TW202000926A - 鋼之製造方法 - Google Patents

鋼之製造方法 Download PDF

Info

Publication number
TW202000926A
TW202000926A TW108122628A TW108122628A TW202000926A TW 202000926 A TW202000926 A TW 202000926A TW 108122628 A TW108122628 A TW 108122628A TW 108122628 A TW108122628 A TW 108122628A TW 202000926 A TW202000926 A TW 202000926A
Authority
TW
Taiwan
Prior art keywords
steel
molten steel
drum
molten
steel drum
Prior art date
Application number
TW108122628A
Other languages
English (en)
Other versions
TWI699436B (zh
Inventor
岡山敦
Original Assignee
日商日本製鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本製鐵股份有限公司 filed Critical 日商日本製鐵股份有限公司
Publication of TW202000926A publication Critical patent/TW202000926A/zh
Application granted granted Critical
Publication of TWI699436B publication Critical patent/TWI699436B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Coating With Molten Metal (AREA)

Abstract

本發明係一種鋼之製造方法,其包括:將鋼液自熔鋼爐出鋼並承接至盛鋼桶之步驟、及將前述盛鋼桶所承接之前述鋼液自前述盛鋼桶排出而進行鑄造之步驟;將自前述熔鋼爐出鋼之前述鋼液承接至前述盛鋼桶時,將根據下述(1)式所算出之熔渣厚度T滿足0.02m以上之量W且由氧化物所構成的副原料,於開始承接前述鋼液之前放置於前述盛鋼桶內之底部、或開始承接鋼液之同時投入至前述盛鋼桶內,而將自前述熔鋼爐出鋼之前述鋼液承接至前述盛鋼桶。前述副原料之組成宜滿足CaO/Al2 O3 :0.8~4.0、5%≦SiO2 ≦10%、MgO≦10%。 T=(W/ρ)/((π・D2 )/4) (1) 其中,D:盛鋼桶直徑(m)、ρ:熔融氧化物密度(=3000kg/m3 )、W:副原料之量(kg)。

Description

鋼之製造方法
發明領域 本發明關於一種鋼之製造方法。
發明背景 鋼材所要求之材料特性不斷提昇,而要求提高以鋼材之韌性為首之特性值。尤其是若於鋼材中含有氣體成分的氮,則通常產生韌性降低。因此,為了對鋼材中之氮進行無害化,而藉由添加Ti、Nb、V、Zr、Al等氮化物形成元素來謀求無害化,但若於鋼材中添加合金,則除合金成本增加以外,還會對材料強度等其他特性造成影響。因此,較理想為於製造階段儘可能地低氮化。
於利用高爐-轉爐法製造鋼之情形時,將利用高爐所熔製之含碳4~5%(於本說明書中只要無特別說明,則表示元素或化合物之量之「%」及「ppm」全部係指質量比)之熔鐵裝入至轉爐中,於轉爐內進行脫碳。此時,於轉爐內,自頂吹噴槍將大量之氧氣吹送至鋼液,轉爐內被脫碳反應產生之CO氣體所填滿,而環境氣體中之氮分壓降低,並且由於藉由頂吹氣體噴射遽烈地攪拌鋼液,故而脫氮反應進行。於轉爐內,亦存在藉由底吹而遽烈地攪拌鋼液之情況,轉爐吹煉結束時之鋼液中之氮濃度降低至10ppm左右。然而,為了將鋼液搬送至下一步驟,而將鋼液自轉爐出鋼至盛鋼桶(ladle)中,但於出鋼時,出鋼流會夾帶大氣,因而導致鋼液中之氮濃度上升。
使用真空脫氣裝置對鋼液進行減壓處理作為下一步驟之情形時,於減壓處理中鋼液中之氮濃度雖會降低,但鋼液中氮濃度降低速度較慢,此外,於要求高速處理之狀況下無法依賴於減壓處理,僅使用真空脫氣裝置並不會達成經濟且穩定地製造低氮鋼。
因此,為了經濟且穩定地製造低氮鋼,較理想為:使於轉爐中已將氮濃度降低至10ppm左右之鋼液,於不吸氮之情況下出鋼至盛鋼桶中,並於真空脫氣裝置中維持抑制吸氮狀態而移至下一步驟之連續鑄造。
就製造低氮鋼之觀點而言,如以下所示般提出有一種抑制出鋼時吸氮之手法。為了抑制出鋼時之鋼液吸氮,想到如下手法:(1)對產生吸氮之部分進行阻隔以免受大氣影響;(2)降低大氣中之氮分壓;(3)推遲吸氮反應;(4)減少反應界面積等。
該等之中,(1)及(2)係於出鋼時將非氮氣體導入至出鋼流或盛鋼桶內之技術,並於下述專利文獻1~3中提出。 於專利文獻1中,提出有如下技術:一面利用惰性氣體對脫氮後之低氮鋼液進行密封一面進行出鋼。 於專利文獻2中,提出有如下技術,該技術之特徵在於:於帶蓋之承接鋼液用盛鋼桶內,藉由富氧空氣使燃料燃燒而對承接鋼液用盛鋼桶進行預熱,且利用燃燒排氣進行置換,藉此減少承接鋼液用盛鋼桶內之環境氣體中之氮後,於轉爐出鋼時,自設置於承接鋼液用盛鋼桶之蓋上且以包圍鋼液流之圓環狀配設的噴嘴,對鋼液流吹送氬氣。 於專利文獻3中,揭示有如下方法:將鋼液出鋼至裝有碳酸鈣之盛鋼桶內,且將出鋼時及出鋼過程中盛鋼桶內之環境氣體設為CO2 氣環境氣體,而抑制鋼液與空氣接觸。
又,(3)亦如專利文獻4中所記載,於出鋼時以未脫氧或半脫氧狀態進行出鋼之方法,且係於大多先前技術文獻中常見之一般方法。
認為:於自轉爐向盛鋼桶出鋼時,產生鋼液吸氮之部位係如非專利文獻1所記載,是在鋼液自轉爐出鋼至盛鋼桶內時所產生之瀑布潭部。然而,關於(4)減少反應界面積之手法,即著眼於減少瀑布潭部之反應界面積之發明,除專利文獻5之以外,並未找到其他記載。於專利文獻5中,提出有如下技術:使出鋼流沿著傾斜之盛鋼桶之壁而承接至盛鋼桶,同時向轉爐等製鋼爐之出鋼口供給惰性氣體來使惰性氣體混入出鋼流。
[專利文獻1]日本專利特開昭60-26611號公報 [專利文獻2]日本專利特開平2-285020號公報 [專利文獻3]日本專利特開2003-293022號公報 [專利文獻4]日本專利特開昭59-190314號公報 [專利文獻5]日本專利特開昭61-166911號公報
[非專利文獻1]長隆郎等人著「轉爐出鋼時之鋼液之氧及氮吸收之推算」,鐵與鋼,69(1983),p.767-774 [非專利文獻2]岡山敦等人著「與注入流之氣體吸收行為相關之水模型試驗」,鐵與鋼,102(2016),p.607-613
發明概要 [發明欲解決之課題] 專利文獻5所揭示之技術,係減少出鋼流之瀑布潭本身之尺寸之方法。若減小瀑布潭之尺寸,則產生吸氮之反應界面積亦會減少,因此可獲得吸氮抑制效果,但使出鋼流沿著盛鋼桶之壁時,耐火物之熔損風險等較大。因此,需要即便形成瀑布潭,亦能夠減少該瀑布潭內產生吸氮之界面積這般不同視角之技術。
本發明之目的在於提供一種鋼之製造方法,其可有效地抑制將鋼液出鋼至盛鋼桶時由出鋼流所形成之瀑布潭部之吸氮。 [用以解決課題之手段]
即,本發明之主旨如下所述。 <1>一種鋼之製造方法,其包括:將自熔鋼爐出鋼之鋼液承接至盛鋼桶之步驟、及 將前述盛鋼桶所承接之前述鋼液自前述盛鋼桶排出而進行鑄造之步驟; 於將自前述熔鋼爐出鋼之前述鋼液承接至前述盛鋼桶時,將根據下述(1)式所算出之熔渣厚度T滿足0.02m以上之量W且由氧化物所構成的副原料,於開始承接前述鋼液之前放置於前述盛鋼桶內之底部、或開始承接鋼液之同時投入至前述盛鋼桶內,而將自前述熔鋼爐出鋼之前述鋼液承接至前述盛鋼桶。 T=(W/ρ)/((π・D2 )/4) (1) T:熔渣厚度(m) D:盛鋼桶直徑(m) ρ:熔融氧化物密度(=3000kg/m3 ) W:副原料之量(kg) <2>如<1>記載之鋼之製造方法,其中前述副原料之組成滿足: CaO/Al2 O3 :0.8~4.0 (2) 5%≦SiO2 ≦10% (3) MgO≦10% (4) CaO+Al2 O3 +SiO2 +MgO≧90% (5); 其中,(2)~(5)式中之分子符號意指該分子之含量(質量%)。 <3>如<1>或<2>記載之鋼之製造方法,其中前述副原料之量W為根據前述(1)式所算出之前述熔渣厚度T滿足0.1m以下之量。 <4>如<1>至<3>中任一項記載之鋼之製造方法,其中於開始承接前述鋼液之前,預先將前述量W之前述副原料放置於前述盛鋼桶內之底部。 <5>如<4>記載之鋼之製造方法,其中對放置於前述盛鋼桶內之前述副原料進行預熱,於前述副原料之溫度為800℃以上之狀態下將前述鋼液承接至前述盛鋼桶。 [發明之效果]
根據本發明,便可提供一種鋼之製造方法,其可有效地抑制將鋼液出鋼至盛鋼桶時由出鋼流所形成之瀑布潭部之吸氮。
較佳實施例之詳細說明 對本發明中所使用之用語之含義內容進行說明。 所謂熔鋼爐(製鋼爐),係指轉爐、AOD(Argon Oxygen Decarburization,氬氧脫碳)爐、電爐等用以熔製鋼液之保持容器。 所謂出鋼,係指將保持於製鋼爐中之熔融金屬(鋼液)自製鋼爐轉移至盛鋼桶這種搬送用容器之動作。又,所謂承接鋼液,意指用盛鋼桶承接來自熔鋼爐之鋼液,出鋼與承接鋼液係於同一時點進行。 所謂副原料,係指精煉鋼液所必需之鐵分以外之添加物。本發明中,以由氧化物所構成之副原料為對象,將由含有鐵以外之成分之氧化物所構成者作為副原料。具體而言,可使用生石灰、矽砂、鋁酸鈣系造渣劑、氧化鋁磚屑、煅燒白雲石等。 所謂盛鋼桶直徑D,意指盛鋼桶之內徑。通常,盛鋼桶內會作成底部與上部(開口部)之內徑相同之構造,但於底部與上部之內徑不同之情形時,設為盛鋼桶底部與上部之各直徑(內徑)之平均值。又,在與盛鋼桶高度方向垂直之盛鋼桶內部的剖面為橢圓形時,則是將長徑與短徑之平均值設為盛鋼桶直徑D。
本發明者為了解決前述本發明之課題,進行使用溶氧濃度計及水模型裝置之氣體吸收實驗,並對瀑布潭部之氣泡夾帶行為及氣體吸收行為進行了詳細調查。於水中通常溶存有8ppm左右之氧,可使用溶氧濃度計進行測定。準備水模型裝置來模擬自轉爐出鋼至盛鋼桶。針對仿效轉爐內之鋼液之水,事先吹入Ar,藉此使溶氧量降低至0.8ppm。對水模型裝置之轉爐內及盛鋼桶內之溶氧量連續地進行測定(參照非專利文獻2)。推斷根據水模型實驗中氧自環境氣體而吸收至水中之傾向,可模擬實際之鋼液之熔製中氮自環境氣體而吸收至鋼液中之傾向。即,關於在水模型實驗中盛鋼桶內之水中溶氧量會增大之條件,顯示出於出鋼時吸收了大量環境氣體中之氧,若於實際之自轉爐出鋼時為相同之條件,則可推定於鋼液中容易吸收氮。
於水模型實驗中,進行了在盛鋼桶之水面上未有任何漂浮之情形、與在水面上漂浮有油之情形的對比試驗。其結果為,發現於在水面上漂浮有油之狀態下形成注入流之情形時,瀑布潭中夾帶有油以及空氣,進而所夾帶之油若與氣泡接觸,則停留在氣泡表面,並以該狀態浮起。對此時之氣體吸收行為進行調查,結果可知,於在盛鋼桶之水面上未有任何漂浮之情形時,盛鋼桶中之水之溶氧量增大,相對於此,於在水面上漂浮有油之情形時,盛鋼桶中之水之溶氧量之增大得到抑制。根據該實驗結果認為,於漂浮有油之狀態下,油會覆蓋形成瀑布潭之氣泡之表面之一部分,藉此,與所夾帶之空氣之反應界面積減少,而注入過程中之氣體吸收量得到抑制。
基於該見解,預測藉由於出鋼時預先於盛鋼桶之鋼液表面形成流動性良好之皮膜,可防止瀑布潭部之氮於鋼液中之吸收。並且,將已摻合成能使渣化性良好之副原料放置於盛鋼桶中之狀態下來將鋼液出鋼至盛鋼桶,或者,將鋼液出鋼至盛鋼桶之同時將副原料投入至盛鋼桶,藉此可利用剛出鋼後之高溫鋼液來使副原料熔融。因此,剛出鋼後液面上可形成由熔融氧化物覆蓋之狀態,若以該狀態進行出鋼,則可有意圖地產生瀑布潭部夾帶熔融氧化物之狀況,從而抑制吸氮。進而,此時瀑布潭部所夾帶者(副原料)較理想為熔融狀態,但即便殘存有固相,覆蓋氣液界面之一部分之情況未發生改變,故而可期待吸氮抑制效果。
本發明係基於前述構思,藉由利用鋼液實驗對其效果進行確認而研究所得者,本發明者進一步找出於出鋼前或出鋼時放置或投入至盛鋼桶內之副原料之組成、量、溫度等適宜之條件,藉此完成了本發明之鋼之製造方法。 即,本發明之鋼之製造方法包括: 將自熔鋼爐出鋼之鋼液承接至盛鋼桶之步驟、及 將前述盛鋼桶所承接之前述鋼液自前述盛鋼桶排出而進行鑄造之步驟; 於將自前述熔鋼爐出鋼之前述鋼液承接至前述盛鋼桶時,將根據下述(1)式所算出之熔渣厚度T滿足0.02m以上之量W且由氧化物所構成的副原料,於開始承接前述鋼液之前放置於前述盛鋼桶內之底部、或開始承接鋼液之同時投入至前述盛鋼桶內,而將自前述熔鋼爐出鋼之前述鋼液承接至前述盛鋼桶。 T=(W/ρ)/((π・D2 )/4) (1) T:熔渣厚度(m) D:盛鋼桶直徑(m) ρ:熔融氧化物密度(=3000kg/m3 ) W:副原料之量(kg)
先前以來,大量提出了於出鋼時添加副原料之手法。然而,其大部分係著眼於對熔渣中之低級氧化物進行改質而非抑制吸氮,所添加之副原料大多為生石灰,此外,大多情況下添加時期為出鋼過程中或出鋼結束後。根據本發明之手法,出鋼後之熔渣組成係與先前手法相同,但於如下方面上則與先前手法有較大差異,即,為了有效地抑制出鋼初期之吸氮,而使添加副原料之時期較先前提前,於出鋼前預先將一定量以上之副原料放置於盛鋼桶內,或出鋼之同時將該副原料投入至盛鋼桶內,而於剛開始出鋼後使一定量以上之副原料熔融。
為了確認放置副原料後之吸氮抑制效果,進行2ton規模之鋼液實驗,並對其行為進行了研究。將於感應爐中熔解之低氮脫氧鋼液2ton以大約50秒出鋼至經預熱之盛鋼桶中,調查出鋼前後之氮濃度。此時,鋼液成分、溫度等各個條件設為相同,於盛鋼桶內放置經成分調整之合成助熔劑(氧化物),以該狀態出鋼。此時,對放置於盛鋼桶內之合成助熔劑組成、助熔劑量、預熱溫度等參數之影響進行了調查。此時,研究出鋼前後之吸氮量(以下,Δ[N]),相較於未放置合成助熔劑之條件(run1)下的Δ[N],改善了4ppm以上者判斷有吸氮抑制效果。以下,合成助熔劑中之成分含量意指質量%。將試驗條件及試驗結果示於表1。
[表1]
Figure 108122628-A0304-0001
首先,未放置合成助熔劑之條件下的Δ[N]為26ppm。相對於該結果,於將CaO=60%、Al2 O3 =30%、SiO2 =10%之合成助熔劑(CaO/Al2 O3 =2.0)50kg(=基礎條件)放置於盛鋼桶內之狀態下將鋼液出鋼,結果Δ[N]為21ppm,確認出明顯吸氮抑制效果。對出鋼時瀑布潭周圍之情況進行拍攝來調查盛鋼桶內之狀況,結果確認到如下情況:合成助熔劑藉由與注入至盛鋼桶內之鋼液接觸而熔融,存在於瀑布潭周邊且混合有固相與液相之熔渣會被瀑布潭所夾帶。除了有無放置合成助熔劑以外之條件並無差異,因此,推定獲得吸氮抑制效果之主要原因在於:瀑布潭所夾帶之熔渣覆蓋氣泡表面之一部分,藉此使鋼液與空氣之反應界面積減少。 另一方面,將合成助熔劑懸吊於自盛鋼桶內之底部略微抬起之壁面,並在出鋼開始15秒後添加至鋼液面,於該條件下出鋼,結果Δ[N]為24ppm,未發現明顯之吸氮抑制效果。此時,確認到合成助熔劑是到了出鋼末期才熔融,但於吸氮量最多之出鋼前半段至中間階段並未發現所添加合成助熔劑熔融,由此推定未達成減少鋼液與空氣之反應界面積。
接著,相對於基礎條件(助熔劑組成一定、未預熱),變更待放置之合成助熔劑量而調查吸氮抑制效果。其結果如圖1所示,基於待放置之合成助熔劑量W與盛鋼桶之大小(盛鋼桶直徑D),並根據前述(1)式求出盛鋼桶內的熔渣厚度T,於該熔渣厚度T未達0.02m時,結果未發現明顯吸氮抑制效果。另一方面,若熔渣厚度超過0.05m,則成為吸氮抑制效果飽和之結果。根據該情況推定,於瀑布潭所夾帶之液相、或包含固相之液相少於一定量時,便無法充分地覆蓋鋼液與空氣之反應界面積,而未能獲得吸氮抑制效果。又,即便瀑布潭所夾帶之液相、或包含固相之液相過多,吸氮抑制效果仍達飽和,因此認為放置於盛鋼桶之合成助熔劑量W存在適宜上限。
又,將待放置之合成助熔劑量設為一定(50kg),且以表1所示之組成來改變待放置之合成助熔劑之組成,於不預熱之條件下調查吸氮抑制效果。其結果為,於合成助熔劑組成為CaO/Al2 O3 :0.8~4.0((2)式)、5%≦SiO2 ≦10%((3)式)、MgO≦10%((4)式)之條件下,能獲得穩定吸氮抑制效果。能獲得穩定吸氮抑制效果時之合成助熔劑組成,係與鋼液溫度附近液相比例較高的條件一致,而認為液相之比例越高則瀑布潭內氣泡表面之被覆效果就越大。
進而,相對於基礎條件,將放置於盛鋼桶內之合成助熔劑利用燃燒器進行預熱,變更即將出鋼前之合成助熔劑溫度而調查吸氮抑制效果。另外,合成助熔劑之溫度係利用設置於盛鋼桶內之熱電偶進行調查。其結果如圖2所示,於將合成助熔劑之溫度加熱至800℃以上時,結果獲得明顯吸氮抑制效果。另一方面,若合成助熔劑之預熱溫度超過1150℃,結果吸氮抑制效果達飽和。認為其原因在於:藉由進行預熱,助熔劑達到開始熔融為止的時間會縮短,而剛開始出鋼後之氮吸收會受到抑制。
以下,對本發明之鋼之製造方法之實施形態進一步詳細地進行說明。 於製造低氮鋼之情形時,將自高爐或電爐搬送出之碳濃度較高之熔鐵裝入至轉爐等熔鋼爐中,藉由氧吹煉將鋼中之碳以CO氣體之形式去除。此時,於熔鋼爐中,藉由C+O=CO反應而使爐內之氮分壓降低,此外,與利用底吹及頂吹之攪拌作用相結合而使鋼中之氮濃度降低至10ppm左右。關於脫碳處理後之鋼液,為了進行成分調整或脫氣,而自熔鋼爐出鋼至盛鋼桶。其後,將成分或溫度經調整之鋼液供於鑄造製程,於鑄造後經加熱、壓延、熱處理、表面處理等步驟而作為製品來出貨。
通常,盛鋼桶經燃燒器預熱後,由搬送台車搬送至熔鋼爐之正下方而承接鋼液。通常,生石灰等副原料大多添加於出鋼後之鋼液中,但於應用本發明之鋼之製造方法時,需要於承接鋼液之前預先將一定量以上之副原料放置於盛鋼桶內,或於承接鋼液之同時將一定量以上之副原料投入至盛鋼桶內。宜為於預熱盛鋼桶之前、或預熱中將副原料投入至盛鋼桶內。 作為副原料之形態,宜為粒狀,以使預熱中或出鋼時不因上升氣流而散逸;不過,於進行預熱時,通常是在透過蓋子覆蓋盛鋼桶上部之狀態下進行預熱,因此亦能夠使用粉狀之副原料。宜為需要於將盛鋼桶搬送至熔鋼爐正下方之時刻,最遲於鋼液開始自熔鋼爐出鋼(開始承接鋼液)之同時,以(1)式所示之熔渣厚度T成為0.02m以上(宜為0.1m以下,更宜為0.05m以下)之方式所求出之量W的副原料投入於盛鋼桶內。又,於出鋼開始後,需要使副原料迅速地熔融。再者,於開始承接鋼液之同時將副原料投入至盛鋼桶之情形時,宜為於開始自熔鋼爐將鋼液注入至盛鋼桶後,在10秒以內開始向盛鋼桶內投入副原料,更宜為在5秒以內開始向盛鋼桶內投入副原料,進一步宜為與鋼液注入之同時開始向盛鋼桶內投入副原料。又,於開始承接鋼液之同時將副原料投入至盛鋼桶之情形時,開始承接鋼液後,宜為在60秒以內、更宜為在40秒以內、進一步宜為在20秒以內完成投入熔渣厚度T成為0.02m以上之量W之副原料。 又,關於副原料,亦可為下述兩者的組合:在開始承接鋼液之前將副原料放置於盛鋼桶內、及開始承接鋼液之同時將副原料投入盛鋼桶內。即,亦可於開始承接鋼液前預先將量W1之副原料放置於盛鋼桶內,進一步於開始承接鋼液之同時將量W2之副原料投入盛鋼桶內,藉此使副原料之合計量(W1+W2)達到以(1)式所示之熔渣厚度T滿足0.02m以上之方式所求出之量W。 再者,有時會在開始承接鋼液數分鐘後,基於脫氧等目的而添加Al合金等,但以此種目的、時機所添加之成分並不包括在以(1)式所示之熔渣厚度T滿足0.02m以上之方式所求出之量W的副原料中。
為了獲得本發明鋼之製造方法所帶來低氮化效果,需要於承接鋼液之過程中在瀑布潭部存在有熔融渣。所謂承接鋼液過程中,係指開始自熔鋼爐將鋼液注入至盛鋼桶至經過至少1分鐘後完成注入的期間,宜為指開始注入鋼液30秒後至完成注入的期間。所謂熔融渣,係指放置或投入至盛鋼桶內之副原料熔融,而成為液相或包含固相之液相之狀態。於本發明中,藉由使用通用之熱力學計算軟體等之計算,將液相比例為50%以上之狀態作為液相熔渣。 所謂瀑布潭部,係指注入流進入盛鋼桶內之鋼液時,因夾帶注入流周圍氣相所產生之氣泡其所產生的夾帶及上升之部分,通常會在注入流與盛鋼桶內鋼液接觸之部分正下方產生。若於出鋼過程中瀑布潭部被熔融渣所覆蓋,就能獲得本發明之低氮化效果。自熔鋼爐出鋼之鋼液承接至盛鋼桶時,於開始承接鋼液前、或開始承接鋼液之同時將以(1)式所示之熔渣厚度T滿足0.02m以上(宜為0.1m以下,更宜為0.05m以下)之方式所求出之量W之由氧化物所構成的副原料放置或投入至盛鋼桶內,而將自熔鋼爐出鋼之鋼液承接至盛鋼桶,藉此可於承接鋼液之過程中使熔融渣存在於瀑布潭部。
於本發明中,待放置或投入至盛鋼桶內之副原料係由氧化物所構成之副原料。因此,不包含碳氧化物、氟化物、碳化物等。例如於專利文獻3中揭示一種發明,其為了降低盛鋼桶內之環境氣體中氮濃度,而放置碳酸鈣。相對於此,本發明之目的則在於藉由鋼液表面之熔融渣而防止瀑布潭部之吸氮現象,因此並不添加碳酸鈣。碳酸鈣由於在分解時伴隨有吸熱反應,故會使鋼液溫度降低,就該方面而言亦欠佳。又,若添加螢石等氟化物,則妨礙所生成之熔渣的回收,因此不添加氟化物。進而,由於不以脫磷或脫硫為目的,故而亦不添加碳化鈣等碳化物。
又,待放置或投入至盛鋼桶內之由氧化物所構成之副原料宜為預先將組成調整至CaO/Al2 O3 :0.8~4.0((2)式)、5%≦SiO2 ≦10%((3)式)、MgO≦10%((4)式)之範圍內後再進行添加。藉由設為此種組成範圍,可適宜地降低副原料之熔融溫度。更宜為將MgO含量設為5%以上。再者,副原料所含有之成分除前述CaO、Al2 O3 、SiO2 、MgO以外,還容許含有分別未達5%之MnO、FeO等氧化物成分。又,亦容許含有揮發分或雜質。即,只要為滿足前述(5)式者便適宜。
放置於盛鋼桶內之副原料較理想為與盛鋼桶一併進行預熱,且適宜預熱至800℃以上。副原料之預熱溫度可藉由利用放射溫度計對放置於盛鋼桶內之副原料之表面溫度進行測量而評價。
藉由如前述般使用本發明鋼之製造方法,可於出鋼時抑制氮濃度上升,因此可經濟且穩定地製造低氮鋼。再者,根據本發明之鋼之製造方法,可有效地抑制出鋼時氮濃度上升,但所製造之鋼中的氮濃度則不限定。 此種本發明鋼之製造方法對於碳鋼非常有效,不過對於製造碳鋼以外之不鏽鋼、合金鋼亦有效。 [實施例]
透過以下所示鋼液之實施例及比較例的條件,進行出鋼時吸氮行為評價試驗來確認吸氮抑制效果。 自高爐搬送出之熔鐵(相當於碳含量4.5%)裝入轉爐,並進行氧吹煉。轉爐吹煉後之成分為[C]=0.06~0.14%、[Si]=0.01~0.05%、[Mn]=0.1~0.4%、[P]=0.01~0.03%、[N]=9~12ppm,且剩餘部分為Fe及雜質。處理量為300ton規模,盛鋼桶直徑(內徑)為3.9m,出鋼時間約為5分鐘。於出鋼前、預熱盛鋼桶之前階段、或預熱盛鋼桶後,將經成分調整之特定量的副原料放置於盛鋼桶底部,並將盛鋼桶搬送至轉爐正下方後,承接鋼液。或者,於承接鋼液之同時將副原料投入至盛鋼桶中。出鋼時,於開始出鋼2分鐘後,以夾帶於出鋼流之方式投入包含Al之合金。又,於出鋼開始3~4分鐘後,將副原料(氧化物)追加投入至盛鋼桶內,藉此作成表2所示之「最終熔渣厚度t」。
為了確認吸氮抑制效果,採取了出鋼前之轉爐內、出鋼後之盛鋼桶內的鋼液樣品,並將出鋼前後之氮濃度變化量Δ[N](ppm)作為吸氮量來評價。試驗條件列示於表2。於表2之「吸氮抑制效果」之欄中,Δ[N]超過17ppm且為20ppm以下者,視為有吸氮抑制效果並設為「C」,Δ[N]超過15ppm且為17ppm以下者,判斷為有優異吸氮抑制效果並設為「B」。又,Δ[N]為15 ppm以下者,判斷為有顯著吸氮抑制效果並設為「A」。就Δ[N]超過20ppm而言,視為未發現吸氮抑制效果並設為「D」。
[表2]
Figure 02_image001
試驗No.1係未於盛鋼桶內放置副原料之條件,試驗No.2及No.3係儘管於盛鋼桶內放置副原料,但熔渣厚度偏離本發明範圍之條件,且均為比較例。待放置之副原料不充足之試驗No.2及試驗No.3之Δ[N]為23~24ppm,未發現吸氮抑制效果。
試驗No.4至試驗No.17係滿足本發明要件之實施例,Δ[N]達20ppm以下,確認到吸氮抑制效果。 試驗No.10至試驗No.13係將放置於盛鋼桶內之副原料之組成調整至適合範圍之條件,Δ[N]達17ppm以下,判斷為有優異之吸氮抑制效果。 試驗No.3、5、9及試驗No.14至試驗No.16係使所放置之副原料之預熱溫度發生變化之條件。若將試驗No.5與試驗No.7進行比較,則副原料之預熱溫度較高之試驗No.5之吸氮抑制效果較大,可知藉由提高副原料預熱溫度,可獲得優異之吸氮抑制效果。將試驗No.11與試驗No.14進行比較亦明確該情況,關於試驗No.14,藉由將副原料組成控制在本發明之適宜範圍,此外將副原料預熱溫度設為800℃以上,而獲得顯著之吸氮抑制效果。試驗No.15、16亦相同。 試驗No.18係於盛鋼桶內承接鋼液之同時投入副原料之實施例。Δ[N]為20ppm,低於比較例,確認到吸氮抑制效果。 [產業上之可利用性]
由於可有效地抑制熔鐵於出鋼時之吸氮,而對於低氮鋼之製造方法有益。
關於2018年6月28日提出申請之日本專利申請案2018-122844之發明,係藉由參照而將其整體併入至本說明書中。本說明書中所記載之所有文獻、專利申請、及技術標準,係藉由參照,以與具體且分別記載有各個文獻、專利申請、及技術標準之情形相同之程度併入至本說明書中。
圖1係表示盛鋼桶內之熔渣厚度與吸氮量之關係之圖。 圖2係表示即將出鋼前之合成助熔劑溫度與吸氮量之關係之圖。

Claims (9)

  1. 一種鋼之製造方法,其包括: 將自熔鋼爐出鋼之鋼液承接至盛鋼桶之步驟、及 將前述盛鋼桶所承接之前述鋼液自前述盛鋼桶排出而進行鑄造之步驟; 於將自前述熔鋼爐出鋼之前述鋼液承接至前述盛鋼桶時,將根據下述(1)式所算出之熔渣厚度T滿足0.02m以上之量W且由氧化物所構成的副原料,於開始承接前述鋼液之前放置於前述盛鋼桶內之底部、或開始承接鋼液之同時投入至前述盛鋼桶內,而將自前述熔鋼爐出鋼之前述鋼液承接至前述盛鋼桶; T=(W/ρ)/((π・D2 )/4) (1) T:熔渣厚度(m) D:盛鋼桶直徑(m) ρ:熔融氧化物密度(=3000kg/m3 ) W:副原料之量(kg)。
  2. 如請求項1之鋼之製造方法,其中前述副原料之組成滿足: CaO/Al2 O3 :0.8~4.0 (2) 5%≦SiO2 ≦10% (3) MgO≦10% (4) CaO+Al2 O3 +SiO2 +MgO≧90% (5); 其中,(2)~(5)式中之分子符號意指該分子之含量(質量%)。
  3. 如請求項1之鋼之製造方法,其中前述副原料之量W為根據前述(1)式所算出之前述熔渣厚度T滿足0.1m以下之量。
  4. 如請求項2之鋼之製造方法,其中前述副原料之量W為根據前述(1)式所算出之前述熔渣厚度T滿足0.1m以下之量。
  5. 如請求項1之鋼之製造方法,其中於開始承接前述鋼液之前,預先將前述量W之前述副原料放置於前述盛鋼桶內之底部。
  6. 如請求項2之鋼之製造方法,其中於開始承接前述鋼液之前,預先將前述量W之前述副原料放置於前述盛鋼桶內之底部。
  7. 如請求項3之鋼之製造方法,其中於開始承接前述鋼液之前,預先將前述量W之前述副原料放置於前述盛鋼桶內之底部。
  8. 如請求項4之鋼之製造方法,其中於開始承接前述鋼液之前,預先將前述量W之前述副原料放置於前述盛鋼桶內之底部。
  9. 如請求項5至8中任一項之鋼之製造方法,其中對放置於前述盛鋼桶內之前述副原料進行預熱,於前述副原料之溫度為800℃以上之狀態下將前述鋼液承接至前述盛鋼桶。
TW108122628A 2018-06-28 2019-06-27 鋼之製造方法 TWI699436B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018122844 2018-06-28
JP2018-122844 2018-06-28

Publications (2)

Publication Number Publication Date
TW202000926A true TW202000926A (zh) 2020-01-01
TWI699436B TWI699436B (zh) 2020-07-21

Family

ID=68986636

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108122628A TWI699436B (zh) 2018-06-28 2019-06-27 鋼之製造方法

Country Status (5)

Country Link
JP (1) JP6806288B2 (zh)
KR (1) KR102441788B1 (zh)
CN (1) CN111819296A (zh)
TW (1) TWI699436B (zh)
WO (1) WO2020004501A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807934B (zh) * 2021-10-12 2023-07-01 日商杰富意鋼鐵股份有限公司 熔鐵之雜質濃度之預測方法、熔鐵之製造方法、學習完成之機械學習模型之作成方法及熔鐵之雜質濃度之預測裝置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613426A (en) * 1979-07-10 1981-02-09 Nippon Steel Corp Treatment of molten steel
JPS59190314A (ja) 1983-04-13 1984-10-29 Nippon Kokan Kk <Nkk> 低窒素キルド鋼の溶製方法
JPS6026611A (ja) 1983-07-22 1985-02-09 Nisshin Steel Co Ltd 含Cr極低窒素鋼の溶製方法
JPS6092417A (ja) * 1983-10-26 1985-05-24 Japan Metals & Chem Co Ltd 鉄−マンガン合金の精製法
JPS61166911A (ja) 1985-01-16 1986-07-28 Kawasaki Steel Corp 低窒素鋼の製造方法
JPH02285020A (ja) 1989-04-25 1990-11-22 Nkk Corp 転炉出鋼時の取鍋への空気巻き込み抑制方法
JPH0718322A (ja) * 1993-07-07 1995-01-20 Kawasaki Steel Corp 高清浄度アルミキルド鋼の精錬方法
JPH0860229A (ja) * 1994-08-16 1996-03-05 Nippon Steel Corp 溶融金属の精錬方法
JPH1192811A (ja) * 1997-09-12 1999-04-06 Sumitomo Metal Ind Ltd 溶融金属の精錬方法
JP3680660B2 (ja) * 1999-10-08 2005-08-10 住友金属工業株式会社 低窒素鋼の製造方法
JP3774674B2 (ja) 2002-04-01 2006-05-17 新日本製鐵株式会社 低窒素含クロム溶鋼の製造方法
CN101457275B (zh) * 2009-01-08 2011-04-20 攀钢集团研究院有限公司 控制转炉工艺生产铝脱氧钢氮含量的方法
JP5605337B2 (ja) * 2010-09-15 2014-10-15 新日鐵住金株式会社 溶銑の脱硫剤及び脱硫方法
JP5505432B2 (ja) * 2012-02-03 2014-05-28 新日鐵住金株式会社 極低硫低窒素鋼の溶製方法
CN104046719A (zh) * 2014-06-27 2014-09-17 攀钢集团攀枝花钢钒有限公司 一种控制转炉炼钢中钢水氮含量的方法
CN105624367B (zh) * 2014-12-01 2017-07-21 鞍钢股份有限公司 一种控制钢水氮含量的精炼装置及方法
AU2017231516B2 (en) * 2016-03-09 2019-07-18 Nippon Steel Corporation Surface-treated steel sheet and process for producing surface-treated steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807934B (zh) * 2021-10-12 2023-07-01 日商杰富意鋼鐵股份有限公司 熔鐵之雜質濃度之預測方法、熔鐵之製造方法、學習完成之機械學習模型之作成方法及熔鐵之雜質濃度之預測裝置

Also Published As

Publication number Publication date
TWI699436B (zh) 2020-07-21
JP6806288B2 (ja) 2021-01-06
WO2020004501A1 (ja) 2020-01-02
CN111819296A (zh) 2020-10-23
JPWO2020004501A1 (ja) 2020-09-17
KR20200118191A (ko) 2020-10-14
KR102441788B1 (ko) 2022-09-08

Similar Documents

Publication Publication Date Title
JP6743915B2 (ja) 溶鋼の脱硫処理方法及び脱硫剤
JP5573424B2 (ja) 溶鋼の脱硫処理方法
TWI621713B (zh) 真空脫氣設備之熔鋼的精煉方法
JP2013023738A (ja) 取鍋内スラグの再利用方法
JP5904237B2 (ja) 高窒素鋼の溶製方法
JPH07216434A (ja) 極低炭素極低硫黄鋼の製造方法
JP6547734B2 (ja) 低硫鋼の製造方法
TWI699436B (zh) 鋼之製造方法
TWI685577B (zh) 高錳鋼的冶煉方法
JP3672832B2 (ja) ダクタイル鋳鉄管及びその製造方法
JP5891826B2 (ja) 溶鋼の脱硫方法
JP5200380B2 (ja) 溶鋼の脱硫方法
JP2008163389A (ja) 軸受鋼の溶製方法
JP2004169147A (ja) 非金属介在物の極めて少ない清浄鋼の精錬方法
JP6323688B2 (ja) 溶鋼の脱硫方法
RU2566230C2 (ru) Способ переработки в кислородном конвертере низкокремнистого ванадийсодержащего металлического расплава
JP2014058728A (ja) 溶鋼の脱硫方法
TWI486454B (zh) Steel manufacturing method
JP3750588B2 (ja) 溶銑の脱珪方法
JP4214894B2 (ja) 溶銑の予備処理方法
JP2006241561A (ja) 溶銑輸送容器からの発塵防止方法
JP7255639B2 (ja) 溶鋼の脱硫方法および脱硫フラックス
JP6947374B2 (ja) 鋳鉄の精錬方法
JP2000212633A (ja) 溶鋼の取鍋精錬における脱硫方法
KR101455594B1 (ko) 전로 취련 방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees