WO2020004501A1 - 鋼の製造方法 - Google Patents

鋼の製造方法 Download PDF

Info

Publication number
WO2020004501A1
WO2020004501A1 PCT/JP2019/025471 JP2019025471W WO2020004501A1 WO 2020004501 A1 WO2020004501 A1 WO 2020004501A1 JP 2019025471 W JP2019025471 W JP 2019025471W WO 2020004501 A1 WO2020004501 A1 WO 2020004501A1
Authority
WO
WIPO (PCT)
Prior art keywords
ladle
steel
molten steel
auxiliary material
tapping
Prior art date
Application number
PCT/JP2019/025471
Other languages
English (en)
French (fr)
Inventor
敦 岡山
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020207026029A priority Critical patent/KR102441788B1/ko
Priority to JP2020527600A priority patent/JP6806288B2/ja
Priority to CN201980017253.0A priority patent/CN111819296A/zh
Publication of WO2020004501A1 publication Critical patent/WO2020004501A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present disclosure relates to a method for producing steel.
  • the molten steel may be vigorously stirred by the bottom blow, and the nitrogen concentration in the molten steel at the end of the converter blowing is reduced to about 10 ppm.
  • the molten steel is tapped from the converter to the ladle, but the tapping flow involves the atmosphere during tapping, and the nitrogen concentration in the molten steel increases. .
  • molten steel whose nitrogen concentration has been reduced to about 10 ppm in a converter is tapped into a ladle without nitriding, and the vacuum degassing system removes molten steel.
  • the state in which nitrogen is suppressed is maintained, and the process proceeds to the next step, continuous casting.
  • Patent Literature 1 proposes a technique of tapping low-nitrogen molten steel that has been denitrified while sealing it with an inert gas.
  • Patent Literature 2 in a steel receiving ladle having a lid, the fuel is burned by oxygen-enriched air to preheat the steel receiving ladle, and is replaced with combustion exhaust gas so that the atmosphere in the steel receiving ladle is reduced.
  • ⁇ Circle around (3) ⁇ (3) is a method of tapping in undeoxidized or semi-deoxidized state during tapping as described in Patent Document 4, which is a general method found in many prior art documents.
  • Patent Document 5 a tapping flow is received by a ladle along the inclined ladle wall, and an inert gas is supplied to a tapping outlet of a steelmaking furnace such as a converter to supply tapping flow. There has been proposed a technique of mixing an inert gas into a gas.
  • Patent Document 5 is a method of reducing the size of the waterfall pot itself of tapping flow.
  • the area of the reaction interface where nitrogen absorption occurs is also reduced, so that the effect of suppressing nitrogen absorption can be obtained.
  • making the tapping flow along the wall of the ladle increases the risk of erosion of the refractory. For this reason, even if a waterfall pot is generated, a technique of a different cut is required that can reduce a boundary area where nitriding occurs in the waterfall pot.
  • An object of the present disclosure is to provide a method of manufacturing steel that can effectively suppress nitrification at a waterfall pot formed by a tapping flow when tapping molten steel into a ladle.
  • the gist of the present disclosure is as follows. ⁇ 1> a process of receiving molten steel discharged from a molten steel furnace into a ladle; Discharging the molten steel received in the ladle from the ladle and casting, When the molten steel discharged from the molten steel furnace is received in the ladle, a slag thickness T calculated by the following equation (1) is 0.02 m or more. Prior to the start of receiving the molten steel, it is placed in the bottom of the ladle or put into the ladle with the start of the steel receiving, and the molten steel discharged from the molten steel furnace is received by the ladle. Steel production method.
  • the composition of the auxiliary material is CaO / Al 2 O 3 : 0.8 to 4.0 (2) 5% ⁇ SiO 2 ⁇ 10% (3) MgO ⁇ 10% (4) CaO + Al 2 O 3 + SiO 2 + MgO ⁇ 90% (5)
  • ⁇ 3> The method for producing steel according to ⁇ 1> or ⁇ 2>, wherein the amount W of the auxiliary raw material is an amount that satisfies the slag thickness T calculated by the equation (1) of 0.1 m or less.
  • ⁇ 4> The steel according to any one of ⁇ 1> to ⁇ 3>, wherein before the start of receiving the molten steel, the amount W of the auxiliary material is placed in the bottom of the ladle. Production method.
  • ⁇ 5> The steel production according to ⁇ 4>, wherein the auxiliary material placed in the ladle is preheated, and the molten steel is received by the ladle in a state where the temperature of the auxiliary material is 800 ° C or higher.
  • a method of manufacturing steel capable of effectively suppressing nitrogen absorption in a waterfall pot formed by a tapping flow when tapping molten steel into a ladle.
  • the smelting furnace refers to a holding vessel for smelting molten steel, such as a converter, an AOD (Argon Oxygen Decarburization) furnace, or an electric furnace.
  • Tapping refers to an operation of transferring molten metal (molten steel) held in a steelmaking furnace from a steelmaking furnace to a transport container such as a ladle.
  • the term "steel receiving" means that the ladle receives molten steel from the molten steel furnace, and the tapping and the steel receiving are performed at the same timing.
  • the auxiliary material refers to an additive other than iron necessary for refining molten steel.
  • Ladle diameter D means the inner diameter of the ladle. Normally, the inside diameter of the bottom and top (opening) is the same inside the ladle, but if the inside diameters of the bottom and top are different, the average value of each diameter (inside diameter) at the bottom and top of the ladle is I do. When the cross section inside the ladle perpendicular to the height direction of the ladle is elliptical, the average value of the major axis and the minor axis is defined as the ladle diameter D.
  • the inventor conducted a gas absorption experiment using a dissolved oxygen concentration meter and a water model device, and investigated in detail the bubble entrainment behavior and the gas absorption behavior in the waterfall pot.
  • a dissolved oxygen concentration meter Usually, about 8 ppm of oxygen is dissolved in water and can be measured using a dissolved oxygen concentration meter.
  • the dissolved oxygen amount was reduced to 0.8 ppm by blowing Ar beforehand.
  • the amount of dissolved oxygen in the converter and the ladle of the water model device is continuously measured (see Non-Patent Document 2).
  • the surface of the molten metal can be covered with molten oxide, and when tapping proceeds in this state, a situation in which the molten oxide is entrained in the waterfall pot portion is intentionally created and absorbed. Nitrogen can be suppressed. Further, it is desirable that the material (sub-raw material) entrained in the water basin at this time is in a molten state, but even if a solid phase remains, it still covers a part of the gas-liquid interface. The effect of suppressing nitrogen can be expected.
  • the method for producing steel according to the present disclosure includes: Receiving the molten steel from the molten steel furnace into the ladle, Discharging the molten steel received in the ladle from the ladle and casting, When the molten steel discharged from the molten steel furnace is received in the ladle, a slag thickness T calculated by the following equation (1) is 0.02 m or more.
  • T (W / ⁇ ) / (( ⁇ ⁇ D 2 ) / 4) (1)
  • T Slag thickness (m)
  • D Ladle diameter (m)
  • W Amount of auxiliary material (kg)
  • the slag composition after tapping is the same as that of the conventional method, but the timing of adding an auxiliary material in order to effectively suppress the nitrogen absorption at the beginning of tapping is earlier than before, and the slag composition is shorter than before.
  • a certain amount of auxiliary material must be kept in the ladle before steel, or it must be put into the ladle together with tapping, and the amount of auxiliary material melted immediately after starting tapping. This is a big difference from the conventional method.
  • ⁇ [N] under the condition where no synthetic flux was kept was 26 ppm.
  • ⁇ [N] was 21 ppm, and a clear nitriding effect was recognized.
  • the synthetic flux melted when it came into contact with the molten steel injected into the ladle, and the solid flux existing around the ladle was exposed.
  • the composition of the synthetic flux to be stored was changed according to the composition shown in Table 1, and the effect of suppressing nitrogen absorption under the condition without preheating was investigated.
  • the synthetic flux composition was CaO / Al 2 O 3 : 0.8 to 4.0 (formula (2)), 5% ⁇ SiO 2 ⁇ 10% (formula (3)), and MgO ⁇ 10% ((4 Under the conditions of the formula (1), a stable nitrogen absorption control effect was obtained.
  • the synthetic flux composition when stable nitrogen absorption suppression effect was obtained is consistent with the condition that the ratio of the liquid phase near the molten steel temperature is high. It is considered that the coating effect is large.
  • the synthetic flux placed in the ladle was preheated with a burner, and the synthetic flux temperature immediately before tapping was changed to investigate the effect of preventing nitrogen absorption.
  • the temperature of the synthetic flux was investigated with a thermocouple installed in a ladle. As a result, as shown in FIG. 2, when the temperature of the synthetic flux was heated to 800 ° C. or higher, a remarkable effect of suppressing nitrogen absorption was obtained. On the other hand, when the preheating temperature of the synthetic flux exceeded 1150 ° C., the effect of suppressing nitrogen absorption was saturated. It is considered that the preheating shortens the time until the flux is melted and suppresses nitrogen absorption immediately after the start of tapping.
  • a ladle is preheated by a burner, and then conveyed to a position immediately below a steel smelting furnace by a carrier trolley to receive the molten steel.
  • auxiliary materials such as quick lime are often added to molten steel after tapping, but when applying the method for producing steel according to the present disclosure, a certain amount or more of auxiliary materials It is necessary to keep the ladle in the ladle, or to receive molten steel and to put a certain amount or more of auxiliary materials into the ladle.
  • the auxiliary material is charged into the ladle before or during the preheating of the ladle.
  • the auxiliary raw material is granular so as not to be dissipated by an ascending air current during preheating or during tapping, but when performing preheating, the preheating is usually performed with the ladle upper part covered with a lid. Powdered auxiliary materials can also be used.
  • the slag thickness T represented by the formula (1) is stored in the ladle.
  • the amount W of the auxiliary material determined so as to be 0.02 m or more (preferably 0.1 m or less, more preferably 0.05 m or less) is introduced. Further, it is necessary to melt the steel immediately after the start of tapping.
  • the auxiliary raw material is put into the ladle at the same time as the start of the steel receiving, preferably, the molten steel is poured into the ladle within 10 seconds after starting to be poured, more preferably within 5 seconds, and further preferably, the molten steel is poured. At the same time, the introduction of auxiliary materials into the ladle starts.
  • the slag thickness T is preferably set within 60 seconds, more preferably within 40 seconds, even more preferably within 20 seconds after the start of steel receiving.
  • the feeding of the auxiliary material in an amount W of not less than .02 m is completed.
  • the auxiliary raw material may be a combination of the storage of the auxiliary raw material in the ladle before the start of the steel receiving and the input of the auxiliary raw material into the ladle together with the start of the steel receiving.
  • the amount W1 of the auxiliary material is put in the ladle, and further, the amount W2 of the auxiliary material is put into the ladle with the start of the steel receiving, so that the total amount of the auxiliary material (W1 + W2) is obtained.
  • ) May be the amount W determined so that the slag thickness T represented by the expression (1) satisfies 0.02 m or more.
  • an Al alloy or the like may be added several minutes after the start of steel receiving for the purpose of deoxidation or the like. It is not included in the amount of auxiliary raw materials in the amount W determined so that T satisfies 0.02 m or more.
  • molten slag refers to a state in which auxiliary materials placed or charged in a ladle have been melted into a liquid phase or a liquid phase including a solid phase.
  • a state in which the liquid phase ratio is 50% or more by calculation using general-purpose thermodynamic calculation software or the like is defined as a liquid phase slag.
  • the basin refers to the part where bubbles are entrained and raised by entraining the gas phase around the injection flow when the injection flow enters the molten steel in the ladle. Occurs just below the part in contact with the molten steel. If the waterhole is covered with molten slag during tapping, the effect of reducing nitrogen according to the present disclosure can be obtained.
  • the auxiliary raw material composed of the oxide before the disclosure of the steel reception or at the start of the steel reception is converted to a slag thickness T represented by the formula (1) of 0.02 m or more. (Preferably 0.1 m or less, more preferably 0.05 m or less) is placed or put into a ladle with an amount W determined to satisfy the condition, and the molten steel discharged from the molten steel furnace is received in the ladle. Thereby, molten slag can be made to exist in a waterfall pot part during steel receiving.
  • the auxiliary material placed or put in the ladle is an auxiliary material composed of an oxide. Therefore, it does not include carbonates, fluorides, carbides, and the like.
  • Patent Document 3 discloses an invention in which calcium carbonate is stored for the purpose of reducing the nitrogen concentration in the atmosphere in a ladle.
  • calcium carbonate is not added because the purpose is to prevent the nitriding phenomenon in the waterfall pot by the molten slag on the molten steel surface. Calcium carbonate is not preferred from the viewpoint of lowering the temperature of molten steel because it involves an endothermic reaction during decomposition.
  • fluorides such as fluorite does not hinder the recycling of the produced slag, so the fluorides are not added.
  • a carbide such as calcium carbide is not added.
  • the auxiliary material composed of oxide to be put or put in the ladle has a composition of CaO / Al 2 O 3 : 0.8 to 4.0 (formula (2)), 5% ⁇ SiO 2 ⁇ It is preferable to add after adjusting to 10% (formula (3)) and MgO ⁇ 10% (formula (4)). With such a composition range, the melting temperature of the auxiliary material can be preferably reduced. More preferably, the MgO content is 5% or more.
  • the components contained in the auxiliary raw materials are acceptable even if they contain less than 5% of oxide components such as MnO and FeO in addition to the above-mentioned CaO, Al 2 O 3 , SiO 2 and MgO. It is also allowed that volatile components and impurities are contained. That is, it is preferable that the above formula (5) is satisfied.
  • the auxiliary material placed in the ladle is pre-heated together with the ladle, and is preferably pre-heated to 800 ° C. or higher.
  • the preheating temperature of the auxiliary material can be evaluated by measuring the surface temperature of the auxiliary material placed in the ladle with a radiation thermometer.
  • auxiliary material Before tapping, before preheating the ladle, or after preheating the ladle, place a specified amount of auxiliary material at the bottom of the ladle, transport the ladle to immediately below the converter, and receive molten steel. Made steel. Alternatively, the auxiliary material was put into a ladle together with the molten steel. At the time of tapping, an alloy containing Al was charged in such a manner that it was involved in the tapping flow two minutes after the tapping was started. Further, 3 to 4 minutes after the start of tapping, additional raw materials (oxides) were additionally charged into the ladle to obtain the “final slag thickness t” shown in Table 2.
  • ⁇ [N] when ⁇ [N] was 15 ppm or less, it was judged that there was a remarkable effect of suppressing nitrogen absorption, and was determined to be “A”. When ⁇ [N] is more than 20 ppm, it was set to “D” because no effect of suppressing nitrogen absorption was observed.
  • Test No. No. 1 was a condition in which no auxiliary material was placed in the ladle
  • No. No. 3 is a comparative example in which the auxiliary raw material is put in the ladle, but the slag thickness is out of the range of the present disclosure.
  • Test no. 2 and test no. The ⁇ [N] of No. 3 was 23 to 24 ppm, and no effect of suppressing nitrogen absorption was observed.
  • Test No. 4 to Test No. 17 are examples satisfying the requirements of the present disclosure, ⁇ [N] is 20 ppm or less, and the effect of suppressing nitrogen absorption is recognized.
  • Test No. Test No. 10 to No. 10 The conditions up to 13 were conditions in which the composition of the auxiliary raw material to be placed in the ladle was adjusted to a suitable range, ⁇ [N] was 17 ppm or less, and it was determined that there was an excellent nitrogen absorption control effect.
  • Test No. 3, 5, 9 and Test No. Test No. 14 to No. 14 The conditions up to 16 are conditions in which the preheating temperature of the stored auxiliary raw material is changed.
  • Test No. 5 and test no. 7 shows that Test No.
  • Test No. 7 in which the preheating temperature of the auxiliary material was high It can be seen that No. 5 has a larger effect of suppressing nitrogen absorption, and that by increasing the preheating temperature of the auxiliary material, an excellent effect of suppressing nitrogen absorption can be obtained.
  • Test No. 11 and Test No. 14 is apparent from the comparison of Test No. In No. 14, in addition to controlling the composition of the auxiliary raw material to a preferable range according to the present disclosure, by setting the preheating temperature of the auxiliary raw material to 800 ° C. or higher, a remarkable nitrogen absorption suppressing effect is obtained.
  • Test No. 15 and 16 are also the same.
  • Test No. Reference numeral 18 is an embodiment in which the auxiliary material is put into the ladle together with the steel receiving material. ⁇ [N] was 20 ppm, which was lower than that of the comparative example, and the effect of suppressing nitrogen absorption was recognized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Coating With Molten Metal (AREA)

Abstract

溶鋼を溶鋼炉から出鋼して取鍋に受鋼する工程と、前記取鍋に受鋼した前記溶鋼を前記取鍋から排出して鋳造する工程と、を含み、前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する際、下記(1)式によって算出されるスラグ厚みTが0.02m以上を満たす量Wの酸化物からなる副原料を、前記溶鋼の受鋼開始前に前記取鍋内の底部に入れ置き又は受鋼開始と共に前記取鍋内に投入し、前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する。前記副原料の組成が、CaO/Al:0.8~4.0、5%≦SiO≦10%、MgO≦10%を満たしていると好ましい。 T=(W/ρ)/((π・D)/4) (1) ただし、D:取鍋直径(m)、ρ:溶融酸化物密度(=3000kg/m)、W:副原料の量(kg)。

Description

鋼の製造方法
 本開示は、鋼の製造方法に関するものである。
 鋼材に要求される材料特性が高度化しており、鋼材の靱性をはじめとする特性値の向上が求められている。特に、ガス成分である窒素が鋼材に含まれると、一般的には靱性低下が生じる。このため、鋼材中の窒素を無害化するため、Ti、Nb、V、Zr、Alといった窒化物形成元素を添加することで無害化が図られているが、鋼材に合金を添加すると合金コストが増加することに加え、材料強度といった他の特性にも影響を及ぼす。このため、製造段階で可能な限り低窒素化することが望ましい。
 高炉-転炉法で鋼を製造する場合、高炉で溶製された、炭素を4~5%(本明細書中では特に説明がない限り、元素又は化合物の量を示す「%」及び「ppm」は全て質量比を意味する。)の溶銑を転炉に装入し、転炉内で脱炭する。その際、転炉内では上吹きランスから溶鋼に大量の酸素が吹き付けられ、転炉内は脱炭反応で生じたCOガスで満たされ、雰囲気中の窒素分圧が低下するとともに上吹きガスジェットで溶鋼が激しく攪拌するため、脱窒反応が進む。転炉内では底吹きにより溶鋼が強攪拌されることもあり、転炉吹錬終了時の溶鋼中窒素濃度は10ppm程度まで低下する。しかしながら、次工程に溶鋼を搬送するため、溶鋼は転炉から取鍋に出鋼されるが、出鋼の際に出鋼流が大気を巻き込むことで、溶鋼中の窒素濃度が上昇してしまう。
 次工程として、真空脱ガス装置を使って溶鋼を減圧処理する場合、減圧処理中に溶鋼中窒素濃度が低下するが、溶鋼中窒素濃度の低下速度は遅いことに加え、高速処理が求められる状況では減圧処理に依存することはできず、真空脱ガス装置だけを使って低窒素鋼を経済的、安定的に製造するには至っていない。
 このため、低窒素鋼を経済的、安定的に製造するには、転炉で10ppm程度まで窒素濃度を低減した溶鋼を、吸窒させることなく取鍋に出鋼し、真空脱ガス装置では吸窒を抑制した状態を維持し、次工程である連続鋳造に移るのが理想である。
 低窒素鋼を製造する観点から、以下に示すように、出鋼時の吸窒を抑制する手法が提案されている。出鋼時の溶鋼の吸窒を抑制するには、(1)吸窒が生じている部分を大気から遮断する、(2)大気中の窒素分圧を下げる、(3)吸窒反応を遅らせる、(4)反応界面積を低減する、といった手法が考えられる。
 これらのなかで、(1)および(2)は出鋼時に非窒素ガスを出鋼流もしくは取鍋内に導入する技術であり、下記特許文献1~3で提案されている。
 特許文献1では、脱窒された低窒素溶鋼を不活性ガスでシールしながら出鋼する技術が提案されている。
 特許文献2では、蓋を有する受鋼用取鍋内において、酸素富化空気によって燃料を燃焼させ受鋼取鍋を予熱し、且つ燃焼排ガスで置換することにより受鋼用取鍋内の雰囲気中の窒素を低下せしめた後に、転炉出鋼時に受鋼用取鍋の蓋に設けられた溶鋼流を囲む円環状に配設されたノズルからアルゴンガスを溶鋼流に吹き付けることを特徴とする技術が提案されている。
 特許文献3では、炭酸カルシウムを入れた取鍋内に溶鋼を出鋼し、出鋼時及び出鋼中の取鍋内の雰囲気をCOガス雰囲気として、溶鋼が空気と接触するのを抑制する方法が開示されている。
 また、(3)は特許文献4にも記載されている通り出鋼時に未脱酸もしくは半脱酸状態として出鋼する方法であり、多くの先行技術文献に見られる一般的な手法である。
 転炉から取鍋への出鋼時において、溶鋼への吸窒が生じている場所は、非特許文献1に記載されているように、溶鋼が転炉から取鍋内に出鋼される際に生じる滝壷部であると考えられる。しかしながら、(4)反応界面積を低減させる手法、それも滝壷部における反応界面積低減に着目した発明に関しては、特許文献5を除いては見あたらない。特許文献5では、出鋼流を、傾斜させた取鍋の壁に沿わせて取鍋に受鋼するとともに、転炉等の製鋼炉の出鋼口に不活性ガスを供給して出鋼流に不活性ガスを混入させる技術が提案されている。
特開昭60-26611号公報 特開平2-285020号公報 特開2003-293022号公報 特開昭59-190314号公報 特開昭61-166911号公報
長隆郎ら著「転炉出鋼時の溶鋼の酸素および窒素吸収の推算」、鉄と鋼、69(1983)、p.767-774 岡山敦ら著「注入流のガス吸収挙動に関する水モデル実験」、鉄と鋼、102(2016)、p.607-613
 特許文献5に開示されている技術は、出鋼流の滝壷自体のサイズを低減する方法である。滝壷のサイズを小さくすると吸窒が生じる反応界面積も低減するため、吸窒抑制効果が得られるが、出鋼流を取鍋の壁に沿わせるのは耐火物の溶損リスク等が大きい。このため、滝壷が生成したとしても、その滝壷内で吸窒が生じる界面積を低減させることが可能な、異なる切り口の技術が必要である。
 本開示は、溶鋼を取鍋に出鋼する際に出鋼流によって形成される滝壷部での吸窒を効果的に抑制することのできる、鋼の製造方法を提供することを目的とする。
 即ち、本開示の要旨とするところは以下のとおりである。
<1> 溶鋼炉から出鋼された溶鋼を取鍋に受鋼する工程と、
 前記取鍋に受鋼した前記溶鋼を前記取鍋から排出して鋳造する工程と、を含み、
 前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する際、下記(1)式によって算出されるスラグ厚みTが0.02m以上を満たす量Wの酸化物からなる副原料を、前記溶鋼の受鋼開始前に前記取鍋内の底部に入れ置きし又は受鋼開始と共に前記取鍋内に投入し、前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する、鋼の製造方法。
  T=(W/ρ)/((π・D)/4)   (1)
  T:スラグ厚み(m)
  D:取鍋直径(m)
  ρ:溶融酸化物密度(=3000kg/m
  W:副原料の量(kg)
<2> 前記副原料の組成が、
  CaO/Al:0.8~4.0   (2)
  5%≦SiO≦10%        (3)
  MgO≦10%            (4)
  CaO+Al+SiO+MgO≧90%   (5)
を満たしている、<1>に記載の鋼の製造方法。
 ただし、(2)~(5)式中の分子記号は当該分子の含有量(質量%)を意味する。
<3> 前記副原料の量Wが、前記(1)式によって算出される前記スラグ厚みTが0.1m以下を満たす量である、<1>又は<2>に記載の鋼の製造方法。
<4> 前記溶鋼の受鋼開始前に、前記量Wの前記副原料を前記取鍋内の底部に入れ置きしておく、<1>~<3>のいずれか1つに記載の鋼の製造方法。
<5> 前記取鍋内に入れ置きした前記副原料を予熱し、前記副原料の温度が800℃以上の状態で前記溶鋼を前記取鍋に受鋼する、<4>に記載の鋼の製造方法。
 本開示によれば、溶鋼を取鍋に出鋼する際に出鋼流によって形成される滝壷部での吸窒を効果的に抑制することのできる鋼の製造方法が提供される。
取鍋内のスラグ厚みと吸窒量の関係を示す図である。 出鋼直前の合成フラックス温度と吸窒量の関係を示す図である。
 本開示において用いる用語の意味内容について説明する。
 溶鋼炉(製鋼炉)とは、転炉、AOD(Argon Oxygen Decarburization)炉、電気炉といった、溶鋼を溶製するための保持容器を指す。
 出鋼とは、製鋼炉に保持された溶融金属(溶鋼)を製鋼炉から取鍋といった搬送用の容器に移し替える操作を指す。また、受鋼とは、溶鋼炉から出た溶鋼を取鍋が受けることを意味し、出鋼と受鋼は同じタイミングで行われることになる。
 副原料とは、溶鋼を精錬するのに必要な鉄分以外の添加物を指す。本開示では、酸化物からなる副原料を対象とし、鉄以外の成分が含まれる酸化物からなるものを副原料とする。具体的には、生石灰、珪砂、カルシウムアルミネート系造滓剤、アルミナレンガ屑、焼成ドロマイト等が使用できる。
 取鍋直径Dとは、取鍋の内径を意味する。通常、取鍋内は底部と上部(開口部)の内径が同じ作りになっているが、底部と上部の内径が異なる場合は、取鍋底部と上部での各直径(内径)の平均値とする。また、取鍋の高さ方向に垂直な取鍋内部の断面が楕円形である場合は、長径と短径との平均値を取鍋直径Dとする。
 本発明者は、上記本開示の課題を解決するため、溶存酸素濃度計と水模型装置を使ったガス吸収実験を行い、滝壷部での気泡巻き込み挙動とガス吸収挙動を詳細に調査した。水中には通常8ppm程度の酸素が溶存しており、溶存酸素濃度計を用いて測定できる。転炉から取鍋への出鋼を模擬する水模型装置を準備する。転炉内の溶鋼を模した水については、あらかじめArを吹き込むことにより、溶存酸素量を0.8ppmまで低下させた。水模型装置の転炉内と取鍋内の溶存酸素量を連続的に測定する(非特許文献2参照)。水模型実験における雰囲気から水への酸素吸収傾向から、実際の溶鋼の溶製における雰囲気から溶鋼への窒素吸収傾向が模擬できるものと推認される。即ち、水模型実験で取鍋内の水中の溶存酸素量が増大する条件については、出鋼時に雰囲気中の酸素を多く吸収したことを示しており、実際の転炉からの出鋼時において同じ条件であれば、溶鋼中に窒素を吸収しやすいと推定することができる。
 水模型実験においては、取鍋の水面に何も浮かべない場合と、水面上にオイルを浮かべた場合との対比試験を行った。その結果、水面上にオイルを浮かべた状態で注入流を形成した場合、滝壷では空気とともにオイルが巻き込まれ、さらに巻き込まれたオイルは気泡と接触すると、気泡表面にとどまり、そのまま浮上することを知見した。この時のガス吸収挙動を調査した結果、取鍋の水面に何も浮かべない場合には取鍋中の水の溶存酸素量が増大したのに対し、水面上にオイルを浮かべた場合については、取鍋中の水の溶存酸素量の増大が抑制されることがわかった。この実験結果からは、オイルを浮かべた状態では滝壷を形成する気泡の表面の一部をオイルが覆うことで巻き込まれた空気との反応界面積が低減し、注入中のガス吸収量が抑制されると考えられる。
 この知見をもとにすれば、出鋼時に取鍋の溶鋼表面に流動性のよい皮膜を形成しておくことにより、滝壷部における溶鋼への窒素吸収を防止できることが予測される。そして、滓化性が良くなるように配合した副原料を取鍋に入れ置きした状態で溶鋼を取鍋に出鋼する、あるいは、溶鋼を取鍋に出鋼すると共に副原料を取鍋に投入することで、出鋼直後の高温の溶鋼で副原料を溶融させることができる。このため、出鋼直後から湯面上は溶融酸化物で覆われている状態を形成でき、その状態で出鋼が進むと、滝壷部に溶融酸化物が巻き込まれる状況を意図的に作り出し、吸窒を抑制できる。さらに、この時に滝壷部に巻き込まれる物(副原料)は溶融状態であることが望ましいが、固相が残存していたとしても、気液界面の一部を覆うことには変わりないため、吸窒抑制効果が期待できる。
 本開示は、上記した着想をもとに、溶鋼実験によりその効果を確認することで検討されたものであり、本発明者は、さらに、出鋼前又は出鋼時に取鍋内に入れ置き又は投入する副原料の組成、量、温度といった好ましい条件を見出すことで本開示に係る鋼の製造方法を完成させた。
 すなわち、本開示に係る鋼の製造方法は、
 溶鋼炉から出鋼された溶鋼を取鍋に受鋼する工程と、
 前記取鍋に受鋼した前記溶鋼を前記取鍋から排出して鋳造する工程と、を含み、
 前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する際、下記(1)式によって算出されるスラグ厚みTが0.02m以上を満たす量Wの酸化物からなる副原料を、前記溶鋼の受鋼開始前に前記取鍋内の底部に入れ置きし又は受鋼開始と共に前記取鍋内に投入し、前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する、鋼の製造方法である。
  T=(W/ρ)/((π・D)/4)   (1)
  T:スラグ厚み(m)
  D:取鍋直径(m)
  ρ:溶融酸化物密度(=3000kg/m
  W:副原料の量(kg)
 従来より、出鋼時に副原料を添加する手法は数多く提案されてきた。しかしながら、そのほとんどは吸窒抑制ではなく、スラグ中の低級酸化物の改質を狙ったものであり、添加する副原料は生石灰が多いことに加え、添加時期は出鋼中もしくは出鋼が完了した後である場合が多かった。本開示の手法によれば、出鋼後のスラグ組成は従来手法と同等となるが、出鋼初期の吸窒を効果的に抑制するために副原料を添加する時期が従来よりも早く、出鋼前に一定量以上の副原料を取鍋内に入れ置きしておくか、出鋼と共に取鍋内に投入し、出鋼を開始直後に一定量以上の副原料を溶融させていることが、従来手法とは大きく異なる点である。
 副原料を入れ置きした吸窒抑制効果を確認するため、2ton規模の溶鋼実験を行い、その挙動を検討した。誘導炉で溶解した低窒素脱酸溶鋼2tonを、予熱した取鍋におよそ50秒で出鋼し、出鋼前後の窒素濃度を調査した。この時、溶鋼成分、温度といった諸条件は同じとし、取鍋内に成分調整した合成フラックス(酸化物)を入れ置きし、その状態で出鋼した。その際、取鍋内に入れ置きする合成フラックス組成、フラックス量、予熱温度といったパラメータの影響を調査した。この時、出鋼前後の吸窒量(以下、Δ[N])を調査し、合成フラックスを入れ置きしない条件(run1)でのΔ[N]よりも4ppm以上改善した場合、吸窒抑制効果があると判断した。以下、合成フラックス中の成分含有量は質量%を意味する。試験条件及び試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 まず、合成フラックスを入れ置きしない条件でのΔ[N]は26ppmであった。この結果に対し、CaO=60%、Al=30%、SiO=10%の合成フラックス(CaO/Al=2.0)50kg(=ベース条件)を取鍋内に入れ置きした状態で溶鋼を出鋼したところ、Δ[N]は21ppmとなり、明確な吸窒抑制効果が認められた。出鋼の際の滝壷周囲の様子を撮影して取鍋内の状況を調査したところ、取鍋内に注入された溶鋼と接触することにより合成フラックスが溶融し、滝壷周辺に存在している固相と液相が混合されたスラグが滝壷に巻き込まれる様子が確認できた。合成フラックスの入れ置き有無を除いた条件に違いはないことから、吸窒抑制効果が得られた要因は、滝壷に巻き込まれたスラグが気泡表面の一部を覆ったことで、溶鋼と空気との反応界面積が減少したためと推定された。
 一方、合成フラックスを取鍋内の底部から少し浮かせた壁面に吊り下げ、出鋼開始から15秒後に溶鋼面に添加される条件で出鋼したところ、Δ[N]は24ppmであり、明確な吸窒抑制効果は認められなかった。この場合、合成フラックスは出鋼末期になって溶融していることが確認されたが、最も吸窒量が多い出鋼前半から中盤にかけては添加した合成フラックスの溶融は見られていないことから、溶鋼と空気との反応界面積低減には至らなかったと推定される。
 次に、ベース条件(フラックス組成一定、予熱なし)に対して、入れ置きする合成フラックス量を変更して吸窒抑制効果を調査した。その結果、図1に示すように、入れ置きする合成フラックス量Wと取鍋の大きさ(取鍋直径D)から前記(1)式によって求まる取鍋内のスラグ厚みTが0.02m未満である場合、明確な吸窒抑制効果は認められない結果となった。一方で、スラグ厚みが0.05mを超えると吸窒抑制効果は飽和する結果となった。このことから、滝壷に巻き込まれる液相もしくは固相を含む液相が一定量よりも少ない場合、十分に溶鋼と空気との反応界面積を覆うことができず、吸窒抑制効果が得られないと推定された。また、滝壷に巻き込まれる液相もしくは固相を含む液相が多すぎても、吸窒抑制効果は飽和するため、取鍋に入れ置きする合成フラックス量Wの好ましい上限があると考えられる。
 また、入れ置きする合成フラックス量を一定(50kg)として、表1に示す組成で入れ置きする合成フラックスの組成を変え、予熱なし条件での吸窒抑制効果を調査した。その結果、合成フラックス組成がCaO/Al:0.8~4.0((2)式)、5%≦SiO≦10%((3)式)、MgO≦10%((4)式)となる条件で、安定した吸窒抑制効果が得られる結果となった。安定した吸窒抑制効果が得られた際の合成フラックス組成は、溶鋼温度近傍での液相の割合が高い条件と一致しており、液相の割合が高いほど、滝壷内での気泡表面の被覆効果が大きいと考えられる。
 さらに、ベース条件に対して、取鍋内に入れ置きした合成フラックスをバーナーで予熱し、出鋼直前の合成フラックス温度を変更して吸窒抑制効果を調査した。なお、合成フラックスの温度は、取鍋内に設置した熱電対で調査した。その結果、図2に示すように、合成フラックスの温度を800℃以上に加熱した場合、顕著な吸窒抑制効果が得られる結果となった。一方、合成フラックスの予熱温度が1150℃を超えると、吸窒抑制効果は飽和する結果となった。予熱することで、フラックスが溶融するまでの時間が短縮され、出鋼開始直後の窒素吸収が抑制されたためと考えられる。
 以下、本開示に係る鋼の製造方法の実施形態をさらに詳細に説明する。
 低窒素鋼を製造する場合、高炉あるいは電気炉から搬送された炭素濃度の高い溶銑を転炉などの溶鋼炉に装入し、酸素吹錬により鋼中の炭素をCOガスとして除去する。その際、溶鋼炉ではC+O=CO反応によって炉内の窒素分圧が低下することに加え、底吹きおよび上吹きによる撹拌作用とも相まって鋼中の窒素濃度は10ppm程度まで低下する。脱炭処理後の溶鋼は成分調整や脱ガスを行うため、溶鋼炉から取鍋に出鋼される。その後、成分や温度が調整された溶鋼は鋳造プロセスに供され、鋳造された後は加熱、圧延、熱処理、表面処理といった工程を経て製品として出荷される。
 通常、取鍋はバーナーで予熱された上で、搬送台車で溶鋼炉の直下まで搬送され、溶鋼を受鋼する。通常、生石灰といった副原料は出鋼した後の溶鋼に添加されることが多いが、本開示に係る鋼の製造方法を適用する際には、溶鋼を受鋼するまでに一定量以上の副原料を取鍋内に入れ置きしておくか、溶鋼を受鋼すると共に一定量以上の副原料を取鍋内に投入する必要がある。好ましくは、取鍋を予熱する前、もしくは予熱中に取鍋内に副原料を投入するのが良い。
 副原料の形態としては、予熱中もしくは出鋼時の上昇気流で散逸しないように粒状であることが好ましいが、予熱を行う際は通常取鍋上部を蓋で覆った状態で予熱を行う為、粉状の副原料も使用可能である。好ましくは取鍋が溶鋼炉直下まで搬送された時点で、遅くとも溶鋼炉からの溶鋼の出鋼開始(受鋼開始)と共に、取鍋内には、(1)式で示されたスラグ厚みTが0.02m以上(好ましくは0.1m以下、より好ましくは0.05m以下)となるように求めた量Wの副原料が投入されることが必要である。また、出鋼開始後は速やかに溶融させることが必要である。なお、受鋼開始と共に副原料を取鍋に投入する場合、好ましくは、溶鋼炉から取鍋に溶鋼が注入され始めてから10秒以内に、より好ましくは5秒以内に、更に好ましくは溶鋼の注入と同時に取鍋内への副原料の投入を開始する。また、受鋼開始と共に副原料を取鍋に投入する場合は、受鋼開始後、好ましくは60秒以内に、より好ましくは40秒以内に、更に好ましくは20秒以内に、スラグ厚みTが0.02m以上となる量Wの副原料の投入を完了する。
 また、副原料は、受鋼開始前の取鍋内の副原料の入れ置きと受鋼開始と共に取鍋内への副原料の投入を組み合わせてもよい。すなわち、受鋼開始前に量W1の副原料を取鍋内に入れ置きしておき、さらに受鋼開始と共に量W2の副原料を取鍋内に投入することで、副原料の合計量(W1+W2)が、(1)式で示されたスラグ厚みTが0.02m以上を満たすように求めた量Wとなるようにしてもよい。
 なお、受鋼開始から数分後、脱酸等の目的でAl合金等を添加する場合があるが、このような目的、タイミングで添加される成分は、(1)式で示されたスラグ厚みTが0.02m以上を満たすように求めた量Wの副原料に含まれない。
 本開示に係る鋼の製造方法による低窒素化の効果を得るには、受鋼中は滝壷部に溶融スラグが存在していることが必要である。受鋼中とは、溶鋼炉から取鍋に溶鋼が注入され始めてから、少なくとも1分後から注入が完了するまで、好ましくは、溶鋼の注入開始30秒後から注入が完了するまでの期間を指す。溶融スラグとは、取鍋内に入れ置き又は投入した副原料が溶融し、液相もしくは固相を含む液相となっている状態を指す。本開示では、汎用の熱力学計算ソフト等を用いた計算で、液相割合が50%以上である状態を液相スラグとする。
 滝壷部とは、注入流が取鍋内の溶鋼に進入する際に注入流周りの気相を巻き込んで生じる気泡の巻込みおよび上昇が生じている部分を指し、通常は注入流が取鍋内の溶鋼と接する部分の直下に生じる。出鋼中に滝壺部が溶融スラグに覆われていれば本開示による低窒素化の効果が得られる。溶鋼炉から出鋼された溶鋼を取鍋に受鋼する際、受鋼開示前又は受鋼開始と共に酸化物からなる副原料を、(1)式で示されたスラグ厚みTが0.02m以上(好ましくは0.1m以下、より好ましくは0.05m以下)を満たすように求めた量Wで取鍋内に入れ置き又は投入し、溶鋼炉から出鋼された溶鋼を取鍋に受鋼することにより、受鋼中において滝壷部に溶融スラグを存在させることができる。
 本開示で、取鍋内に入れ置き又は投入する副原料は、酸化物からなる副原料である。従って、炭酸化物、フッ化物、炭化物などは含まれない。例えば、特許文献3には、取鍋内の雰囲気中窒素濃度を低減する目的で、炭酸カルシウムを入れ置きする発明が開示されている。それに対して本開示では、溶鋼表面の溶融スラグによって滝壷部での吸窒現象を防止することを目的とするので、炭酸カルシウムを添加することはしない。炭酸カルシウムは、分解時に吸熱反応を伴うので、溶鋼の温度を低下させる点からも好ましくない。また、蛍石などのフッ化物を添加すると生成スラグの資源化に支障を来すので、フッ化物は添加しない。さらに、脱燐や脱硫を目的としないので、カルシウムカーバイドなどの炭化物を添加することもしない。
 また、取鍋内に入れ置き又は投入する、酸化物からなる副原料は、予め組成をCaO/Al:0.8~4.0((2)式)、5%≦SiO≦10%((3)式)、MgO≦10%((4)式)の範囲に調整した上で添加することが好ましい。このような組成範囲とすることにより、副原料の溶融温度を好ましく低減することができる。MgO含有量を5%以上とするとより好ましい。なお、副原料に含まれる成分は上記したCaO、Al、SiO、MgOの他に、MnO、FeOといった酸化物成分がそれぞれ5%未満で含まれていても許容される。また、揮発分や不純物が含まれることも許容される。即ち、前記(5)式を満たすものであれば好ましい。
 取鍋内に入れ置きした副原料は、取鍋と一緒に予熱されていることが望ましく、800℃以上に予熱されていると好適である。副原料の予熱温度は、放射温度計によって取鍋内に入れ置きした副原料の表面温度を計測することにより評価できる。
 上記のように本開示に係る鋼の製造方法を用いることで、出鋼時に窒素濃度の上昇を抑制することができるので、低窒素鋼を経済的にかつ安定的に製造することができる。なお、本開示に係る鋼の製造方法によれば、出鋼時の窒素濃度の上昇を効果的に抑制することができるが、製造する鋼中の窒素濃度は限定されない。
 このような本開示に係る鋼の製造方法は、炭素鋼に非常に有効であるが、炭素鋼以外のステンレス鋼、合金鋼の製造にも有効である。
 以下に示す溶鋼の実施例および比較例の条件で、出鋼時の吸窒挙動評価試験を行い、吸窒抑制効果を確認した。
 高炉から搬送された溶銑(炭素含有量4.5%相当)を転炉に装入し、酸素吹錬を行った。転炉吹錬後の成分は、[C]=0.06~0.14%、[Si]=0.01~0.05%、[Mn]=0.1~0.4%、[P]=0.01~0.03%、[N]=9~12ppm、残部がFeおよび不純物である。処理量は300ton規模、取鍋直径(内径)は3.9mであり、出鋼時間はおよそ5分である。出鋼前、取鍋を予熱する前段階、もしくは、取鍋予熱後に、取鍋底部に成分調整した所定量の副原料を入れ置きし、取鍋を転炉直下まで搬送した後、溶鋼を受鋼した。あるいは、溶鋼の受鋼と共に副原料を取鍋に投入した。出鋼の際、出鋼を開始してから2分後に出鋼流に巻き込ませる形でAlを含む合金を投入した。また、出鋼開始から3~4分後に取鍋内に副原料(酸化物)を追加投入することで、表2に示す「最終スラグ厚みt」とした。
 吸窒抑制効果を確認するため、出鋼前の転炉内、出鋼後の取鍋内の溶鋼サンプルを採取し、出鋼前後の窒素濃度変化量Δ[N](ppm)を吸窒量として評価した。試験条件を表2に示す。表2の「吸窒抑制効果」の欄において、Δ[N]が17ppm超20ppm以下であった場合、吸窒抑制効果があったとして「C」とし、Δ[N]が15ppm超17ppm以下であった場合、優れた吸窒抑制効果があったと判断して「B」とした。また、Δ[N]が15ppm以下であった場合、顕著な吸窒抑制効果があったと判断して「A」とした。Δ[N]が20ppm超については、吸窒抑制効果が見られなかったとして「D」とした。
Figure JPOXMLDOC01-appb-T000002
 試験No.1は取鍋内に副原料を入れ置きしない条件、試験No.2およびNo.3は取鍋内に副原料を入れ置きするものの、スラグ厚みが本開示の範囲から外れている条件で、いずれも比較例である。入れ置きする副原料が不足した試験No.2および試験No.3のΔ[N]は23~24ppmであり、吸窒抑制効果は認められなかった。
 試験No.4から試験No.17までは本開示の要件を満たした実施例であり、Δ[N]は20ppm以下となり、吸窒抑制効果が認められた。
 試験No.10から試験No.13までは取鍋内に入れ置きする副原料の組成を好適な範囲に調整した条件であり、Δ[N]は17ppm以下となり、優れた吸窒抑制効果があったと判断した。
 試験No.3,5,9および試験No.14から試験No.16までは、入れ置きした副原料の予熱温度を変化させた条件である。試験No.5と試験No.7を比較すると、副原料の予熱温度が高い試験No.5の方が吸窒抑制効果が大きく、副原料予熱温度を高くすることで、優れた吸窒抑制効果が得られることが分かる。このことは、試験No.11と試験No.14を比較しても明らかであり、試験No.14は副原料組成を本開示の好適な範囲に制御することに加え、副原料予熱温度を800℃以上とすることで、顕著な吸窒抑制効果が得られている。試験No.15、16も同様である。
 試験No.18は、取鍋内に受鋼と共に副原料を投入した実施例である。Δ[N]は20ppmであり、比較例よりも低く、吸窒抑制効果が認められた。
 
 溶鉄の出鋼時の吸窒を効果的に抑制できるため、低窒素鋼の製造方法において有益である。
 2018年6月28日に出願された日本特許出願2018-122844の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (5)

  1.  溶鋼炉から出鋼された溶鋼を取鍋に受鋼する工程と、
     前記取鍋に受鋼した前記溶鋼を前記取鍋から排出して鋳造する工程と、を含み、
     前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する際、下記(1)式によって算出されるスラグ厚みTが0.02m以上を満たす量Wの酸化物からなる副原料を、前記溶鋼の受鋼開始前に前記取鍋内の底部に入れ置きし又は受鋼開始と共に前記取鍋内に投入し、前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する、鋼の製造方法。
      T=(W/ρ)/((π・D)/4)   (1)
      T:スラグ厚み(m)
      D:取鍋直径(m)
      ρ:溶融酸化物密度(=3000kg/m
      W:副原料の量(kg)
  2.  前記副原料の組成が、
      CaO/Al:0.8~4.0   (2)
      5%≦SiO≦10%        (3)
      MgO≦10%            (4)
      CaO+Al+SiO+MgO≧90%   (5)
    を満たしている、請求項1に記載の鋼の製造方法。
     ただし、(2)~(5)式中の分子記号は当該分子の含有量(質量%)を意味する。
  3.  前記副原料の量Wが、前記(1)式によって算出される前記スラグ厚みTが0.1m以下を満たす量である、請求項1又は請求項2に記載の鋼の製造方法。
  4.  前記溶鋼の受鋼開始前に、前記量Wの前記副原料を前記取鍋内の底部に入れ置きしておく、請求項1~請求項3のいずれか1項に記載の鋼の製造方法。
  5.  前記取鍋内に入れ置きした前記副原料を予熱し、前記副原料の温度が800℃以上の状態で前記溶鋼を前記取鍋に受鋼する、請求項4に記載の鋼の製造方法。
PCT/JP2019/025471 2018-06-28 2019-06-26 鋼の製造方法 WO2020004501A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207026029A KR102441788B1 (ko) 2018-06-28 2019-06-26 강의 제조 방법
JP2020527600A JP6806288B2 (ja) 2018-06-28 2019-06-26 鋼の製造方法
CN201980017253.0A CN111819296A (zh) 2018-06-28 2019-06-26 钢的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018122844 2018-06-28
JP2018-122844 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004501A1 true WO2020004501A1 (ja) 2020-01-02

Family

ID=68986636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025471 WO2020004501A1 (ja) 2018-06-28 2019-06-26 鋼の製造方法

Country Status (5)

Country Link
JP (1) JP6806288B2 (ja)
KR (1) KR102441788B1 (ja)
CN (1) CN111819296A (ja)
TW (1) TWI699436B (ja)
WO (1) WO2020004501A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023062905A1 (ja) * 2021-10-12 2023-04-20 Jfeスチール株式会社 溶鉄の不純物濃度の予測方法、溶鉄の製造方法、学習済の機械学習モデルの作成方法及び溶鉄の不純物濃度の予測装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613426A (en) * 1979-07-10 1981-02-09 Nippon Steel Corp Treatment of molten steel
JPS6092417A (ja) * 1983-10-26 1985-05-24 Japan Metals & Chem Co Ltd 鉄−マンガン合金の精製法
JPH0718322A (ja) * 1993-07-07 1995-01-20 Kawasaki Steel Corp 高清浄度アルミキルド鋼の精錬方法
JPH0860229A (ja) * 1994-08-16 1996-03-05 Nippon Steel Corp 溶融金属の精錬方法
JPH1192811A (ja) * 1997-09-12 1999-04-06 Sumitomo Metal Ind Ltd 溶融金属の精錬方法
JP2001107130A (ja) * 1999-10-08 2001-04-17 Sumitomo Metal Ind Ltd 低窒素鋼の製造方法
JP2003293022A (ja) * 2002-04-01 2003-10-15 Nippon Steel Corp 低窒素含クロム溶鋼の製造方法
JP2012082513A (ja) * 2010-09-15 2012-04-26 Nippon Steel Corp 溶銑の脱硫剤及び脱硫方法
JP2013159811A (ja) * 2012-02-03 2013-08-19 Nippon Steel & Sumitomo Metal Corp 極低硫低窒素鋼の溶製方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190314A (ja) 1983-04-13 1984-10-29 Nippon Kokan Kk <Nkk> 低窒素キルド鋼の溶製方法
JPS6026611A (ja) 1983-07-22 1985-02-09 Nisshin Steel Co Ltd 含Cr極低窒素鋼の溶製方法
JPS61166911A (ja) 1985-01-16 1986-07-28 Kawasaki Steel Corp 低窒素鋼の製造方法
JPH02285020A (ja) 1989-04-25 1990-11-22 Nkk Corp 転炉出鋼時の取鍋への空気巻き込み抑制方法
CN101457275B (zh) * 2009-01-08 2011-04-20 攀钢集团研究院有限公司 控制转炉工艺生产铝脱氧钢氮含量的方法
CN104046719A (zh) * 2014-06-27 2014-09-17 攀钢集团攀枝花钢钒有限公司 一种控制转炉炼钢中钢水氮含量的方法
CN105624367B (zh) * 2014-12-01 2017-07-21 鞍钢股份有限公司 一种控制钢水氮含量的精炼装置及方法
MX2018007963A (es) * 2016-03-09 2018-11-09 Nippon Steel & Sumitomo Metal Corp Lamina de acero con superficie tratada y metodo para producir la lamina de acero con superficie tratada.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613426A (en) * 1979-07-10 1981-02-09 Nippon Steel Corp Treatment of molten steel
JPS6092417A (ja) * 1983-10-26 1985-05-24 Japan Metals & Chem Co Ltd 鉄−マンガン合金の精製法
JPH0718322A (ja) * 1993-07-07 1995-01-20 Kawasaki Steel Corp 高清浄度アルミキルド鋼の精錬方法
JPH0860229A (ja) * 1994-08-16 1996-03-05 Nippon Steel Corp 溶融金属の精錬方法
JPH1192811A (ja) * 1997-09-12 1999-04-06 Sumitomo Metal Ind Ltd 溶融金属の精錬方法
JP2001107130A (ja) * 1999-10-08 2001-04-17 Sumitomo Metal Ind Ltd 低窒素鋼の製造方法
JP2003293022A (ja) * 2002-04-01 2003-10-15 Nippon Steel Corp 低窒素含クロム溶鋼の製造方法
JP2012082513A (ja) * 2010-09-15 2012-04-26 Nippon Steel Corp 溶銑の脱硫剤及び脱硫方法
JP2013159811A (ja) * 2012-02-03 2013-08-19 Nippon Steel & Sumitomo Metal Corp 極低硫低窒素鋼の溶製方法

Also Published As

Publication number Publication date
TWI699436B (zh) 2020-07-21
KR102441788B1 (ko) 2022-09-08
JPWO2020004501A1 (ja) 2020-09-17
TW202000926A (zh) 2020-01-01
CN111819296A (zh) 2020-10-23
JP6806288B2 (ja) 2021-01-06
KR20200118191A (ko) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6743915B2 (ja) 溶鋼の脱硫処理方法及び脱硫剤
JP5772339B2 (ja) 取鍋内スラグの再利用方法
JP5573424B2 (ja) 溶鋼の脱硫処理方法
JP5904237B2 (ja) 高窒素鋼の溶製方法
JP2006274349A (ja) 鋼の精錬方法
JP6693536B2 (ja) 転炉製鋼方法
WO2020004501A1 (ja) 鋼の製造方法
JP3672832B2 (ja) ダクタイル鋳鉄管及びその製造方法
JP5408379B2 (ja) 溶銑の予備処理方法
TWI685577B (zh) 高錳鋼的冶煉方法
JP5888194B2 (ja) 溶鋼の脱硫方法
US3897244A (en) Method for refining iron-base metal
JP6547734B2 (ja) 低硫鋼の製造方法
JP2015042780A (ja) 転炉における溶銑の脱燐処理方法
JP2008169407A (ja) 溶鋼の脱硫方法
JP2017025373A (ja) 溶鋼の脱硫方法
JP2006241561A (ja) 溶銑輸送容器からの発塵防止方法
JP4214894B2 (ja) 溶銑の予備処理方法
JP6658049B2 (ja) 溶銑の脱珪処理方法
JP2006274329A (ja) 溶銑の脱炭精錬方法
JP3750588B2 (ja) 溶銑の脱珪方法
JP4254412B2 (ja) 溶銑の脱珪脱硫方法
JP2000212633A (ja) 溶鋼の取鍋精錬における脱硫方法
JP4360239B2 (ja) 真空脱ガス設備における溶鋼の脱硫処理方法
JP2008184684A (ja) 溶銑の脱硫方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527600

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207026029

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827580

Country of ref document: EP

Kind code of ref document: A1