TW201326078A - 光學玻璃、光學元件及預成形體 - Google Patents

光學玻璃、光學元件及預成形體 Download PDF

Info

Publication number
TW201326078A
TW201326078A TW101137517A TW101137517A TW201326078A TW 201326078 A TW201326078 A TW 201326078A TW 101137517 A TW101137517 A TW 101137517A TW 101137517 A TW101137517 A TW 101137517A TW 201326078 A TW201326078 A TW 201326078A
Authority
TW
Taiwan
Prior art keywords
content
optical glass
glass
optical
cation
Prior art date
Application number
TW101137517A
Other languages
English (en)
Other versions
TWI601704B (zh
Inventor
Ken Kikkawa
Original Assignee
Ohara Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Kk filed Critical Ohara Kk
Publication of TW201326078A publication Critical patent/TW201326078A/zh
Application granted granted Critical
Publication of TWI601704B publication Critical patent/TWI601704B/zh

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

本發明提供一種可於更廣泛之溫度範圍內獲得所需之成像特性等光學特性之光學玻璃、使用其之預成形體及光學元件。光學玻璃含有P5+、Al3+及Mg2+作為陽離子成分,含有O2-及F-作為陰離子成分,相對折射率(589.29nm)之溫度係數(20~40℃)為-6.0×10-6(℃-1)以上。預成形體及光學元件包含此種光學玻璃。

Description

光學玻璃、光學元件及預成形體
本發明係關於一種光學玻璃、光學元件及預成形體。
光學機器之透鏡系統通常組合而設計有具有不同光學性質之複數個玻璃透鏡。近年來,由於多樣化之光學機器之透鏡系統的設計自由度進一步擴大,故而先前未曾使用之具有光學特性之光學玻璃正逐漸用作球面及非球面透鏡等光學元件。尤其是,進行光學設計時,為縮小光學系統整體之色像差,開發有折射率或分散傾向不同者。
於製作光學元件之光學玻璃中,尤其是可謀求光學元件之輕量化及小型化、且具有較高之折射率(nd)及較高之阿貝數(νd)的玻璃之需求非常高。作為此種高折射率低分散玻璃,例如作為具有1.50以上1.60以下之折射率、具有60以上80以下之阿貝數之光學玻璃,已知有如專利文獻1~4所代表之玻璃。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開平01-219037號公報
[專利文獻2]日本專利特開2007-099525號公報
[專利文獻3]日本專利特開2009-256149號公報
[專利文獻4]日本專利特開2010-235429號公報
近年來,如投影儀、影印機、雷射印表機及廣播用機件等光學機器中所組入之光學元件正逐漸增加於更惡劣之溫度環境下之使用。例如投影儀,為應對小型化及高解像度化之要求,必需使用高亮度之光源或經高精密化之光學系統。尤其於使用高亮度之光源之情形時,由於光源所發出之熱之影響,構成光學系統之光學元件於使用時之溫度容易發生較大變動,其溫度達到100℃以上之情形亦較多。此時,若使用經高精密化之光學系統,則由溫度變動所引起的對光學系統之成像特性等之影響會大到無法忽視之程度,因此要求構成不因溫度變動而發生光學特性之變動的光學系統。
又,如具有高解像度之光學機器之光學系統般,對折射率要求極高精度之光學系統亦存在無法忽視使用溫度對成像特性等之影響之情形。
然而,如專利文獻1~4中所記載之先前之光學玻璃,由溫度變動所引起之光學特性之變動較大。即,期待開發一種具有較高之折射率及較高之阿貝數、且不因溫度變動發生光學特性之變動的光學玻璃。
本發明之目的在於解決上述課題。
即,本發明之目的在於提供一種可於更廣泛之溫度範圍內獲得所需之成像特性等光學特性之光學玻璃、使用其之預成形體及光學元件。
本發明者等人為解決上述課題進行努力研究,從而完成 本發明。具體而言,本發明提供如下者。
(1)一種光學玻璃,其含有P5+、Al3+及Mg2+作為陽離子成分,含有O2-及F-作為陰離子成分,且相對折射率(589.29 nm)之溫度係數(20~40℃)為-6.0×10-6(℃-1)以上。
(2)如(1)之光學玻璃,其中以陽離子%(莫耳%)表示,含有P5+ 20~55%、Al3+ 1~20%及Mg2+ 0.1~30%。
(3)如(1)或(2)之光學玻璃,其中以陽離子%(莫耳%)表示,Ca2+之含有率為0~30%,Sr2+之含有率為0~30%,Ba2+之含有率為0~30%。
(4)如(1)至(3)中任一項之光學玻璃,其中鹼土金屬之合計含有率(R2+:陽離子%)為30~70%。
(5)如(1)至(4)中任一項之光學玻璃,其中Mg2+含有率及Ca2+之合計量(陽離子%)為7.5~50%。
(6)如(1)至(5)中任一項之光學玻璃,其中Mg2+含有率及Ca2+之合計相對於鹼土金屬之合計含有率(R2+:陽離子%)的比((Mg2++Ca2+)/R2+)為0.25以上。
(7)如(1)至(6)中任一項之光學玻璃,其中以陰離子%(莫耳%)表示,F-之含有率為20~70%,O2-之含有率為30~80%。
(8)如(1)至(7)中任一項之光學玻璃,其中Mg2+含有率(陽 離子%)相對於P5+含有率(陽離子%)之比(Mg2+/P5+)為0.25以上。
(9)如(1)至(8)中任一項之光學玻璃,其中以陽離子%(莫耳%)表示,La3+之含有率為0~10%,Gd3+之含有率為0~10%,Y3+之含有率為0~10%,Yb3+之含有率為0~10%,Lu3+之含有率為0~10%。
(10)如(1)至(9)中任一項之光學玻璃,其中La3+、Gd3+、Y3+、Yb3+及Lu3+之合計含有率(Ln3+:陽離子%)為0~20%。
(11)如(1)至(10)中任一項之光學玻璃,其中以陽離子%(莫耳%)表示,Li+之含有率為0~20%,Na+之含有率為0~10%,K+之含有率為0~10%。
(12)如(1)至(11)中任一項之光學玻璃,其中鹼金屬之合計含有率(Rn+:陽離子%)為20%以下。
(13)如(1)至(12)中任一項之光學玻璃,其中以陽離子%(莫耳%)表示,Si4+之含有率為0~10%,B3+之含有率為0~15%,Zn2+之含有率為0~30%,Nb5+之含有率為0~10%, Ti4+之含有率為0~10%,Zr4+之含有率為0~10%,Ta5+之含有率為0~10%,W6+之含有率為0~10%,Ge4+之含有率為0~10%,Bi3+之含有率為0~10%,Te4+之含有率為0~15%。
(14)如(1)至(13)中任一項之光學玻璃,其中依據「JOGIS10-1994光學玻璃之磨耗度之測定方法」之測定方法下之磨耗度為600以下。
(15)一種光學元件,其包含如(1)至(14)中任一項之光學玻璃。
(16)一種研磨加工用及/或精密加壓成形用之預成形體,其包含如(1)至(14)中任一項之光學玻璃。
(17)一種光學元件,其係將如(16)之預成形體精密加壓而成。
根據本發明,可提供一種可於更廣泛之溫度範圍內高精度地獲得所需之成像特性等光學特性的光學玻璃、使用其之預成形體及光學元件。
本發明之光學玻璃含有P5+、Al3+及Mg2+作為陽離子成分,含有O2-及F-作為陰離子成分,相對折射率(589.29 nm)之溫度係數(20~40℃)為-6.0×10-6(℃-1)以上。除P5+之外亦 含有Al3+及Mg2+作為陽離子成分,且除O2-之外亦含有F-作為陰離子成分,藉此提高光學玻璃之相對折射率之溫度係數。因此,藉由於更廣泛之溫度範圍內高精度地獲得所需之成像特性等光學特性,可獲得可有助於光學系統之高解像度化及小型化的光學玻璃。
以下,亦將此種光學玻璃稱為「本發明之光學玻璃」。
以下,針對本發明之光學玻璃進行說明。本發明並不限定於以下之態樣,可於本發明之目標之範圍內施加適當變更而實施。再者,存在對於說明重複之處省略說明之情形,但並不限定發明之主旨。
<玻璃成分>
針對構成本發明之光學玻璃之各成分進行說明。
於本說明書中,各成分之含有率於無特別說明之情形時,全部記作以基於莫耳比之陽離子%或陰離子%所示者。此處,「陽離子%」及「陰離子%」(以下,存在記為「陽離子%(莫耳%)」及「陰離子%(莫耳%)」之情況)係:將本發明之光學玻璃之玻璃構成成分分離為陽離子成分及陰離子成分,並分別將合計比率設為100莫耳%而表記玻璃中所含之各成分之含有率的組成。
再者,各成分之離子價僅僅為方便而使用代表值,因此並不與其他離子價者進行區別。存在於光學玻璃中之各成分之離子價有為代表值以外之可能性。例如,P通常以離子價為5價之狀態存在於玻璃中,因此於本說明書中表示為「P5+」,但有以其他離子價之狀態存在之可能性。如此, 嚴格說來,即便為以其他離子價之狀態存在者,於本說明書中亦視為各成分以代表值之離子價存在於玻璃中者。
[關於陽離子成分]
本發明之光學玻璃包含P5+。P5+之含有率較佳為20~55%。
P5+係玻璃形成成分,具有抑制玻璃之失透、提高折射率之性質。此種性質逐漸增強,因此P5+之含有率之下限設為較佳為20.0%、更佳為25.0%、進而較佳為30.0%。
另一方面,P5+具有若含有率較高則降低阿貝數之性質。此種性質逐漸增強,因此P5+之含有率之上限設為較佳為55.0%、更佳為50.0%、更佳為45.0%、更佳為41.0%、進而較佳為37.0%。
P5+可使用Al(PO3)3、Ca(PO3)2、Ba(PO3)2、Zn(PO3)2、BPO4、H3PO4等作為原料而含有於玻璃內。
本發明之光學玻璃包含Al3+。Al3+之含有率較佳為1~20%。
Al3+具有提高玻璃之耐失透性、降低磨耗度、提高相對折射率之溫度係數的性質。此種性質逐漸增強,因此Al3+之含有率之下限設為較佳為1.0%、更佳為5.0%、更佳為7.0%、進而較佳為9.7%。
另一方面,Al3+具有若含有率較高則降低玻璃之折射率的性質。此種性質逐漸增強,因此Al3+之含有率之上限設為較佳為20.0%、更佳為18.0%、進而較佳為16.0%。
Al3+可使用Al(PO3)3、AlF3、Al2O3等作為原料而含有於玻璃內。
本發明之光學玻璃包含Mg2+。Mg2+之含有率較佳為0.1~30%。
Mg2+具有提高玻璃之耐失透性、降低磨耗度、提高相對折射率之溫度係數的性質。此種性質逐漸增強,因此Mg2+之含有率之下限設為較佳為0.1%、更佳為2.0%、更佳為5.0%、更佳為10.0%,進而較佳為設為超過11.0%。
另一方面,Mg2+具有若含有率較高則降低玻璃之折射率的性質。此種性質逐漸增強,因此Mg2+之含有率之上限設為較佳為30.0%、更佳為25.0%、進而較佳為20.0%。
Mg2+可使用MgO、MgF2等作為原料而含有於玻璃內。
本發明之光學玻璃亦可包含Ca2+作為任意成分。Ca2+之含有率較佳為30%以下。
Ca2+具有提高玻璃之耐失透性、抑制折射率之降低、降低磨耗度、提高相對折射率之溫度係數的性質。此種性質逐漸增強,因此將Ca2+之含有率之下限設為較佳為0.1%、更佳為5.0%,亦可進而較佳地設為超過10.0%。
另一方面,Ca2+具有若含有率較高則反而降低玻璃之耐失透性、降低折射率的性質。此種性質逐漸增強,因此Ca2+之含有率之上限設為較佳為30.0%、更佳為20.0%、進而較佳為16.0%。
Ca2+可使用Ca(PO3)2、CaCO3、CaF2等作為原料而含有於玻璃內。
本發明之光學玻璃亦可包含Sr2+作為任意成分。Sr2+之含有率較佳為30%以下。
Sr2+具有提高玻璃之耐失透性、抑制折射率之降低的性質。此種性質逐漸增強,因此亦可將Sr2+之含有率之下限設為較佳為0.1%、更佳為1.0%、進而較佳為2.0%。
另一方面,Sr2+具有若含有率較高則反而降低玻璃之耐失透性、降低折射率的性質。此種性質逐漸增強,因此Sr2+之含有率之上限設為較佳為30.0%、更佳為20.0%、進而較佳為14.0%。
Sr2+可使用Sr(NO3)2、SrF2等作為原料而含有於玻璃內。
本發明之光學玻璃亦可包含Ba2+作為任意成分。Ba2+之含有率較佳為30%以下。
Ba2+具有提高玻璃之耐失透性、維持較低之分散性、提高折射率的性質。此種性質逐漸增強,因此亦可將Ba2+之含有率之下限設為較佳為0.1%、更佳為1.0%、更佳為5.0%、更佳為10.0%、更佳為12.0%、進而較佳為14.0%。
另一方面,Ba2+具有若含有率較高則反而降低玻璃之耐失透性、降低相對折射率之溫度係數的性質。此種性質逐漸增強,因此Ba2+之含有率之上限設為較佳為30.0%、更佳為25.0%、更佳為20.0%、進而較佳為17.1%以下。
Ba2+可使用Ba(PO3)2、BaCO3、Ba(NO3)2、BaF2等作為原料而含有於玻璃內。
鹼土金屬於本發明中意指選自由Mg2+、Ca2+、Sr2+及Ba2+所組成之群中之一種以上。又,存在將選自由Mg2+、Ca2+、Sr2+及Ba2+所組成之群中之一種以上表示為R2+之情形。
又,所謂R2+之合計含有率,意指該等四個離子中之一種 以上之合計含有率(例如,Mg2++Ca2++Sr2++Ba2+)。
R2+之合計含有率較佳為30~70%。藉由使R2+之合計含有率為該範圍,可獲得耐失透性更高之玻璃。
R2+之合計含有率之下限設為較佳為30.0%、更佳為35.0%、更佳為40.0%、進而較佳為44.0%。另一方面,R2+之合計含有率之上限設為較佳為70.0%、更佳為65.0%、更佳為60.0%、進而較佳為55.0%。
本發明之光學玻璃較佳為Mg2+及Ca2+之合計含有率為7.5~50%。藉由該合計含有率較高,可提高相對折射率之溫度係數。因此,(Mg2++Ca2+)之下限設為較佳為7.5%、更佳為12.5%、進而較佳為25.0%。
另一方面,若該合計含有率較高,則具有降低玻璃之耐失透性、降低折射率的性質。此種性質逐漸增強,因此(Mg2++Ca2+)之上限設為較佳為50.0%、更佳為40.0%、進而較佳為35.0%。
本發明之光學玻璃較佳為Mg2+含有率(陽離子%)及Ca2+含有率(陽離子%)之合計相對於鹼土金屬之合計含有率(R2+:陽離子%)的比((Mg2++Ca2+)/R2+)為0.25以上。
Mg2+及Ca2+之合計含有率相對於R2+之比率較高,藉此可提高相對折射率之溫度係數,降低磨耗度。因此,(Mg2++Cg2+)/R2+之下限設為較佳為0.25、更佳為0.31、更佳為0.36、更佳為0.41、進而較佳為0.50。
另一方面,(Mg2++Ca2+)/R2+之上限亦可為1。然而,若Mg2+及Ca2+之合計含有率相對於R2+之比率較高,則具有降低玻 璃之耐失透性、降低折射率之性質。此種性質逐漸增強,因此可將(Mg2++Ca2+)/R2+之上限設為較佳為0.90、更佳為0.80、更佳為0.70、進而較佳為0.65。
又,本發明之光學玻璃較佳為Mg2+含有率(陽離子%)相對於P5+含有率(陽離子%)的比(Mg2+/P5+)為0.25以上。
藉由使提高相對折射率之溫度係數之作用較強的Mg2+之含有率相對於玻璃形成成分P5+之含有率的比率提高,可進一步提高玻璃之相對折射率之溫度係數。因此,(Mg2+/P5+)之下限設為較佳為0.25、更佳為0.30、更佳為0.35、進而較佳為0.42。
另一方面,若Mg2+之含有率相對於該比率之P5+之含有率的比率較高,則具有降低玻璃之耐失透性、降低折射率之性質。此種性質逐漸增強,因此可將(Mg2+/P5+)之上限設為較佳為1.00、更佳為0.90、更佳為0.80、進而較佳為0.70。
La3+、Gd3+、Y3+、Yb3+及Lu3+具有維持較低之分散性、提高折射率、進一步提高耐失透性的性質。為增強此種性質,本發明之光學玻璃亦可包含選自由La3+、Gd3+、Y3+、Yb3+及Lu3+所組成之群中之一種以上成分作為任意成分。
另一方面,La3+、Gd3+、Y3+、Yb3+及Lu3+之含有率分別較佳為10%以下。La3+、Gd3+、Y3+、Yb3+及Lu3+具有若含有率較高則反而因玻璃之穩定性惡化而變得容易失透的性質。此種性質逐漸增強,因此La3+、Gd3+、Y3+、Yb3+及Lu3+之含有率各自之上限設為較佳為10.0%、更佳為8.0%、更佳為5.0%、進而較佳為3.0%。
La3+、Gd3+、Y3+、Yb3+及Lu3+可使用La2O3、LaF3、Gd2O3、GdF3、Y2O3、YF3、Yb2O3、Lu2O3等作為原料而含有於玻璃內。
Ln3+於本發明中意指選自由Y3+、La3+、Gd3+、Yb3+及Lu3+所組成之群中之至少一種。又,所謂Ln3+之合計含有率,意指該等五個離子之合計含有率(Y3++La3++Gd3++Yb3++Lu3+)。
於本發明之光學玻璃中,Ln3+之合計含有率較佳為20%以下。Ln3+具有若含有率較高則變得容易失透之性質。此種性質逐漸增強,因此Ln3+之合計含有率之上限設為較佳為20.0%、更佳為15.0%、更佳為10.0%、更佳為5.0%、進而較佳為3.0%。Ln3+之合計含有率可設為未達2.0%,亦可設為未達1.0%。再者,Ln3+為任意成分,因此本發明之光學玻璃亦可不含Ln3+
Li+、Na+及K+具有維持玻璃形成時之耐失透性、且降低玻璃轉移點(Tg)之性質。為增強此種性質,本發明之光學玻璃亦可包含選自由Li+、Na+及K+所組成之群中之一種以上作為任意成分。
另一方面,Li+之含有率較佳為20%以下,Na+及K+之含有率分別較佳為10%以下。Li+、Na+及K+具有若含有率較高則使玻璃之磨耗度變大、化學耐久性惡化之性質。此種性質逐漸增強,因此Li+之含有率之上限設為較佳為20.0%、更佳為15.0%、進而較佳為10.0%。又,Na+及K+之含有率各自之上限設為較佳為10.0%、更佳為8.0%、進而較佳為5.0%。
Li+、Na+及K+可使用Li2CO3、LiNO3、LiF、Na2CO3、NaNO3、NaF、Na2SiF6、K2CO3、KNO3、KF、KHF2、K2SiF6等作為原料而含有於玻璃內。
於本發明中,Rn+意指選自由Li+、Na+及K+所組成之群中之至少一種。又,所謂Rn+之合計含有率,意指該等三個離子之合計含有率(Li++Na++K+)。
於本發明之光學玻璃中,Rn+之合計含有率較佳為20%以下。若Rn+之合計含有率較高,則具有使玻璃之磨耗度變大、化學耐久性惡化之性質。此種性質逐漸增強,因此Rn+之合計含有率之上限設為較佳為20.0%、更佳為15.0%、進而較佳為10.0%。
Si4+具有提高玻璃之耐失透性、提高折射率、降低磨耗度之性質。因此,本發明之光學玻璃亦可包含Si4+作為任意成分。
另一方面,Si4+之含有率較佳為10%以下。Si4+具有若含有率較高則反而使玻璃變得容易失透之性質。此種性質逐漸增強,因此Si4+之含有率之上限設為較佳為10.0%、更佳為8.0%、進而較佳為5.0%。
Si4+可使用SiO2、K2SiF6、Na2SiF6等作為原料而含有於玻璃內。
B3+具有提高玻璃之耐失透性、提高折射率、降低磨耗度之性質。因此,本發明之光學玻璃亦可包含B3+作為任意成分。
另一方面,B3+之含有率較佳為15%以下。B3+具有若含有 率較高則使化學耐久性惡化之性質。此種性質逐漸增強,因此B3+之含有率之上限設為較佳為15.0%、更佳為8.0%、更佳為5.0%、進而較佳為3.0%。
B3+可使用H3BO3、Na2B4O7、BPO4等作為原料而含有於玻璃內。
Zn2+具有提高玻璃之耐失透性之性質。因此,本發明之光學玻璃亦可包含Zn2+作為任意成分。
另一方面,Zn2+之含有率較佳為30%以下。Zn2+具有若含有率較高則使玻璃之磨耗度惡化、折射率降低之性質。此種性質逐漸增強,因此Zn2+之含有率之上限設為較佳為30.0%、更佳為12.0%、更佳為8.0%、更佳為4.0%、進而較佳為2.0%。
Zn2+可使用Zn(PO3)2、ZnO、ZnF2等作為原料而含有於玻璃內。
Nb5+、Ti4+及W6+具有提高玻璃之折射率之性質。此外,Nb5+具有提高化學耐久性之性質,W6+具有降低玻璃轉移點之性質。因此,本發明之光學玻璃亦可包含選自由Nb5+、Ti4+及W6+所組成之群中之一種以上作為任意成分。
另一方面,Nb5+、Ti4+及W6+之含有率分別較佳為10%以下。Nb5+、Ti4+及W6+具有若含有率較高則使阿貝數降低之性質。此外,Ti4+及W6+具有若含有率較高則使玻璃著色之性質。此種性質逐漸增強,因此Nb5+、Ti4+及W6+之含有率各自之上限設為較佳為10.0%、更佳為8.0%、進而較佳為5.0%。
Nb5+、Ti4+及W6+可使用Nb2O5、TiO2、WO3等作為原料而含有於玻璃內。
Zr4+具有提高玻璃之折射率之性質。因此,本發明之光學玻璃亦可包含Zr4+作為任意成分。
另一方面,Zr4+之含有率較佳為10%以下。Zr4+具有若含有率較高則由於玻璃中成分之揮發而產生條紋之性質。此種性質逐漸增強,因此Zr4+之含有率之上限設為較佳為10.0%、更佳為8.0%、進而較佳為5.0%。
Zr4+可使用ZrO2、ZrF4等作為原料而含有於玻璃內。
Ta5+具有提高玻璃之折射率之性質。因此,本發明之光學玻璃亦可包含Ta5+作為任意成分。
另一方面,Ta5+之含有率較佳為10%以下。Ta5+具有若含有率較高則使玻璃變得容易失透之性質。此種性質逐漸增強,因此Ta5+之含有率之上限設為較佳為10.0%、更佳為8.0%、進而較佳為5.0%。
Ta5+可使用Ta2O5等作為原料而含有於玻璃內。
Ge4+具有提高玻璃之折射率、提高耐失透性之性質。因此,本發明之光學玻璃亦可包含Ge4+作為任意成分。
另一方面,Ge4+之含有率較佳為10%以下。若Ge4+之含有率較高,則玻璃之材料成本上升。因此,Ge4+之含有率之上限設為較佳為10.0%、更佳為8.0%、進而較佳為5.0%。
Ge4+可使用GeO2等作為原料而含有於玻璃內。
Bi3+及Te4+具有提高玻璃之折射率、降低玻璃轉移點之性質。本發明之光學玻璃亦可包含Bi3+或Te4+作為任意成分。
另一方面,Bi3+之含有率較佳為10%以下,Te4+之含有率較佳為15%以下。Bi3+及Te4+具有若含有率較高則使玻璃著色、變得容易失透之性質。此種性質逐漸增強,因此Bi3+之含有率之上限設為較佳為10.0%、更佳為8.0%、進而較佳為5.0%。又,Te4+之含有率之上限設為較佳為15.0%、更佳為10.0%、更佳為8.0%、進而較佳為5.0%。
Bi3+及Te4+可使用Bi2O3、TeO2等作為原料而含有於玻璃內。
[關於陰離子成分]
本發明之光學玻璃包含F-。F-之含有率較佳為20~70%。
F-具有提高玻璃之異常分散性及阿貝數使玻璃不易失透之性質。此種性質逐漸增強,因此F-之含有率之下限設為較佳為20.0%、更佳為30.0%、更佳為35.0%、進而較佳為38.0%。
另一方面,F-具有若含有率較高則過度提高玻璃之阿貝數、降低磨耗度之性質。此種性質逐漸增強,因此F-之含有率之下限設為較佳為70.0%、更佳為60.0%、更佳為50.0%、進而較佳為48.0%。
F-可使用AlF3、MgF2、BaF2等各種陽離子成分之氟化物作為原料而含有於玻璃內。
本發明之光學玻璃包含O2-。O2-之含有率較佳為30~80%。
O2-具有抑制玻璃之失透、抑制磨耗度之上升之性質。此種性質逐漸增強,因此O2-之含有率之下限設為較佳為30.0%、更佳為40.0%、更佳為45.0%、進而較佳為50.0%。
另一方面,為容易地獲得由其他陰離子成分所引起之效果,O2-之含有率之上限設為更佳為80.0%、更佳為70.0%、更佳為66.0%、進而較佳為62.0%。
又,就抑制玻璃之失透之觀點而言,O2-之含有率與F-之含有率的合計以較佳為98.0%、更佳為99.0%為下限,進而較佳為設為100%。
O2-可使用Al2O3、MgO、BaO等各種陽離子成分之氧化物或Al(PO)3、Mg(PO)2、Ba(PO)2等各種陽離子成分之磷酸鹽等作為原料而含有於玻璃內。
[關於其他成分]
於本發明之光學玻璃中,於無損本案發明之玻璃之特性的範圍內可視需要添加其他成分。
[關於不應含有之成分]
繼而,針對本發明之光學玻璃中不應含有之成分及不宜含有之成分進行說明。
除Ti、Zr、Nb、W、La、Gd、Y、Yb、Lu以外,V、Cr、Mn、Fe、Co、Ni、Cu、Ag及Mo等過渡金屬之陽離子具有如下性質:即便於單獨或複合地少量含有各者之情形時,亦會使玻璃著色,對可見光區域之特定波長發生吸收;因此尤其於使用可見光區域之波長之光學玻璃中,較佳為實質上不含該等。
Pb、Th、Cd、Tl、Os、Be及Se之陽離子近年來存在作為有害之化學物質而控制使用之傾向,不僅玻璃之製造步驟,甚至加工步驟及製品化後之處理中,認為必需環境對 策上之措施。因此,於重視環境上之影響之情形時,較佳為除不可避免之混入以外實質上不含該等。藉此,光學玻璃實質上不含污染環境之物質。因此,即便不採取特別之環境對策上之措施,亦可對該光學玻璃進行製造、加工及廢棄。
Sb或Ce之陽離子作為消泡劑較為有用,但作為對環境造成不利影響之成分,近年來存在使之不含於光學玻璃中之傾向。因此,就上述方面而言,本發明之光學玻璃較佳為不含Sb或Ce。
[製造方法]
本發明之光學玻璃之製造方法並無特別限定。例如,可藉由如下方法製造:以使各成分成為特定含有率之範圍內之方式均勻地混合上述原料,將製作而成之混合物投入至石英坩堝或氧化鋁坩堝或鉑坩堝中進行部分熔融後,添加至鉑坩堝、鉑合金坩堝或銥坩堝中,於900~1200℃之溫度範圍內熔融2~10小時,進行攪拌使之均質化並消泡等之後,降低至850℃以下之溫度後進行完工攪拌除去條紋,鑄入至模具中進行緩冷。
[物性]
本發明之光學玻璃具有較高之相對折射率之溫度係數(dn/dT)。更具體而言,本發明之光學玻璃的相對折射率(589.29 nm)之溫度係數(20~40℃)之下限較佳為-6.0×10-6-1,更佳為-5.5×10-6-1,進而較佳為-5.0×10-6-1。藉此,即便於光學元件之溫度產生較大變動之環境下,折射率之變 動亦會減小,因此可於更廣泛之溫度範圍內,高精度地發揮所需之光學特性。
另一方面,若相對折射率之溫度係數於正方向上過大,則由光學元件之溫度變化所引起之折射率之變化反而變大。因此,亦可將本發明之光學玻璃的相對折射率之溫度係數之上限設為較佳為6.0×10-6-1、更佳為5.5×10-6-1、進而較佳為5.0×10-6-1。本發明之光學玻璃所具有之相對折射率之溫度係數絕對值越小越佳,最佳為0。
再者,關於相對折射率之溫度係數,於與光學玻璃相同溫度之空氣中,一面照射波長589.29 nm之光一面改變光學玻璃之溫度,相對折射率之溫度係數即以此時平均1℃溫度之折射率之變化量(×10-6/℃)表示。
本發明之光學玻璃只要為含有P5+及F-之氟磷酸鹽玻璃,則其光學常數並無特別限定,尤佳為具有較高之折射率(nd)、並且具有較低之分散性(較高之阿貝數)。
本發明之光學玻璃較佳為折射率(nd)為1.50以上1.60以下。更具體而言,本發明之光學玻璃之折射率之下限較佳為1.50,更佳為1.51,更佳為1.52。又,本發明之光學玻璃之折射率之上限較佳為1.58,更佳為1.57,更佳為1.55。
本發明之光學玻璃較佳為阿貝數(νd)為60以上80以下。更具體而言,本發明之光學玻璃之阿貝數之下限較佳為60,更佳為65,更佳為70,進而較佳為73。另一方面,本發明之光學玻璃之阿貝數之上限較佳為80,更佳為78,進而較 佳為77。
藉此,光學設計之自由度擴大,進而即便謀求元件之薄型化亦可獲得所需之光之折射量,因此可謀求光學系統之高精度化及小型化。
再者,折射率(nd)及阿貝數(νd)意指基於日本光學玻璃工業會規格JOGIS01-2003進行測定而獲得之值。
本發明之光學玻璃磨耗度越低越佳。藉此,光學玻璃之必需以外之磨耗或損傷降低,對光學玻璃之研磨加工中之操作變得容易,因此可容易地進行研磨加工。本發明之光學玻璃之磨耗度之上限較佳為600,更佳為550,更佳為500,更佳為450,進而較佳為430。
另一方面,若磨耗度過低則存在反而難以進行研磨加工之傾向。因此,本發明之光學玻璃之磨耗度之下限亦可設為較佳為80、更佳為100、進而較佳為120。
再者,所謂磨耗度,意指依據「JOGIS10-1994光學玻璃之磨耗度之測定方法」進行測定而獲得之值。
[預成形體及光學元件]
本發明之光學玻璃於各種光學元件及光學設計中較為有用,其中尤佳為使用如下等方法製作透鏡或稜鏡、反射鏡等光學元件:由本發明之光學玻璃形成預成形體,並對該預成形體進行研磨加工或精密加壓成形。藉此,於用於如相機或投影儀等使可見光穿透光學元件之光學機器時,可實現高精細且高精度之成像特性。尤其是,本發明之光學玻璃由溫度變化所引起之折射率之變動較小,因此例如即 便用於如投影儀般於使用時成為高溫之用途中,亦可實現高精細且高精度之成像特性。此處,製造預成形體材料之方法並無特別限定,例如亦可使用日本專利特開平8-319124中記載之玻璃坯之成形方法,或如日本專利特開平8-73229中記載之光學玻璃之製造方法及製造裝置般由熔融玻璃直接製造預成形體材料之方法。又,亦可使用對由光學玻璃形成之條狀材料進行研削研磨等冷加工而製造的方法。
[實施例]
將本發明之光學玻璃即實施例1~3及比較例1之玻璃的組成(以表示陽離子%或表示陰離子%之莫耳%表示)、折射率(nd)、阿貝數(νd)、相對折射率之溫度係數(dn/dT)及磨耗度(Aa)示於表1。再者,以下之實施例僅用於例示,並不僅限定於該等實施例。
本發明之實施例1~3及比較例1之光學玻璃均以如下方式進行製作:作為各成分之原料,選定各自相應之氧化物、碳酸鹽、硝酸鹽、氟化物、偏磷酸化合物等通常用於氟磷酸鹽玻璃之高純度原料,以成為表1所示之各實施例之組成比率之方式進行稱量並均勻地混合之後,投入至鉑坩堝中,依據玻璃組成之熔融難易度利用電爐於900~1200℃之溫度範圍內熔解2~10小時,進行攪拌使之均質化並消泡等之後,將溫度降至850℃以下後鑄入至模具中,進行緩冷而製作玻璃。
此處,實施例1~3及比較例1之光學玻璃之折射率(nd)及 阿貝數(νd)係基於日本光學玻璃工業會規格JOGIS01-2003進行測定。再者,作為用於本測定之玻璃,使用退火條件為將緩冷降低速度設為-25℃/hr而利用緩冷爐進行處理者。
又,實施例1~3及比較例1之光學玻璃之相對折射率之溫度係數(dn/dT)係以日本光學玻璃工業會規格JOGIS18-1994「光學玻璃之折射率之溫度係數之測定方法」中記載之方法中的干涉法進行測定。
又,磨耗度係依據「JOGIS10-1994光學玻璃之磨耗度之測定方法」進行測定。即,將30×30×10 mm大小之玻璃方板之試樣置於每分鐘水平旋轉60次之鑄鐵製平面盤(250 mmΦ)自中心起80 mm之起始位置上,一面垂直施加9.8 N(1 kgf)之荷重,一面以同樣之方式將於水20 mL中添加有#800(平均粒徑20 μm)之研磨材料(氧化鋁質A研磨粒)10 g之研磨液供給5分鐘進行摩擦,測定研磨前後之試樣質量,求出磨耗質量。以相同之方式求出日本光學玻璃工業會所指定之標準試樣之磨耗質量,根據下式進行計算:磨耗度={(試樣之磨耗質量/比重)/(標準試樣之磨耗質量/比重)}×100。
如表1所示,本發明之實施例1~3之光學玻璃相對折射率之溫度係數(20~40℃)均為-6.0×10-6-1以上,為所需之範圍 內。另一方面,作為本發明之範圍以外之比較例1,其相對折射率之溫度係數低於-6.0×10-6-1。因此,可明確本發明之實施例之光學玻璃與比較例1之玻璃相比,相對折射率之溫度係數較高。
又,本發明之實施例之光學玻璃折射率均為1.50以上,更詳細而言為1.53以上,為所需之範圍內。又,本發明之實施例之光學玻璃阿貝數均為60以上,更詳細而言為74以上,為所需之範圍內。又,本發明之實施例之光學玻璃磨耗度均為600以下,為所需之範圍內。
因此,可明確,本發明之實施例之光學玻璃折射率及阿貝數為所需之範圍內,相對折射率之溫度係數較高,且,磨耗度較小。由此推測,本發明之實施例之光學玻璃可於更廣泛之溫度範圍內高精度地獲得所需之成像特性等光學特性,藉此可有助於光學系統之高解像度化及小型化。
進而,使用本發明之實施例之光學玻璃,於形成研磨加工用預成形體之後進行研削及研磨,加工成透鏡及稜鏡之形狀。又,使用本發明之實施例之光學玻璃,形成精密加壓成形用之預成形體,對該預成形體進行精密加壓成形加工而加工成透鏡及稜鏡之形狀。於任一情形時,均可加工成各種透鏡及稜鏡之形狀。
以上,為例示已詳細地說明本發明,但希望理解,本實施例僅為用於例示者,業者可於不脫離本發明之思想及範圍而進行多種變更。

Claims (17)

  1. 一種光學玻璃,其含有P5+、Al3+及Mg2+作為陽離子成分,含有O2-及F-作為陰離子成分,且相對折射率(589.29 nm)之溫度係數(20~40℃)為-6.0×10-6(℃-1)以上。
  2. 如請求項1之光學玻璃,其中以陽離子%(莫耳%)表示,含有P5+ 20~55%、Al3+ 1~20%及Mg2+ 0.1~30%。
  3. 如請求項1之光學玻璃,其中以陽離子%(莫耳%)表示,Ca2+之含有率為0~30%,Sr2+之含有率為0~30%,Ba2+之含有率為0~30%。
  4. 如請求項1之光學玻璃,其中鹼土金屬之合計含有率(R2+:陽離子%)為30~70%。
  5. 如請求項1之光學玻璃,其中Mg2+含有率及Ca2+之合計量(陽離子%)為7.5~50%。
  6. 如請求項1之光學玻璃,其中Mg2+含有率及Ca2+之合計相對於鹼土金屬之合計含有率(R2+:陽離子%)的比((Mg2++Ca2+)/R2+)為0.25以上。
  7. 如請求項1之光學玻璃,其中以陰離子%(莫耳%)表示,F-之含有率為20~70%,O2-之含有率為30~80%。
  8. 如請求項1之光學玻璃,其中Mg2+含有率(陽離子%)相對於P5+含有率(陽離子%)之比(Mg2+/P5+)為0.25以上。
  9. 如請求項1之光學玻璃,其中以陽離子%(莫耳%)表示, La3+之含有率為0~10%,Gd3+之含有率為0~10%,Y3+之含有率為0~10%,Yb3+之含有率為0~10%,Lu3+之含有率為0~10%。
  10. 如請求項1之光學玻璃,其中La3+、Gd3+、Y3+、Yb3+及Lu3+之合計含有率(Ln3+:陽離子%)為0~20%。
  11. 如請求項1之光學玻璃,其中以陽離子%(莫耳%)表示,Li+之含有率為0~20%,Na+之含有率為0~10%,K+之含有率為0~10%。
  12. 如請求項1之光學玻璃,其中鹼金屬之合計含有率(Rn+:陽離子%)為20%以下。
  13. 如請求項1之光學玻璃,其中以陽離子%(莫耳%)表示,Si4+之含有率為0~10%,B3+之含有率為0~15%,Zn2+之含有率為0~30%,Nb5+之含有率為0~10%,Ti4+之含有率為0~10%,W6+之含有率為0~10%,Zr4+之含有率為0~10%,Ta5+之含有率為0~10%,Ge4+之含有率為0~10%,Bi3+之含有率為0~10%, Te4+之含有率為0~15%。
  14. 如請求項1之光學玻璃,其中依據「JOGIS10-1994光學玻璃之磨耗度之測定方法」之測定方法下之磨耗度為600以下。
  15. 一種光學元件,其包含如請求項1至14中任一項之光學玻璃。
  16. 一種研磨加工用及/或精密加壓成形用之預成形體,其包含如請求項1至14中任一項之光學玻璃。
  17. 一種光學元件,其係將如請求項16之預成形體精密加壓而成。
TW101137517A 2011-10-19 2012-10-11 Optical glass, optical components and pre-form TWI601704B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011229973 2011-10-19
JP2012071878A JP2013100213A (ja) 2011-10-19 2012-03-27 光学ガラス、光学素子及びプリフォーム

Publications (2)

Publication Number Publication Date
TW201326078A true TW201326078A (zh) 2013-07-01
TWI601704B TWI601704B (zh) 2017-10-11

Family

ID=48621271

Family Applications (4)

Application Number Title Priority Date Filing Date
TW106110015A TWI635064B (zh) 2011-10-19 2012-10-11 Optical glass, optical components and preforms
TW108127009A TW201940448A (zh) 2011-10-19 2012-10-11 光學玻璃、光學元件及預成形體
TW101137517A TWI601704B (zh) 2011-10-19 2012-10-11 Optical glass, optical components and pre-form
TW107113894A TW201841849A (zh) 2011-10-19 2012-10-11 光學玻璃、光學元件及預成形體

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW106110015A TWI635064B (zh) 2011-10-19 2012-10-11 Optical glass, optical components and preforms
TW108127009A TW201940448A (zh) 2011-10-19 2012-10-11 光學玻璃、光學元件及預成形體

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107113894A TW201841849A (zh) 2011-10-19 2012-10-11 光學玻璃、光學元件及預成形體

Country Status (2)

Country Link
JP (2) JP2013100213A (zh)
TW (4) TWI635064B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107540214B (zh) * 2016-06-24 2020-06-05 成都光明光电股份有限公司 光学玻璃、光学预制件和光学元件
EP3578524A4 (en) 2017-02-01 2020-11-18 Ohara Inc. OPTICAL GLASS, PREFORM AND OPTICAL ELEMENT
CN110467346B (zh) * 2018-05-10 2021-11-19 Hoya株式会社 光学玻璃和光学元件
CN109626815B (zh) * 2019-01-23 2021-10-01 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件及光学仪器
JP7213736B2 (ja) * 2019-02-19 2023-01-27 Hoya株式会社 光学ガラスおよび光学素子
JP7535880B2 (ja) * 2020-05-11 2024-08-19 株式会社オハラ 薄板モールドプレス成形用フツリン酸光学ガラス、マルチプレス用フツリン酸光学ガラス、光学素子、プリフォーム及びレンズ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1511747A (en) * 1974-07-24 1978-05-24 Jenaer Glaswerk Schott & Gen Optical glass
JPS59137344A (ja) * 1983-01-28 1984-08-07 Nippon Telegr & Teleph Corp <Ntt> 屈折率の温度補償用ガラス
JPH0643254B2 (ja) * 1988-02-29 1994-06-08 ホーヤ株式会社 弗燐酸塩ガラス
JP2616983B2 (ja) * 1988-12-01 1997-06-04 株式会社住田光学ガラス フツリン酸塩光学ガラス
EP1440950B1 (en) * 2001-10-30 2016-07-06 Sumita Optical Glass, Inc. Optical glass suitable for mold forming
JP4166173B2 (ja) * 2004-03-05 2008-10-15 Hoya株式会社 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
TWI316928B (en) * 2005-04-28 2009-11-11 Ohara Kk Optical glass
JP4498315B2 (ja) * 2005-07-28 2010-07-07 Hoya株式会社 光学ガラスおよび光学素子とその製造方法
JP5160043B2 (ja) * 2006-03-31 2013-03-13 Hoya株式会社 モールドプレス用ガラス素材、及びガラス光学素子の製造方法
JP2008100872A (ja) * 2006-10-19 2008-05-01 Hoya Corp ガラス製プリフォームの製造方法および光学素子の製造方法
JP2008137877A (ja) * 2006-12-05 2008-06-19 Hoya Corp 光学ガラスおよび光学素子
JP2009256149A (ja) * 2008-04-18 2009-11-05 Hoya Corp 光学ガラス、その製造方法並びに光学素子および光学素子の製造方法
JP2010235429A (ja) * 2009-03-31 2010-10-21 Ohara Inc 光学ガラス、光学素子及びプリフォーム
JP5558755B2 (ja) * 2009-08-06 2014-07-23 株式会社オハラ 光学ガラス、光学素子及びプリフォーム
JP5672300B2 (ja) * 2010-03-26 2015-02-18 旭硝子株式会社 近赤外線カットフィルタガラスの製造方法

Also Published As

Publication number Publication date
JP2013100213A (ja) 2013-05-23
TWI635064B (zh) 2018-09-11
TWI601704B (zh) 2017-10-11
TW201841849A (zh) 2018-12-01
JP2014156394A (ja) 2014-08-28
TW201940448A (zh) 2019-10-16
TW201733947A (zh) 2017-10-01

Similar Documents

Publication Publication Date Title
JP5558755B2 (ja) 光学ガラス、光学素子及びプリフォーム
JP5717432B2 (ja) 光学ガラス、光学素子およびプリフォーム
TWI546270B (zh) Optical glass, optical elements and preforms
JP5919595B2 (ja) 光学ガラス、光学素子およびプリフォーム
TWI564263B (zh) Optical glass, optical elements and preforms
JP2010235429A (ja) 光学ガラス、光学素子及びプリフォーム
JP5919594B2 (ja) 光学ガラス、光学素子およびプリフォーム
JP6174317B2 (ja) 光学ガラス、光学素子及びプリフォーム
JP7195040B2 (ja) 光学ガラス、プリフォーム及び光学素子
TWI570088B (zh) Optical glass, optical elements and preforms
TWI601704B (zh) Optical glass, optical components and pre-form
CN102260043A (zh) 光学玻璃、光学元件和预成型坯
JP2015209353A (ja) 光学ガラス、光学素子及びプリフォーム
JP2013151410A (ja) 光学ガラス、光学素子及びプリフォーム
JP5783977B2 (ja) 光学ガラス、プリフォーム及び光学素子
JPWO2010126097A1 (ja) 光学ガラス、光学素子及び精密プレス成形用プリフォーム
JP2010260740A (ja) 光学ガラス及び光学素子
JP5698642B2 (ja) 光学ガラス及び光学素子
JP2011230997A (ja) 光学ガラス、光学素子及び精密プレス成形用プリフォーム
JP2014231470A (ja) 光学ガラス、光学素子及びプリフォーム
JP5748613B2 (ja) 光学ガラス、プリフォーム及び光学素子
TWI834611B (zh) 光學玻璃以及光學元件
JP5748614B2 (ja) 光学ガラス、プリフォーム及び光学素子
TWI537227B (zh) Optical glass, optical components and preforms
TWI549920B (zh) Optical glass, preform and optical element