻器及振盪電路。該相位頻率偵測電路用以偵測參考時脈與回授時脈之間的相位及頻率差,以產生第一控制訊號與第二控制訊號。該數位碼產生電路用以處理該第二控制訊號以產生數位碼。該分頻器用以接收輸出時脈以產生該回授時脈。該振盪電路用以根據該第一控制訊號與該數位碼產生該輸出時脈。該輸出時脈的頻率是根據不同類型的第一控制參數與第二控制參數來決定。該第一控制參數與該第二控制參數分別因應該第一控制訊號與該數位碼來調整。

Description

雙模鎖相迴路電路、振盪電路及振盪電路的控制方法
本揭示內容係關於鎖相迴路,尤指一種包含採用混合式控制方案之振盪電路的鎖相迴路電路,及其相關的振盪電路和振盪電路的控制方法。
鎖相迴路(phase-locked loop,PLL)在通訊系統中廣為使用,以進行時脈同步(clock synchronization)、頻率解調(frequency demodulation)、頻率合成(frequency synthesis)以及時脈資料回復(clock and data recovery,CDR)。此外,幾乎所有的高速混合訊號系統單晶片(system-on-chip,SoC)均設置了鎖相迴路。針對不同的應用,已開發出不同種類的鎖相迴路。例如,由於具備了鎖定速度快及功耗低的特點,基於無線收發器的數位鎖相迴路係廣泛使用於人工智慧(artificial intelligence)、物聯網(Internet of Things,IoT)及其他高強度計算需求(computationally-intensive)的應用。
本揭示的實施例提供了一種鎖相迴路電路,其包含了採用混合式控制方案的振盪電路。本揭示的實施例另提供相關的振盪電路,以及振盪電路的控制方法。
本揭示的某些實施例包含一種鎖相迴路電路,其包含一相位頻率偵測電路、一數位碼產生電路、一分頻器以及一振盪電路。該相位頻率偵測電路用以偵測一參考時脈與一回授時脈之間的相位及頻率差,以產生一第一控制訊號與一第二控制訊號。該數位碼產生電路耦接於該相位頻率偵測電路,用以處理該第二控制訊號以產生一第一數位碼。該分頻器耦接於該相位頻率偵測電路,用以接收一輸出時脈以產生該回授時脈。該振盪電路耦接於該相位頻率偵測電路、該數位碼產生電路與該分頻器,用以根據該第一控制訊號與該第一數位碼產生該輸出時脈。該輸出時脈的頻率是根據該振盪電路的一第一控制參數與一第二控制參數來決定。該第一控制參數與該第二控制參數是不同類型的參數,並分別因應該第一控制訊號與該第一數位碼來調整。
本揭示的某些實施例包含一種振盪電路,其包含一電流產生電路以及一訊號產生電路。該電流產生電路用以根據一控制訊號產生一電流輸入。該訊號產生電路耦接於該電流產生電路,用以根據一數位碼啟用多個訊號傳輸路徑其中的一個訊號傳輸路徑,並允許該電流輸入流經該訊號傳輸路徑以產生一輸出時脈。該輸出時脈的頻率是根據該電流輸入與該訊號傳輸路徑的電特性來調整。
本揭示的某些實施例包含一種振盪電路的控制方法,其包含:偵測一參考時脈與一回授時脈之間的相位及頻率差,以產生一第一控制訊號與一第二控制訊號;處理該第二控制訊號以產生一數位碼;將該第一控制訊號施加於該振盪電路以調整該振盪電路的一電流輸入;將該數位碼施加於該振盪電路以允許該電流輸入流經一訊號傳輸路徑,並據以產生一輸出時脈,其中該輸出時脈的頻率是根據該電流輸入與該訊號傳輸路徑的電特性來調整;以及對該輸出時脈進行除頻以產生該回授時脈。
藉由本揭示所提供之鎖相迴路控制方案,鎖相迴路電路可利用混合式控制振盪器以及混合式相位頻率偵測電路,以在相位鎖定操作期間實現低功耗的特性。此外,或者是,鎖相迴路電路可實現自由運行的數位控制振盪器,其具有高度的電壓與溫度變異的抗擾性。因此,本揭示所提供之鎖相迴路控制方案可實現雙模鎖相迴路電路,進而節省電路面積及降低生產成本。
以下揭示內容提供了多種實施方式或例示,其能用以實現本揭示內容的不同特徵。下文所述之參數值、元件與配置的具體例子用以簡化本揭示內容。當可想見,這些敘述僅為例示,其本意並非用於限制本揭示內容。舉例來說,本揭示內容可能會在實施例中重複使用元件符號及/或標號。此種重複使用乃是基於簡潔與清楚的目的,且其本身不代表所討論的不同實施例及/或組態之間的關係。
此外,當可理解,若將一部件描述為與另一部件「連接(connected to)」或「耦接(coupled to)」,則兩者可直接連接或耦接,或兩者間可能出現其他中間(intervening)部件。
圖1是根據本揭示某些實施例的示例性的鎖相迴路電路的功能方塊示意圖。鎖相迴路電路100包含(但不限於)一相位頻率偵測電路(phase frequency detector circuit,PFD circuit)110、一數位碼產生電路120、一除頻器130以及一振盪電路140。於此實施例中,鎖相迴路電路100可操作在不同的模式。例如,鎖相迴路電路100可操作在鎖相迴路模式。在此鎖相迴路模式中,一輸出時脈CKOUT 可根據一參考時脈CKREF 來鎖定。又例如,鎖相迴路電路100可操作在振盪器模式,以實現用於產生輸出時脈CKOUT 的自由運行振盪器(free-running oscillator)。
相位頻率偵測電路110用以偵測參考時脈CKREF 與一回授時脈CKFB 之間的相位及頻率差,以產生複數個控制訊號CSP 與CSI 。複數個控制訊號CSP 與CSI 可用於輸出時脈CKOUT 的不同調整方式。舉例來說(但本揭示不限於此),可根據控制訊號CSP 以類比/連續的方式來調整輸出時脈CKOUT 的相位及/或頻率,而可根據控制訊號CSI 以數位/離散的方式來調整輸出時脈CKOUT 的相位及/或頻率。相位頻率偵測電路110可稱為混合式相位頻率偵測電路(hybrid PFD circuit),其輸出可用於輸出時脈CKOUT 的混合式控制,諸如類比與數位控制。
於此實施例中,控制訊號CSP 與控制訊號CSI 可分別實施為用以指示出參考時脈CKREF 與回授時脈CKFB 之間的相位差的幅度(magnitude)與正負號(sign)。控制訊號CSP 的脈波寬度可因應參考時脈CKREF 與回授時脈CKFB 之間的相位差的幅度而改變。控制訊號CSI 的脈波寬度可等於參考時脈CKREF 的一個時脈週期。
舉例來說,控制訊號CSP 可包含一組誤差訊號,其指示出參考時脈CKREF 與回授時脈CKFB 之間的相位差。在該組誤差訊號中,處於一預定邏輯位準的一誤差訊號可代表回授時脈CKFB 超前參考時脈CKREF ,其中該誤差訊號的脈波寬度可正比於回授時脈CKFB 超前參考時脈CKREF 的相位角。在該組誤差訊號中,處於一預定邏輯位準的另一誤差訊號可代表回授時脈CKFB 落後參考時脈CKREF ,其中該另一誤差訊號的脈波寬度可正比於回授時脈CKFB 落後參考時脈CKREF 的相位角。又例如,處於一預定邏輯位準的控制訊號CSI 可指示出回授時脈CKFB 的速度比參考時脈CKREF 的速度快或慢。
上述關於複數個控制訊號CSP 與CSI 的實施方式只是為了方便說明,並非用來限制本揭示的內容。在某些實施例中,控制訊號CSP 可指示出參考時脈CKREF 與回授時脈CKFB 之間的相位差,其中控制訊號CSP 的脈波寬度可因應相位差的幅度而改變。控制訊號CSI 可指示出參考時脈CKREF 與回授時脈CKFB 之間的頻率差,其中控制訊號CSI 的脈波寬度可等於參考時脈CKREF 的時脈週期。例如,控制訊號CSP 的邏輯位準可指示出回授時脈CKFB 超前還是落後參考時脈CKREF ,其中控制訊號CSP 的脈波寬度可正比於回授時脈CKFB 超前或落後參考時脈CKREF 的相位角。又例如,控制訊號CSI 的邏輯位準可指示出回授時脈CKFB 的速度比參考時脈CKREF 的速度快還是慢。
數位碼產生電路120耦接於相位頻率偵測電路110,用以處理控制訊號CSI 以產生一數位碼DCI 。舉例來說(但本揭示不限於此),數位碼產生電路120可對控制訊號CSI 進行數位迴路濾波操作(digital loop filtering operation)以產生數位碼DCI 。上述數位迴路濾波操作可包含(但不限於)累積操作(accumulation)、積分操作及微分操作。又例如,數位碼產生電路120可對控制訊號CSI 進行其他數位訊號處理以產生數位碼DCI 。於此實施例中,控制訊號CSI 可以是一數位訊號,諸如單一位元的數位訊號,其可指示出參考時脈CKREF 與回授時脈CKFB 之間的頻率差的正負號或相位差的正負號。數位碼DCI 可以是M個位元的數位訊號,其中M可以是大於1的整數。
除頻器130耦接於相位頻率偵測電路110,用以接收輸出時脈CKOUT 以產生回授時脈CKFB 。於此實施例中,除頻器130可利用除頻因子N來對輸出時脈CKOUT 的頻率進行除頻,並據以產生回授時脈CKFB 。除頻因子N可以是可編程的(programmable)或可選擇的。
振盪電路140耦接於相位頻率偵測電路110、數位碼產生電路120及除頻器130,用以根據控制訊號CSP 與數位碼DCI 產生輸出時脈CKOUT 。於此實施例中,輸出時脈CKOUT 的頻率係根據振盪電路140的不同控制參數PRP 與PRI 來決定。複數個控制參數PRP 與PRI 是不同類型的參數,諸如由不同測量單位所量測的不同類型的電性參數(electrical parameter)。此外,複數個控制參數PRP 與PRI 可分別因應控制訊號CSP 與數位碼DCI 來調整。也就是說,控制訊號CSP 與數位碼DCI 可用來調整由不同測量單位所量測的不同類型的控制參數。振盪電路140可稱為混合式控制振盪器(hybrid control oscillator),其輸出時脈可由不同類型的控制參數所控制。
舉例來說(但本揭示不限於此),振盪電路140可利用弛緩振盪器(relaxation oscillator)來實施。輸出時脈CKOUT 的頻率可根據振盪電路140的一電流輸入以及該電流輸入於振盪電路140中所流經的一訊號傳輸路徑的電容來決定。複數個控制參數PRP 與PRI 的其中之一可以是該電流輸入的電流大小,以及複數個控制參數PRP 與PRI 的其中之另一可以是該訊號傳輸路徑的電容。又例如,振盪電路140可利用環型振盪器(ring oscillator)來實施。輸出時脈CKOUT 的頻率可根據振盪電路140的一電流輸入以及振盪電路140之中一延遲鏈(delay chain)的傳輸延遲(propagation delay)來決定。複數個控制參數PRP 與PRI 的其中之一可以是該電流輸入的電流大小,以及複數個控制參數PRP 與PRI 的其中之另一可以是該延遲鏈的傳輸延遲。
於操作中,可啟動(activate)相位頻率偵測電路110以偵測參考時脈CKREF 與回授時脈CKFB 之間的相位及頻率差,並據以產生控制訊號CSP 與控制訊號CSI 。數位碼產生電路120可對控制訊號CSI 進行數位訊號處理以產生數位碼DCI ,其可用於以數位方式對輸出時脈CKOUT 的頻率進行粗調節(coarse tuning)。控制訊號CSI 可用於以類比方式對輸出時脈CKOUT 的頻率進行細調節(fine tuning)。藉由對輸出時脈CKOUT 的頻率進行粗調節及細調節,鎖相迴路電路100可實現寬廣的頻率調節範圍及低功耗的特性。
此外,除頻器130可根據輸出時脈CKOUT 更新回授時脈CKFB 。相位頻率偵測電路110可偵測參考時脈CKREF 與回授時脈CKFB 之間的相位及頻率差,以更新控制訊號CSP 與控制訊號CSI 。鎖相迴路電路100可視為操作在鎖相迴路模式,其中輸出時脈CKOUT 可根據參考時脈CKREF 而鎖定。輸出時脈CKOUT 於鎖相迴路電路100已鎖定至參考時脈CKREF 時所具有的頻率,可因應除頻因子N而調整。
值得注意的是,鎖相迴路電路100可操作在振盪器模式,其中振盪電路140可作為自由運行振盪器。舉例來說,相位頻率偵測電路110可於振盪器模式中停用(disabled)。數位碼產生電路120可根據控制器150所提供之數位碼DCT (而不是相位頻率偵測電路110所輸出之控制訊號CSI )來產生數位碼DCI 。控制器150可位於鎖相迴路電路100中,或設置於鎖相迴路電路100的外部。振盪電路140可無需相位頻率偵測電路110所輸出之控制訊號CSP ,即可產生輸出時脈CKOUT
於此實施例中,數位碼產生電路120可包含一處理電路124及一多工器128。處理電路124耦接於相位頻率偵測電路110,用以處理控制訊號CSI 以產生數位碼DCL 。例如,處理電路124可對控制訊號CSI 進行數位迴路濾波操作(或其他類型的數位訊號處理)以產生數位碼DCL 。多工器128耦接於處理電路124與振盪電路140,用以選取數位碼DCL 與數位碼DCT 其中的一個數位碼,並輸出所選取的數位碼以提供數位碼DCI 。當多工器128用以選取數位碼DCT 時,相位頻率偵測電路110可停用,使振盪電路140可作為自由運行振盪器。
數位碼DCT 可利用時脈調整/修整(clock trimming)來得到。參考時脈CKREF 可用以將輸出時脈CKOUT 的頻率調整/修整(trim)至一目標頻率。例如,當鎖相迴路電路100操作在鎖相迴路模式時,多工器128用以將數位碼DCL 選取為數位碼DCI 。控制器150耦接於振盪電路140與多工器128,用以儲存數位碼DCI 於回授時脈CKFB 鎖定至參考時脈CKREF 時所具有的碼值。當回授時脈CKFB 鎖定至參考時脈CKREF 時,輸出時脈CKOUT 的頻率可作為該目標頻率,其可因應除頻因子N而調整。所儲存的數位碼DCI 的碼值可作為該目標頻率相對應的一調整值(trim value)。當鎖相迴路電路100操作在振盪器模式時,多工器128用以將數位碼DCT 選取為數位碼DCI 。控制器150可產生具有與所儲存之碼值相等的碼值的數位碼DCT 。因此,振盪電路140可作為自由運行振盪器,其可產生具有該目標頻率的輸出時脈CKOUT 。此外,由於利用振盪電路140所實施的自由運行振盪器可由數位碼DCT 控制,因此,操作在振盪器模式的鎖相迴路電路100可具有高度的電壓與溫度變異的抗擾性(immunity)。
藉由本揭示所提供的鎖相迴路控制方案,鎖相迴路電路可利用混合式控制振盪器與混合式相位頻率偵測電路以在相位鎖定操作期間實現低功耗的特性。此外,或者是,鎖相迴路電路可實現自由運行的數位控制振盪器(free-running digitally controlled oscillator),其具有高度的電壓與溫度變異的抗擾性。因此,本揭示所提供的鎖相迴路控制方案可實現雙模(dual mode)鎖相迴路電路,其不僅適用於人工智慧、物聯網及其他高強度計算需求的應用,並可節省電路面積及降低生產成本。
為方便理解本揭示的內容,以下提供某些實施例以進一步說明本揭示所提供的鎖相迴路控制方案。所屬技術領域中具有通常知識者應可瞭解採用圖1所示的架構的其他實施例均屬於本揭示的範圍。
圖2是根據本揭示某些實施例的圖1所示的相位頻率偵測電路110的實施方式的示意圖。相位頻率偵測電路210包含(但不限於)複數個偵測器212與214。偵測器212用以接收參考時脈CKREF 與回授時脈CKFB 以產生控制訊號CSP ,其可指示出參考時脈CKREF 與回授時脈CKFB 之間的相位關係。舉例來說(但本揭示不限於此),控制訊號CSP 的脈波寬度可因應參考時脈CKREF 與回授時脈CKFB 之間的相位差的幅度而改變,進而指示出參考時脈CKREF 與回授時脈CKFB 之間的相位關係。
偵測器214用以接收參考時脈CKREF 與回授時脈CKFB 以產生控制訊號CSI ,其可指示出回授時脈CKFB 的速度比參考時脈CKREF 的速度快還是慢。舉例來說(但本揭示不限於此),偵測器214可用以偵測參考時脈CKREF 與回授時脈CKFB 之間的一時間間隔,進而產生控制訊號CSI ,其中控制訊號CSI 是該時間間隔的數位表示方式,並具有與參考時脈CKREF 的時脈週期相等的脈波寬度。控制訊號CSI 可以是一數位訊號,其可指示出參考時脈CKREF 與回授時脈CKFB 之間的頻率關係。又例如,控制訊號CSI 可以是單一位元的數位訊號,其可指示出參考時脈CKREF 與回授時脈CKFB 之間的相位差的正負號。
圖3A與圖3B是根據本揭示某些實施例的圖2所示的相位頻率偵測電路210的實施方式的示意圖。首先請參閱圖3A,相位頻率偵測器(PFD)312與時間至數位轉換器(time-to-digital converter,TDC)314A可分別用來實施圖2所示的偵測器212與偵測器214。於此實施例中,相位頻率偵測器312用以產生兩個位元的數位訊號,其包含利用升訊號(up signal)UP與降訊號(down signal)DN來實施的複數個脈波訊號,以指示出參考時脈CKREF 與回授時脈CKFB 之間的相位關係。例如,當回授時脈CKFB 落後參考時脈CKREF 時,相位頻率偵測器312可產生具有一預定邏輯位準的升訊號UP,其中升訊號UP的脈波寬度因應參考時脈CKREF 與回授時脈CKFB 之間的相位差的幅度而改變。又例如,當回授時脈CKFB 超前參考時脈CKREF 時,相位頻率偵測器312可產生具有一預定邏輯位準的降訊號DN,其中降訊號DN的脈波寬度因應參考時脈CKREF 與回授時脈CKFB 之間的相位差的幅度而改變。
時間至數位轉換器314A用以偵測參考時脈CKREF 與回授時脈CKFB 之間的一時間間隔。因此,控制訊號CSI (該時間間隔的數位表示方式)可指示出回授時脈CKFB 的速度比參考時脈CKREF 的速度快還是慢。例如,當回授時脈CKFB 落後參考時脈CKREF (或回授時脈CKFB 的速度低於參考時脈CKREF 的速度)時,控制訊號CSI 可具有一位元型樣(bit pattern)。當回授時脈CKFB 超前參考時脈CKREF (或回授時脈CKFB 的速度高於參考時脈CKREF 的速度)時,控制訊號CSI 可具有另一位元型樣。
請參閱圖3B,圖3A所示的相位頻率偵測器312與二進位相位偵測器(bang-bang phase detector,!!PD)314B可分別用來實施圖2所示的偵測器212與偵測器214。於此實施例中,二進位相位偵測器314B用以接收參考時脈CKREF 與回授時脈CKFB 以產生控制訊號CSI ,其為指示出參考時脈CKREF 與回授時脈CKFB 之間的相位差的正負號的單一位元數位訊號。二進位相位偵測器314B可作為單一位元的時間至數位轉換器。例如,當回授時脈CKFB 落後參考時脈CKREF (或回授時脈CKFB 的速度低於參考時脈CKREF 的速度)時,二進位相位偵測器314B可產生具有一預定邏輯位準的控制訊號CSI ,其中控制訊號CSI 的脈波寬度等於參考時脈CKREF 的時脈週期。又例如,當回授時脈CKFB 超前參考時脈CKREF (或回授時脈CKFB 的速度高於參考時脈CKREF 的速度)時,二進位相位偵測器314B可產生具有另一預定邏輯位準的控制訊號CSI ,其中控制訊號CSI 的脈波寬度等於參考時脈CKREF 的時脈週期。
在某些實施例中,二進位相位偵測器314B可利用一D型正反器(D-type flip-flop)來實施。例如,參考時脈CKREF 與回授時脈CKFB 可分別輸入至該D型正反器的資料輸入端與時脈輸入端。控制訊號CSI 可從該D型正反器的資料輸出端輸出。
圖4是根據本揭示某些實施例的圖1所示的相位頻率偵測電路110的另一實施方式的示意圖。除了控制訊號CSI 是根據控制訊號CSP 而產生,圖4所示的相位頻率偵測電路410的結構與圖2所示的相位頻率偵測電路210的結構相似/相同。於此實施例中,偵測器414耦接於偵測器212,用以接收控制訊號CSP 以產生控制訊號CSI 。舉例來說(但本揭示不限於此),當控制訊號CSP 可指示出參考時脈CKREF 與回授時脈CKFB 之間的相位關係時,偵測器414可處理控制訊號CSP 以產生控制訊號CSI ,其可指示出回授時脈CKFB 的速度比參考時脈CKREF 的速度快還是慢。
圖5是根據本揭示某些實施例的圖4所示的相位頻率偵測電路410的實施方式的示意圖。於此實施例中,圖3B所示的相位頻率偵測器312與二進位相位偵測器314B可用來實施相位頻率偵測電路410。二進位相位偵測器314B耦接於相位頻率偵測器312,用以接收升訊號UP與降訊號DN以產生控制訊號CSI 。升訊號UP與降訊號DN出現的順序可根據參考時脈CKREF 與回授時脈CKFB 之間的相位關係來決定。控制訊號CSI 可以是單一位元的數位訊號,其可指示出參考時脈CKREF 與回授時脈CKFB 之間的相位差的正負號。例如,當回授時脈CKFB 落後參考時脈CKREF (或回授時脈CKFB 的速度低於參考時脈CKREF 的速度)時,二進位相位偵測器314B可產生具有一預定邏輯位準的控制訊號CSI 。又例如,當回授時脈CKFB 超前參考時脈CKREF (或回授時脈CKFB 的速度高於參考時脈CKREF 的速度)時,二進位相位偵測器314B可產生具有另一預定邏輯位準的控制訊號CSI
以上所述的電路結構只是方便說明而已,並非用來限制本揭示的內容,在某些實施例中,圖2或圖4所示的偵測器212可利用能夠產生升訊號與降訊號的相位偵測器來實施。在某些實施例中,圖4所示的偵測器414可利用時間至數位轉換器來實施。例如,圖5所示的二進位相位偵測器314B可由圖3A所示的時間至數位轉換器314A來取代。這些設計上的修飾與變化均屬於本揭示的範圍。
圖6是根據本揭示某些實施例的圖1所示的振盪電路140的實施方式的示意圖。振盪電路640包含(但不限於)一電流產生電路642、一訊號產生電路644。電流產生電路642用以根據控制訊號CSP 產生一電流輸入IIN 。圖1所示的振盪電路140的控制參數PRP 可利用電流產生電路642所提供的電流輸入IIN 來實施。
訊號產生電路644耦接於電流產生電路642,用以根據數位碼DCI 啟用一訊號傳輸路徑。訊號產生電路644另用以允許電流輸入IIN 流經該訊號傳輸路徑,以產生輸出時脈CKOUT 。圖1所示的振盪電路140的控制參數PRI 可利用與該訊號傳輸路徑相關的控制參數來實施。輸出時脈CKOUT 的頻率可因應電流輸入IIN 與該訊號傳輸路徑的電特性來調整。
舉例來說(但本揭示不限於此),振盪電路640可利用一弛緩振盪器來實施,其中該弛緩振盪器的輸出頻率可根據電流輸入IIN 與該訊號傳輸路徑的電容來決定。圖1所示的振盪電路140的控制參數PRI 可由訊號產生電路644所啟用的該訊號傳輸路徑的電容來實施。藉由調整電流輸入IIN 與電流輸入IIN 所流經的該訊號傳輸路徑的電容兩者之至少其一,振盪電路640可調整輸出時脈CKOUT 的頻率。又例如,振盪電路640可利用一環型振盪器來實施,其中該環型振盪器的輸出頻率可根據電流輸入IIN 與該訊號傳輸路徑的傳輸延遲來決定。圖1所示的振盪電路140的控制參數PRI 可由訊號產生電路644所啟用的該訊號傳輸路徑的傳輸延遲來實施。藉由調整電流輸入IIN 與電流輸入IIN 所流經的該訊號傳輸路徑的傳輸延遲兩者之至少其一,振盪電路640可調整輸出時脈CKOUT 的頻率。
圖7是根據本揭示某些實施例的圖6所示的振盪電路640的實施方式的示意圖。振盪電路740包含一電流產生電路742及一訊號產生電路744,其可分別作為圖6所示的電流產生電路642及訊號產生電路644的實施例。於此實施例中,振盪器740可利用弛緩振盪器來實施。圖1所示的振盪電路140的控制參數PRP 可利用電流產生電路742所提供的電流輸入IIN 來實施,以及圖1所示的振盪電路140的控制參數PRI 可由訊號產生電路744所提供的一訊號傳輸路徑的電容來實施。輸出時脈CKOUT 的頻率至少可根據電流輸入IIN 與該訊號傳輸路徑的電容來決定。
輸入至電流產生電路742的控制訊號CSP 可包含一組誤差訊號,其指示出圖1所示的參考時脈CKREF 與回授時脈CKFB 之間的相位差。該組誤差訊號包含上文所述的升訊號UP與降訊號DN。電流產生電路742包含(但不限於)複數個電流源742.1~742.3。電流源742.1用以提供電流輸入IIN 包含的電流I1。電流源742.2用以根據降訊號DN選擇性地耦接於訊號產生電路744。當耦接於訊號產生電路744時,電流源742.2用以提供電流輸入IIN 包含的電流I2。相似地,電流源742.3用以根據升訊號UP選擇性地耦接於訊號產生電路744。當耦接於訊號產生電路744時,電流源742.3用以提供電流輸入IIN 包含的電流I3。電流源742.2所提供的電流I2與電流源742.3所提供的電流I3可具有相同的電流位準。
舉例來說(但本揭示不限於此),電流產生電路742另可包含複數個開關SWUP 與SWDN ,其可分別由升訊號UP與降訊號DN的反相訊號DNb來控制。當升訊號UP處於邏輯高位準,且降訊號DN處於邏輯低位準時,複數個開關SWUP 與SWDN 均導通。電流I2與電流I3均提供給訊號產生電路744。當升訊號UP處於邏輯低位準,且降訊號DN處於邏輯高位準時,複數個開關SWUP 與SWDN 均斷開。電流源742.2與電流源742.3均未耦接於訊號產生電路744。
訊號產生電路744包含(但不限於)一電容電路746以及一比較電路748。電容電路746包含複數個輸入端TI1 與TI2 ,其交替地耦接於電流產生電路742。電容電路746可根據數位碼DCI 提供一訊號傳輸路徑。該訊號傳輸路徑的電容(作為圖1所示的控制參數PRI 的實施例)可根據數位碼DCI 來決定。值得注意的是,輸出時脈CKOUT 的頻率可正比於電流輸入IIN 除以該訊號傳輸路徑的電容。由於電流輸入IIN 與該訊號傳輸路徑的電容是不同類型的電性參數,且分別由控制訊號CSP 與數位碼DCI 來控制,因此,振盪電路740可藉由混合式控制方案來調整輸出時脈CKOUT 的頻率。
電容電路746另可包含(但不限於)M個電容器C11 ~C1M 、M個電容器C21 ~C2M 以及複數個開關電路750.1與750.2,其中M是大於1的整數。M個電容器C11 ~C1M 的每一電容器的一連接端TC11 選擇性地經由輸入端TI1 耦接於電流產生電路742。M個電容器C21 ~C2M 的每一電容器的一連接端TC21 選擇性地經由輸入端TI2 耦接於電流產生電路742。
開關電路750.1用以根據數位碼DCI 選擇性地將一參考電壓VSS 耦接於M個電容器C11 ~C1M 的M個連接端TC12 。參考電壓VSS 可由一接地電壓來實施。經由開關電路750.1耦接於參考電壓VSS 的連接端的個數可根據數位碼DCI 的碼值來決定。舉例來說(但本揭示不限於此),開關電路750.1可包含M個開關SW11 ~SW1M ,其可分別由數位碼DCI 的M個位元來控制。M個開關SW11 ~SW1M 的每一開關係根據該M個位元中相對應的一位元,選擇性地耦接於參考電壓VSS 與相對應的連接端TC12 之間。
相似地,開關電路750.2用以根據數位碼DCI 選擇性地將參考電壓VSS 耦接於M個電容器C21 ~C2M 的M個連接端TC22 。經由開關電路750.2耦接於參考電壓VSS 的連接端的個數可根據數位碼DCI 的碼值來決定。舉例來說(但本揭示不限於此),開關電路750.2可包含M個開關SW21 ~SW2M ,其可分別由數位碼DCI 的M個位元來控制。M個開關SW21 ~SW2M 的每一開關係根據該M個位元中相對應的一位元,選擇性地耦接於參考電壓VSS 與相對應的連接端TC22 之間。在某些實施例中,經由開關電路750.2耦接於參考電壓VSS 的連接端的個數,可等於經由開關電路750.1耦接於參考電壓VSS 的連接端的個數。
於此實施例中,電容電路746另可包含一開關電路752,其用以將電流產生電路742交替地耦接至輸入端TI1 與輸入端TI2 。當輸入端TI1 與輸入端TI2 的其中之一耦接於電流產生電路742時,輸入端TI1 與輸入端TI2 的其中之另一耦接於參考電壓VSS 。於此實施例中,可根據輸出時脈CKOUT 來控制開關電路752。當輸出時脈CKOUT 處於邏輯高位準時,開關電路752用以將輸出端TI1 耦接於電流產生電路742,以及將輸出端TI2 耦接於參考電壓VSS 。當輸出時脈CKOUT 處於邏輯低位準時,開關電路752用以將輸出端TI2 耦接於電流產生電路742,以及將輸出端TI1 耦接於參考電壓VSS
舉例來說,開關電路752可包含複數個開關SWS1 ~SWS4 。複數個開關SWS1 與SWS4 可由輸出時脈CKOUT 來控制,而複數個開關SWS2 與SWS3 可由輸出時脈CKOUT 的反相訊號來控制。當開關SWS1 導通時,複數個開關SWS2 與SWS3 斷開,且開關SWS4 導通。當開關SWS1 斷開時,複數個開關SWS2 與SWS3 導通,且開關SWS4 斷開。
比較電路748耦接於複數個輸入端TI1 與TI2 ,用以根據輸入端TI1 的訊號位準與輸入端TI2 的訊號位準產生輸出時脈CKOUT 。舉例來說(但本揭示不限於此),比較電路746可將輸入端TI1 的訊號位準與輸入端TI2 的訊號位準分別與一參考電壓VREF 的訊號位準作比較,以產生輸出時脈CKOUT
於操作中,當輸出時脈CKOUT 處於邏輯高位準時,複數個開關SWS1 與SWS4 導通,以及複數個開關SWS2 與SWS3 斷開。電流輸入IIN 流經根據數位碼DCI 而啟用的一訊號傳輸路徑。該訊號傳輸路徑可利用M個電容器C11 ~C1M 的至少一部分來實施,其中該至少一部分的每一電容器根據數位碼DCI 中相對應的一位元耦接於輸入端TI1 與參考電壓VSS 之間,進而提供一充電路徑。輸入端TI2 耦接於參考電壓VSS 。當輸入端TI1 的訊號位準大於參考電壓VREF 的訊號位準時,輸出時脈CKOUT 可切換(transition)到邏輯低位準。接下來,複數個開關SWS1 與SWS4 斷開,而複數個開關SWS2 與SWS3 導通。電流輸入IIN 流經根據數位碼DCI 而啟用的一訊號傳輸路徑,其中該訊號傳輸路徑可利用M個電容器C21 ~C2M 的至少一部分來實施。M個電容器C21 ~C2M 的該至少一部分的每一電容器根據數位碼DCI 中相對應的一位元耦接於輸入端TI2 與參考電壓VSS 之間,進而提供一充電路徑。輸入端TI1 耦接於參考電壓VSS 。當輸入端TI2 的訊號位準大於參考電壓VREF 的訊號位準時,輸出時脈CKOUT 可切換回到邏輯高位準。
基於上述操作,可據以產生一振盪訊號(即輸出時脈CKOUT )。該振盪訊號的頻率可因應一訊號傳輸路徑的電容來調整,其中該訊號傳輸路徑的電容可根據數位碼DCI 來決定。
此外,電流產生電路742可根據升訊號UP與反相訊號DNb加快或放慢電容電路746的充電操作。例如,當升訊號UP與反相訊號DNb均處於邏輯高位準時,電流產生電路742可增加電流輸入IIN 的電流量,進而加快電容電路746的充電操作,並提高輸出時脈CKOUT 的頻率。當升訊號UP與反相訊號DNb均處於邏輯低位準時,電流產生電路742可減少電流輸入IIN 的電流量,進而放慢電容電路746的充電操作,並降低輸出時脈CKOUT 的頻率。藉由混合式控制方案,振盪電路740可實現寬廣的頻率調節範圍及低功耗的特性。
圖8是根據本揭示某些實施例的圖6所示的振盪電路640的另一實施方式的示意圖。除了訊號產生電路844之外,振盪電路840的結構與圖7所示的振盪電路740的結構相似/相同。於此實施例中,振盪器840可利用環型振盪器來實施。訊號產生電路844包含由電流輸入IIN 所供電的一延遲鏈846。延遲鏈846用以根據數位碼DCI 提供一訊號傳輸路徑,並根據電流輸入IIN 與該訊號傳輸路徑的一傳輸延遲來產生輸出時脈CKOUT 。該傳輸延遲可根據數位碼DCI 來決定。
延遲鏈846可包含彼此串接的M個延遲級ST11 ~ST1M 。M個延遲級ST11 ~ST1M 分別由數位碼DCI 的M個位元來控制,以提供該訊號傳輸路徑。於此實施例中,每一延遲級可包含一反相器INV、一電容器CD 以及一開關SWD 。反相器INV由電流輸入IIN 所供電。反相器INV的輸入作為相對應的延遲級的輸入,且反相器INV的輸出作為相對應的延遲級的輸出。電容器CD 的連接端TCD1 耦接於反相器INV的輸出。開關SWD 根據數位碼DCI 的該M個位元中相對應之一位元選擇性地耦接於電容器CD 的連接端TCD2 與參考電壓VSS (諸如接地電壓)之間。由於每一延遲級(由數位碼DCI 的該M個位元中相對應之一位元所控制)的電容可改變該延遲級的延遲時間,因此,數位碼DCI 可用來控制延遲鏈846的傳輸延遲。也就是說,圖1所示的振盪電路140的控制參數PRI 可利用訊號產生電路844所提供的傳輸延遲或電容來實施。輸出時脈CKOUT 的頻率可正比於電流輸入IIN 除以延遲鏈846的電容。
由於所屬領域中具有通常知識者在閱讀上述關於圖1至圖7的段落說明之後,應可瞭解振盪電路840的操作細節,因此,進一步的說明在此便不再贅述。
圖9是根據本揭示某些實施例的圖6所示的振盪電路640的另一實施方式的示意圖。除了訊號產生電路944之外,振盪電路940的結構與圖8所示的振盪電路840的結構相似/相同。於此實施例中,訊號產生電路944包含由電流輸入IIN 所供電的一延遲鏈946。延遲鏈946用以根據數位碼DCI 提供一訊號傳輸路徑,並根據電流輸入IIN 與該訊號傳輸路徑的一傳輸延遲來產生輸出時脈CKOUT 。該傳輸延遲可根據數位碼DCI 來決定。
延遲鏈946可包含複數個反及閘A0 ~AK 以及一多工器950,其中K是正整數。反及閘A0 用以接收一輸入訊號SIN 與一啟用訊號(enable signal)SE0 以產生一中繼訊號SIM 。舉例來說(但本揭示不限於此),啟用訊號SE0 可由一控制電路952所提供,其中控制電路952可設置在振盪電路940之中或之外。複數個反及閘A1 ~AK 彼此級聯連接(connected in cascade)以接收反及閘A0 所輸出的中繼訊號SIM 。複數個反及閘A1 ~AK 分別由K個啟用訊號SE1 ~SEK 來啟用,以產生K個輸出訊號SA1 ~SAK ,其中一反及閘的輸出訊號可作為該反及閘的下一反及閘的輸入訊號。多工器952耦接於複數個反及閘A0 ~AK ,用以根據數位碼DCI 選取K個輸出訊號SA1 ~SAK 其中的一個輸出訊號,以啟用該訊號傳輸路徑。此外,多工器952用以輸出所選取的該輸出訊號以提供輸入訊號SIN ,其作為輸出時脈CKOUT
舉例來說(但本揭示不限於此),控制電路952可根據數位碼DCI 的M個位元產生K個啟用訊號SE1 ~SEK 。當用於產生所選取的該輸出訊號的一反及閘啟用時,位於該反及閘之前的每一反及閘可被啟用,且位於該反及閘之後的每一反及閘可被停用。在某些實施例中,K可等於或小於2的M次方。在某些實施例中,K可等於M。由於可利用數位碼DCI 來選取可能的訊號傳輸路徑的其中之一,數位碼DCI 可用來控制延遲鏈946的傳輸延遲。也就是說,圖1所示的振盪電路140的控制參數PRI 可利用訊號產生電路944所提供的傳輸延遲來實施。輸出時脈CKOUT 的頻率可正比於電流輸入IIN 以及訊號產生電路944所提供的傳輸延遲。
由於所屬領域中具有通常知識者在閱讀上述關於圖1至圖8的段落說明之後,應可瞭解振盪電路940的操作細節,因此,進一步的說明在此便不再贅述。
以上所述的電路實施方式只是為了方便說明,並非用來限制本揭示的內容。在某些實施例中,圖7所示的振盪電路740可利用其他弛緩振盪器的結構來實施。在某些實施例中,圖8所示的振盪電路840及/或圖9所示的振盪電路940可利用其他環型振盪器的結構來實施。只要是振盪電路可實施為混合式控制振盪器,其具有分別由不同控制訊號所控制的不同類型的控制參數,設計上相關的修飾與變化均屬於本揭示的範圍。
在某些實施例中,可省略本揭示所提供的鎖相迴路控制方案提供的振盪器模式。圖10是根據本揭示某些實施例的示例性的鎖相迴路電路的功能方塊示意圖。除了振盪電路140可接收控制訊號CSP 與數位碼DCL 以產生輸出時脈CKOUT ,鎖相迴路電路1000的結構與圖1所示的鎖相迴路電路100的結構相似/相同。由於所屬領域中具有通常知識者在閱讀上述關於圖1至圖9的段落說明之後,應可瞭解鎖相迴路電路1000的操作細節,因此,進一步的說明在此便不再贅述。
圖11是根據本揭示某些實施例的一振盪電路的控制方法的流程圖。為方便說明,以下搭配圖1所示的鎖相迴路電路100來說明控制方法1100。在某些實施例中,控制方法1100可包含其他操作。在某些實施例中,控制方法1100的操作可基於不同的順序來執行,及/或可採用其他實施方式來實現。在某些實施例中,可省略控制方法1100的一個或多個操作
於操作1102中,偵測一參考時脈與一回授時脈之間的相位及頻率差,以產生一第一控制訊號與一第二控制訊號。例如,相位頻率偵測電路110可偵測參考時脈CKREF 與回授時脈CKFB 之間的相位及頻率差,以產生控制訊號CSP 與控制訊號CSI
於操作1104中,處理該第二控制訊號以產生一數位碼。例如,數位碼產生電路120可處理控制訊號CSI 以產生數位碼DCI
於操作1106中,將該第一控制訊號施加於該振盪電路以調整該振盪電路的一電流輸入。例如,相位頻率偵測電路110可將控制訊號CSP 施加於振盪電路140,以調整振盪電路140的一電流輸入,其可利用圖6所示的電流輸入IIN 來實施。
於操作1108中,將該數位碼施加於該振盪電路以允許該電流輸入流經一訊號傳輸路徑,並據以產生一輸出時脈,其中該輸出時脈的頻率是根據該電流輸入與該訊號傳輸路徑的電特性來調整。例如,數位碼產生電路120可將數位碼DCI 施加於振盪電路140,以允許該電流輸入流經一訊號傳輸路徑。振盪電路140可據以產生輸出時脈CKOUT 。以振盪電路140實施為圖7所示的振盪電路740為例,圖7所示的振盪電路740可根據電流輸入IIN 與一訊號傳輸路徑的電容來產生生輸出時脈CKOUT ,其中該訊號傳輸路徑是根據數位碼DCI 來提供/啟用。
於操作1110中,對該輸出時脈進行除頻以產生該回授時脈。例如,除頻器140可對輸出時脈CKOUT 進行除頻以產生回授時脈CKFB
在某些實施例中,在該回授時脈鎖定至該參考時脈之後,控制方法1100可停止產生該第一控制訊號與該第二控制訊號,並致使該振盪電路操作為自由運行振盪器。例如,在回授時脈CKFB 鎖定至參考時脈CKREF 之後,可停用相位頻率偵測電路110。多工器128可將數位碼DCT 選為數位碼DCI ,其中數位碼DCT 的碼值等於數位碼DCI 於回授時脈CKFB 鎖定至參考時脈CKREF 時所具有的碼值。
由於所屬領域中具有通常知識者在閱讀上述關於圖1至圖10的段落說明之後,應可瞭解控制方法1100的操作細節,因此,進一步的說明在此便不再贅述。
上文的敘述簡要地提出了本揭示某些實施例的特徵,而使得所屬領域之通常知識者能夠更全面地理解本揭示的多種態樣。本揭示所屬領域之通常知識者當可理解,其可輕易地利用本揭示內容作為基礎,來設計或更動其他製程與結構,以實現與此處所述之實施方式相同的目的及/或到達相同的優點。本揭示所屬領域之通常知識者應當明白,這些均等的實施方式仍屬於本揭示內容的精神與範圍,且其可進行各種變更、替代與更動,而不會悖離本揭示內容的精神與範圍。
100, 1000:鎖相迴路電路 110, 210, 410:相位頻率偵測電路 120:數位碼產生電路 124:處理電路 128, 950:多工器 130:除頻器 140, 640, 740, 840, 940:振盪器 150:控制器 212, 214, 414:偵測器 312:相位頻率偵測器 314A:時間至數位轉換器 314B:二進位相位偵測器 642, 742:電流產生電路 644, 744, 844, 944:訊號產生電路 742.1, 742.2, 742.3:電流源 746:電容電路 748:比較電路 750.1, 750.2, 752:開關電路 846, 946:延遲鏈 952:控制電路 1100:控制方法 1102~1110:操作 C11 ~C1M , C21 ~C2M , CD :電容器 TI1 :TI2 :輸入端 TC11 , TC12 , TC21 , TC22 , TCD1 , TCD2 :連接端 SWUP , SWDN , SW11 ~SW1M , SW21 ~SW2M , SWS1 ~SWS4 , SWD :開關 INV:反相器 ST11 ~ST1M :延遲級 A0 ~AK :反及閘 CKREF :參考時脈 CKFB :回授時脈 CKOUT :輸出時脈 CSP , CSI :控制訊號 DCL , DCT , DCI :數位碼 PRP , PRI :控制參數 UP:升訊號 DN:降訊號 DNb:反相訊號 IIN :電流輸入 I1, I2, I3:電流 VREF , VSS :參考電壓 SIN :輸入訊號 SIM :中繼訊號 SE0 ~SEK :啟用訊號 SA1 ~SAK :輸出訊號
搭配附隨圖式來閱讀下文的實施方式,可清楚地理解本揭示的多種態樣。應注意到,根據本領域的標準慣例,圖式中的各種特徵並不一定是按比例進行繪製的。事實上,為了能夠清楚地描述,可任意放大或縮小某些特徵的尺寸。 圖1是根據本揭示某些實施例的示例性的鎖相迴路電路的功能方塊示意圖。 圖2是根據本揭示某些實施例的圖1所示的相位頻率偵測電路的實施方式的示意圖。 圖3A與圖3B是根據本揭示某些實施例的圖2所示的相位頻率偵測電路的實施方式的示意圖。 圖4是根據本揭示某些實施例的圖1所示的相位頻率偵測電路的另一實施方式的示意圖。 圖5是根據本揭示某些實施例的圖4所示的相位頻率偵測電路的實施方式的示意圖。 圖6是根據本揭示某些實施例的圖1所示的振盪電路的實施方式的示意圖。 圖7是根據本揭示某些實施例的圖6所示的振盪電路的實施方式的示意圖。 圖8是根據本揭示某些實施例的圖6所示的振盪電路的另一實施方式的示意圖。 圖9是根據本揭示某些實施例的圖6所示的振盪電路的另一實施方式的示意圖。 圖10是根據本揭示某些實施例的示例性的鎖相迴路電路的功能方塊示意圖。 圖11是根據本揭示某些實施例的一振盪電路的控制方法的流程圖。
100:鎖相迴路電路
110:相位頻率偵測電路
120:數位碼產生電路
124:處理電路
128:多工器
130:除頻器
140:振盪器
150:控制器
CKREF :參考時脈
CKFB :回授時脈
CKOUT :輸出時脈
CSP ,CSI :控制訊號
DCL ,DCT ,DCI :數位碼
PRP ,PRI :控制參數

Claims (20)

  1. 一種鎖相迴路電路,包含: 一相位頻率偵測電路,用以偵測一參考時脈與一回授時脈之間的相位及頻率差,以產生一第一控制訊號與一第二控制訊號; 一數位碼產生電路,耦接於該相位頻率偵測電路,用以處理該第二控制訊號以產生一第一數位碼; 一分頻器,耦接於該相位頻率偵測電路,用以接收一輸出時脈以產生該回授時脈;以及 一振盪電路,耦接於該相位頻率偵測電路、該數位碼產生電路與該分頻器,用以根據該第一控制訊號與該第一數位碼產生該輸出時脈,其中該輸出時脈的頻率是根據該振盪電路的一第一控制參數與一第二控制參數來決定;該第一控制參數與該第二控制參數是不同類型的參數,並分別因應該第一控制訊號與該第一數位碼來調整。
  2. 如請求項1所述之鎖相迴路電路,其中該振盪電路包含: 一電流產生電路,用以根據該第一控制訊號產生一電流輸入,其中該第一控制參數是該電流輸入;以及 一訊號產生電路,耦接於該電流產生電路,用以根據該第一數位碼啟用一訊號傳輸路徑,並允許該電流輸入流經該訊號傳輸路徑以產生該輸出時脈。
  3. 如請求項2所述之鎖相迴路電路,其中該第一控制訊號包含一組誤差訊號,該組誤差訊號指示出該參考時脈與該回授時脈之間的相位差,並包含一升訊號與一降訊號;該電流產生電路包含: 一第一電流源,用以提供該電流輸入包含的一第一電流; 一第二電流源,根據該降訊號選擇性地耦接於該訊號產生電路,其中當該第二電流源耦接於該訊號產生電路時,該第二電流源用以將該電流輸入包含的一第二電流提供給該訊號產生電路;以及 一第三電流源,根據該升訊號選擇性地耦接於該訊號產生電路,其中當該第三電流源耦接於該訊號產生電路時,該第三電流源用以將該電流輸入包含的一第三電流提供給該訊號產生電路;該第二電流與該第三電流具有相同的電流位準。
  4. 如請求項2所述之鎖相迴路電路,其中該訊號產生電路包含: 一電容電路,具有交替地耦接於該電流產生電路的一第一輸入端與一第二輸入端,用以根據該第一數位碼提供該訊號傳輸路徑,其中該第二控制參數是該訊號傳輸路徑的一電容,且該電容是根據該第一數位碼來決定;以及 一比較電路,接於該第一輸入端與該第二輸入端,用以根據該第一輸入端的訊號位準與該第二輸入端的訊號位準產生該輸出時脈。
  5. 如請求項4所述之鎖相迴路電路,其中該電容電路包含: M個第一電容器,其中每一第一電容器的一第一連接端選擇性地經由該第一輸入端耦接於該電流產生電路,M是大於1的整數; 一第一開關電路,用以根據該第一數位碼選擇性地將一參考電壓耦接於該M個第一電容器的M個第二連接端,其中經由該第一開關電路耦接於該參考電壓的第二連接端的個數是根據該第一數位碼的碼值來決定; M個第二電容器,其中每一第二電容器的一第一連接端選擇性地經由該第二輸入端耦接於該電流產生電路;以及 一第二開關電路,用以根據該第一數位碼選擇性地將該參考電壓耦接於該M個第二電容器的M個第二連接端,其中經由該第二開關電路耦接於該參考電壓的第二連接端的個數是根據該第一數位碼的碼值來決定。
  6. 如請求項5所述之鎖相迴路電路,其中該第一開關電路與該第二開關電路均包含: M個開關,分別由該第一數位碼的M個位元所控制,其中該M個開關中的每一開關係根據該M個位元中相對應之一位元選擇性地耦接於該參考電壓與相對應之一第二連接端之間。
  7. 如請求項2所述之鎖相迴路電路,其中該訊號產生電路包含由該電流輸入所供電的一延遲鏈;該延遲鏈用以根據該第一數位碼提供該訊號傳輸路徑,並根據該電流輸入與該訊號傳輸路徑的一傳輸延遲來產生該輸出時脈;該第二控制參數係為該傳輸延遲,且該傳輸延遲係根據該第一數位碼來決定。
  8. 如請求項7所述之鎖相迴路電路,其中該延遲鏈包含彼此串接的M個延遲級,且該M個延遲級分別由該第一數位碼的M個位元來控制,以提供該訊號傳輸路徑;每一延遲級包含: 一反相器,由該電流輸入所供電,其中該反相器的輸入作為該延遲級的輸入,該反相器的輸出作為該延遲級的輸出; 一電容器,其中該電容器的一第一連接端耦接於該反相器的輸出;以及 一開關,根據該M個位元中相對應之一位元選擇性地耦接於該電容器的一第二連接端與一參考電壓之間。
  9. 如請求項7所述之鎖相迴路電路,其中該延遲鏈包含: 一第一反及閘,用以接收一輸入訊號與一第一啟用訊號以產生一中繼訊號; K個第二反及閘,彼此級聯連接以接收該中繼訊號,其中該K個第二反及閘分別由K個第二啟用訊號所啟用,K是正整數;以及 一多工器,耦接於該第一反及閘與該K個第二反及閘,用以根據該第一數位碼選取該K個第二反及閘的K個輸出訊號其中的一個輸出訊號,以啟用該訊號傳輸路徑,並輸出所選取的該輸出訊號以提供該輸入訊號,其中該輸入訊號作為該輸出時脈。
  10. 如請求項9所述之鎖相迴路電路,另包含: 一控制電路,耦接於該K個第二反及閘,用以根據該第一數位碼產生該K個啟用訊號,其中當用於產生所選取的該輸出訊號的一第二反及閘啟用時,啟用位於該第二反及閘之前的每一第二反及閘,並停用位於該第二反及閘之後的每一第二反及閘。
  11. 如請求項1所述之鎖相迴路電路,其中該第一控制訊號與該第二控制訊號分別指示出該參考時脈與該回授時脈之間的相位差的幅度與正負號;該第一控制訊號的脈波寬度因應該參考時脈與該回授時脈之間的相位差的幅度而改變,以及該第二控制訊號的脈波寬度等於該參考時脈的時脈週期。
  12. 如請求項1所述之鎖相迴路電路,其中該第一控制訊號指示出該參考時脈與該回授時脈之間的相位差,以及該第一控制訊號的脈波寬度因應該參考時脈與該回授時脈之間的相位差的幅度而改變;該第二控制訊號指示出該參考時脈與該回授時脈之間的頻率差,以及該第二控制訊號的脈波寬度等於該參考時脈的時脈週期。
  13. 如請求項1所述之鎖相迴路電路,另包含: 一處理電路,耦接於該相位頻率偵測電路,用以處理該第二控制訊號以產生一第二數位碼;以及 一多工器,耦接於該處理電路與該振盪電路,用以選取該第二數位碼與一第三數位碼其中的一個數位碼,並輸出所選取的該數位碼以提供該第一數位碼,其中當該多工器用以選取該第三數位碼時,停用該相位頻率偵測電路。
  14. 如請求項13所述之鎖相迴路電路,另包含: 一控制器,耦接於該振盪電路與該多工器,其中當該多工器用以選取該第二數位碼時,該控制器用以儲存該第一數位碼於該回授時脈鎖定至該參考時脈時具有的碼值;當該多工器用以選取該第三數位碼時,該控制器用以產生具有與所儲存之碼值相等的碼值的該第三數位碼。
  15. 一種振盪電路,包含: 一電流產生電路,用以根據一控制訊號產生一電流輸入;以及 一訊號產生電路,耦接於該電流產生電路,用以根據一數位碼啟用多個訊號傳輸路徑其中的一個訊號傳輸路徑,並允許該電流輸入流經該訊號傳輸路徑以產生一輸出時脈,其中該輸出時脈的頻率是根據該電流輸入與該訊號傳輸路徑的電特性來調整。
  16. 如請求項15所述之振盪電路,其中該控制訊號包含一第一脈波訊號與一第二脈波訊號;該電流產生電路包含: 一第一電流源,用以提供該電流輸入包含的一第一電流; 一第二電流源,根據該第一脈波訊號選擇性地耦接於該訊號產生電路,其中當該第二電流源耦接於該訊號產生電路時,該第二電流源用以將該電流輸入包含的一第二電流提供給該訊號產生電路;以及 一第三電流源,根據該第二脈波訊號選擇性地耦接於該訊號產生電路,其中當該第三電流源耦接於該訊號產生電路時,該第三電流源用以將該電流輸入包含的一第三電流提供給該訊號產生電路;該第二電流與該第三電流具有相同的電流位準。
  17. 如請求項15所述之振盪電路,其中該訊號產生電路包含: 一電容電路,具有交替地耦接於該電流產生電路的一第一輸入端與一第二輸入端,用以根據該數位碼啟用該訊號傳輸路徑,其中該訊號傳輸路徑的電特性是該訊號傳輸路徑的一電容,且該電容是根據該數位碼來決定;以及 一比較電路,接於該第一輸入端與該第二輸入端,用以根據該第一輸入端的訊號位準與該第二輸入端的訊號位準產生該輸出時脈。
  18. 如請求項17所述之振盪電路,其中該電容電路包含: M個第一電容器,其中每一第一電容器的一第一連接端選擇性地經由該第一輸入端耦接於該電流產生電路,M是大於1的整數; 一第一開關電路,用以根據該數位碼選擇性地將一參考電壓耦接於該M個第一電容器的M個第二連接端,其中經由該第一開關電路耦接於該參考電壓的第二連接端的個數是根據該數位碼的碼值來決定; M個第二電容器,其中每一第二電容器的一第一連接端選擇性地經由該第二輸入端耦接於該電流產生電路;以及 一第二開關電路,用以根據該數位碼選擇性地將該參考電壓耦接於該M個第二電容器的M個第二連接端,其中經由該第二開關電路耦接於該參考電壓的第二連接端的個數是根據該數位碼的碼值來決定。
  19. 如請求項15所述之振盪電路,其中該訊號產生電路包含由該電流輸入所供電的一延遲鏈;該延遲鏈用以根據該數位碼啟用該訊號傳輸路徑,並根據該電流輸入與該訊號傳輸路徑的一傳輸延遲來產生該輸出時脈;該訊號傳輸路徑的電特性係為該傳輸延遲,且該傳輸延遲係根據該數位碼來決定。
  20. 一種振盪電路的控制方法,包含: 偵測一參考時脈與一回授時脈之間的相位及頻率差,以產生一第一控制訊號與一第二控制訊號; 處理該第二控制訊號以產生一數位碼; 將該第一控制訊號施加於該振盪電路以調整該振盪電路的一電流輸入; 將該數位碼施加於該振盪電路以允許該電流輸入流經一訊號傳輸路徑,並據以產生一輸出時脈,其中該輸出時脈的頻率是根據該電流輸入與該訊號傳輸路徑的電特性來調整;以及 對該輸出時脈進行除頻以產生該回授時脈。
TW110122968A 2020-06-23 2021-06-23 雙模鎖相迴路電路、振盪電路及振盪電路的控制方法 TWI783547B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063043068P 2020-06-23 2020-06-23
US63/043,068 2020-06-23

Publications (2)

Publication Number Publication Date
TW202201908A true TW202201908A (zh) 2022-01-01
TWI783547B TWI783547B (zh) 2022-11-11

Family

ID=78962747

Family Applications (3)

Application Number Title Priority Date Filing Date
TW110122972A TWI771076B (zh) 2020-06-23 2021-06-23 逐漸逼近式類比數位轉換電路及其操作方法
TW110122968A TWI783547B (zh) 2020-06-23 2021-06-23 雙模鎖相迴路電路、振盪電路及振盪電路的控制方法
TW110122967A TWI791230B (zh) 2020-06-23 2021-06-23 三路徑時脈資料回復電路、振盪電路以及用於時脈資料回復的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110122972A TWI771076B (zh) 2020-06-23 2021-06-23 逐漸逼近式類比數位轉換電路及其操作方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110122967A TWI791230B (zh) 2020-06-23 2021-06-23 三路徑時脈資料回復電路、振盪電路以及用於時脈資料回復的方法

Country Status (3)

Country Link
US (6) US11736109B2 (zh)
CN (3) CN113839676A (zh)
TW (3) TWI771076B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839676A (zh) * 2020-06-23 2021-12-24 円星科技股份有限公司 逐次逼近式模数转换电路及其操作方法
JP2022144311A (ja) * 2021-03-18 2022-10-03 キオクシア株式会社 受信装置、受信装置の制御方法及びメモリコントローラ
TWI757212B (zh) * 2021-07-13 2022-03-01 瑞昱半導體股份有限公司 具有快速追鎖及頻寬穩定機制的時脈資料恢復電路及方法
CN114884510A (zh) * 2022-04-11 2022-08-09 灿芯半导体(上海)股份有限公司 一种低误码率的sar adc电路

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366174B1 (en) * 2000-02-21 2002-04-02 Lexmark International, Inc. Method and apparatus for providing a clock generation circuit for digitally controlled frequency or spread spectrum clocking
US6956923B1 (en) * 2003-01-17 2005-10-18 Xilinx, Inc. High speed phase detector architecture
US7330058B2 (en) * 2005-07-01 2008-02-12 Via Technologies, Inc. Clock and data recovery circuit and method thereof
US7176764B1 (en) * 2005-07-21 2007-02-13 Mediatek Incorporation Phase locked loop having cycle slip detector capable of compensating for errors caused by cycle slips
US8085893B2 (en) * 2005-09-13 2011-12-27 Rambus, Inc. Low jitter clock recovery circuit
US8334725B2 (en) * 2007-04-11 2012-12-18 Mediatek Inc. Circuit and method for controlling mixed mode controlled oscillator and CDR circuit using the same
US8090755B1 (en) 2007-05-25 2012-01-03 Xilinx, Inc. Phase accumulation
US8717802B2 (en) * 2010-09-13 2014-05-06 International Business Machines Corporation Reconfigurable multi-level sensing scheme for semiconductor memories
KR101870249B1 (ko) 2012-01-25 2018-06-22 삼성전자주식회사 디더 제어 회로와 이를 포함하는 장치들
CN103633998B (zh) 2012-08-28 2017-02-15 复旦大学 一种用于全数字锁相环的低功耗鉴相器
US8957802B1 (en) * 2013-09-13 2015-02-17 Cadence Design Systems, Inc. Metastability error detection and correction system and method for successive approximation analog-to-digital converters
KR102248476B1 (ko) * 2014-04-07 2021-05-06 삼성전자주식회사 발진기의 출력 주파수를 캘리브레이션하는 방법 및 장치
TWI532328B (zh) 2014-08-11 2016-05-01 國立臺灣大學 類比數位轉換裝置及其轉換方法
US9992431B2 (en) * 2014-11-05 2018-06-05 Sony Corporation Signal processing device, imaging element, and electronic apparatus
TWI555338B (zh) * 2014-11-14 2016-10-21 円星科技股份有限公司 相位偵測器及相關的相位偵測方法
US9584143B2 (en) 2015-01-15 2017-02-28 Mediatek Inc. Modulator, phase locked loop using the same, and method applied thereto
CN104967451B (zh) 2015-07-31 2017-09-29 中国科学院电子学研究所 逐次逼近型模数转换器
CN106921386B (zh) * 2015-12-24 2019-11-01 瑞昱半导体股份有限公司 半速率时钟数据回复电路
US10411922B2 (en) * 2016-09-16 2019-09-10 Kandou Labs, S.A. Data-driven phase detector element for phase locked loops
US9813069B1 (en) * 2016-10-05 2017-11-07 Silab Tech Pvt. Ltd. Half-rate bang-bang phase detector
CN107017889B (zh) * 2017-02-16 2020-04-24 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种逐次逼近式模数转换器
US10063367B1 (en) * 2017-04-28 2018-08-28 Ciena Corporation Optical clock recovery using feedback phase rotator with non-linear compensation
US10277230B2 (en) * 2017-09-25 2019-04-30 Apple Inc. Jitter reduction in clock and data recovery circuits
US10361706B2 (en) * 2017-12-12 2019-07-23 Synopsys, Inc. Clock and data recovery (CDR) circuit
CN110719088B (zh) * 2018-07-13 2023-04-07 瑞昱半导体股份有限公司 时钟产生电路与混合式电路
TWI681634B (zh) * 2019-02-19 2020-01-01 瑞昱半導體股份有限公司 時脈資料回復電路
CN110311663B (zh) 2019-06-11 2023-01-20 湖南国科微电子股份有限公司 低功耗比较电路、逐次逼近式模拟数字转换器以及芯片
TWI715229B (zh) * 2019-10-01 2021-01-01 瑞昱半導體股份有限公司 時脈資料回復裝置
CN111277271A (zh) * 2020-03-22 2020-06-12 华南理工大学 一种低功耗逐次逼近型模数转换电路及时序安排方法
US11411574B2 (en) * 2020-04-06 2022-08-09 M31 Technology Corporation Clock and data recovery circuit with proportional path and integral path, and multiplexer circuit for clock and data recovery circuit
CN113839676A (zh) * 2020-06-23 2021-12-24 円星科技股份有限公司 逐次逼近式模数转换电路及其操作方法

Also Published As

Publication number Publication date
US11569822B2 (en) 2023-01-31
US11962308B2 (en) 2024-04-16
TW202201910A (zh) 2022-01-01
US20210399735A1 (en) 2021-12-23
CN113839668A (zh) 2021-12-24
CN113839676A (zh) 2021-12-24
TW202316805A (zh) 2023-04-16
US20230132901A1 (en) 2023-05-04
TWI791230B (zh) 2023-02-01
CN113839669A (zh) 2021-12-24
US11736109B2 (en) 2023-08-22
TWI771076B (zh) 2022-07-11
US20210399732A1 (en) 2021-12-23
TW202201907A (zh) 2022-01-01
US11936388B2 (en) 2024-03-19
US20210399733A1 (en) 2021-12-23
TWI783547B (zh) 2022-11-11
US20240171180A1 (en) 2024-05-23
US20230336180A1 (en) 2023-10-19
US11984899B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
TWI783547B (zh) 雙模鎖相迴路電路、振盪電路及振盪電路的控制方法
KR102502245B1 (ko) 위상 동기 루프를 위한 재구성 가능한 프랙셔널-n 주파수 생성
KR100806117B1 (ko) 전압제어 발진기, 이를 구비한 위상동기루프 회로, 및위상동기루프 회로의 제어방법
US7907023B2 (en) Phase lock loop with a multiphase oscillator
JP5776657B2 (ja) 受信回路
US20020075982A1 (en) Phase locked loop and method that provide fail-over redundant clocking
US20100085086A1 (en) Digital Frequency Detector
JP2001007698A (ja) データpll回路
JP5332328B2 (ja) クロック及びデータ復元回路
JP2010062707A (ja) 位相同期ループ回路
US20110074514A1 (en) Frequency measurement circuit and pll synthesizer provided therewith
JP2004312726A (ja) 全デジタル周波数検出器及びアナログ位相検出器を用いる周波数/位相同期ループクロックシンセサイザ
US6897691B2 (en) Phase locked loop with low steady state phase errors and calibration circuit for the same
US20070173219A1 (en) Phase locked loop and method thereof
JPH1141091A (ja) Pll回路
JP3842227B2 (ja) Pll周波数シンセサイザ及びその発振周波数選択方法
JPH04507333A (ja) 位相検波器
KR100827655B1 (ko) 위상 동기 루프 회로 및 방법과 이를 구비한 반도체 장치
US6853223B2 (en) Phase comparator and clock recovery circuit
US20140266355A1 (en) Phase-locked loop, method of operating the same, and devices having the same
JP2007142791A (ja) 周波数シンセサイザ
Lo et al. An all-digital DLL with dual-loop control for multiphase clock generator
TW202301807A (zh) 晶體振盪器及其啟動方法
US8373465B1 (en) Electronic device and method for phase locked loop
TWI679850B (zh) 一種訊號處理系統及其方法