TW202018740A - 含金屬磁性粒子之磁性基體及含該磁性基體之電子零件 - Google Patents

含金屬磁性粒子之磁性基體及含該磁性基體之電子零件 Download PDF

Info

Publication number
TW202018740A
TW202018740A TW108121310A TW108121310A TW202018740A TW 202018740 A TW202018740 A TW 202018740A TW 108121310 A TW108121310 A TW 108121310A TW 108121310 A TW108121310 A TW 108121310A TW 202018740 A TW202018740 A TW 202018740A
Authority
TW
Taiwan
Prior art keywords
magnetic particles
metal magnetic
insulating layer
metal
particles
Prior art date
Application number
TW108121310A
Other languages
English (en)
Other versions
TWI708270B (zh
Inventor
松浦準
Original Assignee
日商太陽誘電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商太陽誘電股份有限公司 filed Critical 日商太陽誘電股份有限公司
Publication of TW202018740A publication Critical patent/TW202018740A/zh
Application granted granted Critical
Publication of TWI708270B publication Critical patent/TWI708270B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本發明提供一種金屬磁性粒子之填充率較高且容許電流經改善之磁性成形體。 本發明之一實施形態之磁性基體具備:第1金屬磁性粒子,其具有第1平均粒徑;及第2金屬磁性粒子,其具有小於上述第1平均粒徑之第2平均粒徑。於該實施形態中,上述第1金屬磁性粒子之表面設置有具有第1厚度之第1絕緣層,上述第2金屬磁性粒子之表面設置有具有較上述第1厚度薄之第2厚度之第2絕緣層。

Description

含金屬磁性粒子之磁性基體及含該磁性基體之電子零件
本發明係關於一種含金屬磁性粒子之磁性基體及含該磁性基體之電子零件。
於電感器等電子零件中,先前以來使用各種磁性材料。例如,電感器通常具有包含磁性材料之磁性基體、埋設於該磁性基體之線圈導體及連接於該線圈導體之端部之外部電極。
作為線圈零件用磁性材料,經常使用鐵氧體。鐵氧體由於磁導率較高,故而適合作為電感器用磁性材料。
作為除鐵氧體以外之電子零件用磁性材料,已知金屬磁性粒子。金屬磁性粒子之表面設置有低磁導率之絕緣膜。含金屬磁性粒子之磁性基體可藉由加壓成形製作。含金屬磁性粒子之磁性基體例如藉由如下方式製作:使混練金屬磁性粒子與結合材料而獲得之漿料流入模具,於該模具內向漿料施加壓力。
為了提高含金屬磁性粒子之磁性基體之磁導率,提高該磁性基體中之金屬磁性粒子之填充率即可。先前以來,為了提高磁導率,提出用於提高磁性基體中之磁性粒子之填充率之方案。例如,日本專利特開2006-179621號公報中揭示有一種包含第1磁性粒子及第2磁性粒子之複合磁性材料,該第2磁性粒子之平均粒徑為該第1磁性粒子之平均粒徑之50%以下,將該第1磁性粒子之含有率設為X[wt%]、該第2磁性粒子之含有率設為Y[wt%]時,滿足0.05≦Y/(X+Y)≦0.30之關係,藉此可獲得以高密度填充有磁性粒子之成形體。又,日本專利特開2010-34102號公報中揭示有一種黏土狀磁性基體,其係混合2種以上平均粒徑不同之非晶質金屬磁性粒子與絕緣性結合材料而得者。根據該磁性基體,可實現高填充率與低磁芯損耗。
日本專利特開2015-026812號公報中揭示:將磁性基體中包含之第1金屬磁性粒子及第2金屬磁性粒子製成包含鐵(Fe)之非晶質金屬製,將該第1磁性粒子製成長軸長度為15 μm以上之粗粉,將該第2磁性粒子製成長軸長度為5 μm以下之微粉,藉此提高金屬磁性粒子之填充率。
日本專利特開2016-208002號公報中揭示:藉由使磁性本體包含具有3種以上粒度分佈之磁性粒子,提高磁性粒子之填充率。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2006-179621號公報 [專利文獻2]日本專利特開2010-034102號公報 [專利文獻3]日本專利特開2015-026812號公報 [專利文獻4]日本專利特開2016-208002號公報
[發明所欲解決之問題]
於包含平均粒徑相異之複數種金屬磁性粒子之磁性基體中,具有更大之平均粒徑之金屬磁性粒子相較於具有更小之平均粒徑之金屬粒子而言磁導率變高,故而磁通易於通過具有更大之平均粒徑之金屬磁性粒子之存在比率較高之路徑。因此,於該磁性基體內設置有線圈導體之線圈零件中,若該線圈導體中流動之直流電流增加,則通過該磁性基體內之磁通之複數條磁路中,自平均粒徑較大之金屬磁性粒子之存在比率較高之磁路依次產生磁飽和。如此,於先前之磁性基體中,存在易於產生磁飽和之路徑及難以產生磁飽和之路徑。因此,若線圈導體中流動之直流電流增加,則於複數條磁通路徑中,自易於產生磁飽和之路徑依次階段性地產生磁飽和,故而線圈零件之電感逐漸降低。如此,含金屬磁性粒子之磁性基體中存在磁通分佈不均勻之問題。又,於含金屬磁性粒子之磁性基體用於線圈零件之情形時,由於磁通分佈之不均勻性導致電感逐漸降低。因此,於具有含金屬磁性粒子之磁性基體之線圈零件中,難以提高容許電流。
本發明之目的在於解決或緩解上述問題之至少一部分。本發明之更具體之目的之一在於提供一種金屬磁性粒子之填充率較高且容許電流經改善之磁性成形體。由整個說明書之記載可知本發明之其他目的。 [解決問題之技術手段]
本發明之一實施形態之磁性基體具備:第1金屬磁性粒子,其具有第1平均粒徑;第2金屬磁性粒子,其具有小於上述第1平均粒徑之第2平均粒徑。於該實施形態中,上述第1金屬磁性粒子之表面設置有具有第1厚度之第1絕緣層,上述第2金屬磁性粒子之表面設置有具有較上述第1厚度薄之第2厚度之第2絕緣層。
於本發明之一實施形態之磁性基體中,作為上述第2平均粒徑相對於上述第1平均粒徑之比的平均粒徑比與作為上述第2厚度相對於上述第1厚度之比的厚度比,二者之比為0.5~1.5之範圍內。
於本發明之一實施形態之磁性基體中,上述第1金屬磁性粒子及上述第2金屬磁性粒子均包含Fe,且上述第2金屬磁性粒子中之Fe之含有比率高於上述第1金屬磁性粒子中之Fe之含有比率。
於本發明之一實施形態之磁性基體中,上述第1金屬磁性粒子及上述第2金屬磁性粒子均包含Si,且上述第1金屬磁性粒子中之Si之含有比率高於上述第2金屬磁性粒子中之Si之含有比率。
於本發明之一實施形態之磁性基體中,進而具備:第3金屬磁性粒子,其具有小於上述第2平均粒徑之第3平均粒徑。該第3金屬磁性粒子之表面可設置第3絕緣層。
於本發明之一實施形態之磁性基體中,上述第3金屬磁性粒子包含Ni及Co之至少一者。
於本發明之一實施形態之磁性基體中,上述第1絕緣層、上述第2絕緣層及上述第3絕緣層之至少一者包含Si。
於本發明之一實施形態之磁性基體中,上述第1金屬磁性粒子包含Fe,上述第1絕緣層包含Fe之氧化物。
本發明之一實施形態之磁性基體進而具備結合材料。
本發明之一實施形態係關於一種電子零件。該電子零件包含上述磁性基體。
本發明之一實施形態之電子零件具備上述磁性基體及設置於上述磁性基體內之線圈。 [發明之效果]
根據本說明書之揭示,可提供一種金屬磁性粒子之填充率較高且容許電流得以改善之磁性成形體。
以下,適當地參考圖式,對本發明之各種實施形態進行說明。再者,對複數個圖式中共用之構成要素,於該複數個圖式中標註相同參考元件符號。請注意,為了便於說明,各圖式未必以準確之縮小比例記載。
參考圖1及圖2對本發明之一實施形態之線圈零件10進行說明。圖1係本發明之一實施形態之線圈零件1之立體圖,圖2係將沿I-I線切斷圖1之線圈零件1而得之截面模式性地表示之圖。於圖1中,透過線圈零件之構成要素中之一部分而圖示線圈零件10之內部構造。
本發明可用於各種線圈零件。本發明例如可用於電感器、過濾器、反應器及該等以外之各種線圈零件以及其他電子零件。本發明藉由用於被施加大電流之線圈零件及其他電子零件,更顯著地發揮其效果。用於DC(Direct current,直流)-DC轉換器之電感器為被施加大電流之線圈零件之例子。於圖1及圖2中,作為使用本發明之線圈零件10之一例,示出用於DC-DC轉換器之磁性耦合型電感器。本發明除磁性耦合型電感器以外,亦可用於變壓器、共模扼流線圈、耦合電感器及該等以外之各種磁性耦合型線圈零件。
如圖所示,本發明之一實施形態之線圈零件10具備磁性基體20、設置於磁性基體20內之線圈導體25、絕緣基板50及4個外部電極21~24。線圈導體25包括形成於絕緣基板50之上表面之線圈導體25a與形成於該絕緣基板50之下表面之線圈導體25b。
外部電極21與線圈導體25a之一端電性連接,外部電極22與該線圈導體25a之另一端電性連接。外部電極23與線圈導體25b之一端電性連接,外部電極24與該線圈導體25b之另一端電性連接。
於本說明書中,除上下文特別解釋之情況以外,線圈零件10之「長度」方向、「寬度」方向及「厚度」方向分別指圖1之「L」方向、「W」方向及「T」方向。提及線圈零件10之上下方向時,以圖1之上下方向為基準。
於本發明之一實施形態中,線圈零件10以長度尺寸(L方向之尺寸)成為1.0 mm~2.6 mm、寬度尺寸(W方向之尺寸)成為0.5~2.1 mm、高度尺寸(H方向之尺寸)成為0.5~1.0 mm之方式形成。
絕緣基板50係由磁性材料板狀地形成之構件。絕緣基板50中使用之磁性材料例如為包含結合材料及填料粒子之複合磁性材料。該結合材料例如為絕緣性優異之熱固性樹脂,例如為環氧樹脂、聚醯亞胺樹脂、聚苯乙烯(PS)樹脂、高密度聚乙烯(HDPE)樹脂、聚甲醛(POM)樹脂、聚碳酸酯(PC)樹脂、聚偏氟乙烯(PVDF)樹脂、酚(Phenolic)樹脂、聚四氟乙烯(PTFE)樹脂或聚苯并㗁唑(PBO)樹脂。
於本發明之一實施形態中,含於絕緣基板50之所使用之填料粒子為鐵氧體材料之粒子、金屬磁性粒子、SiO2 或Al2 O3 等無機材料粒子、玻璃系粒子或該等以外之任意公知之填料粒子。本發明可採用之鐵氧體材料之粒子例如為Ni-Zn鐵氧體之粒子或Ni-Zn-Cu鐵氧體之粒子。
於本發明之一實施形態中,絕緣基板50以具有大於磁性基體20之電阻值之方式構成。藉此,即便使絕緣基板50變薄,亦可確保線圈導體25a與線圈導體25b間之電性絕緣。
線圈導體25a以絕緣基板50之上表面具有規定圖案之方式形成。於圖示之實施形態中,線圈導體25a以具有繞線圈軸CL旋轉之複數圈環繞部之方式形成。
同樣地,線圈導體25b以絕緣基板50之下表面具有規定圖案之方式形成。於圖示之實施形態中,線圈導體25b以具有繞線圈軸CL旋轉之複數圈環繞部之方式形成。於本發明之一實施形態中,線圈導體25b以該環繞部之上表面與線圈導體25a之環繞部之下表面相對之方式形成。
線圈導體25a之一端部設置有引出導體26a,另一端部設置有引出導體27a。線圈導體25a經由該引出導體26a與外部電極21電性連接,且經由引出導體27a與外部電極22電性連接。同樣地,線圈導體25b之一端部設置有引出導體26b,另一端部設置有引出導體27b。線圈導體25b經由該引出導體26b與外部電極23電性連接,且經由引出導體27b與外部電極24電性連接。
於一實施形態中,線圈導體25a及線圈導體25b藉由如下方式形成:於絕緣基板50之表面形成經圖案化之抗蝕層,藉由鍍覆處理以導電性金屬填充該抗蝕層之開口部。
於本發明之一實施形態中,磁性基體20具有第1主面20a、第2主面20b、第1端面20c、第2端面20d、第1側面20e及第2側面20f。磁性基體20藉由該等6個面劃定其外表面。
外部電極21及外部電極23設置於磁性基體20之第1端面20c。外部電極22及外部電極24設置於磁性基體20之第2端面20d。各外部電極如圖所示,延伸至磁性基體20之上表面20a及下表面20c。
於本發明之一實施形態中,磁性基體20由向結合材料中混練大量金屬磁性粒子而獲得之複合樹脂材料形成。於本發明之一實施形態中,磁性基體20中包含之結合材料為樹脂,例如為絕緣性優異之熱固性樹脂。作為磁性基體20用熱固性樹脂,可使用苯并環丁烯(BCB)、環氧樹脂、酚樹脂、不飽和聚酯樹脂、乙烯酯樹脂、聚醯亞胺樹脂(PI)、聚苯醚樹脂(PPO)、雙馬來醯亞胺三嗪氰酸酯樹脂、富馬酸酯樹脂、聚丁二烯樹脂或聚乙烯苄醚樹脂。
如上所述,磁性基體20中包含大量金屬磁性粒子。該金屬磁性粒子包含平均粒徑相異之2種以上金屬磁性粒子。於本發明之一實施形態中,磁性基體20包含平均粒徑相異之2種金屬磁性粒子。包含平均粒徑相異之2種金屬磁性粒子之磁性基體20之截面之放大圖示於圖3。圖3係將圖2所示之磁性本體20之區域A放大並模式性地表示之圖。區域A為磁性本體20內之任意區域。於圖3所示之實施形態中,磁性基體20包含複數個第1金屬磁性粒子31及複數個第2金屬磁性粒子32。
於其他實施形態中,磁性基體20可包含平均粒徑相異之3種金屬磁性粒子。包含平均粒徑相異之3種金屬磁性粒子之磁性基體20之截面之放大圖示於圖7。如圖7所示,磁性基體20除複數個第1金屬磁性粒子31及複數個第2金屬磁性粒子32以外,亦可包含複數個第3金屬磁性粒子33。
請注意,圖3及圖7所示之各金屬磁性粒子為了強調表現出平均粒徑之差異,並未以準確之尺寸比率記載。於圖3及圖7中,第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33以外之區域以結合劑進行填充。藉由該結合材料,第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33相互結合。
於3種磁性粒子中,第1金屬磁性粒子31具有最大之平均粒徑。第1金屬磁性粒子31之平均粒徑例如設為1 μm~200 μm。第2金屬磁性粒子32之平均粒徑小於第1金屬磁性粒子31之平均粒徑。
於一實施形態中,第2金屬磁性粒子32之平均粒徑設為第1金屬磁性粒子31之平均粒徑之1/10以下。第2金屬磁性粒子32之平均粒徑例如設為0.1 μm~20 μm。於第2金屬磁性粒子32之平均粒徑為第1金屬磁性粒子31之平均粒徑之1/10以下之情形時,第2金屬磁性粒子32易於進入相鄰第1金屬磁性粒子31之間,結果,可提高磁性基體20中之金屬磁性粒子之填充率(Density)。
於一實施形態中,第3金屬磁性粒子33之平均粒徑小於第2金屬磁性粒子32之平均粒徑。於一實施形態中,第3金屬磁性粒子33之平均粒徑設為未達2 μm。第3金屬磁性粒子33之平均粒徑可設為0.5 μm以下。藉此,即便於以高頻對線圈零件進行激磁之情形時,亦可抑制第3金屬磁性粒子33內之渦電流之產生。從而,可獲得具有優異之高頻特性之線圈零件10。
第1金屬磁性粒子31之平均粒徑大於第2金屬磁性粒子32之平均粒徑,又,第2金屬磁性粒子32之平均粒徑大於第3金屬磁性粒子33之平均粒徑,故而視需要可將第1金屬磁性粒子31稱為大粒子、將第2金屬磁性粒子32稱為中粒子、將第3金屬磁性粒子33稱為小粒子。
對於磁性基體20中包含之金屬磁性粒子所設之金屬磁性粒子之平均粒徑基於以如下方式求出之粒度分佈確定:沿該磁性基體之厚度方向(T方向)切斷該磁性基體而使截面露出,基於藉由掃描式電子顯微鏡(SEM)以1000倍~2000倍之倍率拍攝該截面而得之照片求出粒度分佈。例如,可將基於SEM照片求出之粒度分佈之50%值作為金屬磁性粒子之平均粒徑。
於磁性基體20包含具有相異之平均粒徑之2種金屬磁性粒子之情形時,基於SEM照片求出之粒度分佈成為如後述圖5a或圖5b所示之形狀。圖5a及圖5b係表示磁性基體20中包含之第1金屬磁性粒子31及第2金屬磁性粒子32之粒度分佈之一例的曲線圖。如圖所示,該粒度分佈之曲線圖包含2個峰,即第1峰P1及第2峰P2。包含該第1峰P1之粒度分佈表示第1金屬磁性粒子31之粒度分佈,包含第2峰P2之粒度分佈表示第2金屬磁性粒子32之粒度分佈。一實施形態之磁性基體20係以規定比例混合第1金屬磁性粒子31及第2金屬磁性粒子32而得者。圖5a或圖5b示出該所混合之2種磁性粒子之粒度分佈。於本發明之一實施形態中,如圖5a所示,第1磁性粒子31之粒度分佈完全不與第2金屬磁性粒子32之粒度分佈重疊或幾乎不重疊。於本發明之一實施形態中,如圖5b所示,第1磁性粒子31之粒度分佈可與第2金屬磁性粒子32之粒度分佈重疊。例如,兩者之粒度分佈可以第1金屬磁性粒子31之粒度分佈之5%值成為第2磁性粒子32之粒度分佈之95%值以上之方式重疊。基於此種粒度分佈,可求出實際製作之磁性基體中包含之2種(或3種以上)金屬磁性粒子之平均粒徑。
於磁性基體20亦包含第3金屬磁性粒子33之情形時,出現表示該3金屬磁性粒子33之粒度分佈之第3個峰。第2磁性粒子32之粒度分佈與第3金屬磁性粒子33之粒度分佈可重疊,亦可不重疊。
如上所述,藉由使平均粒徑相異之2種以上金屬磁性粒子混合,可提高磁性基體20中之金屬磁性粒子之填充率。於本發明之一實施形態中,上述磁性基體中之上述金屬磁性粒子之填充率設為87%以上。藉此,可獲得磁導率優異之磁性基體。
於本說明書中,分別將第1金屬磁性粒子31之平均粒徑稱為第1平均粒徑、將第2金屬磁性粒子32之平均粒徑稱為第2平均粒徑、將第3金屬磁性粒子33之平均粒徑稱為第3平均粒徑。
於一實施形態中,第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33可形成為球形,亦可形成為扁平形狀。磁性基體20可包含具有相異之平均粒徑之4種以上金屬磁性粒子。
如圖4a所示,第1金屬磁性粒子31之表面設置有第1絕緣層41。第1絕緣層41為了不使第1金屬磁性粒子31與其他金屬磁性粒子短路,較佳為以覆蓋第1金屬磁性粒子31之整個表面之方式形成。第1絕緣層41不覆蓋第1金屬磁性粒子31之表面之全部,而僅覆蓋其一部分。於線圈零件1之製造步驟中,存在第1絕緣層41之一部分自第1金屬磁性粒子31脫落之情況,於此種情形時,第1絕緣層41不覆蓋第1金屬磁性粒子31之表面之全部而僅覆蓋其一部分。
如圖4b所示,第2金屬磁性粒子32之表面設置有第2絕緣層42。第2絕緣層42覆蓋第2金屬磁性粒子32之表面之全部或一部分。
如圖8所示,第3金屬磁性粒子33之表面設置有第3絕緣層43。第3絕緣層43覆蓋第3金屬磁性粒子33之表面之全部或一部分。根據磁性基體20所要求之絕緣性,可省略第3絕緣層43。
於本發明之一實施形態中,第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33由包含鐵(Fe)、鎳(Ni)及鈷(Co)中至少一種元素之結晶質或非晶質金屬或合金形成。第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33進而可包含矽(Si)、鉻(Cr)及鋁(Al)中至少一種元素。第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33可為含有Fe及不可避免之雜質之純鐵之粒子。第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33可為包含鐵(Fe)之Fe基非晶質合金。該Fe基非晶質合金中例如包含Fe-Si、Fe-Si-Al、Fe-Si-Cr-B、Fe-Si-B-C及Fe-Si-P-B-C。第1金屬磁性粒子31可僅包含單一種類之金屬或單一種類之合金之粒子。例如,第1金屬磁性粒子31全部可為含有純鐵或特定種類之Fe基非晶質合金之粒子。此亦適用於第2金屬磁性粒子32及第3金屬磁性粒子33。第1金屬磁性粒子31可包含複數種不同種類之金屬或合金之粒子。例如,第1金屬磁性粒子31亦可包含具有含有純鐵之第1金屬磁性粒子31之複數個粒子及具有含有Fe-Si之第1金屬磁性粒子31之複數個粒子。此亦適用於第2金屬磁性粒子32及第3金屬磁性粒子33。
於一實施形態中,第1金屬磁性粒子31及第2金屬磁性粒子均含有Fe,第2金屬磁性粒子32中之Fe之含有比率高於第1金屬磁性粒子31中之Fe之含有比率。
如上所述,於一實施形態中,第1金屬磁性粒子31及第2金屬磁性粒子32可由包含純鐵或Fe之合金形成。於該情形時,第1金屬磁性粒子31及第2金屬磁性粒子32可以第2金屬磁性粒子32中之Fe之含有比率高於第1金屬磁性粒子31中之Fe之含有比率之方式形成。例如,第1金屬磁性粒子31包含72 wt%~80 wt%之Fe,第2金屬磁性粒子32包含87 wt%~99.8 wt%之Fe。第3金屬磁性粒子33例如可包含50 wt%~93 wt%之Fe。第2金屬磁性粒子32及第3金屬磁性粒子33中之Fe之含有比率可設為92 wt%以上。
如上所述,第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33均可包含Si。於一實施形態中,第1金屬磁性粒子31及第2金屬磁性粒子32以第1金屬磁性粒子31中之Si之含有比率高於第2金屬磁性粒子32中之Si之含有比率之方式形成。於一實施形態中,第2金屬磁性粒子32及第3金屬磁性粒子33以第2金屬磁性粒子32中之Si之含有比率高於第3金屬磁性粒子33中之Si之含有比率之方式形成。
如上所述,第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33均可包含Ni及Co之至少一者。於一實施形態中,第1金屬磁性粒子31及第2金屬磁性粒子32以第2金屬磁性粒子32中之Ni之含有比率高於第1金屬磁性粒子31中之Ni之含有比率之方式形成。於一實施形態中,第1金屬磁性粒子31及第2金屬磁性粒子32以第2金屬磁性粒子32中之Co之含有比率高於第1金屬磁性粒子31中之Co之含有比率之方式形成。於一實施形態中,第2金屬磁性粒子32及第3金屬磁性粒子33以第3金屬磁性粒子33中之Ni之含有比率高於第2金屬磁性粒子32中之Ni之含有比率之方式形成。於一實施形態中,第2金屬磁性粒子32及第3金屬磁性粒子33以第3金屬磁性粒子33中之Co之含有比率高於第2金屬磁性粒子32中之Co之含有比率之方式形成。
繼而,對第1絕緣層41、第2絕緣層42及第3絕緣層43進行說明。第1絕緣層41、第2絕緣層42及第3絕緣層43由有機材料或無機材料形成。作為第1絕緣層41、第2絕緣層42及第3絕緣層43之材料,可使用非磁性材料或相較於第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33而言磁導率較低之磁性材料。
作為第1絕緣層41、第2絕緣層42及第3絕緣層43中使用之有機材料,可使用環氧、酚、聚矽氧、聚醯亞胺或該等以外之熱固性樹脂。於使用聚矽氧作為第1絕緣層41中使用之有機材料之情形時,向將聚矽氧樹脂溶解於二甲苯等石油系有機溶劑而得之聚矽氧樹脂溶液中投入第1金屬磁性粒子31,其後自該聚矽氧樹脂溶液蒸發有機溶劑,藉此於該第1金屬磁性粒子31之表面形成含有聚矽氧之第1絕緣層41。為了提高膜厚之均勻性,可視需要攪拌聚矽氧樹脂溶液。第2絕緣層42及第3絕緣層43亦可以與第1絕緣層41相同之方式形成。
作為第1絕緣層41、第2絕緣層42及第3絕緣層43中使用之無機材料,可使用磷酸鹽、硼酸鹽、鉻酸鹽、玻璃(例如SiO2 )及金屬氧化物(例如Fe2 O3 或Al2 O3 )。
第1絕緣層41、第2絕緣層42及第3絕緣層43可藉由粉末混合法、浸漬法、溶膠凝膠法、CVD(Chemical vapor deposition,化學氣相沈積)法、PVD(Physical Vapor Deposition,物理氣相沈積)法或上述以外之公知之各種方法形成。
SiO2 層例如可藉由使用溶膠凝膠法之塗佈工藝形成於金屬磁性粒子之表面。具體而言,首先,向包含金屬磁性粒子、乙醇及氨水之混合液中混合包含TEOS(四乙氧基矽烷、Si(OC2 H5 )4 )、乙醇及水之處理液,製作混合液,其次,攪拌該混合液後進行過濾,藉此,分離出表面形成有含有SiO2 之絕緣層的金屬磁性粒子。
於第1絕緣層41、第2絕緣層42及第3絕緣層43含有玻璃或金屬氧化物之情形時,可對設置有該等絕緣層之第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33進行熱處理。該熱處理可於大氣環境下進行,亦可於真空環境下進行,亦可於惰性氣體環境下進行。作為惰性氣體,可使用氮氣、氦氣或氬氣等稀有氣體。加熱溫度例如設為400℃~850℃或500℃~750℃。藉由該熱處理,可減小第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33之應力應變。例如,於加熱溫度為650℃以下之情形時,進行60分鐘以上加熱。於加熱溫度高於650℃之情形時,加熱時間設為短於60分鐘之時間。藉由以該加熱溫度及加熱時間進行熱處理,實現第1絕緣層41、第2絕緣層42及第3絕緣層43中所需之體積電阻率。第1絕緣層41、第2絕緣層42及第3絕緣層43之體積效率例如設為106 Ω・cm以上。又,藉由以上述加熱溫度及加熱時間進行熱處理,可抑制第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33發生過度氧化反應。從而,藉由加熱處理可防止或抑制第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33之磁導率降低。上述熱處理之方法及加熱溫度並無限定。
由有機材料形成之第1絕緣層41、第2絕緣層42及第3絕緣層43之厚度可分別設為1 μm~50 μm或10~30 μm。由無機材料形成之第1絕緣層41、第2絕緣層42及第3絕緣層43之厚度可分別設為1 nm~500 nm、1 nm~100 nm、1 nm~50 nm或1 nm~20 nm。具有1 nm~50 nm或1 nm~20 nm之膜厚之絕緣層可藉由溶膠凝膠法實現。
實際製作之磁性基體中包含之金屬磁性粒子上所設之絕緣層之厚度可基於如下方式測定:沿其厚度方向(T方向)切斷該磁性基體而使截面露出,藉由掃描式電子顯微鏡(SEM)以50000倍~100000倍之倍率拍攝該截面而得之照片。例如,SEM照片中包含之一金屬磁性粒子上所設之絕緣層之厚度可設為沿將該一金屬磁性粒子之該SEM照片之幾何重心及與該金屬磁性粒子相鄰之其他金屬磁性粒子之幾何重心連接之假想直線之方向上的該絕緣層之尺寸。SEM照片中包含之某金屬磁性粒子上所設之絕緣層之厚度可設為沿自該金屬磁性粒子之該SEM照片之幾何重心向該SEM照片之上下方向延伸之假想線的該絕緣層之尺寸。於該情形時,測定較該重心為上側之位置之尺寸與下側之位置之尺寸,故而可將該平均值作為該金屬磁性粒子之絕緣層之厚度。於SEM照片中有複數個第1金屬磁性粒子之情形時,對該複數個金屬磁性粒子之各者求出絕緣層之厚度,可將該平均值作為磁性基體中之第1金屬磁性粒子上所設之絕緣層之厚度。
作為第1絕緣層41、第2絕緣層42及第3絕緣層43中使用之材料,可根據磁性基體20所要求之絕緣性進行選擇。作為第1絕緣層41、第2絕緣層42及第3絕緣層43中使用之材料,可使用複數種材料。第1絕緣層41、第2絕緣層42及第3絕緣層43可為含有不同材料之2層以上之層。
第2絕緣層42形成為較第1絕緣層41薄。第2絕緣層42之厚度例如設為第1絕緣層41之厚度之1/10以下。第3絕緣層43形成為較第1絕緣層42薄。第3絕緣層43之厚度例如設為第2絕緣層42之厚度之1/10以下。
於本說明書中,將第1絕緣層41之厚度稱為第1厚度、將第2絕緣層42之厚度稱為第2厚度、將第3絕緣層43之厚度稱為第3厚度。
如下所述,對包含設置有第1絕緣層41、第2絕緣層42及第3絕緣層43之第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33之複合樹脂材料進行加壓成形,藉此可形成磁性基體20。由無機材料形成之絕緣層與由有機材料形成之絕緣層相比,加壓成形時之膜厚之變化較小。因此,為了獲得位於所需範圍之膜厚,較佳為使用無機材料作為第1絕緣層41、第2絕緣層42及第3絕緣層43之材料。
於本發明之一實施形態中,作為第2金屬磁性粒子32之平均粒徑之第2平均粒徑相對於作為第1金屬磁性粒子31之平均粒徑之第1平均粒徑的比即平均粒徑比與作為該第1金屬磁性粒子32上所設之第2絕緣層42之厚度之第2厚度相對於作為該第1金屬磁性粒子31上所設之第1絕緣層41之厚度之第1厚度的比即厚度比之比設於0.5~1.5之範圍。為了便於說明,圖4a中之r1表示第1金屬磁性粒子31之平均粒徑,且t1表示第1絕緣層41之第1厚度,圖4b中之r2表示第2金屬磁性粒子32之平均粒徑,且t2表示第2絕緣層42之第2厚度,則平均粒徑比以r2/r1表示,厚度比以t2/t1表示。於該情形時,平均粒徑比r2/r1與厚度比t2/t1之比為r2・t1/r1・t2。如上所述,於一實施形態中,r2設為r1之1/10以下,t2設為t1之1/10以下,故而假設r2為r1之1/20且t2為t1之1/15,於該情形時,平均粒徑比r2/r1與厚度比t2/t1之比即r2・t1/r1・t2為0.75。
其次,對線圈零件10之製造方法之一例進行說明。首先準備由磁性材料形成為板狀之絕緣基板。該絕緣基板例如以與上述絕緣基板50相同之方式構成。其次,於該絕緣基板之上表面及下表面塗佈光阻劑,繼而,於該絕緣基板之上表面及下表面之各者曝光、轉印導體圖案,進行顯影處理。藉此,於該絕緣基板之上表面及下表面之各者形成具有用於形成線圈導體之開口圖案的抗蝕層。形成於絕緣基板之上表面之導體圖案例如為對應於上述線圈導體25a之導體圖案,形成於絕緣基板之下表面之導體圖案例如為對應於上述線圈導體25b之導體圖案。
其次,藉由鍍覆處理,以導電性金屬填充該開口圖案之各者。繼而,藉由蝕刻自上述絕緣基板去除抗蝕層,藉此於該絕緣基板之上表面及下表面之各者形成線圈導體。
其次,於形成有上述線圈導體之絕緣基板之雙面形成磁性基體。該磁性基體例如對應於前述磁性基體20。該磁性基體例如藉由片成形而製作。具體而言,將形成有上述線圈導體之絕緣基板配置於成型模具,將混練3種金屬磁性粒子與熱固性樹脂(例如環氧樹脂)而獲得之樹脂組合物(漿料)裝入該成型模具,施加壓力,藉此可獲得於該絕緣基板形成有磁性基體之成型品。亦可代替對樹脂組合物加壓而對該樹脂組合物進行加熱,或除對樹脂組合物加壓以外,還對該樹脂組合物進行加熱。該3種磁性粒子例如為前述第1金屬磁性粒子31、第2金屬磁性粒子32及第3金屬磁性粒子33。
其次,於在該絕緣基板上形成有磁性基體之成型品形成規定數量之外部電極。該外部電極例如為與前述外部電極21~24對應者。各外部電極藉由向磁性基體之表面塗佈導電糊形成基底電極,並於該基底電極之表面形成鍍覆層而形成。鍍覆層例如為包含鎳之鍍鎳層與包含錫之鍍錫層之2層構造。
藉由以上步驟,可獲得本發明之一實施形態之線圈零件10。上述線圈零件1之製造方法僅為一例,線圈零件10之製造方法並未限定於上述者。
其次,參考圖9及圖10,對本發明之另一實施形態之線圈零件110進行說明。線圈零件110為電感器。如圖所示,線圈零件110具備磁性基體120、埋設於磁性基體120之線圈導體125、外部電極121及外部電極122。線圈導體125以其一端與外部電極121電性連接,其另一端與外部電極122電性連接之方式構成。
磁性基體120與磁性基體20相同,包含平均粒徑彼此相異之2種以上金屬磁性粒子。關於本說明書中之磁性基體20之說明,只要不違反上下文的一貫性/邏輯性,亦適用於磁性基體120。
其次,對上述實施形態之作用效果進行說明。於上述一實施形態中,磁性基體20包含平均粒徑相異之2種以上金屬磁性粒子(例如第1金屬磁性粒子31與第2金屬磁性粒子32)。從而,與僅包含1種金屬磁性粒子之磁性基體相比,可提高磁性基體20中之金屬磁性粒子之填充率。
於上述一實施形態中,磁性基體20具備具有第1平均粒徑之第1金屬磁性粒子31及具有小於該第1平均粒徑之第2平均粒徑之第2金屬磁性粒子32。於該實施形態中,該第1金屬磁性粒子之表面設置有具有第1厚度之第1絕緣層41,第2金屬磁性粒子之表面設置有具有較第1厚度薄之第2厚度之第2絕緣層42。一般而言,於包含平均粒徑彼此相異之複數種金屬磁性粒子之磁性基體中,相較於平均粒徑較小之粒子而言,磁通使平均粒徑較大之粒子更易通過。因此,若金屬磁性粒子上無論其平均粒徑之大小如何均形成有均勻厚度之絕緣層,則磁性基體內之磁通分佈不均勻。此種磁性基體內之磁通分佈之不均勻性由如下情況所造成:平均粒徑較大之金屬磁性粒子與平均粒徑較小之金屬磁性粒子具有相同厚度之絕緣層,結果,平均粒徑較大之金屬磁性粒子彼此之粒子間距離與平均粒徑較小之金屬磁性粒子彼此之粒子間距離程度相同。此處,金屬磁性粒子彼此之粒子間距離可意指相鄰金屬磁性粒子之外表面間之距離。因此,於磁性基體中,若金屬磁性粒子無論其平均粒徑之大小如何均形成有均勻厚度之絕緣層,則於經由平均粒徑較大之金屬磁性粒子之磁路中最初產生磁飽和,於依次經由平均粒徑較小之金屬磁性粒子之磁路中產生磁飽和。與此相對,於上述實施形態中,形成於第1金屬磁性粒子31之第1絕緣層41形成為較形成於第2金屬磁性粒子32之第2絕緣層42厚,故而可抑制磁通集中於包含第1金屬磁性粒子31之磁路。藉此,可使磁性基體之磁通分佈更加均勻。因此,可改善磁性基體之磁飽和特性。於該磁性基體用於線圈零件之情形時,可使該線圈零件之容許電流變大。
於上述一實施形態中,作為第2金屬磁性粒子32之平均粒徑之第2平均粒徑相對於作為第1金屬磁性粒子31之平均粒徑之第1平均粒徑的比即平均粒徑比與第2絕緣層42之第2厚度相對於第1絕緣層41之第1厚度之比即厚度比之比為0.5~1.5之範圍內。根據上述實施形態,於磁性基體20之複數條磁路之各者中,磁導率較高之金屬磁性粒子(第1金屬磁性粒子31及第2金屬磁性粒子32)所占之磁路長度與磁導率較低之絕緣層(第1絕緣層41及第2絕緣層32)所占之磁路長度之比例為0.5~1.5之範圍內。藉此,可減小磁性基體20內複數條磁路之各者之有效磁導率之差異。藉此,可使磁性基體20之磁通分佈更加均勻。
若磁性基體20中之金屬磁性粒子之填充率較低,則於磁性基體20內之磁路中結合材料所占之比例變高。若相對於磁路中存在結合材料之區域之磁路全長之比例變大,則根據結合材料之比例各磁路之有效磁導率發生變化。因此,藉由提高磁性基體20中之金屬磁性粒子之填充率,可減小結合材料對各磁路之有效磁導率造成之影響。藉此,可更加顯著地獲得由調整金屬磁性粒子之平均粒徑及形成於該金屬磁性粒子之絕緣層之膜厚而得之磁通分佈之均勻化效果。
於上述一實施形態中,第1金屬磁性粒子31及第2金屬磁性粒子32均包含Fe,且第2金屬磁性粒子32中之Fe之含有比率高於第1金屬磁性粒子31中之Fe之含有比率。形成於第2金屬磁性粒子32之第2絕緣層42較第1絕緣層41薄,故而加壓成形時易被破壞。若第2絕緣層42被破壞,則藉由該第2絕緣層42被覆之第2金屬磁性粒子32易於與相鄰之其他金屬磁性粒子(第1金屬磁性粒子、第2金屬磁性粒子或其他金屬磁性粒子)電性連接。與連接前相比,磁通更易於集中於電性連接之2個金屬磁性粒子,故而第2絕緣層42之破壞成為使磁通分佈不均勻之主要原因。因此,提高第2金屬磁性粒子41中飽和磁通密度較高之Fe之含有比率,藉此,即便於第2絕緣層42被破壞之情形時,亦可使磁通集中於被該第2絕緣層42被覆之第2金屬粒子42之情況得到緩解。
於上述一實施形態中,第1金屬磁性粒子31及第2金屬磁性粒子32均包含Si,且第1金屬磁性粒子31中之Si之含有比率高於第2金屬磁性粒子32中之Si之含有比率。由於第1金屬磁性粒子31中之Si之含有比率高於第2金屬磁性粒子32中之Si之含有比率,故而第1金屬磁性粒子31加壓成形時難以變形,反之,第2金屬磁性粒子32加壓成形時易於變形。從而,可以配置為,藉由該磁性體成形時之加壓,將第2金屬磁性粒子填埋於第1金屬磁性粒子間之間隙。結果,可提高磁性體中之金屬磁性粒子之填充率。又,由於加壓時可抑制第1金屬磁性粒子之變形,故而可減小該第1金屬磁性粒子內部之應力應變。藉由減小第1金屬磁性粒子之應力應變,可抑制第1金屬磁性粒子中由應力應變所導致之磁導率之劣化。
於上述一實施形態中,進而具備具有小於第2平均粒徑之第3平均粒徑且其表面形成有第3絕緣層之第3金屬磁性粒子。藉由第3金屬磁性粒子33,可進一步提高磁性基體20中之金屬磁性粒子之填充率。又,因第3金屬磁性粒子33進入第1金屬磁性粒子31彼此間、第2金屬磁性粒子32彼此間及第1金屬磁性粒子31與第2金屬磁性粒子32之間,故可提高磁性基體20之機械強度。如此,第3金屬磁性粒子33由於具有小於第1金屬磁性粒子31及第2金屬磁性粒子32之第3平均粒徑,故而雖對磁性基體20之磁飽和特性之影響較小,但有助於改善磁性基體20之填充率及提高磁性基體20之機械強度。
於上述一實施形態中,磁性基體20具有第3金屬磁性粒子33,且該第3金屬磁性粒子33包含Ni及Co之至少一者。於一實施形態中,於第3金屬磁性粒子33包含Fe之情形時,第3金屬磁性粒子33中之Fe之含有比率低於第1磁性金屬粒子31中之Fe之含有比率及第2金屬磁性粒子32中之Fe之含有比率。於另一實施形態中,第3金屬磁性粒子33可不含Fe。於此種第3金屬磁性粒子33中之Fe之含有比率較低之實施形態中,與第3金屬磁性粒子33中之Fe之含有比率較高之情形相比,第3金屬磁性粒子33難以氧化。從而,可抑制第3金屬磁性粒子33中由氧化所導致之磁導率之降低。金屬磁性粒子之直徑越小,則由氧化所導致之磁導率或其他磁性特性之變化之影響越大。根據上述實施形態,藉由降低3種平均粒徑相異之金屬磁性粒子中最小徑之第3金屬磁性粒子33中之Fe之含有比率(或不含Fe),可抑制小徑之第3金屬磁性粒子33中由氧化所導致之磁性特性之變化。
於上述一實施形態中,第1絕緣層41、第2絕緣層42及第3絕緣層43之至少一者包含Si。藉由第1絕緣層41、第2絕緣層42及第3絕緣層43包含Si,可提高該絕緣層之絕緣性。
於上述一實施形態中,第1金屬磁性粒子31包含Fe,且第1絕緣層41包含Fe之氧化物。藉此,可提高第1金屬磁性粒子31與第1絕緣層41之密接性,故而可抑制由第1絕緣層41自第1金屬磁性粒子31剝落所導致之絕緣破壞之產生。
上述一實施形態之線圈零件10具備磁性基體20及設置於磁性基體20內之線圈25。藉此,線圈25被激磁時之磁性基體20內之磁通分佈均勻,故而可改善線圈零件10之容許電流。
對磁性基體20所說明之上述作用效果亦同樣地適用於磁性基體120。又,對線圈零件10進行說明之上述作用效果亦同樣地適用於線圈零件110。
本說明書中所說明之各構成要素之尺寸、材料及配置並不限定於實施形態中所明確說明之類型,該各構成要素可以具有本發明之範圍內可包含之任意尺寸、材料及配置之方式進行變形。又,亦可將本說明書中未明確說明之構成要素附加於所說明之實施形態,或亦可省略各實施形態中所說明之構成要素之一部分。
10、110:線圈零件 20、120:磁性基體 20a:第1主面(磁性基體之上表面) 20b:第2主面 20c:第1端面(磁性基體之下表面) 20d:第2端面 20e:第1側面 20f:第2側面 21:外部電極 22:外部電極 23:外部電極 24:外部電極 25、125:線圈導體 25a:線圈導體 25b:線圈導體 26a:引出導體 26b:引出導體 27a:引出導體 27b:引出導體 31:第1金屬磁性粒子 32:第2金屬磁性粒子 33:第3金屬磁性粒子 41:第1絕緣層 42:第2絕緣層 43:第3絕緣層 50:絕緣基板 121:外部電極 122:外部電極 A:區域 CL:線圈軸
圖1係本發明之一實施形態之線圈零件之立體圖。 圖2係將沿I-I線切斷圖1之線圈零件而得之截面模式性地表示之圖。 圖3係將圖2之磁性本體之區域A放大並模式性地表示之圖。 圖4a係將圖2之磁性本體中包含之第1金屬磁性粒子之截面模式性地表示之圖。 圖4b係將圖2之磁性本體中包含之第2金屬磁性粒子之截面模式性地表示之圖。 圖5a係表示圖2之磁性本體中包含之金屬磁性粒子之體積基準之粒度分佈的曲線圖。 圖5b係表示圖2之磁性本體中包含之金屬磁性粒子之體積基準之粒度分佈的曲線圖。 圖6係將本發明之一實施形態之磁性體之電流-電感特性模式性地表示之曲線圖。 圖7係將本發明之另一實施形態之磁性本體之區域A放大並模式性地表示之圖。 圖8係將圖7之磁性本體中包含之第3金屬磁性粒子之截面模式性地表示之圖。 圖9係本發明之另一實施形態之線圈零件之立體圖。 圖10係概略地表示圖9之線圈零件之截面之剖視圖。

Claims (13)

  1. 一種磁性基體,其具備: 第1金屬磁性粒子,其具有第1平均粒徑;及 第2金屬磁性粒子,其具有小於上述第1平均粒徑之第2平均粒徑;且 上述第1金屬磁性粒子之表面設置有具有第1厚度之第1絕緣層, 上述第2金屬磁性粒子之表面設置有具有較上述第1厚度薄之第2厚度之第2絕緣層。
  2. 如請求項1之磁性基體,其中作為上述第2平均粒徑相對於上述第1平均粒徑之比的平均粒徑比與作為上述第2厚度相對於上述第1厚度之比的厚度比,二者之比為0.5~1.5之範圍內。
  3. 如請求項1至請求項2中任一項之磁性基體,其中上述第1金屬磁性粒子及上述第2金屬磁性粒子均包含Fe,且 上述第2金屬磁性粒子中之Fe之含有比率高於上述第1金屬磁性粒子中之Fe之含有比率。
  4. 如請求項1或2之磁性基體,其中上述第1金屬磁性粒子及上述第2金屬磁性粒子均包含Si,且 上述第1金屬磁性粒子中之Si之含有比率高於上述第2金屬磁性粒子中之Si之含有比率。
  5. 如請求項1或2之磁性基體,其進而具備:第3金屬磁性粒子,其具有小於上述第2平均粒徑之第3平均粒徑。
  6. 如請求項5之磁性基體,其中上述第3金屬磁性粒子包含Ni及Co之至少一者。
  7. 如請求項1或2之磁性基體,其中上述第1絕緣層包含Si。
  8. 如請求項1或2之磁性基體,其中上述第2絕緣層包含Si。
  9. 如請求項1或2之磁性基體,其進而具備:第3金屬磁性粒子,其具有小於上述第2平均粒徑之第3平均粒徑,其表面形成有第3絕緣層,且 上述第3絕緣層包含Si。
  10. 如請求項1或2之磁性基體,其中上述第1金屬磁性粒子包含Fe,且 上述第1絕緣層包含Fe之氧化物。
  11. 如請求項1或2之磁性基體,其進而具備結合材料。
  12. 一種電子零件,其包含如請求項1至請求項11中任一項之磁性基體。
  13. 一種電子零件,其具備:如請求項1至請求項11中任一項之磁性基體;及 線圈,其設置於上述磁性基體內。
TW108121310A 2018-06-21 2019-06-19 含金屬磁性粒子之磁性基體及含該磁性基體之電子零件 TWI708270B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018117936A JP7246143B2 (ja) 2018-06-21 2018-06-21 金属磁性粒子を含む磁性基体及び当該磁性基体を含む電子部品
JP2018-117936 2018-06-21

Publications (2)

Publication Number Publication Date
TW202018740A true TW202018740A (zh) 2020-05-16
TWI708270B TWI708270B (zh) 2020-10-21

Family

ID=68968418

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121310A TWI708270B (zh) 2018-06-21 2019-06-19 含金屬磁性粒子之磁性基體及含該磁性基體之電子零件

Country Status (5)

Country Link
US (1) US11942252B2 (zh)
JP (1) JP7246143B2 (zh)
KR (1) KR20190143804A (zh)
CN (1) CN110634640A (zh)
TW (1) TWI708270B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12020838B2 (en) 2020-06-09 2024-06-25 Chilisin Electronics Corp. Inductive device and manufacturing method thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7148245B2 (ja) * 2018-01-26 2022-10-05 太陽誘電株式会社 巻線型のコイル部品
JP6780833B2 (ja) * 2018-08-22 2020-11-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. コイル電子部品
JP7222220B2 (ja) * 2018-10-31 2023-02-15 Tdk株式会社 磁性体コアおよびコイル部品
JP7392275B2 (ja) * 2019-03-27 2023-12-06 Tdk株式会社 複合粒子、コアおよびインダクタ素子
JP7403964B2 (ja) 2019-03-28 2023-12-25 太陽誘電株式会社 金属磁性粒子を含む複合磁性粒子
JP2021052075A (ja) * 2019-09-25 2021-04-01 太陽誘電株式会社 コイル部品
JP2021057431A (ja) * 2019-09-27 2021-04-08 太陽誘電株式会社 コイル部品、回路基板及び電子機器
JP2021108329A (ja) * 2019-12-27 2021-07-29 太陽誘電株式会社 コイル部品、回路基板及び電子機器
JP7424845B2 (ja) 2020-01-31 2024-01-30 太陽誘電株式会社 コイル部品、回路基板及び電子機器
JP7391705B2 (ja) * 2020-02-17 2023-12-05 日東電工株式会社 積層シート
US20210304947A1 (en) * 2020-03-31 2021-09-30 Taiyo Yuden Co., Ltd. Coil component
KR102258927B1 (ko) * 2020-04-01 2021-05-31 한국세라믹기술원 자성체의 제조방법
JP7498020B2 (ja) * 2020-04-28 2024-06-11 Tdk株式会社 成形体、コアおよび電子部品
JP7459639B2 (ja) * 2020-04-28 2024-04-02 Tdk株式会社 複合粒子、コアおよび電子部品
JP7338560B2 (ja) 2020-05-26 2023-09-05 味の素株式会社 樹脂組成物
JP7218337B2 (ja) * 2020-09-23 2023-02-06 株式会社タムラ製作所 メタルコンポジットコア及びメタルコンポジットコアの製造方法
JP2022057927A (ja) * 2020-09-30 2022-04-11 株式会社村田製作所 磁性粉、磁性成形体およびインダクタ
JP2022142747A (ja) 2021-03-16 2022-09-30 味の素株式会社 樹脂組成物

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179621A (ja) 2004-12-21 2006-07-06 Seiko Epson Corp 成形体の製造方法および成形体
JP4585493B2 (ja) * 2006-08-07 2010-11-24 株式会社東芝 絶縁性磁性材料の製造方法
JP2010034102A (ja) 2008-07-25 2010-02-12 Toko Inc 複合磁性粘土材とそれを用いた磁性コアおよび磁性素子
EP2380685A1 (en) * 2009-01-22 2011-10-26 Sumitomo Electric Industries, Ltd. Process for producing metallurgical powder, process for producing powder magnetic core, powder magnetic core, and coil component
JP5960971B2 (ja) 2011-11-17 2016-08-02 太陽誘電株式会社 積層インダクタ
KR20140003056A (ko) * 2012-06-29 2014-01-09 삼성전기주식회사 파워 인덕터 및 그 제조방법
JP6131577B2 (ja) * 2012-11-20 2017-05-24 セイコーエプソン株式会社 複合粒子、圧粉磁心、磁性素子および携帯型電子機器
JP6089824B2 (ja) * 2013-03-15 2017-03-08 株式会社デンソー トランス
JP2015026812A (ja) 2013-07-29 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. チップ電子部品及びその製造方法
KR101994722B1 (ko) * 2013-10-14 2019-07-01 삼성전기주식회사 적층형 전자부품
KR101922871B1 (ko) * 2013-11-29 2018-11-28 삼성전기 주식회사 적층형 전자부품, 그 제조방법 및 그 실장기판
JP6215163B2 (ja) * 2014-09-19 2017-10-18 株式会社東芝 複合磁性材料の製造方法
KR102047565B1 (ko) * 2014-11-04 2019-11-21 삼성전기주식회사 인덕터
JP6550731B2 (ja) * 2014-11-28 2019-07-31 Tdk株式会社 コイル部品
JP2016162764A (ja) * 2015-02-26 2016-09-05 株式会社デンソー 磁性粉末混合樹脂材料
JP6625334B2 (ja) * 2015-03-24 2019-12-25 Ntn株式会社 磁心用粉末の製造方法
KR20160126751A (ko) 2015-04-24 2016-11-02 삼성전기주식회사 코일 전자부품 및 그 제조방법
KR101832564B1 (ko) * 2015-10-27 2018-02-26 삼성전기주식회사 코일 부품
JP7015647B2 (ja) * 2016-06-30 2022-02-03 太陽誘電株式会社 磁性材料及び電子部品
KR101830329B1 (ko) * 2016-07-19 2018-02-21 주식회사 모다이노칩 파워 인덕터
JP6147948B1 (ja) * 2016-07-21 2017-06-14 株式会社栗本鐵工所 磁気粘性流体
JP6479074B2 (ja) 2016-08-30 2019-03-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. 磁性体組成物、インダクタおよび磁性体本体
KR101983184B1 (ko) 2016-08-30 2019-05-29 삼성전기주식회사 자성체 조성물 및 이를 포함하는 인덕터
JP7266963B2 (ja) * 2017-08-09 2023-05-01 太陽誘電株式会社 コイル部品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12020838B2 (en) 2020-06-09 2024-06-25 Chilisin Electronics Corp. Inductive device and manufacturing method thereof

Also Published As

Publication number Publication date
JP7246143B2 (ja) 2023-03-27
CN110634640A (zh) 2019-12-31
TWI708270B (zh) 2020-10-21
US11942252B2 (en) 2024-03-26
US20190392978A1 (en) 2019-12-26
JP2019220609A (ja) 2019-12-26
KR20190143804A (ko) 2019-12-31

Similar Documents

Publication Publication Date Title
TWI708270B (zh) 含金屬磁性粒子之磁性基體及含該磁性基體之電子零件
US6661328B2 (en) Composite magnetic body, and magnetic element and method of manufacturing the same
US11127525B2 (en) Composite magnetic material and coil component using same
US11225720B2 (en) Magnetic powder, and manufacturing method thereof
US9892833B2 (en) Magnetic powder and coil electronic component containing the same
JP7266963B2 (ja) コイル部品
CN111128505A (zh) 磁性体磁芯和线圈部件
JP2020027812A (ja) 金属磁性粒子を含む磁性基体及び当該磁性基体を含む電子部品
US20210193362A1 (en) Magnetic base body containing metal magnetic particles and electronic component including the same
JP2020072182A (ja) 磁性体コアおよびコイル部品
WO2018235550A1 (ja) コイル部品
US11942249B2 (en) Composite magnetic particle including metal magnetic particle
US20210098186A1 (en) Coil component, circuit board, and electronic device
US20220199313A1 (en) Coil component
CN112582156A (zh) 线圈部件、电路板和电子设备
JP7369526B2 (ja) コイル部品
JP2007129093A (ja) 軟磁性材料およびこれを用いて製造された圧粉磁心
WO2005024858A1 (ja) 軟磁性材料およびその製造方法
JP2024048135A (ja) コイル部品、回路基板、電子機器、及びコイル部品の製造方法
JP2005317678A (ja) 磁気部品およびその製造方法