TW201508975A - 用於三維電池之分離器 - Google Patents

用於三維電池之分離器 Download PDF

Info

Publication number
TW201508975A
TW201508975A TW103109289A TW103109289A TW201508975A TW 201508975 A TW201508975 A TW 201508975A TW 103109289 A TW103109289 A TW 103109289A TW 103109289 A TW103109289 A TW 103109289A TW 201508975 A TW201508975 A TW 201508975A
Authority
TW
Taiwan
Prior art keywords
electrode
group
negative electrode
layer
electrode group
Prior art date
Application number
TW103109289A
Other languages
English (en)
Other versions
TWI658632B (zh
Inventor
Murali Ramasubramanian
Michael Armstrong
Brian E Brusca
Vladimir Dioumaev
Gunther A Koblmiller
Ashok Lahiri
Laurie J Lauchlan
Harrold J Rust Iii
Nirav S Shah
Robert M Spotnitz
James D Wilcox
Original Assignee
Enovix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enovix Corp filed Critical Enovix Corp
Publication of TW201508975A publication Critical patent/TW201508975A/zh
Application granted granted Critical
Publication of TWI658632B publication Critical patent/TWI658632B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0472Vertically superposed cells with vertically disposed plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本發明係關於一種用於能量儲存裝置之電極結構,該電極結構包括電極群、反電極群及分離該電極群之成員與該反電極群之成員之電絕緣材料層,該電極群之每一成員具有由該電絕緣分離器層環繞之縱向軸AE。

Description

用於三維電池之分離器
本發明概言之係關於用於能量儲存裝置之結構、納入該等結構之能量儲存裝置及產生該等結構及能量裝置之方法。
搖椅式或插入式二次電池係一類能量儲存裝置,其中載體離子(例如鋰離子、鈉離子、鉀離子、鈣離子或鎂離子)經由電解質在正電極與負電極之間移動。二次電池可包括單一電池單元或兩個以上電耦聯以形成電池之電池單元,其中每一電池單元包括正電極、負電極、微孔分離器及電解質。
在搖椅式電池單元中,正電極及負電極包括插入及引出載體離子之材料。在單元放電時,載體離子自負電極引出並插入正電極中。在單元充電時,發生反過程:載體離子自正電極引出並插入負電極中。
圖1展示現有能量儲存裝置(例如非水性鋰離子電池)之電化學堆疊之剖面圖。電化學堆疊1包含正電極集電器12,在其頂部組裝有正電極活性材料層13。此層由微孔分離器14覆蓋,在微孔分離器上方放置有負電極集電器15及負電極活性材料層16之總成。此堆疊有時經位於負電極集電器15上方之另一分離器層(未展示)覆蓋,輥壓並填充成罐,並填充非水性電解質以組裝二次電池。
正電極及負電極集電器彙集來自各別活性電化學電極之電流並 使得能夠將電流轉移至電池外側之環境中。負電極集電器之一部分與負電極活性材料物理接觸,而正電極集電器之一部分與正電極活性材料物理接觸。集電器並不參與電化學反應且由此限於在用於陽極及陰極之各別電化學電勢範圍中電化學穩定之材料。
為將電流自集電器引向電池外側之環境中,負電極及正電極集電器常各自連結至電極匯流排、接片、標籤、包裝通孔或外殼通孔(通稱為觸點)。觸點之一端連結至一或多個集電器,而另一端通過電池包裝以用於電連結至電池外側之環境。藉由焊接、捲曲或超音波結合,負電極觸點連結至負電極集電器且正電極觸點連結至正電極集電器,或使用導電膠水膠合於適當位置。
習用捲繞式電池(例如參見美國專利第6,090,505號及第6,235,427號)通常具有在單元組裝之前塗覆於單一箔上並壓縮之電極材料(活性材料、黏合劑、導電助劑)。上面塗覆電極之箔通常係電流收集路徑之一部分。在單一膠捲電池(例如18650或棱形單元)中,將集電器箔以超音波方式焊接至自活性材料攜載電流穿過集電器箔及接片並到達電池外側之電極匯流排、接片、標籤等上。端視設計,可在沿單一膠捲之多個位置或沿集電器箔之一或兩端之一個位置存在接片。習用堆疊電池袋單元具有多個活性材料板(或箔),其中隨後聚集在每一箔頂部之區域並一起焊接成接片;該接片然後將電流攜載至電池袋外側(例如參見美國專利公開案第2005/0008939號)。
再次參照圖1,在充電過程期間,鋰離開正電極陰極層13並以鋰離子形式穿越分離器14進入負電極活性材料層16中。端視所用負電極活性材料,鋰離子嵌入(例如處於負電極活性材料之基質中而並不形成合金)或形成合金。在放電過程期間,鋰離開負電極活性材料層16,穿越分離器14並進入正電極活性材料層13中。電流導體將電子自電池觸點(未展示)傳導至電極或反之亦然。
在組裝及電池操作期間,使用電池分離器分離陽極及陰極。用於現有鋰離子電池之分離器通常使用具有高離子滲透性、良好機械穩定性及對電池化學之良好化學相容性之薄多孔絕緣材料。在結構上,分離器應具有足夠孔隙率以吸收用於高離子導電性之液體電解質。其主要係由聚合膜或非織造織物氈組成之微孔層。
現有能量儲存裝置(例如電池、燃料單元及電化學電容器)通常具有如圖1中所圖解說明之二維層壓構造(例如平面或纏繞式壓層),其中每一壓層之表面積大約等於其幾何足跡(忽略孔隙率及表面粗糙度)。
已在文獻中提出三維電池作為改良電池容量及活性材料利用之方式。已提出,可使用三維構造來提供高於二維層壓電池構造之表面積及能量。因可自小幾何面積獲得之能量量有所增加,故可有益於製造三維能量儲存裝置。例如參見Rust等人,WO2008/089110;Long等人,「Three-Dimensional Battery Architectures」,Chemical Reviews,(2004),104,4463-4492。
儘管迄今為止已獲得一定發展,但仍需要具有增加之能量密度之二次電池及其他能量儲存裝置。
在本發明之各種態樣中,提供用於能量儲存裝置(例如電池、燃料單元及電化學電容器)之三維結構。有利的是且根據本發明之一態樣,可增加電極活性材料相對於能量儲存裝置之其他組份(亦即能量儲存裝置之非活性材料組份)之比例。因此,包括本發明之三維結構之能量儲存裝置可具有增加之能量密度。其亦可(例如)藉由最小化或減小正電極與負電極之間之電子傳輸距離及離子轉移來提供高於二維能量儲存裝置之能量回收率(對於特定儲存能量量而言)。該等裝置可更適於小型化並適於可用於裝置之幾何面積有限及/或能量密度需求 高於使用層壓裝置可達成者之應用。
簡言之,由此,本發明之一態樣係用於能量儲存裝置之電極結構。電極結構包括具有電極活性材料層之電極群及具有反電極活性材料層之反電極群。電極群與反電極群以交替序列沿第一方向配置。電極群之每一成員具有底部、頂部、長度LE、寬度WE、高度HE及縱向軸AE(其自每一該成員之底部延伸至頂部且處於第一方向之橫向方向上),電極群中每一成員之長度LE係在其縱向軸AE之方向上量測,電極群中每一成員之寬度WE係在第一方向上量測,且電極群中每一成員之高度HE係在與每一該成員之縱向軸AE及第一方向垂直之方向上量測。電極群中每一成員之LE對WE及HE中之每一者之比率分別為至少5:1,且電極群中每一成員之HE對WE之比率分別介於0.4:1與1000:1之間。電極群中每一成員之縱向軸AE由電絕緣分離器層環繞,且電絕緣分離器層包括位於電極及反電極群成員之間之微孔分離器材料層,微孔分離器材料層具有至少20體積%之空隙分率。
本發明之另一態樣係用於能量儲存裝置之電極結構,其包括具有電極活性材料層之電極群及具有反電極活性材料層之反電極群。電極群與反電極群以交替序列沿第一方向配置。電極群之每一成員具有底部、頂部、長度LE、寬度WE、高度HE及縱向軸AE(其自每一該成員之底部延伸至頂部且處於第一方向之橫向方向上),電極群中每一成員之長度LE係在其縱向軸AE之方向上量測,電極群中每一成員之寬度WE係在第一方向上量測,且電極群中每一成員之高度HE係在與每一該成員之縱向軸AE及第一方向垂直之方向上量測。電極群中每一成員之LE對WE及HE中之每一者之比率分別為至少5:1,且電極群中每一成員之HE對WE之比率分別介於0.4:1與1000:1之間。電極群中每一成員之縱向軸AE由電絕緣分離器層環繞,且電絕緣分離器層包括位於電極及反電極群成員之間之微孔分離器材料層(包括微粒材料及黏合劑), 微孔分離器材料層具有至少20體積%之空隙分率。
本發明之另一態樣係包括至少兩個電極結構之電極堆疊。每一電極結構包括含有具有電極活性材料層之電極群及具有反電極活性材料層之反電極群之電極結構。電極群與反電極群以交替序列沿第一方向配置。電極群之每一成員具有底部、頂部、長度LE、寬度WE、高度HE及縱向軸AE(其自每一該成員之底部延伸至頂部且處於第一方向之橫向方向上),電極群中每一成員之長度LE係在其縱向軸AE之方向上量測,電極群中每一成員之寬度WE係在第一方向上量測,且電極群中每一成員之高度HE係在與每一該成員之縱向軸AE及第一方向垂直之方向上量測。電極群中每一成員之LE對WE及HE中之每一者之比率分別為至少5:1,且電極群中每一成員之HE對WE之比率分別介於0.4:1與1000:1之間。電極群中每一成員之縱向軸AE由電絕緣分離器層環繞,且電絕緣分離器層包括位於電極及反電極群成員之間之微孔分離器材料層(包括微粒材料及黏合劑),微孔分離器材料層具有至少20體積%之空隙分率。
本發明之另一態樣係二次電池,其包括電池包殼、非水性電解質及電極結構。電極結構包括具有電極活性材料層之電極群及具有反電極活性材料層之反電極群。電極群與反電極群以交替序列沿第一方向配置。電極群之每一成員具有底部、頂部、長度LE、寬度WE、高度HE及縱向軸AE(其自每一該成員之底部延伸至頂部且處於第一方向之橫向方向上),電極群中每一成員之長度LE係在其縱向軸AE之方向上量測,電極群中每一成員之寬度WE係在第一方向上量測,且電極群中每一成員之高度HE係在與每一該成員之縱向軸AE及第一方向垂直之方向上量測。電極群中每一成員之LE對WE及HE中之每一者之比率分別為至少5:1,且電極群中每一成員之HE對WE之比率分別介於0.4:1與1000:1之間。電極群中每一成員之縱向軸AE由電絕緣分離器層 環繞,且電絕緣分離器層包括位於電極及反電極群成員之間之微孔分離器材料層(包括微粒材料及黏合劑),微孔分離器材料層具有至少20體積%之空隙分率。
在下文中將部分地明瞭並部分地指出其他目標及特徵。
1‧‧‧電化學堆疊
3‧‧‧線
5‧‧‧線
6‧‧‧線
7‧‧‧線
8‧‧‧線
12‧‧‧正電極集電器
13‧‧‧正電極活性材料層
14‧‧‧微孔分離器
15‧‧‧負電極集電器
16‧‧‧負電極活性材料層
20‧‧‧電極結構
21‧‧‧負電極
22‧‧‧正電極
23‧‧‧負電極匯流排
24‧‧‧正電極匯流排
25‧‧‧負導電路徑/負電極接片延伸部分
26‧‧‧正/導電路徑/正電極接片延伸部分
27‧‧‧內表面
28‧‧‧內表面
31‧‧‧底部
32‧‧‧底部
33‧‧‧頂部
34‧‧‧頂部
41‧‧‧負電極接片
42‧‧‧正電極接片
43‧‧‧電絕緣分離器材料層
47‧‧‧負電極集電器層/負電極電流導體層
47A‧‧‧補充負電極集電器層
47B‧‧‧補充負電極集電器層
48‧‧‧正電極集電器層/正電極電流導體層
48A‧‧‧補充正電極集電器層
48B‧‧‧補充正電極集電器層
49‧‧‧負電極活性材料層
50‧‧‧正電極活性材料層
51‧‧‧負電極骨架
52‧‧‧正電極骨架
61‧‧‧側表面
62‧‧‧側表面
63‧‧‧側表面
64‧‧‧側表面
65‧‧‧前表面
66‧‧‧前表面
67‧‧‧背表面
68‧‧‧背表面
70‧‧‧三維電池
72‧‧‧電池包殼
72A‧‧‧蓋
72B‧‧‧鉸合件
72C‧‧‧上表面
74‧‧‧電極堆疊
82‧‧‧電絕緣分離器層
84‧‧‧電絕緣分離器層
86‧‧‧電絕緣分離器層
88‧‧‧電絕緣分離器層
ANE‧‧‧縱向軸
APE‧‧‧縱向軸
D‧‧‧方向
HE‧‧‧高度
HNB‧‧‧高度
HNE‧‧‧高度
HPE‧‧‧高度
LNE‧‧‧長度
LPC‧‧‧長度
LPE‧‧‧長度
L43‧‧‧長度
L82‧‧‧長度
L84‧‧‧長度
PNE‧‧‧周長
PPE‧‧‧周長
WE‧‧‧寬度
WNE‧‧‧寬度
WPE‧‧‧寬度
X‧‧‧軸
Y‧‧‧軸
Z‧‧‧軸
圖1係典型先前技術二維能量儲存裝置(例如鋰離子電池)之電化學堆疊之單元之橫截面。
圖2係本發明之電極結構之一實施例之透視圖,其中分離各部件以展示內部構造;圖3係在含有線3-3之平面中獲取之圖2之電極結構的片段橫截面。
圖4係圖2之電極結構之子總成之片段透視圖;圖5係沿線5獲取之圖4之電極結構之子總成的俯視平面圖。
圖6係沿線6獲取之圖4之電極結構之子總成的俯視平面圖。
圖7係在含有圖5中線7-7之平面中獲取之電極結構之子總成的橫截面。
圖8係在含有圖6中線8-8之平面中獲取之電極結構之子總成的橫截面。
圖9係圖2之電極結構之子總成之片段透視圖,其中分離各部件以展示內部構造。
圖10係本發明之三維二次電池之分解圖。
圖11係圖10之組裝三維二次電池之片段透視圖。
圖12係在含有線3-3之平面中獲取之圖2中電極結構之替代實施例的橫截面。
圖13係在含有線3-3之平面中獲取之圖2中電極結構之替代實施例的橫截面。
圖14係在含有線3-3之平面中獲取之圖2中電極結構之替代實施例的橫截面。
圖15係在含有線3-3之平面中獲取之圖2中電極結構之替代實施例的橫截面。
圖16係在含有線3-3之平面中獲取之圖2中電極結構之替代實施例的橫截面。
圖17係在含有線3-3之平面中獲取之圖2中電極結構之替代實施例的橫截面。
圖18係在含有線3-3之平面中獲取之圖2中電極結構之替代實施例的橫截面。
圖19係圖2之電極結構之子總成之替代實施例的片段透視圖,其中分離各部件以展示內部構造。
圖20係在含有線3-3之平面中獲取之圖2中電極結構之替代實施例的橫截面。
圖21係在含有線3-3之平面中獲取之圖2中電極結構之替代實施例的橫截面。
圖22係在含有線3-3之平面中獲取之圖2中電極結構之橫截面的替代實施例。
圖23係沿線5獲取之圖4中電極結構之替代實施例之子總成的片段透視圖,其中分離各部件以展示內部構造。
圖24係沿線6獲取之圖4中電極結構之替代實施例之子總成的片段透視圖,其中分離各部件以展示內部構造。
圖25A-E係本發明之電極(正電極或負電極)之替代實施例之橫截面。
圖26係本發明之電極堆疊之替代實施例之橫截面。
圖27係本發明之電極堆疊之替代實施例之橫截面。
貫穿該等圖式,相應參考字元指示相應部件。
在本發明之各種態樣中可注意到,在納入能量儲存裝置(例如電池、電容器及燃料單元)中時,三維結構會提供特定優點。舉例而言,該等結構可納入正電極、負電極及/或分離器在性質上為非層壓之二次電池中。在一較佳實例性實施例中,將該等結構納入載體離子(例如選自鋰離子、鈉離子、鉀離子、鈣離子及鎂離子)在正電極與負電極之間移動之二次電池中。
一般而言,三維結構包括電極群、反電極群及分離器材料(用以電隔離電極群成員與反電極群成員)。電極及反電極之群以交替序列配置,且實質上電極群之每一成員位於反電極群之兩個成員之間,且實質上反電極群之每一成員位於電極群之兩個成員之間。舉例而言,除交替系列中之第一及最後電極或反電極外,在一實施例中,交替系列中之每一電極位於兩個反電極之間且系列中之每一反電極位於兩個電極之間。
在一實施例中,電極群成員包括電極活性材料層、電極集電器及電極骨架,該電極骨架支撐電極活性材料層及電極集電器。類似地,在一實施例中,反電極群成員包括反電極活性材料層、反電極集電器及反電極骨架,該反電極骨架支撐反電極活性材料層及反電極集電器。
電極群之每一成員具有底部、頂部及縱向軸(AE),該縱向軸自其底部延伸至頂部且處於與發展電極及反電極之交替序列之方向大致垂直之方向上。另外,電極群之每一成員具有長度(LE)(沿縱向軸(AE)量測)、寬度(WE)(在發展電極及反電極之交替序列之方向上量測)及高度(HE)(在與長度(LE)及寬度(WE)中之每一量測方向垂直之方向上量測)。電極群之每一成員亦具有周長(PE),其對應於電極在與其縱向軸 垂直之平面中之突出之邊長的總和。
電極群成員之長度(LE)端視能量儲存裝置及其預期用途而有所變化。然而,一般而言,電極群成員通常具有在約5mm至約500mm之範圍內之長度(LE)。舉例而言,在一該實施例中,電極群成員具有約10mm至約250mm之長度(LE)。根據另一實例,在一該實施例中,電極群成員具有約25mm至約100mm之長度(LE)。
電極群成員之寬度(WE)亦端視能量儲存裝置及其預期用途而有所變化。然而,一般而言,電極群之每一成員通常具有在約0.01mm至2.5mm之範圍內之寬度(WE)。舉例而言,在一實施例中,電極群中每一成員之寬度(WE)在約0.025mm至約2mm之範圍內。根據另一實例,在一實施例中,電極群中每一成員之寬度(WE)在約0.05mm至約1mm之範圍內。
電極群成員之高度(HE)亦端視能量儲存裝置及其預期用途而有所變化。然而,一般而言,電極群成員通常具有在約0.05mm至約10mm之範圍內之高度(HE)。舉例而言,在一實施例中,電極群中每一成員之高度(HE)在約0.05mm至約5mm之範圍內。根據另一實例,在一實施例中,電極群中每一成員之高度(HE)在約0.1mm至約1mm之範圍內。
電極群成員之周長(PE)類似地端視能量儲存裝置及其預期用途而有所變化。然而,一般而言,電極群成員通常具有之周長(PE)在約0.025mm至約25mm之範圍內。舉例而言,在一實施例中,電極群中每一成員之周長(PE)在約0.1mm至約15mm之範圍內。根據另一實例,在一實施例中,電極群中每一成員之周長(PE)在約0.5mm至約10mm之範圍內。
一般而言,電極群成員之長度(LE)實質上大於其寬度(WE)及其高度(HE)中之每一者。舉例而言,在一實施例中,對於電極群之每一成 員而言,LE對WE及HE中之每一者之比率分別為至少5:1(亦即,LE對WE之比率分別為至少5:1且LE對HE之比率分別為至少5:1)。根據另一實例,在一實施例中,LE對WE及HE中之每一者之比率為至少10:1。根據另一實例,在一實施例中,LE對WE及HE中之每一者之比率為至少15:1。根據另一實例,對於電極群之每一成員而言,在一實施例中,LE對WE及HE中之每一者之比率為至少20:1。
另外,通常較佳地,電極群成員之長度(LE)實質上大於其周長(PE);舉例而言,在一實施例中,對於電極群之每一成員而言,LE對PE之比率分別為至少1.25:1。根據另一實例,在一實施例中,對於電極群之每一成員而言,LE對PE之比率分別為至少2.5:1。根據另一實例,在一實施例中,對於電極群之每一成員而言,LE對PE之比率分別為至少3.75:1。
在一實施例中,電極群成員之高度(HE)對寬度(WE)之比率分別為至少0.4:1。舉例而言,在一實施例中,對於電極群之每一成員而言,HE對WE之比率分別為至少2:1。根據另一實例,在一實施例中,HE對WE之比率分別為至少10:1。根據另一實例,在一實施例中,HE對WE之比率分別為至少20:1。然而,通常,HE對WE之比率通常分別小於1,000:1。舉例而言,在一實施例中,HE對WE之比率分別小於500:1。根據另一實例,在一實施例中,HE對WE之比率分別小於100:1。根據另一實例,在一實施例中,HE對WE之比率分別小於10:1。根據另一實例,在一實施例中,對於電極群之每一成員而言,HE對WE之比率分別在約2:1至約100:1之範圍內。
反電極群之每一成員具有底部、頂部及縱向軸(ACE),該縱向軸自其底部延伸至頂部且處於與發展電極及反電極之交替序列之方向大致垂直之方向上。另外,反電極群之每一成員具有長度(LCE)(沿縱向軸(ACE)量測)、寬度(WCE)(在發展電極及反電極之交替序列之方向上 量測)及高度(HCE)(在與長度(LCE)及寬度(WCE)中之每一量測方向垂直之方向上量測)-反電極群之每一成員亦具有周長(PCE),其對應於反電極在與其縱向軸垂直之平面中之突出之邊長的總和。
反電極群成員之長度(LCE)端視能量儲存裝置及其預期用途而有所變化。然而,一般而言,反電極群之每一成員通常具有在約5mm至約500mm之範圍內之長度(LCE)。舉例而言,在一該實施例中,反電極群之每一成員具有約10mm至約250mm之長度(LCE)。根據另一實例,在一該實施例中,反電極群之每一成員具有約25mm至約100mm之長度(LCE)。
反電極群成員之寬度(WCE)亦端視能量儲存裝置及其預期用途而有所變化。然而,一般而言,反電極群成員通常具有在約0.01mm至2.5mm之範圍內之寬度(WCE)。舉例而言,在一實施例中,反電極群中每一成員之寬度(WCE)在約0.025mm至約2mm之範圍內。根據另一實例,在一實施例中,反電極群中每一成員之寬度(WCE)在約0.05mm至約1mm之範圍內。
反電極群成員之高度(HCE)亦端視能量儲存裝置及其預期用途而有所變化。然而,一般而言,反電極群成員通常具有在約0.05mm至約10mm之範圍內之高度(HCE)。舉例而言,在一實施例中,反電極群中每一成員之高度(HCE)在約0.05mm至約5mm之範圍內。根據另一實例,在一實施例中,反電極群中每一成員之高度(HCE)在約0.1mm至約1mm之範圍內。
反電極群成員之周長(PCE)亦端視能量儲存裝置及其預期用途而有所變化。然而,一般而言,反電極群成員通常具有在約0.025mm至約25mm之範圍內之周長(PCE)。舉例而言,在一實施例中,反電極群中每一成員之周長(PCE)在約0.1mm至約15mm之範圍內。根據另一實例,在一實施例中,反電極群中每一成員之周長(PCE)在約0.5mm至 約10mm之範圍內。
一般而言,反電極群中每一成員之長度(LCE)實質上大於寬度(WCE)且實質上大於其高度(HCE)。舉例而言,在一實施例中,對於反電極群之每一成員而言,LCE對WCE及HCE中之每一者之比率分別為至少5:1(亦即,LCE對WCE之比率分別為至少5:1且LCE對HCE之比率分別為至少5:1)。根據另一實例,在一實施例中,對於反電極群之每一成員而言,LCE對WCE及HCE中之每一者之比率為至少10:1。根據另一實例,在一實施例中,對於反電極群之每一成員而言,LCE對WCE及HCE中之每一者之比率為至少15:1。根據另一實例,在一實施例中,對於反電極群之每一成員而言,LCE對WCE及HCE中之每一者之比率為至少20:1。
另外,通常較佳地,反電極群成員之長度(LCE)實質上大於其周長(PCE);舉例而言,在一實施例中,對於反電極群之每一成員而言,LCE對PCE之比率分別為至少1.25:1。根據另一實例,在一實施例中,對於反電極群之每一成員而言,LCE對PCE之比率分別為至少2.5:1。根據另一實例,在一實施例中,對於反電極群之每一成員而言,LCE對PCE之比率分別為至少3.75:1。
在一實施例中,反電極群成員之高度(HCE)對寬度(WCE)之比率分別為至少0.4:1。舉例而言,在一實施例中,對於反電極群之每一成員而言,HCE對WCE之比率分別為至少2:1。根據另一實例,在一實施例中,對於反電極群之每一成員而言,HCE對WCE之比率分別為至少10:1。根據另一實例,在一實施例中,對於反電極群之每一成員而言,HCE對WCE之比率分別為至少20:1。然而,通常,對於電極群之每一成員而言,HCE對於WCE之比率通常分別小於1,000:1。舉例而言,在一實施例中,對於反電極群之每一成員而言,HCE對WCE之比率分別小於500:1。根據另一實例,在一實施例中,HCE對WCE之比率分別 小於100:1。根據另一實例,在一實施例中,HCE對WCE之比率分別小於10:1。根據另一實例,在一實施例中,對於反電極群之每一成員而言,HCE對WCE之比率分別在約2:1至約100:1之範圍內。
為使電極群成員與反電極群電隔離,(i)電極群成員沿其縱向軸(AE)由電絕緣分離器材料層環繞,(ii)反電極群成員沿其縱向軸(ACE)由電絕緣分離器材料層環繞,或(iii)電極群成員及反電極群成員各自沿其各別縱向軸由電絕緣材料層環繞。舉例而言,在一實施例中,電極群中每一成員之縱向軸(AE)由電絕緣材料層環繞。根據另一實例,在一實施例中,反電極群中每一成員之縱向軸(ACE)由電絕緣材料層環繞。根據另一實例,在一實施例中,電極群中每一成員之縱向軸(ACE)及反電極群中每一成員之縱向軸(ACE)由電絕緣材料層環繞。
在一實施例中,電絕緣材料層具有至少約5微米之厚度。然而,一般而言,電絕緣材料層具有並不超過約100微米之厚度(至少在彼等分離電極群成員與最近反電極群成員之區域中)。舉例而言,在某些實施例中,電絕緣材料層具有在約5微米至約50微米之範圍內之厚度(至少在彼等分離電極群成員與最近反電極群成員之區域中)。根據另一實例,在某些實施例中,電絕緣材料層具有在約10微米至約35微米之範圍內之厚度(至少在彼等分離電極群成員與最近反電極群成員之區域中)。根據另一實例,在某些實施例中,電絕緣材料層具有在約15微米至約30微米之範圍內之厚度(至少在彼等分離電極群成員與最近反電極群成員之區域中)。
為允許在充電或放電操作期間載體離子在電極群成員與反電極群成員之間進行交換,電絕緣材料層(其分離電極群成員之電極活性材料層及反電極群成員之反電極活性材料層)包括微孔分離器材料。在一實施例中,舉例而言且忽略微孔分離器材料之孔隙率,微孔分離器材料構成電極群成員與反電極群成員之間之電絕緣分離器材料層之 至少70體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成電極群成員與反電極群成員之間之電絕緣分離器材料層之至少75體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成電極群成員與反電極群成員之間之電絕緣分離器材料層之至少80體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成電極群成員與反電極群成員之間之電絕緣分離器材料層之至少85體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成電極群成員與反電極群成員之間之電絕緣分離器材料層之至少90體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成電極群成員與反電極群成員之間之電絕緣分離器材料層之至少95體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成電極群成員與反電極群成員之間之電絕緣分離器材料層之至少99體積%。
在一實施例中,微孔分離器材料包括微粒材料及黏合劑,且具有至少約20體積%之孔隙率(空隙分率)。微孔分離器材料之孔隙具有至少50Å之直徑且通常在約250Å至2,500Å之範圍內。微孔分離器材料通常具有小於約75%之孔隙率。在一實施例中,微孔分離器材料具有至少約25體積%之孔隙率(空隙分率)。在一實施例中,微孔分離器材料具有約35-55%之孔隙率。
用於微孔分離器材料之黏合劑可選自寬範圍之無機或聚合材料。舉例而言,在一實施例中,黏合劑係選自由以下組成之群之無機材料:矽酸鹽、磷酸鹽、鋁酸鹽、鋁矽酸鹽及氫氧化物(例如氫氧化鎂、氫氧化鈣等)。舉例而言,在一實施例中,黏合劑係衍生自含有二氟亞乙烯、六氟丙烯、四氟丙烯及諸如此類之單體之氟聚合物。在 另一實施例中,黏合劑係具有任一範圍之不同分子量及密度之聚烯烴,例如聚乙烯、聚丙烯或聚丁烯。在另一實施例中,黏合劑係選自由以下組成之群:乙烯-二烯-丙烯三元聚合物、聚苯乙烯、聚甲基丙烯酸甲酯、聚乙二醇、聚乙酸乙烯酯、聚乙烯丁醛、聚縮醛及聚乙二醇二丙烯酸酯。在另一實施例中,黏合劑係選自由以下組成之群:甲基纖維素、羧甲基纖維素、苯乙烯橡膠、丁二烯橡膠、苯乙烯-丁二烯橡膠、異戊二烯橡膠、聚丙烯醯胺、聚乙烯基醚、聚丙烯酸、聚甲基丙烯酸及聚環氧乙烷。在另一實施例中,黏合劑係選自由以下組成之群:丙烯酸酯、苯乙烯、環氧樹脂及聚矽氧。在另一實施例中,黏合劑係兩種或更多種上述聚合物之共聚物或摻合物。
由微孔分離器材料包括之微粒材料亦可選自寬範圍之材料。一般而言,該等材料在操作溫度下具有相對較低之電子及離子導電性,且在接觸微孔分離器材料之電池電極或集電器之操作電壓下並不腐蝕。舉例而言,在一實施例中,微粒材料對於載體離子(例如鋰)具有小於1×10-4S/cm之電導率。根據另一實例,在一實施例中,微粒材料對於載體離子具有小於1×10-5S/cm之電導率。根據另一實例,在一實施例中,微粒材料對於載體離子具有小於1×10-6S/cm之電導率。實例性微粒材料包含微粒聚乙烯、聚丙烯、TiO2-聚合物複合物、二氧化矽氣凝膠、發煙二氧化矽、二氧化矽凝膠、二氧化矽水凝膠、二氧化矽乾凝膠、二氧化矽溶膠、膠質二氧化矽、氧化鋁、二氧化鈦、氧化鎂、高嶺土、滑石粉、矽藻土、矽酸鈣、矽酸鋁、碳酸鈣、碳酸鎂或其組合。舉例而言,在一實施例中,微粒材料包括微粒氧化物或氮化物,例如TiO2、SiO2、Al2O3、GeO2、B2O3、Bi2O3、BaO、ZnO、ZrO2、BN、Si3N4、Ge3N4。例如參見P.Arora及J.Zhang,「Battery Separators」Chemical Reviews 2004,104,4419-4462)。在一實施例中,微粒材料之平均粒徑為約20nm至2微米、更通常200nm 至1.5微米。在一實施例中,微粒材料具有約500nm至1微米之平均粒徑。
在一替代實施例中,可藉由諸如燒結、黏合、固化等技術來結合由微孔分離器材料包括之微粒材料,同時維持電解質進入所期望之空隙分率以提供用於電池運作之離子導電性。
可(例如)藉由以下方式來沈積微孔分離器材料:電泳沈積微粒分離器材料(其中藉由諸如靜電引力或範德瓦耳斯力(van der Waals force)等表面能使顆粒聚結)、漿液沈積(包含旋塗或噴塗)微粒分離器材料、絲網印刷、浸塗及靜電噴霧沈積。黏合劑可包含於沈積製程中;舉例而言,可使用經溶解黏合劑(其在溶劑蒸發後發生沈澱)對微粒材料進行漿液沈積,在經溶解黏合劑材料存在下電泳沈積,或使用黏合劑及絕緣顆粒共電泳沈積等。另一選擇為或另外,可在將顆粒沈積至電極結構中或其上之後添加黏合劑;舉例而言,可將微粒材料分散於有機黏合劑溶液中並浸塗或噴塗,隨後乾燥,熔化,或使黏合劑材料交聯以提供黏著強度。
在組裝之能量儲存裝置中,使用適於用作二次電池電解質之非水性電解質滲透微孔分離器材料。通常,非水性電解質包括溶於有機溶劑中之鋰鹽。實例性鋰鹽包含無機鋰鹽,例如LiClO4、LiBF4、LiPF6、LiAsF6、LiCl及LiBr;及有機鋰鹽,例如LiB(C6H5)4、LiN(SO2CF3)2、LiN(SO2CF3)3、LiNSO2CF3、LiNSO2CF5、LiNSO2C4F9、LiNSO2C5F11、LiNSO2C6F13及LiNSO2C7F15。用以溶解鋰鹽之實例性有機溶劑包含環狀酯、鏈酯、環狀醚及鏈醚。環狀酯之具體實例包含碳酸丙二酯、碳酸丁二酯、γ-丁內酯、碳酸伸乙烯基酯、2-甲基-γ-丁內酯、乙醯基-γ-丁內酯及γ-戊內酯。鏈酯之具體實例包含碳酸二甲酯、碳酸二乙酯、碳酸二丁酯、碳酸二丙酯、碳酸甲酯乙酯、碳酸甲酯丁酯、碳酸甲酯丙酯、碳酸乙酯丁酯、碳酸乙酯丙 酯、碳酸丁酯丙酯、丙酸烷基酯、丙二酸二烷基酯及乙酸烷基酯。環狀醚之具體實例包含四氫呋喃、烷基四氫呋喃、二烷基四氫呋喃、烷氧基四氫呋喃、二烷氧基四氫呋喃、1,3-二氧雜環戊烷、烷基-1,3-二氧雜環戊烷及1,4-二氧雜環戊烷。鏈醚之具體實例包含1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、二乙醚、乙二醇二烷基醚、二乙二醇二烷基醚、三乙二醇二烷基醚及四乙二醇二烷基醚。
在一實施例中,電極群係負電極群且反電極群係正電極群。在此實施例中,電極群成員之縱向軸AE、長度LE、寬度WE、高度HE及周長PE分別對應於負電極群成員之縱向軸ANE、長度LNE、寬度WNE、高度HNE及周長PNE,且反電極群成員之縱向軸ACE、長度LCE、寬度WCE、高度HCE及周長PCE分別對應於正電極群成員之縱向軸APE、長度LPE、寬度WPE、高度HPE及周長PPE
在一替代實施例中,電極群係正電極群,且反電極群係負電極群。在此實施例中,因此,電極群成員之縱向軸AE、長度LE、寬度WE、高度HE及周長PE分別對應於正電極群成員之縱向軸APE、長度LPE、寬度WPE、高度HPE及周長PPE,且反電極群成員之縱向軸ACE、長度LCE、寬度WCE、高度HCE及周長PCE分別對應於負電極群成員之縱向軸ANE、長度LNE、寬度WNE、高度HNE及周長PNE
現參照圖2,且在本發明之一實施例中,電極結構20包括負電極21之群及正電極22之群。出於闡釋便利性,在圖2中,負電極群包含4個成員21且正電極群包含4個成員22;然而,在實踐中,負電極群及正電極群可各自包括較大或較小數量之成員。舉例而言,在一實施例中,由本發明之電極結構包括之負電極群及正電極群可各自包含至少5個成員。根據另一實例,在一實施例中,負電極群及正電極群各自包含至少10個成員。根據另一實例,在一實施例中,負電極群及正電極群各自包含至少50個成員。根據另一實例,在一實施例中,負電極 群及正電極群各自包含至少100個成員。
不管成員之數量多少,負電極群之成員21及正電極群之成員22交叉並以在方向D上行進之交替系列配置。如圖2中所圖解說明,除一個例外外,負電極群之每一成員21位於正電極群之兩個成員22之間,且除一個例外外,正電極群之每一成員22位於負電極群之兩個成員21之間。更概括地陳述,在一實施例中,正電極群及負電極群各自具有N個成員,N-1個正電極群成員中之每一者位於兩個負電極之間,N-1個負電極群成員中之每一者位於兩個正電極之間,且N為至少2。舉例而言,在一實施例中,N為至少4(如圖2中所圖解說明)、至少5、至少10、至少25、至少50或甚至至少100。
在一替代實施例中,負電極群之每一成員21位於正電極群之兩個成員22之間,從而交叉系列開始並終止於正電極22且每一負電極21位於兩個正電極22之間(例如具有下列重複序列之電極系列:正電極、負電極、正電極、負電極、正電極......),其中交叉系列在方向D上發展。舉例而言,在一該實施例中,負電極群具有N個成員,正電極群具有N+1個成員,每一負電極位於兩個正電極之間,且N為至少5、至少10、至少25、至少50或甚至至少100。
在另一替代實施例中,舉例而言,正電極群之每一成員22位於負電極群之兩個成員21之間,從而交叉系列開始並終止於負電極21且每一正電極22位於兩個負電極21之間(例如具有下列重複序列之電極系列:負電極、正電極、負電極、正電極、負電極......),其中交叉系列在方向D上發展。在一該實施例中,正電極群具有N個成員,負電極群具有N+1個成員,每一正電極位於兩個負電極之間,且N為至少5、至少10、至少25、至少50或甚至至少100。
再次參照圖2,負電極群之每一成員21直接連結至彙集來自負電極群之每一成員21之電流之負電極匯流排23並自其延伸。負電極匯流 排23繼而可用於將負電極群之每一成員21電連結至能量儲存裝置(未展示)之負極端子或外部能量供應裝置(未展示)或外部能量消耗裝置(未展示)。
正電極群之每一成員22自彙集來自正電極群之每一成員22之電流之正電極匯流排24延伸並與其電連結。正電極匯流排24繼而可用於將正電極群之每一成員22電連結至能量儲存裝置(未展示)之正極端子或外部能量供應裝置(未展示)或外部能量消耗裝置(未展示)。
負電極匯流排23及正電極匯流排24可包括任一寬範圍之導電材料。舉例而言,負電極匯流排23及正電極匯流排24可獨立地包括導電陶瓷、玻璃、聚合物、半導體或金屬以用於分別將負電極及正電極群成員電連結至負導電及正導電路徑25、26。根據另一實例,在一實施例中,負電極匯流排23及正電極匯流排24各自獨立地包括導電材料,例如矽、碳、碳複合物、金屬矽化物及諸如此類。用於正電極匯流排之實例性材料包含鋁、碳、鉻、金、鎳、NiP、鈀、鉑、銠、釕、矽及鎳之合金、鈦、其一或多者之合金及其組合。用於負電極匯流排之實例性材料包含銅、鎳、鉻、鈦、鎢、鈷、碳、其一或多者之合金及其組合。可藉由任一範圍之熟知金屬沈積製程來沈積用於正電極及負電極匯流排之材料,例如蒸發、濺鍍、無電鍍敷、浸漬鍍敷、電鍍敷及諸如此類。在某些實施例中,正電極及負電極匯流排之導電部分可包括相同材料。在其他實施例中,正電極及負電極匯流排之導電部分可包括在組成上不同之材料。在某些實施例中,正電極及/或負電極匯流排包括部分地或完全由導電材料殼體覆蓋之非導電核心;另外,在正電極及負電極匯流排包括部分地或完全由導電材料殼體覆蓋之非導電核心之該等實施例中,正電極及負電極匯流排之非導電核心可具有相同組成,而導電殼體在組成上不同。
電絕緣分離器層43環繞並電隔離負電極群之每一成員21與正電 極群之每一成員22且電隔離負電極匯流排23與正電極匯流排24。在毗鄰負電極/正電極對(亦即,在充電或放電操作期間,負電極/正電極對提供載體離子自負電極群之給定成員行進至正電極群成員之最短距離,或反之亦然)之間,電絕緣分離器層43包括可經如先前所闡述之非水性電解質滲透之微孔分離器材料;舉例而言,如先前更詳細地闡述,在一實施例中,微孔分離器材料包括直徑為至少50Å、更通常在約2,500Å之範圍內且孔隙率在約25%至約75%之範圍內、更通常在約35-55%之範圍內之孔隙。
在一實施例中,舉例而言且忽略微孔分離器材料之孔隙率,至少70體積%之電絕緣分離器材料層43(其位於負電極群之成員21及正電極群之最近成員22(亦即「毗鄰對」)之間用於在充電或放電循環期間之離子交換)係微孔分離器材料;換言之,微孔分離器材料構成負電極成員21與正電極成員22之間之電絕緣材料之至少70體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料分別構成負電極群及正電極群之成員21及成員22之毗鄰對間之電絕緣分離器材料層的至少75體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料分別構成負電極群及正電極群之成員21及成員22之毗鄰對間之電絕緣分離器材料層的至少80體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料分別構成負電極群及正電極群之成員21及成員22之毗鄰對間之電絕緣分離器材料層的至少85體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料分別構成負電極群及正電極群之成員21及成員22之毗鄰對間之電絕緣分離器材料層的至少90體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料分別構成負電極群及正電極群之成員21及成員22之毗鄰對間之電絕緣分離器材料層的至少95體 積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料分別構成負電極群及正電極群之成員21及成員22之毗鄰對間之電絕緣分離器材料層的至少99體積%。
現參照圖3,在一實施例中,負電極群之每一成員21包括負電極骨架51、負電極集電器層47及負電極活性材料層49。負電極活性材料層49由側表面61、63、前表面65及背表面67限制。類似地,正電極群之每一成員22包括正電極骨架52、正電極集電器層48及正電極活性材料層50。正電極活性材料層50由側表面62、64、前表面66及背表面68限制。負電極群之每一成員21與正電極群之每一成員22由電絕緣分離器層43分離,該電絕緣分離器層環繞負電極及正電極群(沿其各別長度之至少一部分)中每一成員21之縱向軸ANE及每一成員22之縱向軸APE
分別在成員21、22之相對側表面61、62及相對側表面63、64之間,電絕緣材料層43包括微孔分離器材料(如先前所闡述)。在一實施例中,舉例而言且忽略微孔分離器材料之孔隙率,分別在成員21、22之相對側表面61、62及相對側表面63、64之間之至少70體積%的電絕緣分離器材料層43包括微孔分離器材料(如先前所闡述)。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成分別在成員21、22之相對側表面61、62及相對側表面63、64之間之電絕緣分離器材料層的至少75體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成分別在成員21、22之相對側表面61、62及相對側表面63、64之間之電絕緣分離器材料層的至少80體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成分別在成員21、22之相對側表面61、62及相對側表面63、64之間之電絕緣分離器材料層的至少85 體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成分別在成員21、22之相對側表面61、62及相對側表面63、64之間之電絕緣分離器材料層的至少90體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成分別在成員21、22之相對側表面61、62及相對側表面63、64之間之電絕緣分離器材料層的至少95體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料構成分別在成員21、22之相對側表面61、62及相對側表面63、64之間之電絕緣分離器材料層的至少99體積%。
在放電過程期間,鋰離子(或其他載體離子,例如鈉離子、鉀離子、鈣離子或鎂離子)經由側表面61、63離開負電極活性材料層49且穿越由電絕緣分離器層43包括之微孔分離器材料並經由側表面62、64進入正電極活性材料層50中。在充電過程期間,鋰離子(或其他載體離子)經由側表面62、64離開正電極活性材料層50且穿越由電絕緣分離器層43包括之微孔分離器材料並經由側表面61、63進入負電極活性材料層49中。端視所用負電極活性材料,鋰離子(或其他載體離子)嵌入(例如處於負電極活性材料之基質中而並不形成合金)或形成合金。與鋰離子(或其他載體離子)在正電極與負電極之間之移動一致,電子分別由負電極集電器47及正電極集電器48攜載至負電極及正電極匯流排23、24(或自其攜載)(參見圖2)。負電極及正電極匯流排23、24繼而電連結至包括電極結構20之能量儲存裝置(未展示)之正極及正極端子或外部能量供應裝置(未展示)或外部能量消耗裝置(未展示)。
負電極骨架51向負電極活性材料層49提供機械穩定性。一般而言,負電極骨架51可包括可成型之任一材料,例如金屬、半導體、有機物、陶瓷及玻璃。當前較佳之材料包含半導體材料,例如矽及鍺。 另一選擇為,然而,亦可將基於碳之有機材料或金屬(例如鋁、銅、鎳、鈷、鈦及鎢)納入負電極骨架中。在一實例性實施例中,負電極骨架51包括矽。舉例而言,矽可為單晶矽、多晶矽、非晶型矽或其組合。
端視應用,負電極骨架51可導電或絕緣。舉例而言,在一實施例中,負電極骨架51具有小於10西門子(Siemens)/cm之電導率。根據另一實例,在一實施例中,負電極骨架51具有小於1西門子/cm之電導率。根據另一實例,在一實施例中,負電極骨架51具有小於10-1西門子/cm之電導率。在其他實施例中,負電極骨架51可具有至少10西門子/cm之電導率。根據另一實例,在一些實施例中,負電極骨架51可具有至少102西門子/cm之電導率。根據另一實例,在一些實施例中,負電極骨架51可具有至少103西門子/cm之電導率。
負電極集電器層47通常具有至少約103西門子/cm之電導率。舉例而言,在一該實施例中,負電極集電器層47具有至少約104西門子/cm之電導率。根據另一實例,在一該實施例中,負電極集電器層47具有至少約105西門子/cm之電導率。一般而言,負電極集電器層47可包括任一金屬或其他通常用作用於負電極之集電器材料之導體,例如碳、鈷、鉻、銅、鎳、鈦或其一或多者之合金。負電極集電器47可藉由諸如以下製程來製作:電沈積、無電沈積、浸漬沈積、物理氣相沈積、化學氣相沈積及諸如此類。
在此實施例中,負電極集電器層47之厚度(亦即負電極骨架與負電極活性材料層之間之最短距離)取決於層組成及用於電化學堆疊之性能規範。然而,一般而言,厚度介於約1微米至約100微米之間。
負電極活性材料層49可包括能夠吸收並釋放載體離子(例如鋰離子、鈉離子、鉀離子、鈣離子或鎂離子)之負電極活性材料。該等材 料包含碳材料(例如石墨及軟碳與硬碳)或任一範圍之能夠與鋰形成合金之金屬、半金屬、合金、氧化物及化合物。能夠構成陽極材料之金屬或半金屬之具體實例包含錫、鉛、鎂、鋁、硼、鎵、矽、銦、鋯、鍺、鉍、鎘、銻、銀、鋅、砷、鉿、釔及鈀。在一實例性實施例中,負電極活性材料層49包括鋁、錫或矽或其氧化物、其氮化物、其氟化物或其其他合金。在另一實例性實施例中,負電極活性材料層49包括矽或其合金。在本段落中所列舉之實施例及實例中之每一者中,負電極活性材料層49可為微粒集塊電極或單片式電極。
正電極骨架52向正電極活性材料層50提供機械穩定性。一般而言,正電極骨架52可包括可成型之任一材料,例如金屬、半導體、有機物、陶瓷及玻璃。當前較佳之材料包含半導體材料,例如矽及鍺。然而,或者亦可將基於碳之有機材料或金屬(例如鋁、銅、鎳、鈷、鈦及鎢)納入正電極骨架中。在一實例性實施例中,正電極骨架52包括矽。舉例而言,矽可為單晶矽、多晶矽、非晶型矽或其組合。
端視應用,正電極骨架52可導電或絕緣。舉例而言,在一實施例中,正電極骨架52具有小於10西門子/cm之電導率。根據另一實例,在一實施例中,正電極骨架52具有小於1西門子/cm之電導率。根據另一實例,在一實施例中,正電極骨架52具有小於10-1西門子/cm之電導率。在其他實施例中,正電極骨架52可具有至少10西門子/cm之電導率。根據另一實例,在一些實施例中,正電極骨架52可具有至少102西門子/cm之電導率。根據另一實例,在一些實施例中,正電極骨架52可具有至少103西門子/cm之電導率。
在圖3中所圖解說明之實施例中,正電極集電器層48位於正電極骨架52與正電極材料層50之間且通常具有至少約103西門子/cm之電導率。舉例而言,在一該實施例中,正電極集電器層48具有至少約104西門子/cm之電導率。根據另一實例,在一該實施例中,正電極集電 器層48具有至少約105西門子/cm之電導率。正電極集電器48可包括先前經鑑別用於負電極集電器之任一金屬;舉例而言,在一實施例中,正電極集電器48包括鋁、碳、鉻、金、鎳、NiP、鈀、鉑、銠、釕、矽及鎳之合金、鈦或其組合(參見「Current collectors for positive electrodes of lithium-based batteries」,A.H.Whitehead及M.Schreiber,Journal of the Electrochemical Society,152(11)A2105-A2113(2005))。根據另一實例,在一實施例中,正電極集電器48包括金或其合金(例如矽化金)。根據另一實例,在一實施例中,正電極集電器48包括鎳或其合金(例如矽化鎳)。正電極集電器48可藉由諸如以下製程來製作:電沈積、無電沈積、浸漬沈積、物理氣相沈積、化學氣相沈積及諸如此類。可使用已知圖案化及金屬沈積技術來同時沈積或依序製作正電極及負電極集電器。
正電極活性材料層50可包括任一範圍之陰極活性材料,包含陰極活性材料之混合物。舉例而言,對於鋰離子電池而言,正電極活性材料層50可包括選自過渡金屬氧化物、過渡金屬硫化物、過渡金屬氮化物、鋰過渡金屬氧化物、鋰過渡金屬硫化物之陰極材料,且可選擇性使用鋰過渡金屬氮化物。該等過渡金屬氧化物、過渡金屬硫化物及過渡金屬氮化物之過渡金屬元素可包含具有d殼或f殼之金屬元素。該金屬元素之具體實例係Sc、Y、鑭系元素、錒系元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pb、Pt、Cu、Ag及Au。其他陰極活性材料包含LiCoO2、LiNi0.5Mn1.5O4、Li(NixCoyAl2)O2、LiFePO4、Li2MnO4、V2O5、氧硫化鉬及其組合。可藉由任一範圍之技術(包含(例如)電泳沈積、電沈積、共沈積或漿液沈積)來沈積正電極活性材料層以形成正電極結構。在一實例性實施例中,電泳沈積呈微粒形式之上述正電極活性材料中之一者或其組合。在另一實例性實施例中,電沈積正電極活性材料(例 如V2O5)。在另一實例性實施例中,在導電基質(例如聚苯胺)中共沈積呈微粒形式之上述正電極活性材料中之一者或其組合。在另一實例性實施例中,漿液沈積呈微粒形式之上述正電極活性材料中之一者或其組合。
可以業內已知用於製作三維結構之任一方法來製作負電極骨架51及正電極骨架52。舉例而言,可藉由使用晶圓(其藉由暫時性、永久性或半永久性結合結合至基底)來同時製造用於正電極(陰極)之矽骨架及用於負電極(陽極)之矽骨架。使基底結合至晶圓之非窮盡性方法包含使用無機或有機膠合劑進行膠合、陽極氧化結合、壓縮結合、熱結合及諸如此類。絕緣體上矽晶圓、陽極玻璃結合晶圓、暫時性載體安裝晶圓係結合至活性基板上之基底之實例。隨後,可將晶圓圖案化且可去除不期望區中之矽以留下可用作電極骨架之結構。在一些實施例中,可以負性方式藉由使用雷射加工、電放電加工、高精度加工、燒蝕及鑽製自不期望區中之平面基板去除材料來製造骨架。在其他實施例中,可以正性方式藉由使用諸如以下等方法積聚層來個別地或單獨產生每一骨架:3D印刷、模板印刷及分層、凹版印刷、注入模製、壓力模製及燒結、凝膠澆注及燒結、漿液澆注、膠帶澆注等、使用或不使用燒結、微成形、電成形等。可用於製造骨架之其他實例性製程包含生長柱、桿、波等、使用基於真空之沈積製程(例如經由遮罩濺鍍、蒸發等)。用於製造之其他實例性方法包含在圖案化基底材料上使用奈米線或奈米結構生長。
可使用諸如以下等方法來形成或以其他方式組裝負電極活性材料層49:電沈積、電泳沈積、氣相沈積、基於觸媒之生長(例如蒸氣-液體-固體沈積)、凝膠澆注、膠帶澆注、圖案化及漿液沈積,隨後藉由諸如燒結、結合等方法進行緻密化。在一些實施例中,負電極材料層及負電極骨架可包括相同材料(例如矽、鋁及錫),且可同時製作負 電極材料層及負電極骨架。類似地,可使用諸如以下等方法來組裝正電極材料層50:電沈積、電泳沈積、氣相沈積、基於觸媒之生長(例如蒸氣-液體-固體沈積)、凝膠澆注、膠帶澆注、圖案化及漿液沈積,隨後藉由諸如壓製、燒結、結合、固化等方法進行緻密化。
在一實施例中,將負電極活性材料層49微結構化以提供顯著空隙體積分率,從而容納因在充電及放電過程期間鋰離子(或其他載體離子)納入或離開負電極活性材料層49所致之體積膨脹及收縮。一般而言,負電極活性材料層之空隙體積分率為至少0.1。然而,通常,負電極活性材料層之空隙體積分率不大於0.8。舉例而言,在一實施例中,負電極活性材料層之空隙體積分率為約0.15至約0.75。根據另一實例,在一實施例中,負電極活性材料層之空隙體積分率為約0.2至約0.7。根據另一實例,在一實施例中,負電極活性材料層之空隙體積分率為約0.25至約0.6。
端視微結構化負電極活性材料層之組成及其形成方法,微結構化負電極活性材料層可包括大孔、微孔或中孔材料層或其組合,例如微孔及中孔之組合或中孔及大孔之組合。微孔材料之特徵通常在於:孔隙尺寸小於10nm,壁尺寸小於10nm,孔隙深度為1-50微米,且孔隙形態之特徵通常在於「海綿狀」及不規則外觀、不平滑壁及分支孔隙。中孔材料之特徵通常在於:孔隙尺寸為10-50nm,壁尺寸為10-50nm,孔隙深度為1-100微米,且孔隙形態之特徵通常在於分支孔隙(其係明確界定孔隙或樹枝狀孔隙)。大孔材料之特徵通常在於:孔隙尺寸大於50nm,壁尺寸大於50nm,孔隙深度為1-500微米,且孔隙形態可有所變化(直線、分支或樹枝狀及平滑或粗壁)。另外,空隙體積可包括開口或閉合空隙或其組合。在一實施例中,空隙體積包括開口空隙,亦即,負電極活性材料層含有在負電極活性材料層之側表面處(亦即,面向分離器及正電極活性材料層之表面)具有開口之空隙, 鋰離子(或其他載體離子)經由該等開口可進入或離開負電極活性材料層;舉例而言,鋰離子可在離開正電極活性材料層之後經由空隙開口進入負電極活性材料層中。在另一實施例中,空隙體積包括閉合空隙,亦即,負電極活性材料層含有由負電極活性材料包封之空隙。一般而言,開口空隙可提供用於載體離子之較大界面表面積,而閉合空隙往往不易於產生固體電解質界面(「SEI」),但其各自提供用於在載體離子進入後使負電極活性材料層膨脹之空間。在某些實施例中,因此,較佳地,負電極活性材料層包括開口空隙及閉合空隙之組合。
在一實施例中,負電極活性材料層49包括多孔鋁、錫或矽或其合金。可藉由(例如)以下方式來形成多孔矽層:陽極化、蝕刻(例如藉由將貴金屬(例如金、鉑、銀或金/鈀)沈積於單晶矽之(100)表面上及使用氫氟酸及過氧化氫之混合物蝕刻表面)或藉由業內已知之其他方法(例如圖案化化學蝕刻)。另外,多孔負電極活性材料層通常具有至少約0.1但小於0.8之孔隙分率且具有約1微米至約100微米之厚度。舉例而言,在一實施例中,負電極活性材料層49包括多孔矽,具有約5微米至約100微米之厚度,且具有約0.15至約0.75之孔隙分率。根據另一實例,在一實施例中,負電極活性材料層49包括多孔矽,具有約10微米至約80微米之厚度,且具有約0.15至約0.7之孔隙分率。根據另一實例,在一該實施例中,負電極活性材料層49包括多孔矽,具有約20微米至約50微米之厚度,且具有約0.25至約0.6之孔隙分率。根據另一實例,在一實施例中,負電極活性材料層49包括多孔矽合金(例如矽化鎳),具有約5微米至約100微米之厚度,且具有約0.15至約0.75之孔隙分率。
在另一實施例中,負電極活性材料層49包括鋁、錫或矽或其合金之纖維。個別纖維可具有約5nm至約10,000nm之直徑(厚度尺寸)及通常對應於負電極活性材料層49之厚度之長度。可(例如)藉由化學氣 相沈積或業內已知之其他技術(例如蒸氣液體固體(VLS)生長及固體液體固體(SLS)生長)來形成矽纖維(奈米線)。另外,負電極活性材料層49通常具有至少約0.1但小於0.8之孔隙分率且具有約1微米至約200微米之厚度。舉例而言,在一實施例中,負電極活性材料層49包括矽奈米線,具有約5微米至約100微米之厚度,且具有約0.15至約0.75之孔隙分率。根據另一實例,在一實施例中,負電極活性材料層49包括矽奈米線,具有約10微米至約80微米之厚度,且具有約0.15至約0.7之孔隙分率。根據另一實例,在一該實施例中,負電極活性材料層49包括矽奈米線,具有約20微米至約50微米之厚度,且具有約0.25至約0.6之孔隙分率。根據另一實例,在一實施例中,負電極活性材料層49包括矽合金(例如矽化鎳)之奈米線,具有約5微米至約100微米之厚度,且具有約0.15至約0.75之孔隙分率。
儘管可能存在顯著之纖維間變化,但鋁、錫或矽(或其合金)之奈米線具有主軸(有時稱為中心軸),其大致與負電極骨架51垂直(在奈米線與負電極活性材料層之附接點處)。
在另一實施例中,負電極活性材料層49包括矽或其合金及多孔矽或其合金之奈米線。在該等實施例中,負電極活性材料層通常具有至少約0.1但小於0.8之孔隙分率且具有約1微米至約100微米之厚度,如先前結合多孔矽及矽奈米線所闡述。
現參照圖4,負電極群之每一成員21自負電極匯流排23之內表面27延伸且正電極群之每一成員22自正電極匯流排24之內表面28延伸,其中內表面27、28彼此面向或相對。負電極匯流排23包括將負電極群之每一成員21電連結至負電極群之其他成員之導電材料。類似地,正電極匯流排24包括使正電極群之每一成員22彼此電連結之導電材料。出於闡釋便利性,已刪除電絕緣分離器材料層43(參見圖2及3)。
現參照圖5,負電極群之每一成員21具有鄰近負電極匯流排23之 內表面27之底部31、遠離內表面27之頂部33、寬度WNE、長度LNE及縱向軸ANE。長度LNE對應於底部31與頂部33之間之距離且係在自內表面27沿縱向軸ANE且實質上與方向D垂直之方向上量測。在圖2中所繪示之X-Y-Z坐標系統之背景下,長度LNE係沿「X」軸量測(且與方向D垂直)。
現參照圖7,負電極群之每一成員21具有寬度WNE、高度HNE及周長PNE,其中寬度WNE及高度HNE係在彼此垂直且與量測長度LNE之方向垂直之方向上量測。在此實施例中,周長PNE具有等於2WNE+2HNE之值。寬度WNE及高度HNE端視能量儲存裝置及其預期用途而有所變化,但在許多實施例中,WNE值在約0.01mm至2.5mm之範圍內且HNE值在約0.05mm至10mm之範圍內。舉例而言,在一實施例中,WNE在約0.025mm至約2mm之範圍內。根據另一實例,在一實施例中,WNE在約0.05mm至約1mm之範圍內。根據另一實例,在一實施例中,HNE在約0.05mm至約5mm之範圍內。根據另一實例,在一實施例中,HNE在約0.05mm至約1mm之範圍內。一般而言,LNE(參見圖5)實質上大於WNE及HNE中之每一者;舉例而言,在一實施例中,LNE對WNE及HNE中之每一者之比率分別為至少5:1(亦即,LNE對WNE之比率分別為至少5:1且LNE對HNE之比率分別為至少5:1)。根據另一實例,在一實施例中,LNE對WNE及HNE中之每一者之比率為至少10:1。根據另一實例,在一實施例中,LNE對WNE及HNE中之每一者之比率為至少15:1。根據另一實例,在一實施例中,LNE對WNE及HNE中之每一者之比率為至少20:1。另外,通常較佳地,LNE實質上大於周長PNE;舉例而言,在一實施例中,LNE對PNE之比率分別為至少1.25:1。根據另一實例,在一實施例中,LNE對PNE之比率分別為至少2.5:1。根據另一實例,在一實施例中,LNE對PNE之比率分別為至少3.75:1。另外,HNE對WNE之比率1通常分別為至少0.4:1。舉例而言,在一實施例中,HNE對 WNE之比率分別為至少2:1。根據另一實例,在一實施例中,HNE對WNE之比率分別為至少10:1。根據另一實例,在一實施例中,HNE對WNE之比率分別為至少20:1。然而,通常,HNE對WNE之比率通常分別小於1,000:1。舉例而言,在一實施例中,HNE對WNE之比率分別小於500:1。根據另一實例,在一實施例中,HNE對WNE之比率分別小於100:1。根據另一實例,在一實施例中,HNE對WNE之比率分別小於10:1。根據另一實例,在一實施例中,HNE對WNE之比率分別在約2:1至約100:1之範圍內。在圖2中所繪示之X-Y-Z坐標系統之情形下,長度LNE係沿「X」軸量測(且與方向D垂直),WNE係沿「Y」軸量測,且HNE係沿「Z」軸量測。
通常,在與負電極之寬度WNE在相同方向上量測時,負電極骨架51具有至少1微米之厚度(參見圖7)。負電極骨架51可實質上更厚,但通常厚度不超過100微米;較大厚度可行,但可負面影響能量密度。舉例而言,在一實施例中,負電極骨架51具有約1微米至約50微米之厚度。一般而言,負電極骨架51具有至少約50微米、更通常至少約100微米之高度HNB(在與負電極之高度HNE在相同方向上量測時)。然而,一般而言,負電極骨架51通常具有不大於約10,000微米及更通常不大於約5,000微米之高度。根據實例,在一實施例中,負電極骨架51具有約5微米至約50微米之厚度及約50微米至約5,000微米之高度。根據另一實例,在一實施例中,負電極骨架51具有約5微米至約20微米之厚度及約100微米至約1,000微米之高度。根據另一實例,在一實施例中,負電極骨架51具有約5微米至約20微米之厚度及約100微米至約2,000微米之高度。
負電極活性材料層49具有至少1微米之厚度(例如集電器層47與電絕緣分離器層43之間之最短距離,如圖3中所圖解說明且在與負電極之寬度WNE在相同方向上量測時)。然而,一般而言,負電極活性材料 層49通常具有並不超過200微米之厚度。舉例而言,在一實施例中,負電極活性材料層49具有約1微米至約100微米之厚度。根據另一實例,在一實施例中,負電極活性材料層49具有約2微米至約75微米之厚度。根據另一實例,在一實施例中,負電極活性材料層49具有約10微米至約100微米之厚度。根據另一實例,在一實施例中,負電極活性材料層49具有約5微米至約50微米之厚度。另外,在負電極骨架51之每一側表面上之負電極活性材料49之層具有至少約50微米、更通常至少約100微米之高度(在對應於負電極之高度HNE之方向上量測時,如圖5中所圖解說明)。然而,一般而言,負電極活性材料層49通常具有不大於約10,000微米及更通常不大於約7,500微米之高度。根據實例,在一實施例中,負電極活性材料層49具有約1微米至約200微米之厚度及約50微米至約7,500微米之高度。根據另一實例,在一實施例中,負電極活性材料層49具有約1微米至約50微米之厚度及約100微米至約1,000微米之高度。根據另一實例,在一實施例中,負電極活性材料層49具有約5微米至約20微米之厚度及約100微米至約1,000微米之高度。根據另一實例,在一實施例中,負電極活性材料層49具有約10微米至約100微米之厚度及約100微米至約1,000微米之高度。根據另一實例,在一實施例中,負電極活性材料層49具有約5微米至約50微米之厚度及約100微米至約1,000微米之高度。
現參照圖6,正電極群之每一成員22具有鄰近正電極匯流排24之內表面28之底部32、遠離正電極基板表面26之頂部34、寬度WPE、長度LPE及縱向軸APE。長度LPE對應於距離之間底部32及頂部34且係在沿縱向軸APE自內表面28且實質上與方向D垂直之方向上量測。在圖2中所繪示之X-Y-Z坐標系統之背景下,長度LPE係沿「X」軸量測(且與方向D垂直)。
現參照圖8,正電極群之每一成員22具有寬度WPE、高度HPE及周 長PPE,其中寬度WPE及高度HPE係在彼此垂直且與量測長度LPE之方向垂直之方向上量測。在此實施例中,周長PPE具有等於2WPE+2HPE之值。寬度WPE及高度HPE端視能量儲存裝置及其預期用途而有所變化,但在許多實施例中,WPE在約0.01mm to 2.5mm之範圍內且HPE值在約0.05mm至10mm之範圍內。舉例而言,在一實施例中,WPE在約0.025mm至約2mm之範圍內。根據另一實例,在一實施例中,WPE在約0.05mm至約1mm之範圍內。根據另一實例,在一實施例中,HPE在約0.05mm至約5mm之範圍內。根據另一實例,在一實施例中,HPE在約0.05mm至約1mm之範圍內。一般而言,LPE(參見圖6)實質上大於WPE及HPE中之每一者;舉例而言,在一實施例中,LPE對WPE及HPE中之每一者之比率分別為至少5:1(亦即,LPE對WPE之比率分別為至少5:1且LPE對HPE之比率分別為至少5:1)。根據另一實例,在一實施例中,LPE對WPE及HPE中之每一者之比率為至少10:1。根據另一實例,在一實施例中,LPE對WPE及HPE中之每一者之比率為至少15:1。根據另一實例,在一實施例中,LPE對WPE及HPE中之每一者之比率為至少20:1。另外,通常較佳地,LPE實質上大於周長PPE;舉例而言,在一實施例中,LPE對PPE之比率分別為至少1.25:1。根據另一實例,在一實施例中,LPE對PPE之比率分別為至少2.5:1。根據另一實例,在一實施例中,LPE對PPE之比率分別為至少3.75:1。另外,HPE對WPE之比率通常分別為至少0.4:1。舉例而言,在一實施例中,HPE對WPE之比率分別為至少2:1。根據另一實例,在一實施例中,HPE對WPE之比率分別為至少10:1。根據另一實例,在一實施例中,HPE對WPE之比率分別為至少20:1。然而,通常,HPE對WPE之比率通常分別小於1,000:1。舉例而言,在一實施例中,HPE對WPE之比率分別小於500:1。根據另一實例,在一實施例中,HPE對WPE之比率分別小於100:1。根據另一實例,在一實施例中,HPE對WPE之比率分別小於 10:1。根據另一實例,在一實施例中,HPE對WPE之比率分別在約2:1至約100:1之範圍內。在圖2中所繪示之X-Y-Z坐標系統之情形下,在一較佳實施例中,長度LPE係沿「X」軸量測(且與方向D垂直),WPE係沿「Y」軸量測,且HPE係沿「Z」軸量測。
通常,在與正電極之寬度WPE在相同方向上量測時,正電極骨架52具有至少1微米之厚度(參見圖8)。正電極骨架52可實質上更厚,但通常厚度不超過100微米。舉例而言,在一實施例中,正骨架52具有約1微米至約50微米之厚度。一般而言,正電極骨架52具有至少約50微米、更通常至少約100微米之高度HPE(在與負電極之高度HNE在相同方向上量測時)。然而,一般而言,正電極骨架52通常具有不大於約10,000微米及更通常不大於約5,000微米之高度。根據實例,在一實施例中,正電極骨架52具有約5微米至約50微米之厚度及約50微米至約5,000微米之高度。根據另一實例,在一實施例中,正電極骨架52具有約5微米至約20微米之厚度及約100微米至約1,000微米之高度。根據另一實例,在一實施例中,正電極骨架52具有約5微米至約20微米之厚度及約100微米至約2,000微米之高度。
正電極活性材料層50具有至少1微米之厚度(例如集電器層48與電絕緣分離器層43之間之最短距離,如圖3中所圖解說明且在與正電極之寬度WPE在相同方向上量測時)。然而,一般而言,正電極活性材料層50通常具有並不超過500微米之厚度。舉例而言,在一實施例中,正電極活性材料層50具有約1微米至約200微米之厚度。根據另一實例,在一實施例中,正電極活性材料層50具有約2微米至約100微米之厚度。根據另一實例,在一實施例中,正電極活性材料層50具有約10微米至約100微米之厚度。根據另一實例,在一實施例中,正電極活性材料層50具有約5微米至約50微米之厚度。另外,在正電極骨架51之每一側表面上之正電極活性材料50之層具有至少約50微米、更通常 至少約100微米之高度(在對應於正電極之高度HPE之方向上量測時,如圖6中所圖解說明)。然而,一般而言,正電極活性材料層50通常具有不大於約10,000微米及更通常不大於約7,500微米之高度。根據實例,在一實施例中,正電極活性材料層50具有約1微米至約200微米之厚度及約50微米至約7,500微米之高度。根據另一實例,在一實施例中,正電極活性材料層50具有約1微米至約50微米之厚度及約100微米至約1,000微米之高度。根據另一實例,在一實施例中,正電極活性材料層50具有約5微米至約20微米之厚度及約100微米至約1,000微米之高度。根據另一實例,在一實施例中,正電極活性材料層50具有約10微米至約100微米之厚度及約100微米至約1,000微米之高度。根據另一實例,在一實施例中,正電極活性材料層50具有約5微米至約50微米之厚度及約100微米至約1,000微米之高度。
現參照圖9,在一實施例中,分別對於成員22及21之長度LPE及LNE之整體而言,電絕緣分離器層43自正電極匯流排24之表面28延伸至負電極匯流排23之表面27並分別環繞成員22及成員21之軸APE及ANE。在一該實施例中,分別對於成員22及21之長度LPE及LNE之整體而言,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料分別環繞成員22及成員21之軸APE及ANE。電絕緣材料層43亦在負電極21之頂部33與正電極匯流排24之表面28之間的區域中包括微孔分離器材料(如先前所闡述)。在此實施例中,因此,電絕緣材料層43環繞負電極群之每一成員21及正電極群之每一成員22;換言之,在此實施例中,電絕緣材料層43(i)環繞每一成員21之縱向軸ANE(對於負電極群之每一成員21之全長LNE而言)及負電極群之每一成員21之頂部33,且(ii)環繞每一成員22之縱向軸APE(對於正電極群之每一成員22之全長LPE而言)及正電極群之每一成員22之頂部34。
現參照圖10,在一實施例中,本發明之三維電池70包括電池包 殼72、電極堆疊74、負電極接片41及正電極接片42,該等接片用於將電極堆疊74電連結至外部能量供應裝置或消耗裝置(未展示)。電極堆疊74包括6個電極結構20(參見圖2),其以與每一電極結構20內之交叉電極系列之發展方向垂直之方向堆疊;再次參照圖2,此實施例中6個電極結構之堆疊方向係在相對於圖2中所圖解說明X-Y-Z坐標系統之「Z」方向且與方向D垂直。電極堆疊74中之電極結構數量並不重要且可(例如)介於1至50之間,其中在電極堆疊中通常具有2至20個電極結構。在使用非水性電解質填充電池包殼之後,可藉由在鉸合件72B處摺疊蓋72A並將蓋72A膠合至上表面72C來密封電池包殼72。
在一實施例中,使負電極接片延伸部分25電連結至堆疊74中每一電極結構20之負電極匯流排23(例如使用導電膠水),且使正電極接片延伸部分26電連結至堆疊74中每一電極結構20之正電極匯流排24(例如使用導電膠水)。如所圖解說明,在6個電極結構20中之每一者中,使負電極接片延伸部分25電連結至負電極匯流排23且使正電極接片延伸部分26電連結至正電極匯流排24;在其他實施例中,可使負電極及正電極接片延伸部分25、26電連結至電極堆疊74內較大或較小數量之負電極及正電極匯流排且可(例如)介於1至50個匯流排之間,其中通常為2至20個匯流排。在一替代實施例中且獨立於堆疊中之電極結構數量,堆疊74可包括兩個或更多個負電極接片延伸部分25及兩個或更多個正電極接片延伸部分26。
負電極接片41與負電極接片延伸部分25及正電極接片42與正電極接片延伸部分42可包括任一寬範圍之導電材料。舉例而言,在一實施例中,負電極接片41、負電極接片延伸部分25、正電極接片42及正電極接片延伸部分42獨立地包括導電材料,例如矽、碳、碳複合物、金屬矽化物及諸如此類。用於正電極接片及正電極接片延伸部分之實例性材料包含與彼等經鑑別用於正電極匯流排者相同之材料,且用於 負電極接片及負電極接片延伸部分之實例性材料包含與彼等經鑑別用於負電極匯流排者相同之材料。
可藉由各種技術將負電極接片41、負電極接片延伸部分25、正電極接片42及正電極接片延伸部分26分別附接至負電極匯流排23及正電極匯流排24。用於附接接片、接片延伸部分及匯流排之方法可包含膠合、焊接、結合、燒結、壓觸、銅銲、熱噴霧連接、夾持或其組合。膠合可包含使材料與諸如以下等導電材料連接:導電性環氧樹脂、導電性彈性體、填充有導電性金屬之絕緣有機膠水之混合物(例如鎳填充環氧樹脂、碳填充環氧樹脂)等。可使用導電膏糊將材料連接至一起且可藉由溫度(燒結)、光(UV固化、交聯)、化學固化(基於觸媒之交聯)來調整連接強度。結合製程可包含導線結合、帶結合、超音波結合。焊接製程可包含超音波焊接、電阻焊接、雷射束焊接、電子束焊接、感應焊接及冷焊接。亦可藉由使用塗覆製程(例如熱噴塗,例如電漿噴霧、火焰噴霧、電弧噴霧)來連接該等材料以將該等材料連接至一起。根據實例,可使用鎳熱噴霧作為膠水將鎳或銅網連接於鎳匯流排上。
現參照圖11,使用非水性電解質(未展示)填充電池包殼72且可摺疊蓋72A並密封至上表面(參見圖10)以包封電極堆疊74。為允許連結至能量供應裝置或消耗裝置(未展示),接片41、42在與電極堆疊74中個別電極結構20之堆疊方向垂直且與電極堆疊74中之每一電極結構20中交叉電極系列之發展方向平行的方向上延伸出密封包殼。
在某些實施例中,電池包殼可含有兩個或更多個相對於彼此垂直、水平或垂直並水平堆疊之電極結構(有時亦稱為晶片),且將接片延伸部分連結至每一電極以提供至電池外側環境之電連結。在垂直堆疊晶片時,使不同電極結構中負電極群之底部(或負電極匯流排(若存在))相對於彼此垂直定位,且使不同電極結構中正電極群之底部(或 正電極匯流排(若存在)存在)相對於彼此垂直定位。在某些實施例中,堆疊中之每一電極結構具有頂部及底部分離器材料塗層,如圖2中所圖解說明。然而,在其他實施例中,可刪除頂部、底部或頂部及底部分離器材料塗層,且可將獨立式分離器層插入電極結構(晶片)之間以提供電隔離。可將市售電池分離器切割至期望大小並用於此目的。在堆疊晶片後,在一些實施例中,藉由膠合、電漿噴霧、焊接等將用於電極結構中之正電極及負電極群之接片延伸部分電連結至電極匯流排(若存在)端或各別群之電極端。端視預期用途,可將每一接片延伸部分連結至電極堆疊中之個別電極結構(晶片)。另一選擇為,可將單一接片延伸部分電連結至堆疊中之兩個或更多個電極結構(晶片);在一該實施例中,接片延伸部分跨越堆疊(例如參見圖10中之26)之高度並使得電連結至堆疊中之所有電極結構(晶片)。
在一實施例中,晶片在X平面中彼此緊靠地傾斜,而非晶片彼此在頂部垂直堆疊。傾斜可沿僅一個軸(例如僅X)或沿兩個軸發生。在一該實施例中,電極匯流排在每一晶片上之極性交替逆轉,從而來自一個晶片之陰極匯流排毗鄰來自下一晶片之陰極匯流排且一個晶片之陽極匯流排靠近下一晶片之陽極匯流排。以此方式,可使用公用接片來連結兩個毗鄰晶片,從而節省重量及體積。在XY平面中傾斜時,可能需要多個陽極及/或陰極接片連結至一起以形成單一陽極連結及單一陰極連結。此可在電池包殼內側或電池包殼外側達成。在某些實施例中,多個陽極接片及/或多個陰極接片可保持未連結並自電池包殼露出。另一選擇為,可使單一陽極及陰極連結到達電池包殼外側。在此實施例中,陰極接片最初成型為T組態。T之頂部連結至兩個毗鄰陰極匯流排。T之底部彎曲90度並沿傾斜晶片底部擴展。多個陰極接片之底部部分沿傾斜晶片底部置於彼此之頂部。該多個接片然後可藉由電阻焊接、雷射焊接、點焊接電連結至一起或使用導電膠水連 結。然後僅使該等陰極接片中之一者到達電池包殼外側。類似地,多個陽極接片最初成型為T組態。T之頂部連結至兩個毗鄰陽極匯流排。T之底部彎曲90度並沿傾斜晶片底部擴展。多個陽極接片之底部部分沿傾斜晶片底部置於彼此之頂部。該多個接片然後可藉由電阻焊接、雷射焊接、點焊接電連結至一起或使用導電膠水連結。然後僅使該等陽極接片中之一者到達電池包殼外側。亦可將XY平面中之傾斜與Z平面中之堆疊晶片加以組合。以此方式,可製得遠大於每一個別晶片之電池。
對於用於可攜式電子裝置(例如行動電話及電腦)之鋰離子電池而言,舉例而言,可使用袋式或其他習用電池包殼代替電池包殼72。
現參照圖12,在一替代實施例中,電絕緣分離器層43環繞負電極群之每一成員21之軸ANE;在此實施例中,電絕緣分離器層43位於負電極成員21及正電極成員22之毗鄰對之間,但並不環繞正電極群之每一成員22之軸APE。分別在成員21、22之相對側表面61、62之間及分別在成員21、22之相對側表面63、64之間,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)。舉例而言,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員21之軸ANE(對於每一成員21之至少70%之長度LNE而言)。根據另一實例,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員21之軸ANE(對於每一成員21之至少75%之長度LNE而言)。根據另一實例,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員21之軸ANE(對於每一成員21之至少80%之長度LNE而言)。根據另一實例,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員21之軸ANE(對於每一成員21之至少85%之長度LNE而言)。根 據另一實例,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員21之軸ANE(對於每一成員21之至少90%之長度LNE而言)。根據另一實例,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員21之軸ANE(對於每一成員21之至少95%之長度LNE而言)。根據另一實例,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員21之軸ANE(對於每一成員21之長度LNE之整體而言)。在前述實例性實施例中之每一者中,在環繞成員21之前表面65及背表面67之區域中,電絕緣分離器層43亦包括微孔分離器材料(如先前所闡述)。
現參照圖13,在一替代實施例中,負電極群之每一成員21之高度HNE可小於正電極群之每一成員22之高度HPE。在此實施例中且如結合圖12更全面地所闡述,對於負電極群之每一成員21之至少大部分(例如至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或甚至整體)長度LNE而言,電絕緣分離器層43環繞負電極群之每一成員21之軸ANE。在環繞成員21之前表面65及背表面67之區域中,電絕緣分離器層43亦包括微孔分離器材料(如先前所闡述)。
現參照圖14,在一替代實施例中,電絕緣分離器層43環繞正電極群之每一成員22之軸APE;在此實施例中,電絕緣分離器層43位於負電極成員21及正電極成員22之毗鄰對之間,但並不環繞負電極群之每一成員21之軸ANE。分別在成員21、22之相對側表面61、62之間及分別在成員21、22之相對側表面63、64之間,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)。舉例而言,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員22之軸APE(對於每一成員22之至少70%之長度LPE而言)。根據另一實例,在一該實施例中,電絕緣分離器層43包括微孔 分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員22之軸APE(對於每一成員22之至少75%之長度LPE而言)。根據另一實例,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員22之軸APE(對於每一成員22之至少80%之長度LPE而言)。根據另一實例,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員22之軸APE(對於每一成員22之至少85%之長度LPE而言)。根據另一實例,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員22之軸APE(對於每一成員22之至少90%之長度LPE而言)。根據另一實例,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員22之軸APE(對於每一成員22之至少95%之長度LPE而言)。根據另一實例,在一該實施例中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)且微孔分離器材料環繞每一成員22之軸APE(對於每一成員22之長度LPE之整體而言)。在前述實例性實施例中之每一者中,在環繞成員22之前表面66及背表面68之區域中,電絕緣分離器層43亦包括微孔分離器材料(如先前所闡述)。
在一替代實施例中,如結合圖14所闡述,電絕緣分離器層43環繞正電極群之每一成員22之軸APE,但負電極群之每一成員21之高度HNE大於正電極群之每一成員22之高度HPE。在此替代實施例中,對於正電極群之每一成員22之至少大部分(例如至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或甚至整體)長度LPE而言,電絕緣分離器層43環繞正電極群之每一成員22之軸APE。在環繞成員22之前表面66及背表面68之區域中,電絕緣分離器層43亦包括微孔分離器材料(如先前所闡述)。
現參照圖15,在一實施例中,組合之電絕緣分離器層43、86及 88環繞(i)負電極群之每一成員21之軸ANE及(ii)正電極群之每一成員22之軸APE。分別在成員21、22之相對側表面61、62間及分別在成員21、22之相對側表面63、64間之區域中,電絕緣分離器層43包括微孔分離器材料(如先前所闡述)。因用於成員21及成員22間之離子轉移之主要途徑出現於該等成員之側表面之間,故電絕緣分離器層86、88可包括任一適用於二次電池之電絕緣材料;在一該實施例中,電絕緣分離器層86、88包括對於載體離子(例如鋰離子)具有低電子及離子導電性之電絕緣材料。舉例而言,在一實施例中,電絕緣材料對於載體離子(例如鋰)具有小於1×10-4S/cm之電導率。根據另一實例,在一實施例中,微粒材料對於載體離子具有小於1×10-5S/cm之電導率。根據另一實例,在一實施例中,微粒材料對於載體離子具有小於1×10-6S/cm之電導率。實例性微粒材料包含先前鑑別為用於微孔分離器材料之實例性微粒材料中之任一材料。在一實例性實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之至少70%之長度LNE而言)並環繞每一成員22之軸APE(對於每一成員22之至少70%之長度LPE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之至少75%之長度LNE而言)並環繞每一成員22之軸APE(對於每一成員22之至少75%之長度LPE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之至少80%之長度LNE而言)並環繞每一成員22之軸APE(對於每一成員22之至少80%之長度LPE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之至少85%之長度LNE而言)並環繞每一成員22之軸APE(對於每一成員22之至少85%之長度LPE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21 之軸ANE(對於每一成員21之至少90%之長度LNE而言)並環繞每一成員22之軸APE(對於每一成員22之至少90%之長度LPE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之至少95%之長度LNE而言)並環繞每一成員22之軸APE(對於每一成員22之至少95%之長度LPE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之長度LNE之整體而言)並環繞每一成員22之軸APE(對於每一成員22之長度LPE之整體而言)。
現參照圖16,在一替代實施例中,組合之電絕緣分離器層43、86及88環繞負電極群之每一成員21之軸ANE。在此實施例中,電絕緣分離器層43位於正電極群之成員22與負電極群之成員21之間且電絕緣分離器層86及88位於他處。舉例而言,在此實施例中,分別在成員21、22之相對側表面61、62間及分別在成員21、22之相對側表面63、64間之區域中,電絕緣分離器層43包括微孔分離器材料。然而,因用於成員21及成員22間之離子轉移之主要路徑出現於該等成員之側表面之間,故電絕緣分離器層86、88無需包括微孔分離器材料;而是,電絕緣分離器層86、88可視情況包括實質上不滲透載體離子(例如鋰離子)之電絕緣材料,如結合圖15更全面地所闡述。在一該實例性實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之至少70%之長度LNE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之至少75%之長度LNE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之至少80%之長度LNE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之至少85%之長度LNE而言)。根據另一實 例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之至少90%之長度LNE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之至少95%之長度LNE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員21之軸ANE(對於每一成員21之長度LNE之整體而言)。
現參照圖17,在一替代實施例中,組合之電絕緣分離器層43、86及88環繞正電極群之每一成員22之軸APE。在此實施例中,電絕緣分離器層43位於正電極群之成員22與負電極群之成員21之間且電絕緣分離器層86及88位於他處。舉例而言,在此實施例中,分別在成員21、22之相對側表面61、62間及分別在成員21、22之相對側表面63、64間之區域中,電絕緣分離器層43包括微孔分離器材料。然而,因用於成員21及成員22間之離子轉移之主要路徑出現於該等成員之側表面之間,故電絕緣分離器層86、88無需包括微孔分離器材料;而是,電絕緣分離器層86、88可視情況包括實質上不滲透載體離子(例如鋰離子)之電絕緣材料,如結合圖15更全面地所闡述。在一該實例性實施例中,組合之電絕緣分離器層43、86及88環繞每一成員22之軸APE(對於每一成員22之至少70%之長度LPE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員22之軸APE(對於每一成員22之至少75%之長度LPE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員22之軸APE(對於每一成員22之至少80%之長度LPE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員22之軸APE(對於每一成員22之至少85%之長度LPE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員22之軸APE(對於每一成員22之至少90%之長度LPE而言)。根據另一實 例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員22之軸APE(對於每一成員22之至少95%之長度LPE而言)。根據另一實例,在一該實施例中,組合之電絕緣分離器層43、86及88環繞每一成員22之軸APE(對於每一成員22之長度LPE之整體而言)。
現參照圖18,在一替代實施例中,組合之電絕緣分離器層43、86及88環繞(i)負電極群之每一成員21之軸ANE及(ii)正電極群之每一成員22之軸APE。如結合圖15所闡述,在分別在成員21、22之相對側表面61、62間及分別在成員21、22之相對側表面63、64間之區域中,電絕緣分離器層43包括微孔分離器材料。因用於成員21及成員22間之離子轉移之主要路徑出現於該等成員之側表面之間,故電絕緣分離器層86、88可包括任一適用於二次電池之電絕緣材料;在一該實施例中,電絕緣分離器層86、88包括實質上不滲透載體離子(例如鋰離子)之電絕緣材料,如結合圖15所闡述。在此實施例中,電絕緣分離器層86分別延伸超過成員21、22之前表面65、66並分別進入成員21及22之相對側表面61、62及相對側表面63、64之間之區域中。電絕緣分離器層88亦分別延伸超過成員21、22之背表面67、68並分別進入成員21及22之相對側表面61、62及相對側表面63、64之間之區域中。在一該實施例中,舉例而言且忽略微孔分離器材料之孔隙率,微孔分離器材料分別構成成員21及22之相對側表面61、62及相對側表面63、64之間之電絕緣分離器材料層43的至少70體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料分別構成成員21及22之相對側表面61、62與相對側表面63、64之間之電絕緣分離器材料層43的至少75體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料分別構成成員21及22之相對側表面61、62與相對側表面63、64之間之電絕緣分離器材料層43的至少80體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙 率,微孔分離器材料分別構成成員21及22之相對側表面61、62與相對側表面63、64之間之電絕緣分離器材料層43的至少85體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料分別構成成員21及22之相對側表面61、62與相對側表面63、64之間之電絕緣分離器材料層43的至少90體積%。根據另一實例,在一實施例中且忽略微孔分離器材料之孔隙率,微孔分離器材料分別構成成員21及22之相對側表面61、62與相對側表面63、64之間之電絕緣分離器材料層43的至少95體積%。
現參照圖19,在一實施例中,電絕緣分離器層43、82及84分別環繞正電極群及負電極群之每一成員22及每一成員21。然而,在此實施例中,對於成員22及21之長度LPE及LNE之一部分而言,電絕緣分離器層43分別環繞每一成員22及每一成員21之軸APE及ANE。換言之,在此實施例中,電絕緣分離器層43位於每一成員21、22之相對側表面之間之區域中,電絕緣分離器層43覆蓋每一成員21、22之前表面65、66(參見圖3),且電絕緣分離器層43覆蓋每一成員21、22之背表面67、68(參見圖3),電絕緣分離器層82位於負電極21之頂部33與正電極匯流排條24之間之區域中,且電絕緣分離器層84位於正電極22之頂部34與負電極匯流排條23之間之區域中。長度L82對應於電絕緣分離器層82之長度,長度L84對應於電絕緣分離器層84之長度且L43對應於電絕緣分離器層43之長度。舉例而言,在此實施例中,對於負電極群之每一成員21之長度LNE之至少大部分(例如至少70%、至少75%、至少80%、至少85%、至少90%或甚至至少95%)但小於整體長度而言,電絕緣分離器層43環繞(i)負電極群之每一成員21之軸ANE。換言之,在此實施例中,長度L43為長度LNE之至少70%、至少75%、至少80%、至少85%、至少90%或甚至至少95%但小於整體長度。另外,在此實施例中,電絕緣分離器層43環繞正電極群之每一成員22之軸APE之至 少大部分(例如至少70%、至少75%、至少80%、至少85%、至少90%或甚至至少95%)但小於正電極群之每一成員22之長度LPE的整體長度。換言之,在此實施例中,長度L43為長度LPE之至少70%、至少75%、至少80%、至少85%、至少90%或甚至至少95%但小於整體長度。電絕緣分離器層43包括微孔分離器材料(如先前所闡述)。然而,因用於成員21及成員22間之離子轉移之主要路徑出現於該等成員之側表面之間,故電絕緣分離器層82、84無需包括微孔分離器材料;而是,電絕緣分離器層82、84可視情況包括實質上不滲透載體離子(例如鋰離子)之電絕緣材料,如結合圖15更全面地所闡述。
在替代實施例中,電絕緣分離器層82位於負電極21之頂部33與正電極匯流排條24之間之區域中,且電絕緣分離器層84位於正電極22之頂部34與負電極匯流排條23之間之區域中,如結合圖19更全面地所闡述,但在該兩個區域之間,成員21及22可沿其長度電隔離,如結合圖12-Z更全面地所闡述。換言之,在一該替代實施例中,成員21由電絕緣分離器材料環繞,但成員22並非如此,如結合圖12及13更全面地所闡述。在另一該替代實施例中,成員22由電絕緣分離器材料環繞,但成員21並非如此,如結合圖14更全面地所闡述。在另一該替代實施例中,成員21及22由電絕緣分離器43、86及88環繞,如結合圖15更全面地所闡述。在另一該替代實施例中,成員21由電絕緣分離器材料43、86及88環繞,但成員22並非如此,如結合圖16更全面地所闡述。在另一該替代實施例中,成員22由電絕緣分離器材料43、86及88環繞,但成員21並非如此,如結合圖17更全面地所闡述。在另一該替代實施例中,成員21及22由電絕緣分離器43、86及88環繞,如結合圖18更全面地所闡述。在該等實施例中之每一者中,長度L43為長度LPE及/或LNE之至少70%、至少75%、至少80%、至少85%、至少90%或甚至至少95%但小於整體長度。
現參照圖20,在一替代實施例中,負電極活性材料層49位於負電極骨架51與負電極集電器層47之間。在此實施例中,負電極集電器層47包括離子及電導電之離子滲透性導體材料。換言之,負電極集電器層47具有厚度、電導電性及用於載體離子之離子導電性,該離子導電性促進載體離子在電化學堆疊中離子滲透性導體層一側上之緊鄰負電極活性材料層49與負電極集電器層另一側上之緊鄰電絕緣分離器層43之間的移動。相對而言,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層之電導率大於其離子電導率。舉例而言,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層之電導率對離子電導率(對於載體離子而言)之比率通常分別為至少1,000:1。根據另一實例,在一該實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層之電導率對離子電導率(對於載體離子而言)之比率分別為至少5,000:1。根據另一實例,在一該實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層之電導率對離子電導率(對於載體離子而言)之比率分別為至少10,000:1。根據另一實例,在一該實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層之電導率對離子電導率(對於載體離子而言)之比率分別為至少50,000:1。根據另一實例,在一該實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層之電導率對離子電導率(對於載體離子而言)之比率分別為至少100,000:1。
一般而言,在負電極集電器層47係離子滲透性導體層時,其具有至少約300埃之厚度。舉例而言,在一些實施例中,其可具有在約300-800埃之範圍內之厚度。然而,更通常而言,其具有大於約0.1微米之厚度。一般而言,離子滲透性導體層具有不大於約100微米之厚 度。因此,舉例而言,在一實施例中,負電極集電器層47具有在約0.1微米至約10微米之範圍內之厚度。根據另一實例,在一些實施例中,負電極集電器層47具有在約0.1微米至約5微米之範圍內之厚度。根據另一實例,在一些實施例中,負電極集電器層47具有在約0.5微米至約3微米之範圍內之厚度。一般而言,較佳地,負電極集電器層47之厚度大致均勻。舉例而言,在一實施例中,較佳地,負電極集電器層47具有小於約25%之厚度不均勻性,其中厚度不均勻性定義為最大層厚度減去最小層厚度之量除以平均層厚度。在某些實施例中,厚度變化甚至更小。舉例而言,在一些實施例中,負電極集電器層47具有小於約20%之厚度不均勻性。根據另一實例,在一些實施例中,負電極集電器層47具有小於約15%之厚度不均勻性。在一些實施例中,離子滲透性導體層具有小於約10%之厚度不均勻性。
在負電極集電器層47包括兼具離子電導性與電導性之離子滲透性導體材料之彼等實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時(例如在使二次電池充電或放電時),負電極集電器層47之離子電導率可與毗鄰電絕緣分離器層43之離子電導率相當。舉例而言,在一實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層47之離子電導率(對於載體離子而言)為分離器層之離子電導率之至少50%(亦即分別為0.5:1之比率)。根據另一實例,在一些實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層47之離子電導率(對於載體離子而言)對分離器層之離子電導率(對於載體離子而言)之比率為至少1:1。根據另一實例,在一些實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層47之離子電導率(對於載體離子而言)對分離器層之離子電導率(對於載體離子而言)之比率為至少1.25:1。根據另一實例,在一些實施例中,在施加 電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層47之離子電導率(對於載體離子而言)對分離器層之離子電導率(對於載體離子而言)之比率為至少1.5:1。根據另一實例,在一些實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層47之離子電導率(對於載體離子而言)對分離器層之離子電導率(對於載體離子而言)之比率為至少2:1。
在一實施例中,負電極集電器層47之電導率亦實質上大於負電極活性材料層49之電導率。舉例而言,在一實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層47之電導率對負電極活性材料層49之電導率之比率為至少100:1。根據另一實例,在一些實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層47之電導率對負電極活性材料層之電導率之比率為至少500:1。根據另一實例,在一些實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層47之電導率對負電極活性材料層之電導率之比率為至少1000:1。根據另一實例,在一些實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層47之電導率對負電極活性材料層之電導率之比率為至少5000:1。根據另一實例,在一些實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,負電極集電器層47之電導率對負電極活性材料層之電導率之比率為至少10,000:1。
在此實施例中,負電極集電器層47之厚度(亦即分離器與負電極活性材料層之間之最短距離,二者之間夾持有離子滲透性負電極集電器層47)取決於層組成及用於電化學堆疊之性能規範。一般而言,在負電極集電器層係離子滲透性導體層時,其具有至少約300埃之厚度。舉例而言,在一些實施例中,其可具有在約300-800埃之範圍內 之厚度。然而,更通常而言,其具有大於約0.1微米之厚度。一般而言,離子滲透性導體層具有不大於約100微米之厚度。因此,舉例而言,在一實施例中,負電極集電器層47具有在約0.1微米至約10微米之範圍內之厚度。根據另一實例,在一些實施例中,負電極集電器層47具有在約0.1微米至約5微米之範圍內之厚度。根據另一實例,在一些實施例中,負電極集電器層47具有在約0.5微米至約3微米之範圍內之厚度。一般而言,較佳地,負電極集電器層47之厚度大致均勻。舉例而言,在一實施例中,較佳地,負電極集電器層47具有小於約25%之厚度不均勻性,其中厚度不均勻性定義為最大層厚度減去最小層厚度之量除以平均層厚度。在某些實施例中,厚度變化甚至更小。舉例而言,在一些實施例中,負電極集電器層47具有小於約20%之厚度不均勻性。根據另一實例,在一些實施例中,負電極集電器層47具有小於約15%之厚度不均勻性。在一些實施例中,離子滲透性導體層具有小於約10%之厚度不均勻性。
在一較佳實施例中,負電極集電器層47係離子滲透性導體層,其包括有助於離子滲透性及導電性之電導電組份及離子導電組份。通常,電導電組份包括呈網或圖案化表面、膜之形式之連續導電材料(例如連續金屬或金屬合金)或包括連續導電材料(例如連續金屬或金屬合金)之複合材料。另外,離子導電組份通常包括孔隙(例如網間隙、含有圖案化金屬或金屬合金之材料層之間之空間、金屬膜中之孔隙)或具有用於載體離子之充分擴散性之固體離子導體。在某些實施例中,離子滲透性導體層包括經沈積多孔材料、離子傳輸材料、離子反應性材料、複合材料或物理多孔材料。舉例而言,若多孔,則離子滲透性導體層可具有至少約0.25之空隙分率。然而,一般而言,空隙分率通常不超過約0.95。更通常而言,在離子滲透性導體層多孔時,空隙分率可在約0.25至約0.85之範圍內。在一些實施例中,舉例而言, 在離子滲透性導體層多孔時,空隙分率可在約0.35至約0.65之範圍內。
定位於負電極活性材料層49與電絕緣分離器層43之間,負電極集電器層47可藉由使電流自負電極集電器分佈於負電極活性材料層之表面上來促進更均勻之載體離子傳輸。此繼而可促進更均勻地插入及引出載體離子並由此減小負電極活性材料在循環期間之應力;因負電極集電器層47將電流分佈至負電極活性材料層面向分離器之表面上,故若載體離子濃度最大,則用於載體離子之負電極活性材料層之反應性最大。
現參照圖21,在一替代實施例中,正電極活性材料層50位於正電極骨架52與正電極集電器層48之間。在此實施例中,正電極集電器層48包括離子及電導電之離子滲透性導體材料。換言之,正電極集電器層具有厚度、電導電性及用於載體離子之離子導電性,該離子導電性促進載體離子在電化學堆疊中離子滲透性導體層一側上之緊鄰正電極活性材料層50與正電極集電器層另一側上之緊鄰電絕緣分離器層43之間的移動。在此實施例中,相對而言,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,正電極集電器層之電導率大於其離子電導率。舉例而言,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,正電極集電器層之電導率對離子電導率(對於載體離子而言)之比率通常分別為至少1,000:1。根據另一實例,在一該實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,正電極集電器層之電導率對離子電導率(對於載體離子而言)之比率分別為至少5,000:1。根據另一實例,在一該實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,正電極集電器層之電導率對離子電導率(對於載體離子而言)之比率分別為至少10,000:1。根據另一實例,在一該實施例中,在施加電流以在裝置中儲存能量或施 加負荷以使裝置放電時,正電極集電器層之電導率對離子電導率(對於載體離子而言)之比率分別為至少50,000:1。根據另一實例,在一該實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,正電極集電器層之電導率對離子電導率(對於載體離子而言)之比率分別為至少100,000:1。
現參照圖22,在一替代實施例中,負電極活性材料層49位於負電極骨架51及與電極集電器層47之間且正電極活性材料層50位於正電極骨架52與正電極集電器層48之間。在此實施例中,負電極集電器層47及正電極集電器層48包括離子及電導電之離子滲透性導體材料。換言之,負電極集電器層及正電極集電器層各自具有厚度、電導電性及用於載體離子之離子導電性,該離子導電性促進載體離子在緊鄰正電極活性材料層50與負電極活性材料層49之間之移動。在此實施例中,相對而言,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,正電極集電器層及負電極集電器層各自之電導率大於其離子電導率,如先前所闡述。舉例而言,在此實施例中,在施加電流以在裝置中儲存能量或施加負荷以使裝置放電時,正電極集電器層及負電極集電器層之電導率對離子電導率(對於載體離子而言)之比率通常分別為至少1,000:1。
現參照圖23及24,在一替代實施例中,負電極21包括負電極骨架51、負電極活性材料層49、負電極集電器層47及補充負電極集電器層47A、47B,且正電極22包括正電極骨架52、正電極活性材料層50、正電極集電器層48及補充正電極集電器層48A、48B。可將補充負電極集電器納入負電極群成員及/或正電極群成員中以提供額外電導率。
在某些實施例中,補充負電極集電器之電導率為負電極集電器之電導率之至少2倍;在某些實施例中,補充負電極集電器之電導率 為負電極集電器之電導率之至少5倍或甚至10倍。有利的是,由補充負電極集電器提供之額外電導率可達成負電極集電器層47之整體集電器重量及體積需求。另外,在負電極集電器層係離子滲透性集電器(如在本文中其他處更全面地所闡述)時,補充負電極集電器集電器可沿電極長度LNE攜載大部分電流且負電極集電器層可主要用於自電極收集電流並將其提供至補充負電極集電器。此繼而減小離子滲透性集電器層所需之電子電導率,且使得能夠設計離子滲透性層以具有較低電子導電性及較高離子導電性,從而獲得較佳單元性能。
現參照圖23,在一實施例中,由負電極群之每一成員21所包括負電極電流導體層47之長度LNC為包括該負電極集電器之成員之長度LNE的至少50%。根據另一實例,在一實施例中,由負電極群之每一成員21所包括負電極電流導體層47之長度LNC為包括該負電極集電器之成員之長度LNE的至少60%。根據另一實例,在一實施例中,由負電極群之每一成員21所包括負電極電流導體層47之長度LNC為包括該負電極集電器之成員之長度LNE的至少70%。根據另一實例,在一實施例中,由負電極群之每一成員21所包括負電極電流導體層47之長度LNC為包括該負電極集電器之成員之長度LNE的至少80%。根據另一實例,在一實施例中,由負電極群之每一成員21所包括負電極電流導體層47之長度LNC為包括該負電極集電器之成員之長度LNE的至少90%。
在一些實施例中,補充負電極集電器可提供在沿電極之某些位置處阻斷充電/放電反應之方式。可設計補充集電器47A、47B以便此層之離子電導率基本上為零,此會抑制補充集電器正下方之電極上之充電/放電反應。
在每一前述實施例中,補充負電極集電器層47A、47B獨立地其長度(與長度LNC在相同方向上量測)與負電極集電器層47之長度LNC相同,為其實質分率(例如至少60%、至少70%、至少80%或甚至至少 90%)。另一選擇為,在每一前述實施例中,補充負電極集電器層47A、47B獨立地其長度(與長度LNC在相同方向上量測)小於負電極集電器層47之長度LNC之實質分率(例如小於40%、30%、20%或甚至10%)。負電極群之每一成員21之長度LNE端視能量儲存裝置及其預期用途而有所變化,但在許多實施例中,其在約5mm至約500mm之範圍內。舉例而言,在一實施例中,每一成員21之長度LNE在約10mm至約250mm之範圍內。根據另一實例,在一實施例中,每一成員21之長度LNE在約25mm至約100mm之範圍內。
補充負電極集電器層47A及47B可包括先前結合負電極集電器層47所鑑別之任一材料。因補充負電極集電器層47A及47B並不位於負電極活性材料層與正電極活性材料層之間,故其無需對載體離子離子滲透。因此,補充負電極集電器層47A、47B可包括任一金屬或其他通常用作用於負電極之集電器材料之導體,例如碳、鈷、鉻、銅、鎳、鈦或其一或多者之合金。另外,在一實施例中,補充負電極集電器層47A、47B獨立地其電導率超過負電極集電器層47之電導率。舉例而言,在一實施例中,補充負電極集電器層47A、47B中之至少一者之電導率為負電極集電器層之電導率的至少200%(例如至少1000%)。
現參照圖24,正電極骨架52、正電極活性材料層50及正電極集電器層48及補充正電極集電器層48A、48B較佳地自負電極群之每一成員22之底部32至頂部34延伸大部分距離。可將補充正電極集電器納入正電極群成員中以提供額外電導率。在某些實施例中,補充正電極集電器之電導率為正電極集電器之電導率之至少2倍;在某些實施例中,補充正電極集電器之電導率為正電極集電器之電導率之至少5倍或甚至10倍。有利的是,由補充正電極集電器提供之額外電導率使得正電極集電器層48之整體集電器重量及體積需求有所減小。另外,在 正電極集電器層係離子滲透性集電器(如在本文中其他處更全面地所闡述)時,補充正電極集電器可沿電極長度LPE攜載大部分電流且正電極集電器層可主要用於自電極收集電流並將其提供至補充正電極集電器。此繼而減小離子滲透性集電器層所需之電子電導率,且使得能夠設計離子滲透性層以具有較低電子導電性及較高離子導電性,從而獲得較佳單元性能。
補充正電極集電器層48A及48B可包括先前結合正電極集電器層48所鑑別之任一材料。另外,在一實施例中,補充正電極集電器層48A、48B中之至少一者之電導率超過正電極集電器層48之電導率。舉例而言,在一實施例中,補充正電極集電器層48A、48B中之至少一者之電導率為正電極集電器層之電導率的至少200-1,000%。
在一些實施例中,補充正電極集電器可提供在沿電極之某些位置處阻斷充電/放電反應之方式。可設計補充集電器48A、48B以便此層之離子電導率基本上為零,此會抑制補充集電器正下方之電極上之充電/放電反應。
舉例而言,在一實施例中,由正電極群之每一成員22所包括正電極電流導體層48之長度LPC為包括該正電極集電器之成員之長度LPE的至少50%。根據另一實例,在一實施例中,由正電極群之每一成員22所包括正電極電流導體層48之長度LPC為包括該正電極集電器之成員之長度LPE的至少60%。根據另一實例,在一實施例中,由正電極群之每一成員22所包括正電極電流導體層48之長度LPC為包括該正電極集電器之成員之長度LPE的至少70%。根據另一實例,在一實施例中,由正電極群之每一成員22所包括正電極電流導體層48之長度LPC為包括該正電極集電器之成員之長度LPE的至少80%。根據另一實例,在一實施例中,由正電極群之每一成員22所包括正電極電流導體層48之長度LPC為包括該正電極集電器之成員之長度LPE的至少90%。 在每一前述實施例中,補充正電極集電器層48A、48B獨立地其長度(與長度LPC在相同方向上量測)與正電極集電器層48之長度LPC相同,為其實質分率(例如至少60%、至少70%、至少80%或甚至至少90%)。另一選擇為,在每一前述實施例中,補充正電極集電器層48A、48B獨立地其長度(與長度LPC在相同方向上量測)小於正電極集電器層48之長度LPC之實質分率(例如小於40%、小於30%、小於20%或甚至小於10%)。正電極群之每一成員22之長度LPE端視能量儲存裝置及其預期用途而有所變化,但在許多實施例中,其在約5mm至約500mm之範圍內。舉例而言,在一實施例中,每一成員21之長度LPE在約10mm至約250mm之範圍內。根據另一實例,在一實施例中,每一成員21之長度LPE在約25mm至約100mm之範圍內。
在某些實施例中,補充負電極集電器層47A、47B及/或補充正電極集電器層48A、48B可提供改良之速率性能。可使用與彼等結合形成正電極及負電極集電器所闡述方法類似之方法在電極結構上形成補充正電極及/或負電極集電器。可使用遮蔽及圖案化之已知方法來製備骨架以用於在期望區中選擇性沈積補充集電器。在一些情況下,在沈積作用電極之後沈積集電器以提供離子滲透性電流收集方案。
再次參照圖4及5,在某些實施例中,負電極群之成員21具有直側(亦即在底部31與頂部33之間延伸之每一側為平面)。在其他實施例中,負電極群成員具有多邊形或甚至彎曲之側(例如在底部31與頂部33之間延伸之側可為正弦形)。在每一該實施例中,長度LNE為底部31與頂部33之間之直線距離。
再次參照圖4及6,在某些實施例中,正電極群之成員22具有直側(亦即在底部32與頂部34之間延伸之每一側為平面)。在其他實施例中,正電極群成員具有多邊形或甚至彎曲之側(例如在底部32與頂部34之間延伸之側可為正弦形)。在每一該實施例中,長度LPE為底部32 與頂部34之間之直線距離。
在圖7中所圖解說明之實施例中,負電極群成員21具有隨長度而變化之恆定寬度WNE及恆定高度HNE。在其他實施例中,負電極群成員21可具有隨沿負電極長度之位置而變化之寬度WNE或高度HNE,或負電極群成員可具有除矩形外之橫截面(在與長度方向垂直之平面中獲取)。在該等其他實施例中,寬度WNE及高度HNE係指負電極群成員21之突出在與負電極群成員21之長度方向垂直之平面中的最大寬度及最大高度。換言之,寬度WNE及高度HNE對應於位於具有最小尺寸但仍含有負電極群成員之所有突出點之平面中之虛矩形中兩個毗鄰側的長度。
在圖8中所圖解說明之實施例中,正電極群成員22具有隨長度而變化之恆定寬度WPE及恆定高度HPE。在其他實施例中,負電極群成員22可具有隨沿負電極長度之位置而變化之寬度WPE或高度HPE,或負電極群成員可具有除矩形外之橫截面(在與長度方向垂直之平面中獲取)。在該等其他實施例中,寬度WPE及高度HPE係指正電極群成員22之突出在與正電極群成員22之長度方向垂直之平面中的最大寬度及最大高度。換言之,寬度WPE及高度HPE對應於位於具有最小尺寸但仍含有正電極群成員之所有突出點之平面中之虛矩形中兩個毗鄰側的長度。
圖25A-E圖解說明與電極長度方向垂直之平面中之電極(正電極或負電極)之若干替代突出。在圖25A-E中,電極之突出描繪梯形(圖25A)、平行四邊形(圖25B)、三角形(圖25C)、金剛石形(圖25D)及卵形(圖25E)。在每一情況下,具有最小尺寸但仍含有電極之所有突出點之虛矩形具有寬度WE及高度HE。此外,在該等情況中之每一者中,電極具有對應於由突出描繪之幾何圖形之圓周長之周長PE
現參照圖26,在一替代實施例中,電極堆疊74包括三個垂直堆 疊並對準之電極結構20,從而對準三個電極之正電極22且對準負電極結構21。在此實施例中,電絕緣材料層86覆蓋堆疊中之頂部電極結構之成員21、22之前表面65、66,且電絕緣材料層88覆蓋堆疊中之底部電極結構之成員21、22之背表面67、68。因此,不同電極結構之成員21並未彼此電隔離,但其與堆疊中之不同電極結構之成員22電隔離。因此,每一正電極結構22由電絕緣材料層43、86及88環繞且每一負電極結構21由電絕緣層43、86及88環繞。出於闡釋便利性,電極堆疊74僅包括三個電極結構。如結合圖10所闡述,電極堆疊74可包括較小或較大數量之電極結構20。
現參照圖27,在一替代實施例中,電極堆疊74包括三個電極結構20,該等電極結構20係垂直堆疊並以如下方式對準:電極結構之正電極群之成員22在另一電極結構20之負電極群之成員21上方及/或下方並與其對準。在此實施例中,每一成員21及每一成員22由電絕緣層43環繞。出於闡釋便利性,電極堆疊74僅包括三個電極結構。如結合圖10所闡述,電極堆疊74可包括較小或較大數量之電極結構20。
提供下列非限制性實例以進一步闡釋本發明。
實例 實例1:3D單一單元製作1
1. 梳狀結構製作
使用層厚度為200μm/3μm/675μm(裝置層/絕緣層/背襯層)之絕緣體上矽(SOI)晶圓作為試樣。將1000Å Pd濺鍍沈積於裝置層頂部,隨後沈積2000Å二氧化矽之硬遮罩層。
然後使用5μm抗蝕劑旋塗此晶圓並使用遮罩圖案化以獲得具有兩個彼此隔離之交叉梳之梳狀結構。
該設計展示得到兩個獨立梳狀結構之結構,其中每一結構終止於適於製作電觸點之著陸墊中。將毗鄰波之間之間隙設計為100微 米。每一線之長度為10000微米,且任一端上之邊緣至邊緣間隙(亦即梳與相對電極連結之端之間)為200微米。換言之,在圖9中,負電極梳(其構成負電極21之一部分)之頂部與正電極梳(其構成正電極22之一部分)之底部之間的間隙為200um。然後使用此圖案中之光阻劑作為光遮罩藉由離子研磨去除二氧化矽及鈀。
使用二氧化矽、光阻劑及Pd之組合作為遮罩以用於使用氟化物電漿中之深反應性離子蝕刻(DRIE)去除矽。實施DRIE直至完全去除構成遮罩間隙中之裝置層之矽為止,並止於氧化物層上。所用過蝕刻時間為總DRIE時間之10%以去除溝槽底板中之矽島。藉由剝離在丙酮中去除任何頂部光阻劑。此時,藉由DRIE使兩個梳電隔離。
將正電極墊及負電極墊單獨浸漬於稀(5:1)緩衝氧化物蝕刻(BOE)溶液中1分鐘以去除遮蔽氧化物層,從而到達鈀金屬而達成電接觸。將具有隔離之負電極梳及正電極梳之梳狀結構用作用於集電器及電極製作之基底結構。
2. 負電極集電器及負電極製作
經由鈀導體使梳狀結構之隔離對中之一者(在本文中稱為負電極骨架梳狀物)電連結且浸漬於銅電鍍浴中。調節銅電鍍浴條件,從而沈積發生於構成梳狀結構之矽層上。沈積之此Cu層由此用作負電極集電器。
將試樣浸漬於電泳抗蝕劑浴中且隨後激發正電極骨架梳狀結構。使用市售電泳抗蝕劑(Shipley EAGLE),且使用Pd導體將梳以50V電泳沈積120秒以形成抗蝕劑塗層。將晶片在120℃下烘焙30min以硬化抗蝕劑。
現將矽試樣插入蒸發室中,且將20Å Au沈積於試樣表面上。此Au沈積製程使得Au位於蜂窩狀結構頂部以及其側壁上以及底部氧化物層上。然而,存在於正電極骨架梳上之光阻劑使得Au僅與負電極 骨架梳狀結構上之銅接觸。此時藉由黏著膠帶遮罩保護矽背襯層。隨後將試樣浸漬於丙酮中15min以去除電泳抗蝕劑以及電泳抗蝕劑頂部之蒸發Au。然後將試樣浸漬於稀(5:1)緩衝氧化物蝕刻(BOE)溶液中以去除Au簇及來自負電極梳前面之氧化物層及溝槽底部之絕緣層。此僅隔離負電極骨架梳側之Au奈米簇。
然後藉由CVD方法在負電極骨架梳狀結構之側面生長矽奈米線。將試樣插入CVD室中並加熱至550℃。將矽烷氣體引入室中;將反應器壓力保持於10托。沈積速率為4um/hr;且進行沈積直至達到20um之目標奈米線厚度。自負電極骨架梳之側面延伸之該等奈米線用作鋰離子電池之負電極。
3. 正電極集電器及正電極製作
然後經由鈀導體電連結正電極骨架梳且浸漬於金電鍍浴中以將金鍍覆於構成梳狀結構之鈀及矽層上。環繞正電極骨架梳之此Au層將用作正電極集電器。
使用鋰離子電池正電極材料電泳沈積正電極骨架梳。電泳沈積溶液含有正電極材料(LiCoO2)、15wt%碳黑及150ppm存於丙酮溶液中之碘。將溶液混合物攪拌過夜以均勻分散顆粒。使用Pd接觸墊作為用於正電極沈積用電連結之末端。使用Pt反電極。將試樣在100V之電壓下沈積3min以沈積40um厚正電極結構。沈積發生於正電極梳之側壁及前面上。
4. 過量正電極去除
使用機械去除製程去除沈積於晶片前面上之任何過量正電極。使用拋光墊將前面磨光以暴露正電極集電器層;隨後強制風乾以確保並無可引起短路之鬆散顆粒存在於晶片上。
5. 1號分離器層製作
藉由使用所製得漿液將多孔分離器施加至正電極與負電極之間 之間隙(其在標稱上為40微米)中,該漿液包括分散於N-甲基吡咯啶酮中之精細玻璃粉末(直徑<2微米)以及2體積%固體含量為60%之PVDF黏合劑。絲網印刷此漿液以潤濕晶片並迫使微粒物質進入負電極材料與正電極材料之間。多次進行絲網印刷且其間實施中間乾燥步驟以填充負電極與正電極之間之溝槽及沿裝置之頂部及底部的間隙(構成圖19中之82及84之區)。
使用機械去除製程去除沈積於晶片前面上之任何過量分離器。使用拋光墊將前面磨光以暴露電極集電器層;隨後強制風乾以確保並無可引起短路之鬆散顆粒存在於晶片上。
6. 結構層去除
隨後藉助UV釋放切分膠帶使晶片之頂部側結合至犧牲玻璃基板。使用此配置利用習用晶圓磨光技術以機械方式去除背襯矽層。實施磨光製程直至去除背襯晶圓及中間氧化物層為止。使用UV釋放自犧牲玻璃基板去除主動晶片;由此製作備用於後續分離器填充處理之晶片。
7. 2號分離器層製作
藉由將晶片浸塗於所製得漿液中來將多孔分離器之額外層施加於晶片之前面及背面上,該漿液包括分散於N-甲基吡咯啶酮中之精細玻璃粉末(直徑<2微米)以及2體積%固體含量為30%之PVDF黏合劑。乾燥浸塗晶片以去除溶劑並固化黏合劑材料(在此階段,裝置之橫截面類似於圖15,只是缺乏矽之底部面上之集電器47及48。)前面及背面上之浸塗厚度目標各為25微米。
實例2:3D單一單元製作2
1. 梳狀結構製作
使用層厚度為200μm之矽晶圓作為試樣。將1000Å Pd濺鍍沈積於裝置層頂部,隨後沈積2000Å二氧化矽之硬遮罩層。將晶圓翻轉且 將1500Å Cu沈積於底部側上。
然後使用標準陽極結合技術使此試樣陽極結合至borofloat玻璃基板。
然後使用5μm抗蝕劑旋塗此晶圓並使用遮罩圖案化以獲得具有兩個彼此分離之交叉梳之梳狀結構,如圖1中所展示。
該設計展示得到兩個獨立梳狀結構之結構,其中每一結構終止於適於製作電觸點之著陸墊中。將毗鄰波之間之間隙設計為100微米。每一線之長度為10000微米,且任一端上之邊緣至邊緣間隙(亦即梳與相對電極連結之端之間)為200微米。換言之,在圖9中,負電極梳(其構成負電極21之一部分)之頂部與正電極梳(其構成正電極22之一部分)之底部之間的間隙為200um。然後使用此圖案中之光阻劑作為光遮罩藉由離子研磨去除二氧化矽及鈀。
使用二氧化矽、光阻劑及Pd之組合作為遮罩以用於使用氟化物電漿中之深反應性離子蝕刻(DRIE)去除矽。實施DRIE直至完全去除構成遮罩間隙中之裝置層之矽為止,並止於氧化物層上。所用過蝕刻時間為總DRIE時間之10%以去除溝槽底板中之矽島。藉由剝離在丙酮中去除任何頂部光阻劑。隨後將晶片浸泡於1%硝酸溶液中以去除溝槽底部之銅並暴露陽極玻璃。此時,藉由DRIE使兩個梳電隔離。
將正電極墊及負電極墊單獨浸漬於稀(5:1)緩衝氧化物蝕刻(BOE)溶液中1分鐘以去除遮蔽氧化物層,從而到達鈀金屬而達成電接觸。將具有隔離之負電極梳及正電極梳之梳狀結構用作用於集電器及電極製作之基底結構。
2. 負電極集電器及負電極製作
使用類似於實例1之製程來製作負電極集電器及負電極。
3. 正電極集電器及正電極製作。
使用類似於實例1之製程來製作正電極集電器及正電極。
4. 分離器製作。
藉由使用所製得漿液將多孔分離器施加至正電極與負電極之間之間隙(其在標稱上為40微米)中,該漿液包括分散於N-甲基吡咯啶酮中之精細玻璃粉末(直徑<2微米)以及2體積%固體含量為60%之PVDF黏合劑。絲網印刷此漿液以潤濕晶片並迫使微粒物質進入負電極材料與正電極材料之間。多次進行絲網印刷且其間實施中間乾燥步驟以填充負電極與正電極之間之溝槽及沿裝置之頂部及底部的間隙(構成圖19中之82及84之區)。隨後,亦藉由將晶片浸塗於所製得漿液中來將多孔分離器施加於晶片之前面上,該漿液包括分散於N-甲基吡咯啶酮中之精細玻璃粉末(直徑<2微米)以及2體積%固體含量為30%之PVDF黏合劑。乾燥浸塗晶片以去除溶劑並固化黏合劑材料。前面上之浸塗厚度目標為25微米。所得晶片類似於圖15,只是:(1)在51及52之背面上並無集電器,(2)陽極玻璃為88,且(3)含有PVDF之玻璃粉末為86。
實例3:3D單一單元製作3
1.梳狀結構製作
類似於實例2來製作梳狀結構。
2. 負電極集電器及負電極製作
使用類似於實例1之製程來製作負電極集電器及負電極。
3. 正電極集電器及正電極製作
使用類似於實例1之製程來製作正電極集電器及正電極。
4. 1號分離器層製作
使用類似於實例1之製程來製作分離器層。
5. 結構層去除
藉由類似於實例1之製程去除結構層。
6. 2號分離器層製作
使用類似於實例1之製程來製作第二分離器層以得到圖15中所圖解說明類型之電極結構。
實例4:3D單一單元製作4
1. 梳狀結構製作
類似於實例2來製作梳狀結構,只是陽極結合玻璃係僅接觸縱向軸中晶片頂部及底部處之負電極及正電極梳及接觸墊區之框架。換言之,對於圖4中沿縱向軸AE之大部分長度而言,將梳線設計為獨立式。換言之,晶片之背面之大部分亦易於處理。
2. 負電極集電器及負電極製作
使用類似於實例1之製程來製作負電極集電器及負電極。
3. 正電極集電器及正電極製作
使用類似於實例1之製程來製作正電極集電器及正電極。
4. 過量正電極及負電極材料去除
使用機械去除製程去除沈積於晶片之前面及背面上之任何過量正電極及負電極材料。使用拋光墊將前面磨光以暴露集電器層。在背面上實施醫用刮刀去除製程以去除過量電極材料;隨後強制風乾以確保並無可引起短路之鬆散顆粒存在於晶片上。
5. 分離器製作
藉由使用所製得漿液將多孔分離器施加至正電極與負電極、前面及背面之間之間隙(其在標稱上為40微米)中,該漿液包括分散於N-甲基吡咯啶酮中之精細玻璃粉末(直徑<2微米)以及2體積%固體含量為60%之PVDF黏合劑。絲網印刷此漿液以潤濕晶片並迫使微粒物質進入負電極材料與正電極材料之間。多次進行絲網印刷且其間實施中間乾燥步驟以填充負電極與正電極之間之溝槽及沿裝置之頂部及底部的間隙(構成圖19中之82及84之區)。在完成此過程後,添加額外層以提供亦覆蓋晶片之前面及背面之分離器層(參見圖3)。
實例5:3D單一單元製作5
1.梳狀結構製作
如實例4來製作梳狀結構。
2. 負電極集電器及負電極製作
使用類似於實例1之製程來製作負電極集電器及負電極。
3. 正電極集電器及正電極製作
使用類似於實例1之製程來製作正電極集電器及正電極。
4. 過量正電極及負電極材料去除
使用類似於實例4之製程去除過量材料。
5. 分離器製作
使用注射器分配市售電絕緣兩部分環氧樹脂以填滿對應於圖19中之物項82及84之晶片之頂部及底部。此在電極與其相對電極匯流排之間提供非多孔絕緣分離器層。
隨後藉由使用所製得漿液將多孔分離器施加至正電極與負電極、前面及背面之間之間隙(其在標稱上為40微米)中,該漿液包括分散於N-甲基吡咯啶酮中之精細玻璃粉末(直徑<2微米)以及2體積%固體含量為60%之PVDF黏合劑。絲網印刷此漿液以潤濕晶片並迫使微粒物質進入負電極材料與正電極材料之間。多次進行絲網印刷且其間實施中間乾燥步驟以填充負電極與正電極之間之溝槽。在完成此過程後,添加額外層以提供亦覆蓋晶片之前面及背面之分離器層(參見圖3)。
實例6:3D單一單元製作6
1.梳狀結構製作
如實例4來製作梳狀結構。
2. 負電極集電器及負電極集電器製作
如實例1來製作兩個集電器;只是在負電極集電器之後立即製作 正電極集電器。
3. 1號分離器層製作
使用注射器分配市售電絕緣兩部分環氧樹脂以填滿對應於圖19中之物項82及84之晶片之頂部及底部。然而,在此情形下,環氧樹脂塗覆負電極集電器及正電極集電器而非各別電極(如實例5中)。此在電極與其相對電極匯流排之間提供非多孔絕緣分離器層。
4. 負電極製作及正電極製作
使用類似於實例4之製程來製作負電極及正電極。
5. 過量正電極及負電極去除
使用類似於實例4之製程去除過量材料。
6. 2號分離器層製作
隨後藉由使用所製得漿液將多孔分離器施加至正電極與負電極、前面及背面之間之間隙(其在標稱上為40微米)中,該漿液包括分散於N-甲基吡咯啶酮中之精細玻璃粉末(直徑<2微米)以及2體積%固體含量為60%之PVDF黏合劑。絲網印刷此漿液以潤濕晶片並迫使微粒物質進入負電極材料與正電極材料之間。多次進行絲網印刷且其間實施中間乾燥步驟以填充負電極與正電極之間之溝槽及沿裝置之頂部及底部的間隙(構成圖19中之82及84之區)。在完成此過程後,添加額外層以提供亦覆蓋晶片之前面及背面之分離器層(參見圖3)。
實例7:3D單一單元製作7
1. 梳狀結構製作
如實例4中來製作梳狀結構;只是負電極梳與正電極梳之間之間隙減小至80微米而非100微米。負電極梳層亦增寬40微米。
2. 負電極及負電極集電器製作
將隔離梳狀結構中之一者(在本文中稱為正電極骨架梳)浸漬於電泳抗蝕劑浴中。使用市售電泳抗蝕劑(Shipley EAGLE),且使用Pd導 體將正電極骨架梳以50V電泳沈積120秒以形成抗蝕劑塗層。將晶片在120℃下烘焙30min以硬化抗蝕劑。
現將矽試樣插入蒸發室中,且將100Å Au沈積於試樣表面上。此Au沈積製程使得Au位於梳頂部、其側壁及底部氧化物層上。然而,存在於一個梳上之光阻劑導致Au與僅兩個梳狀結構中之一者上之矽接觸。此時亦藉由黏著膠帶遮罩保護矽背襯層。隨後將此試樣在30℃下浸漬於氫氟酸(49%)及過氧化氫(30%)之溶液(1:1體積)中以形成多孔矽層。藉由改變蝕刻時間來調整多孔矽深度。形成多孔矽之大致速率為750-1000nm/min。在達到20μm之目標孔隙深度時,取出部件並乾燥。
多孔矽僅形成於未將電泳抗蝕劑圖案化至其上之梳狀物組上。使用多孔矽組作為鋰離子電池中之負電極。隨後在丙酮中剝離電泳抗蝕劑15分鐘。
隨後經由鈀導體電連結負電極骨架梳且浸漬於由極稀(10mM)硫酸銅及硫酸組成之銅電鍍浴中。調節銅電鍍浴條件,從而沈積發生於鈀及多孔矽上。保持銅濃度較低,從而銅沈積沿多孔矽外層之傳輸受限且多孔。此Cu層將用作亦因其孔隙率而具有離子滲透性之負電極集電器。然而,Pd層上之銅較厚且非多孔以用作用於負電極之二級匯流收集器。
3. 正電極集電器及正電極製作
使用類似於實例1之製程來製作正電極集電器及正電極。
4. 過量正電極及負電極去除
使用類似於實例4之製程去除過量材料。
5. 分離器製作
隨後藉由使用所製得漿液將多孔分離器施加至正電極與負電極、前面及背面之間之間隙(其在標稱上為40微米)中,該漿液包括分 散於N-甲基吡咯啶酮中之精細玻璃粉末(直徑<2微米)以及2體積%固體含量為60%之PVDF黏合劑。絲網印刷此漿液以潤濕晶片並迫使微粒物質進入負電極材料與正電極材料之間。多次進行絲網印刷且其間實施中間乾燥步驟以填充負電極與正電極之間之溝槽及沿裝置之頂部及底部的間隙(構成圖19中之82及84之區)。在完成此過程後,添加額外層以提供亦覆蓋晶片之前面及背面之分離器層(參見圖20)。
實例8:3D單一單元製作8
1. 梳狀結構製作
如實例4來製作梳狀結構。
2. 負電極及負電極集電器製作
使用類似於實例1之製程來製作負電極集電器。
使用負電極骨架梳利用非水性電泳沈積漿液將石墨顆粒電泳沈積於梳表面上。沈積漿液由分散於丙酮中之石墨顆粒(中間相碳微球,95重量%)及碳黑(5重量%)以及25ppm碘(作為充電劑)組成。使用鉑反電極在100V下進行電泳沈積180s以沈積60微米平均膜厚度。
在進行下一步驟之前,藉由機械碾磨去除負電極梳之前面及背面上之任何過量負電極。
3. 分離器製作
如下文所展示來製備用於氧化鋁顆粒之電泳沈積漿液。將3wt%亞微米氧化鋁顆粒添加至一定當量之97wt%乙醇中並攪拌2小時。向上述漿液中添加0.05wt%之聚乙烯基丁醛(自氧化鋁及乙醇之總重量計算)。使用鹽酸將溶液之pH調節至1.5。將所得混合物攪拌過夜。
隨後將梳狀結構總成浸漬於此電泳沈積浴中且在負電極梳與正電極梳之間施加電場。Au鍍覆正電極集電器梳用作用於電泳沈積製程之反電極。用於沈積分離器之工作電極係負電極梳且負電極位於頂部。沈積電流保持恆定於2mA/cm2集電器面積;且開啟電流1800秒 時段。此在電泳沈積之負電極周圍得到氧化鋁及聚乙烯基丁醛之40微米厚層。
4. 正電極集電器製作
使用類似於實例1之製程來製作正電極集電器。
5. 正電極製作
隨後使用具有下列組成之鋰離子正電極材料漿液塗覆晶片:80g氧化鋰鈷、5g石墨、5g碳黑及10g PVDF;所有組份皆混合於體積比率為1:2之N-甲基吡咯啶酮及丙酮(作為快速乾燥溶劑)中。乾燥漿液且蒸發溶劑以留下導電正電極材料。然後將此材料磨光成梳表面以暴露試樣之前面及背面上之分離器材料。
實例9:3D電池製作1
1. 單一晶片製備
藉由使用切分鋸進行切分來去除用於處理實例1-8中之晶片之接觸墊,而保持負電極及正電極匯流排連結完整。清除覆蓋晶片邊緣並懸突於匯流排線上之任何分離器材料以去除並暴露集電器材料(即Cu(在負電極情形下)及Au(在正電極情形下))。
2. 接片延伸部分連結
在暴露集電器後,將接片延伸部分連結至負電極匯流排及正電極匯流排。使用市售碳膠水(DAG-T-502)將金匯流排線連結至鋁接片。將碳薄層塗覆於接片延伸部分上並膠合至金匯流排之側面。使用相同市售碳膠水將鎳接片延伸部分膠合至銅集電器匯流排。將膠水在120℃下烘焙1hr以使其硬化。接片延伸部分亦包含自包裝露出之接片。此接片延伸部分在水平上較為彎曲及平坦且備用於包裝。
3. 電池包裝及電解質填充
將具有兩個接片延伸部分之晶片插入市售電池袋包裝材料中。經由接片將袋材料密封於接片側。使其他三側中之一者開口以提供用 於電解質填充之孔口。施加真空且於手套箱中向單元中添加習用電解質(包括碳酸丙二酯、碳酸乙二酯及碳酸乙酯甲酯,比率為1:1:3)及六氟磷酸鋰鹽(1M)。在晶片處於手套箱中時,隨後亦密封袋之最後側以防止水分及氧進入袋中並導致損失電池壽命。然後使用市售電池週期計使電池充電-放電。
實例10:3D堆疊電池製作1
1. 單一晶片製備:
如同實例5來實施單一晶片製備製程;只是三個晶片分別不同。類似於實例9來去除每一晶片上之接觸墊。隨後彼此在頂部堆疊晶片,從而將電極對準。
2. 接片延伸部分連結:
在暴露集電器後,將接片延伸部分連結至負電極匯流排及正電極匯流排。使用市售碳膠水(DAG-T-502)將金匯流排線連結至鋁接片。將碳薄層塗覆於接片延伸部分上並膠合至金匯流排之側面。使用相同市售碳膠水將鎳接片延伸部分膠合至銅集電器匯流排。將膠水在120℃下烘焙1hr以使其硬化。接片延伸部分亦包含自包裝露出之接片。此接片延伸部分在水平上較為彎曲及平坦且備用於包裝。
3. 電池包裝及電解質填充:
如實例9中來實施電池包裝及電解質填充。
實例11:3D傾斜電池製作1
1. 單一晶片製備:
如同實例5來實施單一晶片製備製程;只是兩個晶片分別不同。
2. 接片延伸部分連結:
類似於實例9使用導電膠水連結接片延伸部分。然而,晶片係傾斜的,其中彼此鄰接之正電極匯流排連結藉由其間之單一接片延伸部分連結。
3. 電池包裝及電解質填充:
如實例9來實施電池包裝及電解質填充。
自上文可看到,達成本發明之若干目標並獲得其他有利結果。
在介紹本發明或其較佳實施例之要素時,冠詞「一(a)」、「一(an)」、「該(the)」及「該(said)」欲指該等要素中之一或多者。術語「包括(comprising)」、「包含(including)」及「具有(having)」意欲具有囊括性且意指除所列示要素外亦可存在其他要素。
由於可對上述物件、組成及方法作出各種改變而不背離本發明範圍,因此上述說明中所含有及附圖中所展示之所有內容皆應詮釋為闡釋性而不具有限制意義。
3‧‧‧線
20‧‧‧電極結構
21‧‧‧負電極
22‧‧‧正電極
23‧‧‧負電極匯流排
24‧‧‧正電極匯流排
43‧‧‧電絕緣分離器材料層
D‧‧‧方向
X‧‧‧軸
Y‧‧‧軸
Z‧‧‧軸

Claims (31)

  1. 一種電極結構,其包括含有電極活性材料層之電極群及含有反電極活性材料層之反電極群,其中該電極群與該反電極群沿第一方向以交替序列配置,該電極群之每一成員具有底部、頂部、長度LE、寬度WE、高度HE及縱向軸AE,該縱向軸自每一該成員之該底部延伸至該頂部且處於該第一方向之橫向方向上,該電極群中每一成員之該長度LE係在其縱向軸AE之方向上量測,該電極群中每一成員之該寬度WE係在該第一方向上量測,且該電極群中每一成員之該高度HE係在與每一該成員之該縱向軸AE及該第一方向垂直之方向上量測,該電極群中每一成員之LE對WE及HE中之每一者之比率分別為至少5:1,該電極群中每一成員之HE對WE之比率分別介於0.4:1與1000:1之間,該電極群中每一成員之該縱向軸AE由電絕緣分離器層環繞,且在該電極群及該反電極群之成員之間,該電絕緣分離器層包括空隙分率為至少20體積%之微孔分離器材料。
  2. 如請求項1之電極結構,其中在該電極群之成員與該反電極群之成員之間,該微孔分離器材料構成該電絕緣分離器材料層之至少70體積%。
  3. 如請求項1之電極結構,其中該微孔分離器材料環繞電極群中每一成員之該縱向軸AE
  4. 如請求項1之電極結構,其中對於該電極群中每一成員之至少70%之該長度LE而言,該微孔分離器材料環繞電極群中每一成員之該縱向軸AE
  5. 如請求項1之電極結構,其中該微孔分離器材料環繞電極群中每一成員之該縱向軸AE及該電極群中每一成員之該頂部。
  6. 如請求項1之電極結構,其中該電絕緣材料層包括該微孔分離器材料及第二電絕緣材料。
  7. 如請求項1之電極結構,其中該電極群及該反電極群各自包括至少50個成員。
  8. 如請求項1之電極結構,其中LE具有在約10mm與約250mm之範圍內之值,WE具有在約0.01mm與2.5mm之範圍內之值,且HE具有在約0.05mm至約10mm之範圍內之值。
  9. 如請求項1之電極結構,其中該電極群中每一成員之LE對WE及HE中之每一者之該比率分別為至少10:1。
  10. 如請求項1之電極結構,其中該電極群中每一成員之橫截面具有周長PE且該電極群中每一成員之LE對PE之比率分別為至少1.25:1。
  11. 如請求項1之電極結構,其中該反電極群之每一成員包含底部、頂部、長度LCE、寬度WCE、高度HCE及縱向軸ACE,該縱向軸自每一該成員之該底部延伸至該頂部且處於該第一方向之橫向方向上,該電極群中每一成員之該長度LCE係在其縱向軸ACE之方向上量測,該電極群中每一成員之該寬度WCE係在該第一方向上量測,且該電極群中每一成員之該高度HCE係在與每一該成員之該縱向軸ACE及該第一方向垂直之方向上量測,該電極群中每一成員之LCE對WCE及HCE中之每一者之比率分別為至少5:1,該電極群中每一成員之HCE對WCE之比率分別介於0.4:1與1000:1之間。
  12. 如請求項11之電極結構,其中LCE具有在約10mm與約250mm之範圍內之值, WCE具有在約0.01mm與2.5mm之範圍內之值,且HCE具有在約0.05mm至約10mm之範圍內之值。
  13. 如請求項11之電極結構,其中該電極群中每一成員之LCE對WCE及HCE中之每一者之該比率分別為至少10:1。
  14. 如請求項1之電極結構,其中該反電極群中每一成員之橫截面具有周長PCE且該反電極群中每一成員之LCE對PCE之比率分別為至少1.25:1。
  15. 如請求項1之電極結構,其中該電極群之每一成員進一步包括電極骨架。
  16. 如請求項15之電極結構,其中對於該電極群之每一成員而言,該電極集電器層包括離子滲透性導體材料且位於該電極活性材料與該微孔分離器之間,且該電極活性材料位於該電極集電器層與該電極骨架之間。
  17. 如請求項16之電極結構,其中對於該電極群之每一成員而言,在施加電流以在該電極結構中儲存能量或施加負荷以使該電極結構放電時,該電極集電器層具有電導率及關於載體離子之離子電導率,且該電極集電器層之該電導率對該電極集電器層關於載體離子之該離子電導率之比率分別為至少1,000:1。
  18. 如請求項16之電極結構,其中對於該電極群之每一成員而言,該電極集電器層及該電極活性材料層具有電導率且該電極集電器層之該電導率對該電極活性材料層之該電導率之比率分別為至少100:1。
  19. 如請求項1之電極結構,其中該電極群之每一成員進一步包括補充電極集電器層,該補充電極集電器層之長度為由每一該成員包括之該電極集電器層之長度LE-C的至少60%,且其電導率為由每一該成員包括之該電極集電器層之電導率之至少200%。
  20. 如請求項1之電極結構,其中該電極結構進一步包括具有該電極群之每一成員直接附接至其之表面之電極基板。
  21. 如請求項1之電極結構,其中該電極結構進一步包括具有該電極群之每一成員直接附接至其之表面之電極基板及具有該反電極群之每一成員附接至其之表面之反電極基板,該電極基板表面及該反電極基板表面係實質上與該第一方向平行之相對表面。
  22. 如請求項1之電極結構,其中該電極群係負電極群,該反電極群係正電極群,該電極活性材料層係負電極活性材料層且該電極電流導體層係負電極電流導體層。
  23. 如請求項22之電極結構,其中該負電極活性材料層包括碳、鋁、錫、矽或其合金。
  24. 如請求項22之電極結構,其中該負電極活性材料層包括矽或其合金或多孔矽或其合金之奈米線。
  25. 如請求項1之電極結構,其中該電極群係負電極群,該反電極群係正電極群,該負電極群之每一成員包括負電極活性材料層及負電極電流導體層,該負電極群之每一成員具有底部、頂部、長度LNE、寬度WNE及高度HNE,該長度LNE係自每一該負電極之該底部至該頂部量測,該寬度WNE及該高度HNE係在彼此垂直且與該長度LNE之量測方向垂直之方向上量測,LNE對WNE及HNE中之每一者之比率分別為至少5:1,HNE對WNE之比率介於0.4:1與1000:1之間,該群之每一成員之該負電極集電器層具有在與LNE相同之方向上量測且為LNE之至少50%的長度LNC
  26. 如請求項1之電極結構,其中該電極群係正電極群,該反電極群係負電極群,該正電極群之每一成員包括正電極活性材料層及正電極電流導體層,該正電極群之每一成員具有底部、頂部、長度LPE、寬度WPE及高度HPE,該長度LPE係自每一該正電極之該 底部至該頂部量測,該寬度WPE及該高度HPE係在彼此垂直且與該長度LPE之量測方向垂直之方向上量測,LPE對WPE及HPE中之每一者之比率分別為至少5:1,HPE對WPE之比率分別介於0.4:1與1000:1之間,該正電極群中每一成員之該正電極集電器層具有在與LPE相同之方向上量測且為LPE之至少50%的長度LPC
  27. 如請求項1至26中任一項之電極結構,其中該微孔分離器材料層包括微粒材料及黏合劑。
  28. 一種電極堆疊,該堆疊包括至少兩個電極結構,該等電極結構中之每一者包括如請求項1之電極結構。
  29. 如請求項28之電極堆疊,其中該等電極結構係垂直堆疊,從而使由該電極堆疊中之第一電極結構包括之正電極及負電極之群與由該電極堆疊中之第二電極結構包括之正電極及負電極之群位於不同平面中。
  30. 如請求項28之電極堆疊,其中該等電極結構係水平配置,從而使由該電極堆疊中之第一電極結構包括之正電極及負電極之群與由該電極堆疊中之第二電極結構包括之正電極及負電極之群實質上位於相同平面中。
  31. 一種二次電池,其包括電池包殼、非水性電解質及如請求項1之電極結構。
TW103109289A 2013-03-15 2014-03-14 用於三維電池之分離器 TWI658632B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361800235P 2013-03-15 2013-03-15
US61/800,235 2013-03-15

Publications (2)

Publication Number Publication Date
TW201508975A true TW201508975A (zh) 2015-03-01
TWI658632B TWI658632B (zh) 2019-05-01

Family

ID=51528450

Family Applications (4)

Application Number Title Priority Date Filing Date
TW103109289A TWI658632B (zh) 2013-03-15 2014-03-14 用於三維電池之分離器
TW111135175A TWI812470B (zh) 2013-03-15 2014-03-14 用於三維電池之分離器
TW110137201A TW202218232A (zh) 2013-03-15 2014-03-14 用於三維電池之分離器
TW108104499A TWI745651B (zh) 2013-03-15 2014-03-14 用於三維電池之分離器

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW111135175A TWI812470B (zh) 2013-03-15 2014-03-14 用於三維電池之分離器
TW110137201A TW202218232A (zh) 2013-03-15 2014-03-14 用於三維電池之分離器
TW108104499A TWI745651B (zh) 2013-03-15 2014-03-14 用於三維電池之分離器

Country Status (8)

Country Link
US (4) US9991490B2 (zh)
EP (4) EP4358271A2 (zh)
JP (7) JP2016517618A (zh)
KR (4) KR102350354B1 (zh)
CN (1) CN105308772B (zh)
HK (1) HK1216208A1 (zh)
TW (4) TWI658632B (zh)
WO (1) WO2014151202A1 (zh)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013036802A1 (en) 2011-09-07 2013-03-14 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
US9401501B2 (en) 2012-05-18 2016-07-26 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
CN104662714B (zh) 2012-08-16 2017-09-29 艾诺维克斯公司 三维电池的电极结构
EP4358271A2 (en) * 2013-03-15 2024-04-24 Enovix Corporation Three-dimensional batteries
EP4300666A3 (en) 2014-11-05 2024-02-21 24m Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
DE102014018638A1 (de) 2014-12-13 2016-06-16 Audi Ag Elektrische Energiespeicherzelle, elektrischer Energiespeicher und Kraftfahrzeug
KR102276426B1 (ko) * 2015-01-08 2021-07-12 삼성전자주식회사 에너지 밀도와 율특성이 향상된 이차 전지
US20160204464A1 (en) * 2015-01-08 2016-07-14 Samsung Electronics Co., Ltd. Secondary battery having high rate capability and high energy density and method of manufacturing the same
WO2016182916A2 (en) * 2015-05-08 2016-11-17 Enovix Corporation Replenished negative electrodes for secondary batteries
KR102658953B1 (ko) * 2015-05-14 2024-04-18 에노빅스 코오퍼레이션 에너지 저장 디바이스들에 대한 종방향 구속부들
CA2969135A1 (en) * 2015-06-18 2016-12-22 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
KR102514595B1 (ko) * 2015-10-12 2023-03-27 삼성전자주식회사 3차원 구조의 전극 구조체 및 이를 갖는 전지
PL3389862T3 (pl) 2015-12-16 2024-03-04 6K Inc. Sferoidalne metale podlegające odwodornieniu oraz cząstki stopów metali
JP7059203B2 (ja) 2016-05-13 2022-04-25 エノビクス・コーポレイション 3次元電池の寸法的制限
DE102016217369A1 (de) 2016-09-13 2018-03-15 Robert Bosch Gmbh Elektrode mit erhöhtem Aktivmaterialanteil
KR102654868B1 (ko) * 2016-09-28 2024-04-05 삼성전자주식회사 전고체형 3차원 배터리 및 그 제조방법
TWI757370B (zh) 2016-11-16 2022-03-11 美商易諾維公司 具有可壓縮陰極之三維電池
US9966591B1 (en) 2016-12-19 2018-05-08 StoreDot Ltd. Electrode stack production methods
US10033023B2 (en) 2016-12-19 2018-07-24 StoreDot Ltd. Surface activation in electrode stack production and electrode-preparation systems and methods
WO2018116295A1 (en) * 2016-12-19 2018-06-28 StoreDot Ltd. Layer preparation, treatment, transfer and lamination in cell stack assembly processes for lithium ion batteries
US11056716B2 (en) 2017-11-02 2021-07-06 Taiyo Yuden Co., Ltd. All solid battery
JP7042058B2 (ja) * 2017-11-02 2022-03-25 太陽誘電株式会社 全固体電池
JP7042059B2 (ja) * 2017-11-02 2022-03-25 太陽誘電株式会社 全固体電池
US10256507B1 (en) 2017-11-15 2019-04-09 Enovix Corporation Constrained electrode assembly
TW202347861A (zh) * 2017-11-15 2023-12-01 美商易諾維公司 電極總成及蓄電池組
JP7277163B2 (ja) * 2018-02-14 2023-05-18 キヤノン株式会社 材料層の製造方法、立体物の製造方法、材料層、積層体、材料層形成装置、および、積層造形システム
JP7032180B2 (ja) * 2018-03-07 2022-03-08 トヨタ自動車株式会社 電池およびその製造方法
KR102155871B1 (ko) * 2018-04-30 2020-09-15 한국에너지기술연구원 고용량 마이크로 슈퍼커패시터, 고용량 마이크로 슈퍼커패시터의 제조방법 및 마이크로 슈퍼커패시터용 집전체 형성방법
US11211639B2 (en) * 2018-08-06 2021-12-28 Enovix Corporation Electrode assembly manufacture and device
CN109659470A (zh) * 2018-11-30 2019-04-19 欣旺达电子股份有限公司 一种陶瓷隔膜的制备方法、陶瓷隔膜及动力锂电池
DE102019108921A1 (de) 2019-04-04 2020-10-08 Bayerische Motoren Werke Aktiengesellschaft Zweiteilige Referenzelektrode
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
CA3134579A1 (en) 2019-04-30 2020-11-05 Gregory Wrobel Lithium lanthanum zirconium oxide (llzo) powder
US20210075000A1 (en) * 2019-09-06 2021-03-11 6K Inc. Strain tolerant particle structures for high energy anode materials and sythesis methods thereof
CN114641462A (zh) 2019-11-18 2022-06-17 6K有限公司 用于球形粉末的独特原料及制造方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11742525B2 (en) 2020-02-07 2023-08-29 24M Technologies, Inc. Divided energy electrochemical cell systems and methods of producing the same
CA3180426A1 (en) 2020-06-25 2021-12-30 Richard K. Holman Microcomposite alloy structure
KR20230121994A (ko) 2020-09-18 2023-08-22 에노빅스 코오퍼레이션 레이저 빔을 사용하여 웹에서 전극 구조의 집합체를 윤곽 형성하기 위한 방법
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
KR20230095080A (ko) 2020-10-30 2023-06-28 6케이 인크. 구상화 금속 분말을 합성하는 시스템 및 방법
WO2022125529A1 (en) 2020-12-09 2022-06-16 Enovix Operations Inc. Method and apparatus for the production of electrode assemblies for secondary batteries
US11616258B2 (en) 2021-06-30 2023-03-28 Enovix Corporation Distributed cell formation systems for lithium containing secondary batteries
EP4371179A2 (en) 2021-07-15 2024-05-22 Enovix Corporation Electrode assembly, sealed secondary battery cell, battery pack and methods
US11942661B2 (en) * 2021-09-24 2024-03-26 Apple Inc. Battery cells with tabs at right angles
US11870100B2 (en) 2021-09-24 2024-01-09 Apple Inc. Battery cells with tabs at right angles
US11929522B2 (en) * 2021-09-24 2024-03-12 Apple Inc. Battery cells with tabs at right angles

Family Cites Families (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587182A (en) 1984-12-11 1986-05-06 Moli Energy Limited Constant volume lithium battery cell and process
JPH0690934B2 (ja) * 1987-08-07 1994-11-14 日本電信電話株式会社 二次電池およびその製造方法
US5294504A (en) 1988-08-30 1994-03-15 Osaka Gas Company, Ltd. Three-dimensional microstructure as a substrate for a battery electrode
US5709962A (en) 1991-01-31 1998-01-20 Eveready Battery Company, Inc. Cell tester device employing spaced apart electrochromic electrodes
US5238759A (en) 1992-04-01 1993-08-24 The United States Of America As Represented By The Secretary Of The Army Flexible solid electrolyte for use in solid state cells and solid state cell including said flexible solid electrolyte
JP3364264B2 (ja) * 1993-02-09 2003-01-08 ティーディーケイ株式会社 積層型電池とその製造方法
FR2746934B1 (fr) 1996-03-27 1998-05-07 Saint Gobain Vitrage Dispositif electrochimique
EP0855752B1 (en) 1997-01-28 2006-11-29 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and process for the production of said electrode structural body and said rechargeable battery
DE69814232T2 (de) 1997-06-03 2004-04-08 Matsushita Electric Industrial Co., Ltd., Kadoma Negative Elektrodenaktivmaterialen für nicht-wässerige Elektrolyt Sekundärbatterien und entsprechenden Batterien
DE69836875T2 (de) 1997-06-27 2007-11-15 Lynntech, Inc., College Station Membranelektrolyseur
US6235427B1 (en) 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
JP2948205B1 (ja) 1998-05-25 1999-09-13 花王株式会社 二次電池用負極の製造方法
EP1113885A4 (en) 1998-08-21 2004-08-04 Stanford Res Inst Int PRINTING ELECTRONIC BOARDS AND COMPONENTS
EP1028476A4 (en) 1998-09-08 2007-11-28 Sumitomo Metal Ind NEGATIVE ELECTRODE MATERIAL FOR NONAQUEOUS ELECTRODE SECONDARY ACCUMULATOR AND PROCESS FOR PRODUCTION THEREOF
US6083640A (en) 1998-09-22 2000-07-04 Samsung Display Device Co., Ltd. Secondary battery with electrode assembly fixing device
JP4116718B2 (ja) 1998-11-05 2008-07-09 日本リーロナール有限会社 無電解金めっき方法及びそれに使用する無電解金めっき液
JP4457429B2 (ja) 1999-03-31 2010-04-28 パナソニック株式会社 非水電解質二次電池とその負極
KR100289542B1 (ko) 1999-04-09 2001-05-02 김순택 각형 리튬 2차 전지의 제조 방법
JP3733068B2 (ja) 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
US7464053B1 (en) 1999-10-26 2008-12-09 Pylant Jeffrey D Buyer-driven purchasing loyalty system and method using an electronic network
US6372371B1 (en) 1999-10-29 2002-04-16 Eontech Group, Inc Ecologically clean mechanically rechargeable air-metal current source
JP4126715B2 (ja) 1999-11-22 2008-07-30 ソニー株式会社 負極材料の製造方法および二次電池の製造方法
US7066971B1 (en) 1999-11-23 2006-06-27 Sion Power Corporation Methods of preparing electrochemical cells
JP4461541B2 (ja) 1999-12-28 2010-05-12 株式会社ジーエス・ユアサコーポレーション 非水電解質二次電池
KR100497147B1 (ko) 2000-02-08 2005-06-29 주식회사 엘지화학 다중 중첩 전기화학 셀 및 그의 제조방법
US20020013986A1 (en) 2000-04-17 2002-02-07 Ahn Tae-Yong Apparatus and method of manufacturing current collector for secondary battery
NL1015956C2 (nl) 2000-08-18 2002-02-19 Univ Delft Tech Batterij en werkwijze voor het vervaardigen van een dergelijke batterij.
CA2426156C (en) 2000-10-20 2011-04-05 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US6525391B1 (en) 2001-02-06 2003-02-25 Advanced Micro Devices, Inc. Nickel silicide process using starved silicon diffusion barrier
JP4236390B2 (ja) 2001-04-19 2009-03-11 三洋電機株式会社 リチウム二次電池
KR101314469B1 (ko) * 2001-07-27 2013-10-07 에이일이삼 시스템즈 인코포레이티드 배터리 구조, 자기 조직화 구조 및 관련 방법
EP1435673B1 (en) 2001-09-19 2011-07-27 Kawasaki Jukogyo Kabushiki Kaisha Threedimensional cell, its electrode structure, and method for manufacturing electrode material of threedimensional cell
KR100403675B1 (ko) 2001-11-30 2003-10-30 학교법인 포항공과대학교 초소형 전지-축전기 하이브리드 소자 및 그 제조방법
JP4377565B2 (ja) 2002-05-07 2009-12-02 富士重工業株式会社 板状電池の接続構造
EP1512187A1 (en) 2002-06-08 2005-03-09 Joseph B. Kejha Lithium based electrochemical devices having a ceramic separator glued therein by an ion conductive adhesive
KR100472504B1 (ko) 2002-06-17 2005-03-10 삼성에스디아이 주식회사 보강구조가 개선된 파우치형 이차전지
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
KR100680650B1 (ko) 2002-11-29 2007-02-08 미츠이 마이닝 & 스멜팅 콤파니 리미티드 비수전해액 이차전지용 부극 및 그 제조방법 및 비수전해액이차전지
CN100452493C (zh) 2003-01-06 2009-01-14 三星Sdi株式会社 再充电锂电池用的负极活性材料、其制法和再充电锂电池
US20040185336A1 (en) * 2003-02-18 2004-09-23 Matsushita Electric Industrial Co., Ltd. All solid-state thin-film cell and application thereof
EP1612819B1 (en) 2003-03-31 2019-06-12 Subaru Corporation Organic electrolyte capacitor
JP2004311141A (ja) 2003-04-04 2004-11-04 Sony Corp 電極およびそれを用いた電池
JP4186115B2 (ja) 2003-06-11 2008-11-26 ソニー株式会社 リチウムイオン二次電池
JP2005149891A (ja) * 2003-11-14 2005-06-09 Nissan Motor Co Ltd バイポーラ電池、及びそれを用いた組電池
US20050130383A1 (en) 2003-12-10 2005-06-16 International Business Machines Corporation Silicide resistor in beol layer of semiconductor device and method
US7282295B2 (en) 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US8187740B2 (en) * 2004-04-27 2012-05-29 Tel Aviv University Future Technology Development L.P. 3-D microbatteries based on interlaced micro-container structures
CN101427415A (zh) * 2004-04-27 2009-05-06 特拉维夫大学未来技术研发有限公司 基于交错的微容器结构的三维微电池
KR20070021192A (ko) * 2004-04-27 2007-02-22 텔 아비브 유니버시티 퓨쳐 테크놀로지 디벨롭먼트 엘.피. 인터레이스식 마이크로컨테이너 구조 기반의 3차원마이크로배터리
US7638230B2 (en) 2004-09-03 2009-12-29 Panasonic Corporation Lithium ion secondary battery
US7662509B2 (en) 2004-10-29 2010-02-16 Medtronic, Inc. Lithium-ion battery
JP4734912B2 (ja) * 2004-12-17 2011-07-27 日産自動車株式会社 リチウムイオン電池およびその製造方法
JP5070680B2 (ja) 2005-03-31 2012-11-14 大日本印刷株式会社 非水電解液二次電池用電極板、その製造方法、および非水電解液二次電池
WO2008030215A2 (en) 2005-07-12 2008-03-13 The Regents Of The University Of California Method and apparatus for high surface area carbon structures with minimized resistance
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
EP1917689B1 (en) 2005-08-09 2017-11-08 Polyplus Battery Company Compliant seal structures for protected active metal anodes
US20110171518A1 (en) 2005-08-12 2011-07-14 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Three dimensional Battery Architectures and Methods of Making Same
US7593154B2 (en) 2005-10-11 2009-09-22 Sage Electrochromics, Inc. Electrochromic devices having improved ion conducting layers
KR100763892B1 (ko) 2006-01-20 2007-10-05 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법, 및 이를 채용한 음극과 리튬전지
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
JP5135822B2 (ja) * 2006-02-21 2013-02-06 日産自動車株式会社 リチウムイオン二次電池およびこれを用いた組電池
CN101356685A (zh) 2006-02-21 2009-01-28 松下电器产业株式会社 方形扁平二次电池的制造方法
KR100949331B1 (ko) 2006-06-09 2010-03-26 삼성에스디아이 주식회사 이차 전지 모듈
US7726975B2 (en) 2006-06-28 2010-06-01 Robert Bosch Gmbh Lithium reservoir system and method for rechargeable lithium ion batteries
EP2048262B1 (en) 2006-07-27 2018-09-12 JX Nippon Mining & Metals Corporation Lithium-containing transition metal oxide target, process for producing the same and method for producing lithium ion thin-film secondary battery
WO2008019398A1 (en) * 2006-08-10 2008-02-14 The Regents Of The University Of California Electrodeposition of a polymer film as a thin film polymer electrolyte for 3d lithium ion batteries
JP2008078119A (ja) 2006-08-25 2008-04-03 Ngk Insulators Ltd 全固体蓄電素子
US8865345B1 (en) 2007-01-12 2014-10-21 Enovix Corporation Electrodes for three-dimensional lithium batteries and methods of manufacturing thereof
CN101584065B (zh) * 2007-01-12 2013-07-10 易诺维公司 三维电池及其制造方法
JP2008171732A (ja) * 2007-01-12 2008-07-24 Sumitomo Electric Ind Ltd 薄型電池
JP4460642B2 (ja) 2007-03-13 2010-05-12 パナソニック株式会社 リチウム二次電池用負極およびその製造方法、ならびにリチウム二次電池用負極を備えたリチウム二次電池
US20080233455A1 (en) 2007-03-21 2008-09-25 Valadoula Deimede Proton conductors based on aromatic polyethers and their use as electolytes in high temperature pem fuel cells
US8119269B2 (en) 2007-05-10 2012-02-21 Enovix Corporation Secondary battery with auxiliary electrode
US20090035664A1 (en) 2007-05-25 2009-02-05 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
US8999585B2 (en) 2007-07-18 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
US7816031B2 (en) 2007-08-10 2010-10-19 The Board Of Trustees Of The Leland Stanford Junior University Nanowire battery methods and arrangements
US20090068567A1 (en) 2007-09-12 2009-03-12 Sony Corporation Anode for secondary battery, method of manufacturing it, and secondary battery
US20090123847A1 (en) 2007-11-12 2009-05-14 Kyushu University All-solid-state cell
US20090159354A1 (en) 2007-12-25 2009-06-25 Wenfeng Jiang Battery system having interconnected battery packs each having multiple electrochemical storage cells
JP5334420B2 (ja) 2008-01-16 2013-11-06 三洋電機株式会社 バッテリシステム
JP4587055B2 (ja) 2008-03-06 2010-11-24 トヨタ自動車株式会社 組電池
JP4535157B2 (ja) 2008-03-28 2010-09-01 トヨタ自動車株式会社 燃料電池システム
US8367244B2 (en) 2008-04-17 2013-02-05 Enovix Corporation Anode material having a uniform metal-semiconductor alloy layer
US8192788B1 (en) 2008-04-17 2012-06-05 Enovix Corporation Single step current collector deposition process for energy storage devices
US8133613B2 (en) 2008-04-17 2012-03-13 Enovix Corporation Nonaqueous electrolyte secondary battery anode material with a uniform metal-semiconductor alloy layer
US8475957B2 (en) 2008-04-17 2013-07-02 Enovix Corporation Negative electrode structure for non-aqueous lithium secondary battery
CN102569758B (zh) 2008-04-17 2015-07-15 易诺维公司 具有均匀的金属-半导体合金层的阳极材料
WO2009152239A1 (en) * 2008-06-10 2009-12-17 Nanotune Technologies Corp. Nanoporous electrodes and related devices and methods
US8722226B2 (en) 2008-06-12 2014-05-13 24M Technologies, Inc. High energy density redox flow device
KR101558537B1 (ko) 2008-08-26 2015-10-08 삼성전자주식회사 다공성 애노드 활물질, 그 제조방법, 이를 포함한 애노드 및 리튬 전지
US8580439B1 (en) 2008-09-22 2013-11-12 Greatbatch Ltd. Insulator component design for maintaining electrode assembly compression in prismatic medical cells
US20100266907A1 (en) 2008-11-04 2010-10-21 Rachid Yazami Metal air battery system
JP5400370B2 (ja) 2008-12-16 2014-01-29 公立大学法人首都大学東京 非水電解液系二次電池用負極およびそれを用いたリチウムイオン二次電池
KR101733134B1 (ko) 2009-02-04 2017-05-08 어플라이드 머티어리얼스, 인코포레이티드 배터리 및 울트라 캐패시터용의 다공성 삼차원 구리, 주석, 구리―주석, 구리―주석―코발트 및 구리―주석―코발트―티타늄 전극
US20120094176A1 (en) 2009-02-10 2012-04-19 Gerold Neumann Power-Optimized And Energy-Density-Optimized Flat Electrodes For Electrochemcal Energy Stores
US8940438B2 (en) 2009-02-16 2015-01-27 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
JP5449814B2 (ja) 2009-03-25 2014-03-19 三洋電機株式会社 組電池
JP2010262752A (ja) 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The リチウムイオン二次電池用の負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極の製造方法
JP5313761B2 (ja) 2009-05-08 2013-10-09 パナソニック株式会社 リチウムイオン電池
WO2010138176A1 (en) 2009-05-26 2010-12-02 Steven Allen Carlson Batteries utilizing electrode coatings directly on nanoporous separators
US20110020701A1 (en) 2009-07-16 2011-01-27 Carbon Micro Battery Corporation Carbon electrode structures for batteries
US20110129732A1 (en) 2009-12-01 2011-06-02 Applied Materials, Inc. Compressed powder 3d battery electrode manufacturing
KR101040875B1 (ko) 2009-12-31 2011-06-16 삼성에스디아이 주식회사 이차전지
JP2011171029A (ja) 2010-02-17 2011-09-01 Sanyo Electric Co Ltd 電池モジュール
DE102010029282A1 (de) 2010-05-25 2011-12-01 Robert Bosch Gmbh Verfahren und Vorrichtung zur Herstellung einer Dünnschichtbatterie
WO2011154862A1 (en) 2010-06-06 2011-12-15 Ramot At Tel-Aviv University Ltd Three-dimensional microbattery having a porous silicon anode
EP2586084A2 (en) 2010-06-22 2013-05-01 K2 Energy Solutions, Inc. Lithium ion battery
WO2012036127A1 (ja) 2010-09-14 2012-03-22 日立マクセルエナジー株式会社 非水二次電池
WO2012042696A1 (ja) * 2010-09-30 2012-04-05 川崎重工業株式会社 二次電池用負極及びこれを備える二次電池
JP5664114B2 (ja) 2010-10-20 2015-02-04 住友電気工業株式会社 溶融塩電池
WO2012054767A2 (en) 2010-10-22 2012-04-26 Amprius Inc. Battery electrode structures for high mass loadings of high capacity active materials
KR101858282B1 (ko) 2010-10-22 2018-05-15 암프리우스, 인코포레이티드 껍질에 제한된 고용량 활물질을 함유하는 복합 구조물
JP5561191B2 (ja) 2011-02-01 2014-07-30 株式会社Ihi 電極積層体の製造装置および製造方法
TWI456817B (zh) 2011-09-27 2014-10-11 Au Optronics Corp 電池裝置
DE102011120511A1 (de) 2011-12-07 2013-06-13 Daimler Ag Batterie und Zellblock für eine Batterie
EP2807698B1 (en) 2012-01-24 2018-01-10 Enovix Corporation Ionically permeable structures for energy storage devices
US8841030B2 (en) 2012-01-24 2014-09-23 Enovix Corporation Microstructured electrode structures
US9300002B2 (en) * 2012-03-03 2016-03-29 Illinois Institute Of Technology Three-dimensional supercapacitors and batteries with high energy densities
AT512601B1 (de) 2012-03-05 2014-06-15 Chemiefaser Lenzing Ag Verfahren zur Herstellung einer Cellulosesuspension
EP2690689A1 (en) 2012-07-25 2014-01-29 Umicore Low cost Si-based negative electrodes with enhanced cycling performance
KR20130118716A (ko) 2012-04-20 2013-10-30 주식회사 엘지화학 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR20130133640A (ko) 2012-05-29 2013-12-09 주식회사 엘지화학 코너부 형상이 다양한 단차를 갖는 전극 조립체, 이를 포함하는 전지셀, 전지팩 및 디바이스
JP2015172997A (ja) 2012-07-13 2015-10-01 三洋電機株式会社 バッテリシステム及びバッテリシステムを備える車両並びに蓄電装置
WO2014024424A1 (ja) 2012-08-09 2014-02-13 三洋電機株式会社 電池パックの製造方法
CN104662714B (zh) 2012-08-16 2017-09-29 艾诺维克斯公司 三维电池的电极结构
US8993159B2 (en) 2012-12-13 2015-03-31 24M Technologies, Inc. Semi-solid electrodes having high rate capability
EP4358271A2 (en) * 2013-03-15 2024-04-24 Enovix Corporation Three-dimensional batteries
TWI521775B (zh) 2013-06-28 2016-02-11 Lg化學股份有限公司 包括切割隔板程序之製造電極組合體的方法
KR101794265B1 (ko) 2013-07-18 2017-11-07 삼성에스디아이 주식회사 보강 비드부를 포함하는 배터리 팩
KR20150031861A (ko) 2013-09-17 2015-03-25 삼성에스디아이 주식회사 배터리 모듈
JP6166994B2 (ja) 2013-09-24 2017-07-19 日立オートモティブシステムズ株式会社 組電池
KR101784739B1 (ko) 2013-12-10 2017-10-12 삼성에스디아이 주식회사 이차전지 및 그 제조방법
JP6306431B2 (ja) 2014-05-21 2018-04-04 日立オートモティブシステムズ株式会社 電池モジュール
US10390871B2 (en) 2015-02-20 2019-08-27 Galil Medical Inc. Cryoneedle
KR102658953B1 (ko) 2015-05-14 2024-04-18 에노빅스 코오퍼레이션 에너지 저장 디바이스들에 대한 종방향 구속부들
JP7059203B2 (ja) 2016-05-13 2022-04-25 エノビクス・コーポレイション 3次元電池の寸法的制限
TWI757370B (zh) 2016-11-16 2022-03-11 美商易諾維公司 具有可壓縮陰極之三維電池
TW202347861A (zh) 2017-11-15 2023-12-01 美商易諾維公司 電極總成及蓄電池組
US10256507B1 (en) 2017-11-15 2019-04-09 Enovix Corporation Constrained electrode assembly
JP2022130757A (ja) 2019-07-31 2022-09-07 京セラ株式会社 電子素子搭載用パッケージ及び電子装置

Also Published As

Publication number Publication date
JP7309104B2 (ja) 2023-07-18
JP2019169476A (ja) 2019-10-03
JP7309105B2 (ja) 2023-07-18
EP4084140A1 (en) 2022-11-02
KR102659783B1 (ko) 2024-04-22
TWI658632B (zh) 2019-05-01
WO2014151202A1 (en) 2014-09-25
EP2973785A1 (en) 2016-01-20
JP2021093371A (ja) 2021-06-17
US20220311094A1 (en) 2022-09-29
KR102512505B1 (ko) 2023-03-22
US9991490B2 (en) 2018-06-05
EP3641030A1 (en) 2020-04-22
EP4084140B1 (en) 2023-12-06
JP2023115008A (ja) 2023-08-18
KR20150128999A (ko) 2015-11-18
US20140272547A1 (en) 2014-09-18
CN105308772A (zh) 2016-02-03
JP2016517618A (ja) 2016-06-16
EP2973785B1 (en) 2019-10-02
TW202218232A (zh) 2022-05-01
TWI812470B (zh) 2023-08-11
KR102350354B1 (ko) 2022-01-14
KR20220009492A (ko) 2022-01-24
KR20230043231A (ko) 2023-03-30
JP2021119579A (ja) 2021-08-12
KR20240053011A (ko) 2024-04-23
CN105308772B (zh) 2018-11-16
HK1216208A1 (zh) 2016-10-21
TWI745651B (zh) 2021-11-11
TW201941474A (zh) 2019-10-16
EP4358271A2 (en) 2024-04-24
EP3641030B1 (en) 2022-03-02
US20200335754A1 (en) 2020-10-22
EP2973785A4 (en) 2016-08-17
US11355816B2 (en) 2022-06-07
JP2022125048A (ja) 2022-08-26
TW202308213A (zh) 2023-02-16
US20190148695A1 (en) 2019-05-16
US10707466B2 (en) 2020-07-07
JP2022125047A (ja) 2022-08-26

Similar Documents

Publication Publication Date Title
US11355816B2 (en) Separators for three-dimensional batteries
US11600848B2 (en) Electrode structures for three-dimensional batteries
TW202418641A (zh) 用於三維電池之分離器