TW202136599A - 砷化鎵晶體及砷化鎵結晶基板 - Google Patents

砷化鎵晶體及砷化鎵結晶基板 Download PDF

Info

Publication number
TW202136599A
TW202136599A TW110121321A TW110121321A TW202136599A TW 202136599 A TW202136599 A TW 202136599A TW 110121321 A TW110121321 A TW 110121321A TW 110121321 A TW110121321 A TW 110121321A TW 202136599 A TW202136599 A TW 202136599A
Authority
TW
Taiwan
Prior art keywords
atoms
less
gallium arsenide
gaas
crystal
Prior art date
Application number
TW110121321A
Other languages
English (en)
Other versions
TWI765742B (zh
Inventor
福永寛
秋田勝史
石川幸雄
Original Assignee
日商住友電氣工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友電氣工業股份有限公司 filed Critical 日商住友電氣工業股份有限公司
Publication of TW202136599A publication Critical patent/TW202136599A/zh
Application granted granted Critical
Publication of TWI765742B publication Critical patent/TWI765742B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/007Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明之砷化鎵晶體之蝕坑密度為10個・cm-2 以上且10000個・cm-2 以下,且氧濃度未達7.0×1015 原子・cm-3 。本發明之砷化鎵結晶基板之蝕坑密度為10個・cm-2 以上且10000個・cm-2 以下,且氧濃度未達7.0×1015 原子・cm-3

Description

砷化鎵晶體及砷化鎵結晶基板
本發明係關於一種砷化鎵晶體及砷化鎵結晶基板。
砷化鎵結晶基板等化合物半導體基板良好地用作半導體裝置之基板,要求開發能夠使高品質之磊晶層於其上生長而形成高特性之半導體裝置者。 T. Bunger et al, “Active Carbon Control During VGF Growth of Semiinsulating GaAs”, presented at International Conference on Compound Semiconductor Mfg.(2003) 3.5(非專利文獻1)揭示有為了使半絕緣性之GaAs(砷化鎵)結晶生長,藉由調整GaAs原料熔融液中之氧濃度而調整GaAs結晶之碳濃度。 [先前技術文獻] [非專利文獻] [非專利文獻1]T. Bunger et al, “Active Carbon Control During VGF Growth of Semiinsulating GaAs”, presented at International Conference on Compound Semiconductor Mfg.(2003) 3.5
本發明之砷化鎵晶體之蝕坑密度為10個・cm-2 以上且10000個・cm-2 以下,且氧濃度未達7.0×1015 原子・cm-3 。 本發明之砷化鎵結晶基板之蝕坑密度為10個・cm-2 以上且10000個・cm-2 以下,且氧濃度未達7.0×1015 原子・cm-3
[本發明所欲解決之問題] 於T. Bunger et al, “Active Carbon Control During VGF Growth of Semiinsulating GaAs”, presented at International Conference on Compound Semiconductor Mfg.(2003) 3.5(非專利文獻1)所揭示之GaAs結晶之製造中,存在如下之問題點:GaAs原料熔融液中之氧濃度較高,與添加之摻雜劑(例如C(碳))反應,摻雜劑之摻入量變少,GaAs結晶之絕緣性或導電性之調整無效率。又,若GaAs原料熔融液中之氧濃度較高,則存在生長之GaAs結晶硬化,加工時容易破裂,加工良率降低之問題點。 因此,本發明為了解決上述問題點,目的在於提供一種能夠有效率地調整絕緣性或導電性,抑制加工時之破裂,加工良率較高之砷化鎵晶體及砷化鎵結晶基板。 [本發明之效果] 根據本發明,可提供一種能夠有效率地調整絕緣性或導電性,抑制加工時之破裂,加工良率較高之砷化鎵晶體及砷化鎵結晶基板。 [實施形態之說明] 首先,列出本發明之實施態樣進行說明。 [1]本發明之某一態樣之砷化鎵晶體之蝕坑密度為10個・cm-2 以上且10000個・cm-2 以下,且氧濃度未達7.0×1015 原子・cm-3 。本態樣之砷化鎵晶體由於蝕坑密度及氧濃度極低,故而能夠有效率地調整絕緣性或導電性,抑制加工時之破裂,加工良率較高。 [2]本態樣之砷化鎵晶體能夠將氧濃度設為2.0×1014 原子・cm-3 以上且5.0×1015 原子・cm-3 以下。該砷化鎵晶體由於氧濃度進一步極低,故而能夠有效率地調整絕緣性或導電性,抑制加工時之破裂,加工良率較高。 [3]本態樣之砷化鎵晶體包含圓柱狀之直主體部,能夠將直主體部之直徑設為100 mm以上且305 mm以下。該砷化鎵晶體由於直主體部之直徑即便較大為100 mm以上且305 mm以下,蝕坑密度及氧濃度亦極低,故而能夠有效率地調整絕緣性或導電性,抑制加工時之破裂,加工良率較高。 [4]本態樣之砷化鎵晶體能夠將n型導電性雜質濃度設為1.0×1015 原子・cm-3 以上且1.0×1020 原子・cm-3 以下。該砷化鎵晶體由於具有n型導電性,蝕坑密度及氧濃度極低,故而能夠有效率地調整導電性,抑制加工時之破裂,加工良率較高。 [5]本態樣之砷化鎵晶體能夠將比電阻設為1.2×107 Ω・cm以上且5.0×108 Ω・cm以下。該砷化鎵晶體由於具有半絕緣性,蝕坑密度及氧濃度極低,故而能夠有效率地調整絕緣性,抑制加工時之破裂,加工良率較高。 [6]本態樣之砷化鎵晶體能夠將硼濃度設為1.0×1019 原子・cm-3 以下。該砷化鎵晶體由於摻雜劑之活化率較高,故而磊晶生長後之品質優良,蝕坑密度及氧濃度極低,因此能夠有效率地調整導電性,抑制加工時之破裂,加工良率較高。 [7]本發明之另一態樣之砷化鎵結晶基板之蝕坑密度為10個・cm-2 以上且10000個・cm-2 以下,且氧濃度未達7.0×1015 原子・cm-3 。本態樣之砷化鎵結晶基板由於蝕坑密度及氧濃度極低,故而能夠有效率地調整絕緣性或導電性,抑制加工時之破裂,加工良率較高。 [8]本態樣之砷化鎵結晶基板能夠將氧濃度設為2.0×1014 原子・cm-3 以上且5.0×1015 原子・cm-3 以下。該砷化鎵結晶基板由於氧濃度進一步極低,故而能夠有效率地調整絕緣性或導電性,抑制加工時之破裂,加工良率較高。 [9]本態樣之砷化鎵結晶基板能夠將直徑設為100 mm以上且305 mm以下。該砷化鎵結晶基板由於直徑即便較大為100 mm以上且305 mm以下,蝕坑密度及氧濃度亦極低,故而能夠有效率地調整絕緣性或導電性,抑制加工時之破裂,加工良率較高。 [10]本態樣之砷化鎵結晶基板能夠將n型導電性雜質濃度設為1.0×1015 原子・cm-3 以上且1.0×1020 原子・cm-3 以下。該砷化鎵結晶基板由於具有n型導電性,蝕坑密度及氧濃度極低,故而能夠有效率地調整導電性,抑制加工時之破裂,加工良率較高。 [11]本態樣之砷化鎵結晶基板能夠將比電阻設為1.2×107 Ω・cm以上且5.0×108 Ω・cm以下。該砷化鎵結晶基板由於具有半絕緣性,蝕坑密度及氧濃度極低,故而能夠有效率地調整絕緣性,抑制加工時之破裂,加工良率較高。 [12]本態樣之砷化鎵結晶基板能夠將硼濃度設為1.0×1019 原子・cm-3 以下。該砷化鎵結晶基板由於摻雜劑之活化率較高,故而磊晶生長後之品質優良,蝕坑密度及氧濃度極低,因此能夠有效率地調整導電性,抑制加工時之破裂,加工良率較高。 [13]本態樣之砷化鎵結晶基板能夠將蝕坑密度設為10個・cm-2 以上且10000個・cm-2 以下,將氧濃度設為2.0×1014 原子・cm-3 以上且5.0×1015 原子・cm-3 以下,將硼濃度設為1.0×1019 原子・cm-3 以下,將直徑設為100 mm以上且305 mm以下。該砷化鎵結晶基板由於直徑即便較大為100 mm以上且305 mm以下,蝕坑密度及氧濃度亦極低,故而能夠有效率地調整絕緣性,抑制加工時之破裂,加工良率較高。 [實施形態之詳細] <實施形態1:砷化鎵晶體> 本實施形態之GaAs(砷化鎵)晶體之EPD(蝕坑密度)為10個・cm-2 以上且10000個・cm-2 以下,氧濃度未達7.0×1015 原子・cm-3 。本態樣之GaAs晶體之EPD及氧濃度極低。藉由使EPD較低為10個・cm-2 以上且10000個・cm-2 以下,GaAs晶體之加工時之破裂容易性得到抑制,加工良率變高。又,藉由使氧濃度極低而未達7.0×1015 原子・cm-3 ,能夠有效率地調整GaAs結晶之絕緣性或導電性。 (蝕坑密度) 所謂EPD(蝕坑密度)係指因利用化學藥品處理結晶表面而產生於表面之腐蝕坑(蝕坑)之每單位面積之個數。本實施形態之GaAs晶體之EPD具體而言係指利用25質量%之KOH(氫氧化鈉)水溶液於350℃下處理30分鐘時產生於表面之腐蝕坑之每單位面積之個數。本實施形態之GaAs晶體之EPD為10個・cm-2 以上且10000個・cm-2 以下。就抑制GaAs晶體之加工時之破裂容易性之觀點而言,為10000個・cm-2 以下,較佳為7000個・cm-2 以下,更佳為4000個・cm-2 以下。就GaAs晶體之當前之製造技術水平而言為10個・cm-2 以上。 (氧濃度) 氧濃度係藉由CPAA(Charged Particle Activation Analysis,荷電粒子放射化分析法)進行測定。所謂CPAA係指測量自衝擊高能量之荷電粒子而生成之放射性核種所釋放之輻射,並定量作為對象之元素的放射化分析。於GaAs晶體之氧濃度之定量中,使用3 He等作為荷電粒子。氧濃度之測定亦能夠藉由SIMS(Secondary Ion Mass Spectrometry,二次離子質譜法)進行,但SIMS之檢測極限為1×1016 原子・cm-3 左右,與此相對,CPAA之檢測極限為2.0×1014 原子・cm-3 左右,故而適合2.0×1014 原子・cm-3 以上且未達7.0×1015 原子・cm-3 左右之較低氧濃度之精密測定。 用於氧濃度之CPAA者係藉由3 He與GaAs晶體中之氧16 O之核反應而生成,於半衰期109.73分鐘β+ 衰變之18 F。將3 He照射後之GaAs晶體進行酸溶解,藉由KBF4 (四氟硼酸鉀)沈澱法將所生成之18 F化學分離。利用NaI檢測器測定於18 F之β+ 衰變時由正電子湮滅所產生之511 keV之γ射線,藉由最小平方法求得結束照射後規定時間之計數值。藉由使用利用標準樣品SiO2 同樣地求得之規定時間後之計數值進行修正,而換算為氧濃度。 本實施形態之GaAs晶體之氧濃度未達7.0×1015 原子・cm-3 。就能夠有效率地調整GaAs結晶之絕緣性或導電性之觀點而言,未達7.0×1015 原子・cm-3 ,較佳為5.0×1015 原子・cm-3 以下,更佳為3.0×1015 原子・cm-3 以下。就GaAs晶體之當前之製造技術水平而言,為2.0×1014 原子・cm-3 以上。 (直主體部之直徑) 本實施形態之GaAs晶體無特別限制,多數情況係係如下所述藉由VB(Vertical Bridgman,垂直布氏)法、VGF(Vertical Gradient Freeze,垂直溫度梯度凝固)法等晶舟法製造,因此較佳為包含圓柱狀之直主體部,且直主體部之直徑為100 mm以上且305 nm以下。該GaAs晶體之直主體部之直徑即便較大為100 mm以上且305 mm以下,蝕坑密度及氧濃度亦極低。就即便為大型之GaAs晶體,EPD及氧濃度亦較低之觀點而言,較佳為100 mm以上,更佳為150 mm以上。就當前之製造技術水平而言,較佳為305 mm以下,更佳為204 mm以下。 (n型導電性雜質濃度) 本實施形態之GaAs晶體就具有n型導電性,EPD及氧濃度極低之觀點而言,n型導電性雜質濃度(對GaAs晶體賦予n型導電性之雜質之濃度)較佳為1.0×1015 原子・cm-3 以上且1.0×1020 原子・cm-3 以下。n型導電性雜質濃度就對GaAs晶體有效地賦予n型導電性之觀點而言,較佳為1.0×1015 原子・cm-3 以上,更佳為1.0×1017 原子・cm-3 以上。就避免摻雜劑之活化率之降低之觀點而言,較佳為1.0×1020 原子・cm-3 ,更佳為5.0×1018 原子・cm-3 以下。n型導電性雜質無特別限制,就對GaAs晶體有效地賦予n型導電性之觀點而言,較佳為矽。矽濃度係藉由GDMS(Glow Discharge Mass Spectrometry,輝光放電質譜法)進行測定。 (比電阻) 本實施形態之GaAs晶體就具有半絕緣性,EPD及氧濃度極低之觀點而言,比電阻較佳為1.2×107 Ω・cm以上且5.0×108 Ω・cm以下,更佳為5.0×107 Ω・cm以上且5.0×108 Ω・cm以下。比電阻係藉由利用範德堡(van der Pauw)法之霍爾測定進行測定。 (半絕緣性雜質濃度) 對本實施形態之GaAs晶體賦予半絕緣性之半絕緣性雜質無特別限制,就對GaAs晶體有效地賦予半絕緣性之觀點而言,較佳為碳。就對GaAs晶體賦予比電阻為1.2×107 Ω・cm以上且5.0×108 Ω・cm以下之半絕緣性之觀點而言,碳濃度較佳為5.0×1014 原子・cm-3 以上且1.5×1016 原子・cm-3 以下,更佳為8.0×1014 原子・cm-3 以上且1.3×1016 原子・cm-3 以下。由於GaAs晶體之氧濃度越低越能夠有效地添加碳,故而亦就提高碳濃度之觀點而言氧濃度越低越佳。碳濃度係藉由CPAA(荷電粒子放射化分析法)進行測定。 (硼濃度) 本實施形態之GaAs晶體係如下所述藉由VB(垂直布氏)法、VGF(垂直溫度梯度凝固)法等使用坩堝之晶舟法製造,由於該坩堝一般包含硼(坩堝一般使用PBN(Pyrolytic Boron Nitride,熱分解氮化硼),於與GaAs原料接觸之內壁面使用硼氧化物膜作為密封材),故而包含硼。因此,本實施形態之GaAs晶體包含硼。本實施形態之GaAs晶體之硼濃度就防止GaAs晶體之摻雜劑活化率之降低之觀點而言,較佳為1.0×1019 原子・cm-3 以下,更佳為8.0×1018 原子・cm-3 以下。又,就當前之製造技術水平而言,較佳為5.0×1016 原子・cm-3 以上。硼濃度係藉由GDMS(輝光放電質譜法)進行測定。 (砷化鎵晶體之製造裝置) 參照圖1,本實施形態之GaAs(砷化鎵)晶體之製造裝置無特別限制,就有效率地製造EPD為10個・cm-2 以上且10000個・cm-2 以下,氧濃度未達7.0×1015 原子・cm-3 之GaAs晶體之觀點而言,較佳為包含坩堝21、坩堝保持台22、密封材23、加熱器24a、24b、遮蔽板25、腔室26。 坩堝21包含晶種保持部、連接於晶種保持部上之結晶生長部。晶種保持部係於連接於結晶生長部之側開口,且於其相反側形成有底壁之中空圓筒狀之部分,於該部分能夠保持GaAs晶種11。結晶生長部包含在軸向小徑側連接於晶種保持部之圓錐狀之圓錐部、及連接於圓錐部之軸向大徑側之中空圓筒狀之直主體部。結晶生長部具有於其內部保持GaAs原料13,並且藉由使加熱成熔融狀態之GaAs原料13凝固而使GaAs晶體生長之功能。 此處,構成坩堝21之材料只要為能夠耐受原料熔融時之溫度之機械強度較高之材料則無特別限制,例如能夠良好地採用PBN(熱分解氮化硼)。又,於坩堝21之內壁面,就防止GaAs對內壁面之固著之觀點而言,較佳為形成B2 O3 膜等硼氧化物膜等氧化膜21c作為密封材。例如於包含PBN之坩堝21中,藉由於含50體積%以上之氧氣之氣體氛圍中在1000℃以上之高溫下進行處理,能夠於坩堝21之內壁面上形成B2 O3 膜。 構成密封材23之材料只要為能夠耐受原料熔融時之溫度之材料則無特別限制,能夠良好地採用B2 O3 等硼氧化物。 加熱器24a、24b為了適當地控制GaAs原料13之熔解及凝固,通常配置複數個,就降低生長之GaAs晶體中之EPD及氧濃度之觀點而言,較佳為減少加熱器間間隙,較佳為設為1個。即,較佳為減少加熱器數,較佳為設為2個。 遮蔽板25就降低生長之GaAs晶體中之氧濃度之觀點而言,較佳為配置於GaAs原料13與密封材23之間。構成遮蔽板25之材料只要為能夠耐受原料熔融時之溫度之機械強度高之材料即可,無特別限制,例如能夠良好地採用PBN(熱分解氮化硼)。遮蔽板25之遮蔽率(係指遮蔽板之面積相對於坩堝21之直主體部之垂直於軸向之截面面積之百分率,以下相同)就降低生長之GaAs晶體中之EPD及氧濃度並且防止坩堝之破損之觀點而言,較佳為75%以上且100%以下,更佳為90%以上且98%以下。再者,參照圖2,為了調整遮蔽率,遮蔽板25亦可具有開口部25o。 (砷化鎵晶體之製造方法) 參照圖1,本實施形態之GaAs(砷化鎵)晶體之製造方法無特別限制,就使EPD及氧濃度較低之GaAs晶體有效率地生長之觀點而言,較佳為使用上述製造裝置20,利用VB(垂直布氏)法、VGF(垂直溫度梯度凝固)法等晶舟法進行。進而,就製造直主體部之直徑較大之GaAs晶體之觀點而言,更佳為VB法。具體而言,本實施形態之GaAs晶體之製造方法較佳為包含GaAs晶種裝入步驟、GaAs原料裝入步驟、遮蔽板配置步驟、密封材配置步驟、及結晶生長步驟。 使用製造裝置20,首先,於GaAs晶種裝入步驟中,於坩堝21之晶種保持部之內部裝入GaAs晶種11。其次,於GaAs原料裝入步驟中,於坩堝21之結晶生長部(圓錐部及直主體部)之內部裝入GaAs原料13。此處,GaAs原料13只要為高純度(例如99.9質量%以上)之GaAs即可,無特別限制,可良好地使用GaAs多晶、GaAs單晶之物性不良部分等。其次,於遮蔽板配置步驟中,於坩堝21內之GaAs原料13上配置遮蔽板25。其次,於密封材配置步驟中,於坩堝21內之遮蔽板25上配置密封材23。 其次,於結晶生長步驟中,將於內部依序自下而上配置有GaAs晶種11、GaAs原料13、遮蔽板25、及密封材23之坩堝21裝填於結晶裝置20內。坩堝21係藉由坩堝保持台22保持,以包圍坩堝21之方式配置加熱器24a、24b。其次,藉由對加熱器24a、24b供給電流而加熱坩堝21。藉此,GaAs原料13熔融而成為熔融液,並且密封材23亦熔融而成為液體密封材。又,於坩堝21之內壁,藉由構成坩堝21之材料之氧化而形成有氧化膜。 此時,GaAs原料13之熔融液係藉由對流而進行攪拌,該對流係因由加熱器24a與加熱器24b之間存在之加熱器間間隙24abo所形成之局部之低溫部而產生。考慮到經攪拌之GaAs原料13會因與坩堝21之內壁之氧化膜21c及/或密封材23接觸,而將坩堝21之內壁之氧化膜21c及/或密封材23所包含之氧摻入至GaAs原料13。此處,參照圖3,於典型之製造裝置30中,配置3個以上之加熱器34a、34b、34c、34d,因此存在2個以上之加熱器間間隙34abo、34bco、34cdo,故而因由該等所形成之局部之低溫部而產生之對流變多,坩堝31之內壁之氧化膜31c及/或密封材33所包含之氧大量摻入至GaAs原料13。相對於此,參照圖1,於本實施形態之製造裝置20中,僅配置2個加熱器24a、24b,因此僅存在1個加熱器間間隙24abo,故而因由其所形成之局部之低溫部而產生之對流較少,抑制氧向GaAs原料13之摻入。 進而,於本實施形態之製造裝置20中,於GaAs原料13與密封材23之間配置有遮蔽板25,因此抑制GaAs原料13與密封材23之接觸,故而抑制氧向GaAs原料13之摻入。 其次,於VB法中,藉由使坩堝21向軸向下側移動,於VGF法中,藉由調節加熱器24a、24b之溫度,從而於坩堝21之軸向形成GaAs晶種11側之溫度相對較低、GaAs原料13側之溫度相對較高之溫度梯度。藉此,已熔融之GaAs原料13自GaAs晶種11側依序凝固,藉此使GaAs結晶生長。藉由使結晶生長部之圓錐部及直主體部內之已熔融之GaAs原料13依序全部凝固,從而形成GaAs晶體。於VB法中,坩堝21之移動速度(降低速度)無特別限制,例如,能夠設為2.0 mm/h以上且5.0 mm/h以下。如此,可獲得EPD及氧濃度極低之GaAs晶體。 再者,於本實施形態之GaAs晶體之製造方法中,若生長之晶體之直主體部之直徑變大,則於GaAs熔融液中容易產生溫度差,更容易發生由對流引起之攪拌,因此GaAs晶體中之氧濃度容易變得更高。根據本實施形態之GaAs晶體之製造方法,藉由設置遮蔽板而降低原料與密封材之接觸面積、及藉由適當之加熱器構造及熱環境設計而降低對流,故而能夠抑制氧向GaAs原料之摻入。 <實施形態2:砷化鎵結晶基板> 本實施形態之GaAs(砷化鎵)結晶基板之EPD(蝕坑密度)為10個・cm-2 以上且10000個・cm-2 以下,氧濃度未達1.0×1016 原子・cm-3 。本實施形態之GaAs晶體之EPD及氧濃度極低。藉由使EPD較低為10個・cm-2 以上且10000個・cm-2 以下,GaAs晶體之加工時之破裂容易性得到抑制,加工良率變高。又,藉由使氧濃度極低而未達7.0×1015 原子・cm-3 ,能夠有效率地調整GaAs結晶之絕緣性或導電性。 本實施形態之GaAs結晶基板與實施形態1之GaAs晶體同樣地,氧濃度較佳為2.0×1014 原子・cm-3 以上且5.0×1015 原子・cm-3 以下,直徑較佳為100 mm以上且305 mm以下,能夠將n型導電性雜質濃度設為1.0×1015 原子・cm-3 以上且1.0×1020 原子・cm-3 以下,能夠將比電阻設為1.2×107 Ω・cm以上且5.0×108 Ω・cm以下,硼濃度較佳為1.0×1019 原子・cm-3 以下。本實施形態之GaAs結晶基板由於係如下所述對實施形態1之GaAs晶體進行加工及研磨所獲得者,故而具有與實施形態1之GaAs晶體相同之物性(EPD、氧濃度、直徑、n型導電性雜質濃度、比電阻、及硼濃度)。因此,關於該等物性不再贅述。 本實施形態之GaAs結晶基板較佳為蝕坑密度為10個・cm-2 以上且10000個・cm-2 以下,氧濃度為2.0×1014 原子・cm-3 以上且5.0×1015 原子・cm-3 以下,硼濃度為1.0×1019 原子・cm-3 以下,直徑為100 mm以上且305 mm以下。該GaAs結晶基板由於直徑即便較大為100 mm以上且305 mm以下,蝕坑密度亦較低,故而GaAs結晶之加工良率較高,氧濃度極低,因此能夠有效率地調整GaAs結晶之絕緣性或導電性。 本實施形態之GaAs結晶基板之製造方法無特別限制,就有效率地形成EPD及氧濃度較低之GaAs結晶基板之觀點而言,較佳為使用實施形態1之GaAs晶體,且包含加工步驟及研磨步驟。於加工步驟中,藉由研削GaAs晶體之外周,將研削後之GaAs晶體於任意特定之方向進行切片,可獲得具有任意特定之面方位之主表面之GaAs結晶基板。其次,於研磨步驟中,藉由對GaAs結晶基板之主表面進行機械研磨及/或化學機械研磨(CMP),可獲得主表面研磨成鏡面之GaAs結晶基板。 [實施例] (實施例I) 1.GaAs晶體之製作 使用如圖1所示之製造裝置,利用VB法並藉由添加Si(矽)作為n型導電性雜質,而使矽濃度不同之4個n型導電性之GaAs晶體生長(實施例I-1~I-5)。使用純度99.9質量%之GaAs多晶作為GaAs原料。使用PBN板作為遮蔽板。使用B2 O3 作為密封材。遮蔽板之遮蔽率及加熱器間間隙之數如表1所示。以結晶生長界面之結晶生長方向之溫度梯度成為1℃/mm以下之方式調整坩堝內之溫度分佈,使GaAs晶體生長。 2.GaAs結晶基板之製作 研削獲得之GaAs晶體之外周,在垂直於結晶生長方向之面進行切片之後,對主表面進行機械研磨及化學機械研磨(CMP),藉此製作表1所示之直徑且厚度為325 μm以上且700 μm以下之GaAs結晶基板(實施例I-1~I-5)。分別測定獲得之GaAs結晶基板之EPD、氧濃度、矽濃度、硼濃度、及比電阻。EPD係藉由圖像解析對利用25質量%之KOH水溶液於350℃下浸漬GaAs結晶基板30分鐘時產生於表面之腐蝕坑之每單位面積之個數進行測定所得。氧濃度係藉由CPAA(荷電粒子放射化分析法)進行測定。矽濃度及硼濃度係藉由GDMS(輝光放電質譜法)進行測定。比電阻係藉由利用範德堡法之霍爾測定進行測定。將結果彙總於表1、圖4及5。此處,圖4及5包含實施例I-1~I-5以外之實施例。 (實施例II) 1.GaAs晶體之製作 使用如圖1所示之製造裝置,利用VB法並藉由添加C(碳)作為半絕緣性雜質,而使碳濃度及比電阻不同之5個半絕緣性之GaAs晶體生長(實施例II-1~II-5)。使用純度99.9質量%之GaAs多晶作為GaAs原料。使用PBN板作為遮蔽板。使用B2 O3 作為密封材。遮蔽板之遮蔽率及加熱器間間隙之數如表2所示。以結晶生長界面之結晶生長方向之溫度梯度成為1℃/mm以下之方式調整坩堝內之溫度分佈,使GaAs晶體生長。 2.GaAs結晶基板之製作 研削獲得之GaAs晶體之外周,在垂直於結晶生長方向之面進行切片之後,對主表面進行機械研磨及化學機械研磨(CMP),藉此製作表2所示之直徑且厚度為325 μm以上且700 μm以下之GaAs結晶基板(實施例II-1~II-5)。分別測定獲得之GaAs結晶基板之EPD、氧濃度、碳濃度、硼濃度、及比電阻。EPD係藉由圖像解析對利用25質量%之KOH水溶液於350℃下浸漬GaAs結晶基板30分鐘時產生於表面之腐蝕坑之每單位面積之個數進行測定所得。氧濃度及碳濃度係藉由CPAA(荷電粒子放射化分析法)進行測定。硼濃度係藉由GDMS(輝光放電質譜法)進行測定。比電阻係藉由利用範德堡法之霍爾測定進行測定。將結果彙總於表2、圖4及5。此處,圖4及5包含實施例II-1~II-5以外之實施例。 (比較例) 為了與上述實施例I及II進行對比,除了表3所示之製造方法及製造條件以外,與實施例I(n型導電性之情形)或實施例II(半絕緣性之情形)同樣地製造GaAs晶體及GaAs結晶基板(比較例RI-1~RI-3及RII-1~RII-3)。再者,比較例RI-1及比較例RII-1係藉由LEC(Liquid Encapsulation Czochralski,液封直拉)法製造者,與上述實施例I及II同樣地,原料係使用純度99.9質量%之GaAs多晶,半絕緣性雜質係使用C(碳),n型導電性雜質係使用Si(矽)。分別與實施例I或實施例II同樣地測定獲得之GaAs結晶基板之EPD、氧濃度、矽濃度或碳濃度、硼濃度、及比電阻。將結果彙總於表1、圖4及5。此處,圖4包含比較例RI-1~RI-3及RII-1~RII-3以外之比較例。 [表1]
實施例I 實施例I-1 實施例I-2 實施例I-3 實施例I-4 實施例I-5
絕緣性/導電性 n型導電性 n型導電性 n型導電性 n型導電性 n型導電性
製造方法 VB VB VB VB VB
遮蔽板之遮蔽率(%) 90 98 98 98 98
加熱器間間隙之數 4 4 1 4 4
結晶基板直徑(mm) 101.6 101.6 152.4 152.4 203.2
EPD(個•cm-2 ) 400 100 1500 10 1800
氧濃度(原子•cm-3 ) 4.30×1015 3.90×1014 2.30×1014 2.20×1015 8.80×1014
矽濃度(原子•cm-3 ) 5.00×1018 6.70×1016 9.20×101 6 6.50×1017 9.70×1016
碳濃度(原子•cm-3 ) - - - - -
硼濃度(原子•cm-3 ) 5.20×1018 3.30×1017 3.60×1017 1.70×1018 4.10×1017
比電阻(Ω•cm) 1.20×10- 3 2.80×10- 2 4.20×10-3 4.60×10-3 3.90×10-3
自晶體至結晶基板之加工良率(%) 92.5 91.2 90.1 91.2 90.2
[表2]
實施例II 實施例II-1 實施例II-2 實施例II-3 實施例II-4 實施例II-5
絕緣性/導電性 半絕緣性 半絕緣性 半絕緣性 半絕緣性 半絕緣性
製造方法 VB VB VB VB VB
遮蔽板之遮蔽率(%) 90 98 98 98 100
加熱器間間隙之數 4 4 1 4 1
結晶基板直徑(mm) 101.6 101.6 152.4 152.4 152.4
EPD(個•cm-2 ) 5900 3800 4700 6000 9800
氧濃度(原子•cm-3 ) 6.10×1015 3.50×1014 2.50×1014 1.10×1015 2.65×1014
矽濃度(原子•cm-3 ) - - - - -
碳濃度(原子•cm- 3 ) 7.10×1014 7.00×1015 8.30×1015 1.20×1015 1.40×1016
硼濃度(原子•cm- 3 ) 2.80×1017 8.10×1016 7.70×1016 1.00×1017 6.20×1016
比電阻(Ω•cm) 1.20×107 3.20×108 4.80×108 2.30×107 9.00×108
自晶體至結晶基板之加工良率(%) 92.2 92.7 91.4 92.1 90.3
[表3]
比較例 比較例RI-1 比較例RI-2 比較例RI-3 比較例RII-1 比較例RII-2 比較例RII-3
絕緣性/導電性 n型導電性 n型導電性 n型導電性 半絕緣性 半絕緣性 半絕緣性
製造方法 LEC VB VB LEC VB VB
遮蔽板之遮蔽率(%) 0 0 0 0 0 0
加熱器間間隙之數 4 4 4 4 4 4
結晶基板直徑(mm) 101.6 101.6 152.4 101.6 101.6 152.4
EPD(個•cm-2 ) 23000 5900 800 99000 9200 4200
氧濃度(原子•cm-3 ) 6.10×1014 1.10×1016 7.90×1015 2.60×1014 8.00×1015 9.20×1015
矽濃度(原子•cm-3 ) 1.00×1017 4.10×1018 1.30×1019 - - -
碳濃度(原子•cm-3 ) - - - 1.30×1014 2.10×1014 1.80×1014
硼濃度(原子•cm-3 ) 5.30×1017 1.20×1019 9.10×1018 7.70×1016 3.70×1017 4.40×1017
比電阻(Ω•cm) 1.10×10-2 1.10×10-3 1.30×10-3 9.30×105 1.30×106 1.40×106
自晶體至結晶基板之加工良率(%) 86.1 89.4 89.7 84.8 89.6 88.7
參照表1~3及圖4,如實施例I-1~I-5及實施例II-1~II-5所示,於n型導電性及半導電性之任一情形時,均由於EPD極低為10個・cm-2 以上且10000個・cm-2 以下,並且氧濃度極低而未達7.0×1015 原子・cm-3 ,故而自GaAs晶體至GaAs結晶基板之加工良率極高為90%以上。相對於此,如比較例RI-1及RII-1所示,利用LEC法所製造者於n型導電性及半導電性之任一情形時,均由於EPD高於10000個・cm-2 ,故而自GaAs晶體至GaAs結晶基板之加工良率較低而未達90%。又,如比較例RI-2~RI-3及RII-2~RII-3所示,先前之利用VB法所製造者於n型導電性及半導電性之任一情形時,均由於氧濃度較高為7.0×1015 原子・cm-3 以上,故而自GaAs晶體至GaAs結晶基板之加工良率較低而未達90%。 又,參照表1~3及圖5,於實施例I-1~I-5及實施例II-1~II-5中,於n型導電性及半導電性之任一情形時,均可獲得氧濃度極低而未達7.0×1015 原子・cm-3 ,並且硼濃度較低為1.0×1019 原子・cm-3 以下之GaAs結晶基板。 應認為此次揭示之實施形態及實施例於所有方面皆為例示,並非限制性者。本發明之範圍不由上述實施形態及實施例而由申請專利範圍所示,且意圖包含與申請專利範圍均等之含義、及範圍內之所有變更。
11:InP晶種 13:InP原料 20:製造裝置 21:坩堝 21c:氧化膜 22:坩堝保持台 23:密封材 24a,24b:加熱器 24abo:加熱器間間隙 25:遮蔽板 25o:開口部 26:腔室 30:製造裝置 31:坩堝 31c:氧化膜 32:坩堝保持台 33:密封材 34a,34b,34c,34d:加熱器 34abo,34bco,34cdo:加熱器間間隙
圖1係表示本發明之砷化鎵晶體之製造方法及製造裝置之一例之概略剖視圖。 圖2係表示本發明之砷化鎵晶體之製造方法及製造裝置所使用之遮蔽板之一例之概略俯視圖。 圖3係表示典型之砷化鎵晶體之製造方法及製造裝置之一例之概略剖視圖。 圖4係表示砷化鎵結晶基板中之EPD(etching pits density,蝕坑密度)與氧濃度之關係之圖。 圖5係表示砷化鎵結晶基板之氧濃度與硼濃度之關係之圖。
11:InP晶種
13:InP原料
20:製造裝置
21:坩堝
21c:氧化膜
22:坩堝保持台
23:密封材
24a,24b:加熱器
24abo:加熱器間間隙
25:遮蔽板
26:腔室

Claims (23)

  1. 一種砷化鎵晶體,其蝕坑密度為10個・cm-2 以上且10000個・cm-2 以下, 氧濃度未達7.0×1015 原子・cm-3 ,且 n型導電性雜質濃度為1.0×1015 原子・cm-3 以上且1.0×1020 原子・cm-3 以下。
  2. 如請求項1之砷化鎵晶體,其中上述氧濃度為2.0×1014 原子・cm-3 以上且5.0×1015 原子・cm-3 以下。
  3. 如請求項1之砷化鎵晶體,其中上述氧濃度為2.0×1014 原子・cm-3 以上且4.3×1015 原子・cm-3 以下。
  4. 如請求項1之砷化鎵晶體,其中上述n型導電性雜質濃度為1.0×1017 原子・cm-3 以上且5.0×1018 原子・cm-3 以下。
  5. 如請求項1之砷化鎵晶體,其包含圓柱狀之直主體部,且上述直主體部之直徑為100 mm以上且305 mm以下。
  6. 如請求項1之砷化鎵晶體,其包含圓柱狀之直主體部,且上述直主體部之直徑為100 mm以上且204 mm以下。
  7. 如請求項1之砷化鎵晶體,其包含圓柱狀之直主體部,且上述直主體部之直徑為150 mm以上且204 mm以下。
  8. 如請求項1之砷化鎵晶體,其硼濃度為1.0×1019 原子・cm-3 以下。
  9. 如請求項1之砷化鎵晶體,其硼濃度為5.0×1016 原子・cm-3 以上且8.0×1018 原子・cm-3 以下。
  10. 如請求項1之砷化鎵晶體,其硼濃度為5.0×1016 原子・cm-3 以上且4.1×1017 原子・cm-3 以下。
  11. 如請求項1至10中任一項之砷化鎵晶體,其中上述n型導電性雜質為矽。
  12. 一種砷化鎵結晶基板,其蝕坑密度為10個・cm-2 以上且10000個・cm-2 以下, 氧濃度未達7.0×1015 原子・cm-3 ,且 n型導電性雜質濃度為1.0×1015 原子・cm-3 以上且1.0×1020 原子・cm-3 以下。
  13. 如請求項12之砷化鎵結晶基板,其中上述氧濃度為2.0×1014 原子・cm-3 以上且5.0×1015 原子・cm-3 以下。
  14. 如請求項12之砷化鎵結晶基板,其中上述氧濃度為2.0×1014 原子・cm-3 以上且4.3×1015 原子・cm-3 以下。
  15. 如請求項12之砷化鎵結晶基板,其中上述n型導電性雜質濃度為1.0×1017 原子・cm-3 以上且5.0×1018 原子・cm-3 以下。
  16. 如請求項12之砷化鎵結晶基板,其直徑為100 mm以上且305 mm以下。
  17. 如請求項12之砷化鎵結晶基板,其直徑為100 mm以上且204 mm以下。
  18. 如請求項12之砷化鎵結晶基板,其直徑為150 mm以上且204 mm以下。
  19. 如請求項12之砷化鎵結晶基板,其硼濃度為1.0×1019 原子・cm-3 以下。
  20. 如請求項12之砷化鎵結晶基板,其硼濃度為5.0×1016 原子・cm-3 以上且8.0×1018 原子・cm-3 以下。
  21. 如請求項12之砷化鎵結晶基板,其硼濃度為5.0×1016 原子・cm-3 以上且4.1×1017 原子・cm-3 以下。
  22. 如請求項12至21中任一項之砷化鎵結晶基板,其中上述n型導電性雜質為矽。
  23. 一種砷化鎵結晶基板,其蝕坑密度為10個・cm-2 以上且10000個・cm-2 以下, 氧濃度為2.0×1014 原子・cm-3 以上且5.0×1015 原子・cm-3 以下, n型導電性雜質濃度為1.0×1017 原子・cm-3 以上且5.0×1018 原子・cm-3 以下, 上述n型導電性雜質為矽, 硼濃度為5.0×1016 原子・cm-3 以上且4.1×1017 原子・cm-3 以下,且 直徑為100 mm以上且204 mm以下。
TW110121321A 2017-07-04 2018-03-23 砷化鎵晶體及砷化鎵結晶基板 TWI765742B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2017/024463 2017-07-04
PCT/JP2017/024463 WO2019008663A1 (ja) 2017-07-04 2017-07-04 ヒ化ガリウム結晶体およびヒ化ガリウム結晶基板

Publications (2)

Publication Number Publication Date
TW202136599A true TW202136599A (zh) 2021-10-01
TWI765742B TWI765742B (zh) 2022-05-21

Family

ID=63668498

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107109950A TWI733008B (zh) 2017-07-04 2018-03-23 砷化鎵晶體及砷化鎵結晶基板
TW110121321A TWI765742B (zh) 2017-07-04 2018-03-23 砷化鎵晶體及砷化鎵結晶基板

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW107109950A TWI733008B (zh) 2017-07-04 2018-03-23 砷化鎵晶體及砷化鎵結晶基板

Country Status (6)

Country Link
US (1) US10822722B2 (zh)
EP (2) EP3508621A4 (zh)
JP (1) JP6394838B1 (zh)
CN (3) CN110325672A (zh)
TW (2) TWI733008B (zh)
WO (1) WO2019008663A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200190697A1 (en) * 2018-12-13 2020-06-18 Axt, Inc. Low Etch Pit Density Gallium Arsenide Crystals With Boron Dopant
DE102019208389A1 (de) * 2019-06-07 2020-12-10 Freiberger Compound Materials Gmbh Verfahren zur Herstellung von Restspannungs- und versetzungsfreien AIII-BV-Substratwafern
CN113423876B (zh) * 2019-07-10 2023-12-22 住友电气工业株式会社 砷化镓单晶基板
US20220298673A1 (en) * 2021-03-22 2022-09-22 Axt, Inc. Method and system for vertical gradient freeze 8 inch gallium arsenide substrates
CN113213971A (zh) * 2021-04-20 2021-08-06 广东先导微电子科技有限公司 一种pbn坩埚氧化预处理装置、方法及其应用
WO2024062991A1 (ja) * 2022-09-21 2024-03-28 Dowaエレクトロニクス株式会社 GaAsインゴットの製造方法及びGaAsインゴット
US20240229782A1 (en) 2023-01-11 2024-07-11 Caterpillar Paving Products Inc. On-demand electric motor controlled hydraulic system
WO2024171429A1 (ja) * 2023-02-17 2024-08-22 住友電気工業株式会社 半絶縁性ヒ化ガリウム単結晶基板、エピタキシャル層付基板および半絶縁性ヒ化ガリウム単結晶の製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596148A (en) * 1970-01-19 1971-07-27 Monsanto Co Double-doped gallium arsenide and method of preparation
JPS5912638B2 (ja) 1974-01-25 1984-03-24 同和鉱業 (株) 揮発性成分を含む金属間化合物の直接合成方法
US4158851A (en) * 1976-03-29 1979-06-19 Sumitomo Electric Industries, Ltd. Semi-insulating gallium arsenide single crystal
JPS5914440B2 (ja) * 1981-09-18 1984-04-04 住友電気工業株式会社 CaAs単結晶への硼素のド−ピング方法
JPS5912638A (ja) * 1982-07-13 1984-01-23 Nippon Telegr & Teleph Corp <Ntt> インピ−ダンス合成形ライン回路
JPS60137899A (ja) * 1983-12-23 1985-07-22 Sumitomo Electric Ind Ltd 砒化ガリウム単結晶とその製造方法
JPH01239089A (ja) * 1987-11-30 1989-09-25 Toshiba Corp 化合物半導体単結晶の製造方法及び製造装置
JP2737186B2 (ja) 1988-12-08 1998-04-08 日本電気株式会社 ガリウム砒素化合物半導体単結晶
JPH02145499A (ja) * 1988-12-28 1990-06-04 Tsuaitowan Faaren Gonie Jishu Ienjiou Yuen 砒化ガリウム単結晶の成長方法
JPH0616493A (ja) 1992-06-30 1994-01-25 Mitsubishi Materials Corp ガリウム砒素単結晶の成長方法
JPH06219900A (ja) * 1993-01-28 1994-08-09 Dowa Mining Co Ltd Siドープn型ガリウム砒素単結晶の製造方法
JP4120016B2 (ja) * 1996-12-12 2008-07-16 住友電気工業株式会社 半絶縁性GaAs単結晶の製造方法
JPH11116373A (ja) * 1997-10-21 1999-04-27 Kobe Steel Ltd 低転位密度の化合物半導体単結晶及びその製造方法並びに製造装置
JP2967780B1 (ja) * 1998-09-28 1999-10-25 住友電気工業株式会社 GaAs単結晶基板およびそれを用いたエピタキシャルウェハ
JP4235711B2 (ja) * 2002-09-27 2009-03-11 Dowaエレクトロニクス株式会社 縦型ボート法によるGaAs単結晶の製造方法
CN1763980A (zh) * 2004-10-20 2006-04-26 日立电线株式会社 添加硅的砷化镓单结晶基板
US20090098377A1 (en) * 2005-03-31 2009-04-16 Dowa Electronics Materials Co., Ltd. Si-Doped GaAs Single Crystal Ingot and Process for Producing the Same, and Si-Doped GaAs Single Crystal Wafer Produced From Si-Doped GaAs Single Crystal Ingot
CN1873060A (zh) 2005-05-17 2006-12-06 日立电线株式会社 化合物半导体单晶及其生长用容器和制造方法
EP1739210B1 (de) * 2005-07-01 2012-03-07 Freiberger Compound Materials GmbH Verfahren zur Herstellung von dotierten Halbleiter-Einkristallen, und III-V-Halbleiter-Einkristall
US7566641B2 (en) * 2007-05-09 2009-07-28 Axt, Inc. Low etch pit density (EPD) semi-insulating GaAs wafers
US8361225B2 (en) * 2007-05-09 2013-01-29 Axt, Inc. Low etch pit density (EPD) semi-insulating III-V wafers
JP2009126723A (ja) * 2007-11-20 2009-06-11 Sumitomo Electric Ind Ltd Iii族窒化物半導体結晶の成長方法、iii族窒化物半導体結晶基板の製造方法およびiii族窒化物半導体結晶基板
CN104109906A (zh) 2009-01-09 2014-10-22 住友电气工业株式会社 单晶制造装置、单晶的制造方法及单晶
JP5110026B2 (ja) * 2009-04-03 2012-12-26 住友電気工業株式会社 Iii−v族化合物半導体結晶の製造方法
CN101724886B (zh) 2009-12-24 2011-11-23 中科晶电信息材料(北京)有限公司 砷化镓或锗单晶生长方法
DE112011101177B4 (de) * 2010-03-29 2020-09-03 Sumitomo Electric Industries, Ltd. Verfahren zum Fertigen eines Halbleiter-Einkristalls
CN103460349B (zh) * 2011-05-18 2016-11-23 住友电气工业株式会社 化合物半导体衬底
JP5433632B2 (ja) * 2011-05-25 2014-03-05 Dowaエレクトロニクス株式会社 GaAs単結晶の製造方法およびGaAs単結晶ウェハ
US9691617B2 (en) * 2012-03-26 2017-06-27 Beijing Tongmei Xtal Technology Co., Ltd. IIIA-VA group semiconductor single crystal substrate and method for preparing same
CN105408528A (zh) * 2013-03-27 2016-03-16 北京通美晶体技术有限公司 半导体衬底中的可控氧浓度
CN103526279A (zh) * 2013-10-25 2014-01-22 北京华进创威电子有限公司 一种用于GaAs晶体生长的套筒式石墨加热器
CN106319630B (zh) * 2015-07-02 2018-07-06 广东先导先进材料股份有限公司 砷化镓单晶的生长方法

Also Published As

Publication number Publication date
CN113215662A (zh) 2021-08-06
JP6394838B1 (ja) 2018-09-26
WO2019008663A1 (ja) 2019-01-10
CN113235162B (zh) 2024-06-04
TWI733008B (zh) 2021-07-11
US20190264348A1 (en) 2019-08-29
US10822722B2 (en) 2020-11-03
EP3508621A1 (en) 2019-07-10
TWI765742B (zh) 2022-05-21
EP4063541A1 (en) 2022-09-28
CN110325672A (zh) 2019-10-11
EP3508621A4 (en) 2020-04-22
JPWO2019008663A1 (ja) 2019-07-11
CN113235162A (zh) 2021-08-10
TW201907060A (zh) 2019-02-16

Similar Documents

Publication Publication Date Title
TWI733008B (zh) 砷化鎵晶體及砷化鎵結晶基板
JP2007254274A (ja) Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法
EP3591102B1 (en) Compound semiconductor and method for producing single crystal of compound semiconductor
JP2008308383A (ja) シリコン単結晶の製造方法
EP3978657A1 (en) Germanium single-crystal wafer, method for preparing germanium single-crystal wafer, method for preparing crystal bar, and use of single-crystal wafer
JP6749309B2 (ja) 化合物半導体ウエハ、および光電変換素子
JP7020346B2 (ja) ヒ化ガリウム結晶体およびヒ化ガリウム結晶基板
JP7242757B2 (ja) GaAsインゴットおよびGaAsインゴットの製造方法、ならびにGaAsウエハ
US20220213618A1 (en) Indium phosphide single-crystal body and indium phosphide single-crystal substrate
Pino et al. Adhesion-free growth of AlSb bulk crystals in silica crucibles
Tabatabai Yazdi et al. Growth of Cd0. 96Zn0. 04Te single crystals by vapor phase gas transport method
Zappettini 8.1 Applications and requirements
JPH08316249A (ja) Ii−vi 族化合物半導体基板およびその製造法
JP2009298611A (ja) 半導体結晶の製造方法