TW202031923A - 以原子層沈積法製造釕金屬薄膜之方法 - Google Patents

以原子層沈積法製造釕金屬薄膜之方法 Download PDF

Info

Publication number
TW202031923A
TW202031923A TW108139871A TW108139871A TW202031923A TW 202031923 A TW202031923 A TW 202031923A TW 108139871 A TW108139871 A TW 108139871A TW 108139871 A TW108139871 A TW 108139871A TW 202031923 A TW202031923 A TW 202031923A
Authority
TW
Taiwan
Prior art keywords
general formula
ruthenium
thin film
compound represented
manufacturing
Prior art date
Application number
TW108139871A
Other languages
English (en)
Other versions
TWI826568B (zh
Inventor
西田章浩
遠津正揮
Original Assignee
日商Adeka股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Adeka股份有限公司 filed Critical 日商Adeka股份有限公司
Publication of TW202031923A publication Critical patent/TW202031923A/zh
Application granted granted Critical
Publication of TWI826568B publication Critical patent/TWI826568B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本發明之在基體上以原子層沈積法製造釕金屬薄膜之方法,其特徵為包含:(A)將包含特定的釕化合物之原料氣體導入於處理環境中,而使該釕化合物沈積於前述基體上之步驟;將包含特定的化合物之反應性氣體導入於處理環境中,使其與沈積於前述基體上之特定的釕化合物反應之步驟。

Description

以原子層沈積法製造釕金屬薄膜之方法
本發明係有關於一種以原子層沈積法製造釕金屬薄膜之方法。
釕金屬薄膜係顯示特殊的電特性,而應用於各種用途。例如,常作為以DRAM元件為代表之記憶體元件的電極材料、電阻膜、用於硬碟的紀錄層之反磁性膜及固態高分子形燃料電池用之觸媒材料等使用。
作為上述薄膜之製造方法,可舉出濺鍍法、離子鍍法、塗佈熱分解法或溶膠凝膠法等MOD法、CVD法、原子層沈積法(以下亦有記載為ALD法);而由所得薄膜的品質良好而言,主要係採用CVD法或ALD法。
作為CVD法用原料或ALD法用原料使用的釕化合物,向來已知有各種的釕化合物。例如,專利文獻1中揭示由釕與CO構成之簡單分子結構的十二羰基三釕。然而,將十二羰基三釕作為供製造釕金屬薄膜的ALD法用原料使用,且反應性氣體使用臭氧或氫氣時,所得薄膜會成為金屬釕與氧化釕之複合膜,因此便需要將其在高溫下加熱而還原成金屬釕之步驟。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2013-036054號公報
[發明所欲解決之課題]
在向來所知方法中,欲藉由ALD法製造釕金屬薄膜時,所得薄膜會成為金屬釕與氧化釕之複合膜,而需要將其在高溫下加熱而還原成金屬釕之步驟。由於此步驟有可能對周邊的構件造成嚴重的傷害,從而便需要一種所得薄膜不會成為金屬釕與氧化釕之複合膜,而能夠獲得釕金屬薄膜的製造釕金屬薄膜之方法。 從而,本發明目的在於提供一種以原子層沈積法獲得品質良好的釕金屬薄膜用之製造方法。 [解決課題之手段]
本案發明人等累積多次研究的結果發現,以具有特定步驟的原子層沈積法製造釕金屬薄膜之方法可解決上述課題,而達成本發明。
亦即,本發明係提供一種製造釕金屬薄膜之方法,其係在基體上以原子層沈積法製造釕金屬薄膜之方法,其包含: (A)將包含通式(1)所示之釕化合物的原料氣體導入於處理環境中,而使通式(1)所示之釕化合物沈積於前述基體上之步驟; (B)將包含通式(2)或通式(3)所示之化合物當中至少1種的反應性氣體導入於處理環境中,使其與沈積於前述基體上之通式(1)所示之釕化合物反應之步驟:
Figure 02_image001
(式中,R1 ~R12 各自獨立表示氫或碳原子數1~5之烷基)
Figure 02_image003
(式中,A1 表示碳原子數1~5之烷二基,X1 表示鹵素原子)
Figure 02_image005
(式中,A2 表示碳原子數1~5之烷二基,X2 表示鹵素原子)。 [發明之效果]
根據本發明,能以原子層沈積法製造品質良好的釕金屬薄膜。
[實施發明之形態]
本發明之以原子層沈積法製造釕金屬薄膜之方法可採用與周知一般的原子層沈積法同樣的程序,惟其特徵在於需組合後述之(A)步驟與(B)步驟。
本發明之製造方法中的(A)步驟係將包含通式(1)所示之釕化合物的原料氣體導入於處理環境中,而使通式(1)所示之釕化合物沈積於基體上之步驟。此處所稱「沈積」,係表示包含使通式(1)所示之釕化合物吸附於基體上之概念。(A)步驟中,透過使用包含通式(1)所示之釕化合物的原料氣體,並將其與(B)步驟組合,而有可製造高純度釕金屬薄膜之效果。此步驟中包含通式(1)所示之釕化合物的原料氣體較佳含有90體積%以上,更佳含有99體積%以上的通式(1)所示之釕化合物。
上述通式(1)中,R1 ~R12 各自獨立表示氫或碳原子數1~5之烷基。
上述通式(1)中,R1 ~R12 所示之碳原子數1~5之烷基可舉出例如甲基、乙基、正丙基、異丙基、正丁基、第二丁基、第三丁基、異丁基、正戊基、第二戊基、第三戊基、異戊基、新戊基。
上述通式(1)中,R1 ~R12 ,此等之組合較佳為使其在常溫常壓下呈液體狀態,且使蒸氣壓較大者。具體而言,R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 、R11 及R12 為氫且R1 及R10 為甲基、乙基、丙基、異丙基者由於蒸氣壓較高而較佳,其中以異丙基者為特佳。 又,R1 及R10 為甲基,R2 、R4 、R5 、R6 、R7 、R8 、R9 及R11 為氫且R3 及R12 為甲基、乙基、丙基、異丙基者由於蒸氣壓較高而較佳,其中以甲基或乙基為特佳。 再者,R1 及R10 為甲基,R2 、R3 、R5 、R6 、R8 、R9 、R11 及R12 為氫且R4 及R7 為甲基、乙基、丙基、異丙基者由於蒸氣壓較高而較佳,其中以異丙基者為特佳。 此等當中,由所得釕金屬薄膜的純度佳之效果較高而言,特佳為R1 及R10 為甲基,R2 、R3 、R5 、R6 、R8 、R9 、R11 及R12 為氫且R4 及R7 為異丙基者。
上述通式(1)所示之釕化合物的較佳具體例可舉出例如下述化合物No.1~No.21。 此外,下述化學式中的「Me」表示甲基,「Et」表示乙基,「iPr」表示異丙氧基。
Figure 02_image007
Figure 02_image009
Figure 02_image011
上述通式(1)所示之釕化合物的製造方法不特別限定,亦能以周知之合成方法來製造。例如,能以使氯化釕(III)與相應結構之環己二烯化合物在鋅存在下反應的方法等而得。此合成方法係揭示於例如Journal of the Chemical Society, Dalton Transactions, No.10,1980, 1961-1964。又,亦可使用市售品。
(A)步驟中使上述通式(1)所示之釕化合物氣化的方法不特別限定,能以周知一般用於原子層沈積法之有機金屬化合物的氣化方法來進行。例如,可藉由在圖2~5所示ALD法用裝置的原料容器中進行加熱或減壓而使其氣化。加熱時的溫度較佳為20℃~200℃的範圍。又,於(A)步驟中,使氣化之上述通式(1)所示之釕化合物沈積於基體上時之基體的溫度較佳為100~500℃的範圍,更佳為150~350℃。
可使用於本發明之製造方法之基體的材質可舉出例如矽;砷化銦、砷化銦鎵、氧化矽、氮化矽、碳化矽、氧化鋁、氮化鋁、氧化鉭、氮化鉭、氧化鈦、氮化鈦、碳化鈦、氧化鋯、氧化鉿、氧化鑭、氮化鎵等陶瓷;玻璃;鉑、鋁、銅、鎳、鈷、鎢、鉬等金屬。此外,基體的形狀可舉出板狀、球狀、纖維狀、鱗片狀。基體表面可為平面或呈溝渠結構等的三維結構。
本發明之製造方法中的(B)步驟係將包含上述通式(2)或上述通式(3)所示之化合物當中至少1種的反應性氣體導入於處理環境中,使其與沈積於前述基體上之上述通式(1)所示之釕化合物反應之步驟。於(B)步驟中,透過使用上述通式(1)所示之釕化合物與包含上述通式(2)或上述通式(3)所示之化合物當中至少1種的反應性氣體,而有可有效製造品質良好的釕金屬薄膜之效果。
上述通式(2)中,A1 表示碳原子數1~5之烷二基,X1 表示鹵素原子。
上述通式(2)中,A1 所示之碳原子數1~5之烷二基可舉出例如伸甲基、伸乙基、伸丙基、甲基伸乙基、伸丁基、1-甲基伸丙基、2-甲基伸丙基、1,2-二甲基伸丙基、1,3-二甲基伸丙基、1-甲基伸丁基、2-甲基伸丁基、3-甲基伸丁基、4-甲基伸丁基等。
上述通式(2)中,X1 所示之鹵素原子可舉出氟原子、氯原子、溴原子、碘原子、砈原子。
上述通式(2)中,A1 及X1 ,此等之組合較佳為使蒸氣壓較高,且與通式(1)所示之釕化合物的反應性良好者。具體而言,較佳為A1 為伸甲基、伸乙基、伸丙基、甲基伸乙基、伸丁基、1-甲基伸丙基、2-甲基伸丙基、1,2-二甲基伸丙基、1,3-二甲基伸丙基者,其中為伸甲基、伸乙基、伸丙基者由於與通式(1)所示之釕化合物的反應性良好而較佳;由蒸氣壓較高而言係以伸甲基為特佳。 又,X1 較佳為氟原子、氯原子、溴原子,其中較佳為氯原子、溴原子。
上述通式(2)所示之化合物的較佳具體例可舉出例如下述化合物No.22~No.27。
Figure 02_image013
上述通式(3)中,A2 表示碳原子數1~5之烷二基,X2 表示鹵素原子。
上述通式(3)中,A2 所示之碳原子數1~5之烷二基可舉出例如伸甲基、伸乙基、伸丙基、甲基伸乙基、伸丁基、1-甲基伸丙基、2-甲基伸丙基、1,2-二甲基伸丙基、1,3-二甲基伸丙基、1-甲基伸丁基、2-甲基伸丁基、3-甲基伸丁基、4-甲基伸丁基等。
上述通式(3)中,X2 所示之鹵素原子可舉出氟原子、氯原子、溴原子、碘原子、砈原子。
上述通式(3)中,A2 及X2 ,此等之組合較佳為使蒸氣壓較高,且與通式(1)所示之釕化合物的反應性良好者。具體而言,較佳為A2 為伸甲基、伸乙基、伸丙基、甲基伸乙基、伸丁基、1-甲基伸丙基、2-甲基伸丙基、1,2-二甲基伸丙基、1,3-二甲基伸丙基者,其中為伸甲基、伸乙基、伸丙基者由於與通式(1)所示之釕化合物的反應性良好而較佳;由蒸氣壓較高而言係以伸甲基為特佳。 又,A2 ,由與通式(1)所示之釕化合物的反應性良好而言較佳為氟原子、氯原子、溴原子,其中較佳為氯原子、溴原子。
上述通式(3)所示之化合物的較佳具體例可舉出例如下述化合物No.28~No.33。
Figure 02_image015
此步驟中包含上述通式(2)或上述通式(3)所示之化合物當中至少1種的反應性氣體可為僅由上述通式(2)所示之化合物構成的氣體或僅由上述通式(3)所示之化合物構成的氣體;又,亦可為上述通式(2)所示之化合物與上述通式(3)所示之化合物的混合氣體。此外,亦可為此等氣體與氬氣、氮氣、氧氣、氫氣等氣體的混合氣體。
(B)步驟中將包含上述通式(2)及/或上述通式(3)所示之化合物的反應性氣體導入於處理環境中的方法不特別限定,可與周知一般用於原子層沈積法之反應性氣體的導入方法同樣地導入,惟較佳為預先將氣化之反應性氣體導入於處理環境。
例如,就以本發明之製造方法在矽基體上製造釕金屬薄膜之方法,利用圖1之流程圖加以說明。於此,係採用圖2所示ALD法用裝置。
首先,將矽基體設置於成膜室內。此矽基體的設置方法不特別限定,只要藉由周知一般方法將基體設置於成膜室即可。又,使通式(1)所示之釕化合物於原料容器內氣化,將其導入於成膜室,使其沈積(吸附)於經加熱至100~500℃,較佳為150~350℃的矽基體上[(A)步驟]。
其次,將未沈積於矽基體上的通式(1)所示之釕化合物由成膜室中排出(排氣步驟1)。較理想的是使未沈積於矽基體上的通式(1)所示之釕化合物由成膜室中完全排出,但未必有完全排出之必要。排氣方法可舉出藉由氦氣、氬氣等惰性氣體吹掃系統內之方法、藉由將系統內減壓而排氣之方法、此等組合而成之方法等。減壓時的減壓度較佳為0.01~300Pa,更佳為0.1~100Pa。
其次,對成膜室導入包含通式(2)或通式(3)所示之化合物當中至少1種的反應性氣體,使其與沈積於矽基體上之通式(1)所示之釕化合物反應[(B)步驟]。此時,係以預先使包含通式(2)或通式(3)所示之化合物當中至少1種的反應性氣體氣化,而以氣體狀態導入為佳。於本步驟中,使熱作用時的溫度較佳為100~500℃的範圍,較佳為150~350℃。(A)步驟之矽基體溫度與(B)步驟中使熱作用時的溫度的差,以絕對值表示較佳為0~20℃的範圍內。這是因為,藉由調整於此範圍內,可顯示不易發生釕金屬薄膜的翹曲之效果。
其次,將包含未反應之通式(2)或通式(3)所示之化合物當中至少1種的反應性氣體及副產物氣體由成膜室中排出(排氣步驟2)。較理想的是使包含未反應之通式(2)或通式(3)所示之化合物當中至少1種的反應性氣體及副產物氣體由反應室中完全排出,但未必有完全排出之必要。排氣方法可舉出藉由氦氣、氬氣等惰性氣體吹掃系統內之方法、藉由將系統內減壓而排氣之方法、此等組合而成之方法等。減壓時的減壓度較佳為0.01~300Pa,更佳為0.1~100Pa。
亦能以由上述(A)步驟、排氣步驟1、(B)步驟及排氣步驟2所構成的一連串操作之薄膜沈積為1循環,並重複此成膜循環多次至獲得所需膜厚的釕金屬薄膜為止。
又,在上述(B)步驟之後,亦可導入氫氣等還原性氣體作為反應性氣體並進行與(B)步驟及排氣步驟2同樣的操作。
此外,本發明之製造方法中,亦可施加電漿、光、電壓等能量。施加此等能量的時間點不特別限定,可於例如(A)步驟中導入通式(1)所示之釕化合物氣體時、(B)步驟中加熱時、排氣步驟中系統內的排氣時,亦可於上述各步驟之間。
本發明之製造方法中,於薄膜沈積之後,為了獲得更良好的膜質,亦可於惰性氣體環境下或者還原性氣體環境下進行退火處理;在需要埋入階差時,也可設置回流焊步驟。此時的溫度為400~1200℃,較佳為500~800℃。
根據本發明製造釕金屬薄膜時所用裝置可使用周知之ALD法用裝置。具體裝置的實例可舉出如圖2之可通氣供給原子層沈積法用原料的裝置、或如圖3所示具有氣化室的裝置。又,可舉出如圖4及圖5所示可對反應性氣體進行電漿處理的裝置。非限於如圖2~圖5之單片式裝置,亦可使用利用批式爐之可對多片同時進行處理的裝置。 [實施例]
以下,以實施例及比較例對本發明更詳細地加以說明。然而,本發明不受以下實施例等任何限制。
[實施例1~16]釕金屬薄膜的製造 使用圖2所示裝置,根據以下條件之ALD法於矽晶圓上製造釕金屬薄膜。此外,將所用原料氣體與反應性氣體示於表1。
Figure 02_image017
(條件) 反應溫度(矽晶圓溫度):300℃ 以由下述(1)~(4)所構成的一連串步驟為1循環,重複50循環: (1)將以原料容器溫度:150℃、原料容器內壓力:100Pa之條件氣化的原子層沈積法用原料導入於成膜室,以系統壓力:100Pa進行沈積0.2秒; (2)藉由15秒的氬氣吹掃,去除未沈積之原料; (3)將反應性氣體導入於成膜室,以系統壓力:100Pa使其反應0.2秒; (4)藉由30秒的氬氣吹掃,去除未反應之反應性氣體及副產物氣體。
[比較例1~12]釕金屬薄膜的製造 除將原料氣體及反應性氣體定為表2之組合以外,係以與實施例1同樣的方法製造薄膜。此外,比較化合物1為十二羰基三釕。
Figure 02_image019
(評定) 對根據實施例1~16及比較例1~12所得之薄膜分別藉由X射線光電子分光法確認薄膜組成,確認是否獲得釕金屬薄膜。將其結果示於表3。
Figure 02_image021
由表3之結果,可確認評定例1~16其全部皆可製造品質良好的金屬釕。另一方面,可確認比較評定例1~8其形成了金屬釕與氧化釕之複合膜。又,就比較評定例9~12,組成分析的結果,未看出有金屬釕。
[圖1]為表示本發明之製造釕金屬薄膜之方法的一例的流程圖。 [圖2]為表示本發明之製造釕金屬薄膜之方法所使用之ALD法用裝置的一例的示意圖。 [圖3]為表示本發明之製造釕金屬薄膜之方法所使用之ALD法用裝置的另一例的示意圖。 [圖4]為表示本發明之製造釕金屬薄膜之方法所使用之ALD法用裝置的另一例的示意圖。 [圖5]為表示本發明之製造釕金屬薄膜之方法所使用之ALD法用裝置的另一例的示意圖。

Claims (4)

  1. 一種製造釕金屬薄膜之方法,其係在基體上以原子層沈積法製造釕金屬薄膜之方法,其包含: (A)將包含通式(1)所示之釕化合物的原料氣體導入於處理環境中,而使通式(1)所示之釕化合物沈積於前述基體上之步驟; (B)將包含通式(2)或通式(3)所示之化合物當中至少1種的反應性氣體導入於處理環境中,使其與沈積於前述基體上之通式(1)所示之釕化合物反應之步驟:
    Figure 03_image001
    (式中,R1 ~R12 各自獨立表示氫或碳原子數1~5之烷基)
    Figure 03_image003
    (式中,A1 表示碳原子數1~5之烷二基,X1 表示鹵素原子)
    Figure 03_image005
    (式中,A2 表示碳原子數1~5之烷二基,X2 表示鹵素原子)。
  2. 如請求項1之製造釕金屬薄膜之方法,其中前述(B)步驟中之前述基體的溫度為100℃~500℃的範圍。
  3. 如請求項1或2之製造釕金屬薄膜之方法,其係在前述(A)步驟與前述(B)步驟之間及前述(B)步驟之後的至少一者具有排出前述處理環境的氣體之步驟。
  4. 如請求項1至3中任一項之製造釕金屬薄膜之方法,其係依序重複包含前述(A)步驟與前述(B)步驟的成膜循環。
TW108139871A 2018-11-08 2019-11-04 以原子層沈積法製造釕金屬薄膜之方法 TWI826568B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-210356 2018-11-08
JP2018210356A JP2022031988A (ja) 2018-11-08 2018-11-08 原子層堆積法による金属ルテニウム薄膜の製造方法

Publications (2)

Publication Number Publication Date
TW202031923A true TW202031923A (zh) 2020-09-01
TWI826568B TWI826568B (zh) 2023-12-21

Family

ID=70611135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108139871A TWI826568B (zh) 2018-11-08 2019-11-04 以原子層沈積法製造釕金屬薄膜之方法

Country Status (7)

Country Link
US (1) US11408069B2 (zh)
JP (1) JP2022031988A (zh)
KR (1) KR20210089651A (zh)
CN (1) CN112969812B (zh)
IL (1) IL282897B1 (zh)
TW (1) TWI826568B (zh)
WO (1) WO2020095744A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240032908A (ko) 2021-07-29 2024-03-12 가부시키가이샤 아데카 반응성 재료 및 박막의 제조 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816550B2 (en) * 2005-02-10 2010-10-19 Praxair Technology, Inc. Processes for the production of organometallic compounds
US7531458B2 (en) * 2006-07-31 2009-05-12 Rohm And Haas Electronics Materials Llp Organometallic compounds
JP5032085B2 (ja) * 2006-10-06 2012-09-26 田中貴金属工業株式会社 化学蒸着用の有機ルテニウム化合物及び該有機ルテニウム化合物を用いた化学蒸着方法
JP5202905B2 (ja) * 2007-08-22 2013-06-05 東ソー株式会社 ルテニウム化合物、その製造方法、ルテニウム含有薄膜及びその製造方法
US20090205538A1 (en) * 2008-01-24 2009-08-20 Thompson David M Organometallic compounds, processes for the preparation thereof and methods of use thereof
US20090203928A1 (en) * 2008-01-24 2009-08-13 Thompson David M Organometallic compounds, processes for the preparation thereof and methods of use thereof
KR100958332B1 (ko) * 2008-01-28 2010-05-18 (주)디엔에프 신규 루테늄 화합물 및 이를 이용한 박막 증착 방법
DE102009053392A1 (de) * 2009-11-14 2011-06-22 Umicore AG & Co. KG, 63457 Verfahren zur Herstellung von Ru(0) Olefin-Komplexen
US8481119B2 (en) * 2010-10-29 2013-07-09 Applied Materials, Inc. Bisamineazaallylic ligands and their use in atomic layer deposition methods
JP5140184B1 (ja) 2011-08-03 2013-02-06 田中貴金属工業株式会社 化学蒸着原料用の有機ルテニウム化合物及び該有機ルテニウム化合物の製造方法
CN104136448B (zh) * 2012-01-26 2015-12-02 辛格玛艾瑞契有限责任公司 钼烯丙基络合物和其于薄膜沉积中的用途
KR101309043B1 (ko) * 2012-01-31 2013-09-17 영남대학교 산학협력단 원자층 증착법에 의한 루테늄 박막 형성 방법 및 그를 이용한 루테늄 박막
TWI610932B (zh) * 2012-12-07 2018-01-11 東曹股份有限公司 釕錯合物及其製造方法、陽離子性三腈錯合物及其製造方法、以及含釕薄膜的製造方法
TW201708596A (zh) * 2015-08-21 2017-03-01 嶺南大學校產學協力團 藉由原子層沉積法之釕薄膜之形成方法
KR102374140B1 (ko) * 2017-11-01 2022-03-17 (주)디엔에프 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막

Also Published As

Publication number Publication date
US11408069B2 (en) 2022-08-09
JP2022031988A (ja) 2022-02-24
CN112969812A (zh) 2021-06-15
KR20210089651A (ko) 2021-07-16
US20220002867A1 (en) 2022-01-06
IL282897B1 (en) 2024-03-01
TWI826568B (zh) 2023-12-21
WO2020095744A1 (ja) 2020-05-14
IL282897A (en) 2021-06-30
CN112969812B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
JP4965782B2 (ja) 遷移金属炭化物の堆積
TWI795553B (zh) 使用原子層堆積法用薄膜形成用原料之薄膜之製造方法
JP6855191B2 (ja) 原子層堆積法による金属薄膜の製造方法
TW202026452A (zh) 原子層堆積法用薄膜形成用原料、薄膜形成用原料、薄膜之製造方法及化合物
TWI826568B (zh) 以原子層沈積法製造釕金屬薄膜之方法
EP3712159B1 (en) Ruthenium compound, raw material for forming thin film, and method for producing thin film
JP2005209766A (ja) ハフニウム含有酸化膜の製造方法
WO2018042871A1 (ja) ジアザジエニル化合物、薄膜形成用原料及び薄膜の製造方法
JP6797068B2 (ja) 原子層堆積法による炭化チタン含有薄膜の製造方法
JP6912913B2 (ja) 原子層堆積法による酸化イットリウム含有薄膜の製造方法
WO2021117540A1 (ja) 銅含有層の製造方法
CN112647059B (zh) 一种利用原子层沉积技术快速生长NixC薄膜的方法
US11999756B2 (en) Method for producing organometallic compound and thin film fabricated using organometallic compound obtained thereby
WO2021106652A1 (ja) 化合物、薄膜形成用原料及び薄膜の製造方法
US20240060177A1 (en) Indium compound, thin-film forming raw material, thin film, and method of producing same
US20220356198A1 (en) Method for producing organometallic compound and thin film fabricated using organometallic compound obtained thereby
EP3647460B1 (en) Thin film production method and novel compound
WO2020255822A1 (ja) ルテニウム化合物、薄膜形成用原料及び薄膜の製造方法
EP4134372A1 (en) Amidinate compound, dimer compound thereof, raw material for thin film formation, and method for producing thin film
TW202129062A (zh) 含氧化釔膜之製造方法
TW202124396A (zh) 用於原子層沉積法之薄膜形成原料及使用其之含鋅薄膜的製造方法
KR20220026269A (ko) 몰리브데넘 함유 박막의 제조방법 및 이에 따라 제조된 몰리브데넘 함유 박막.