TW200932628A - Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder - Google Patents

Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder Download PDF

Info

Publication number
TW200932628A
TW200932628A TW097143317A TW97143317A TW200932628A TW 200932628 A TW200932628 A TW 200932628A TW 097143317 A TW097143317 A TW 097143317A TW 97143317 A TW97143317 A TW 97143317A TW 200932628 A TW200932628 A TW 200932628A
Authority
TW
Taiwan
Prior art keywords
rudder
rudder blade
side wall
portions
curved
Prior art date
Application number
TW097143317A
Other languages
Chinese (zh)
Other versions
TWI370084B (en
Inventor
Dirk Lehmann
Mathias Kluge
Henning Kuhlmann
Original Assignee
Becker Marine Sys Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202007015941U external-priority patent/DE202007015941U1/en
Application filed by Becker Marine Sys Gmbh & Co Kg filed Critical Becker Marine Sys Gmbh & Co Kg
Publication of TW200932628A publication Critical patent/TW200932628A/en
Application granted granted Critical
Publication of TWI370084B publication Critical patent/TWI370084B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • B63H2025/388Rudders with varying angle of attack over the height of the rudder blade, e.g. twisted rudders

Abstract

The rudder arrangement for ships comprises a twisted full-balanced rudder blade (100) with a slim profile and with a low profile thickness as well as with a propeller (115) turned to the rudder blade and a trunk tube placed in the upper area of the rudder blade with a rudder post (140) placed therein, whereby the rudder blade (100) has two superimposed rudder blade portions (10, 20) which have different heights, the leading edges (11, 21) of which, which are turned to the propeller, are offset in such a manner that the one leading edge (11) is offset to the aport side (BB) or to the starboard side (SB) and the other leading edge (21) to the starboard side (SB) or to the aport side (BB), whereby the side wall surfaces of the rudder blade (100) converge into one trailing edge (30) turned away from the propeller and have different curve courses, whereby the guiding plates (200) which form flow bodies, which cover the transition areas, are provided in the offset area of the two rudder blade portions (10, 20), and a rudder post (140) which cooperates functionally with the rudder blade (100).

Description

200932628 九、發明說明: 【發明所屬之技術領域】 本發明關於一種具有減少氣穴之扭轉舵,尤其具有如 申請專利範圍第1項所述之全平衡舵之高速船隻用之舵配 置。 【先前技術】 船隻的舵,例如全平衡舵,或者具有或不具有鉸接鰭 ❹ 板之平衡式輪廓舵,已知用於甚多具體實施例中。亦熟知 ' 具有扭轉舵葉片之船舵,此舵葉片由兩個疊置的舵葉片部 - 構成,其前緣朝向該推進器,其側向偏移,使得該一個前 緣被偏移到該左舷側,而另一個前緣偏移到該右舷側》 如JP(A) Sho 5 8-30896描述一種具有扭轉舵葉片的船 * 舵,其由一上部及一下部構成,藉此該等兩部份在它們朝 • 向該推進器的方向上扭轉,使得該等兩個部份中僅有相關 於該等前緣的區域被側向偏移,然而延伸到該等前緣的區 Q 域皆具有相同的橫截面形狀,及相同的橫截面尺寸。 GB 332,082亦揭示一種具有扭轉舵葉片之船舵,其輪 廓區域朝向該推進器,即該等前緣爲橫向曝露,藉此該等 前緣係構形成錐形漸縮。該等兩個舵葉片部之橫截面輪廓 係構形成以使得位在該等兩個舵葉片段之左舷側及右舷側 上的該等側壁表面不具有一拱頂,且爲直線直到橫向彎曲 前緣,使得該等側壁表面不具有向外拱出具有不同彎曲半 徑的任何區域。此外,該舵葉片之輪廓構造使得該等兩個 疊置設置的舵葉片部之兩個橫截面表面具有相同大小’並 200932628 延伸超過該舵葉片之整個高度。由於該等錐形漸縮的前 緣’其構形成有尖銳邊緣的切口來承受氣穴及破壞。對於 該推進的改進必須利用此舵的輪廓構造來達到。 現今船隻的速度一直增加中。由於關連於較高速率的 快速流速,在推進器及舵上的應力較高。已知舵葉片的輪 廓之對稱性造成在該舵表面上的負壓區域,並造成氣穴, 因此產生侵蝕。氣穴係在該舵葉片上流動會極其加速的點 0 處產生。此即該推進器之強烈旋轉流動會以高速撞擊到該 ' 舵葉片表面。由於此強烈加速,該靜壓下降到低於水的蒸 - 氣壓,所以會發展成氣泡,並會突然內爆。這些內爆造成 該舵葉片表面之破壞,並造成昂貴的維修費用,其時常必 須安裝新的舵葉片。 【發明内容】 - 本發明的目的在於產生船用的舵配置,其舵葉片具有 相當大的尺寸,特別是具有全平衡舵葉片,其具有一扭轉 φ 舵前緣,可避免由於氣穴形成而造成在該舵葉片上的侵蝕 現象,特別是當用於具有高負載推進器之高速船隻,其中 設置一舵柱軸承,其中插入在該舵葉片中的主幹管直接將 該舵的力量導引到船體當中,並超過一整合於底側的頸軸 承,藉此力量的引入發生在當一懸臂樑做爲一純彎曲應力 而沒有扭矩時。再者,作用在該舵葉片之下方區域的力量 係由具有非常高流速的推進器流出所產生,其必須被吸 收,而該舵葉片必須被平衡’且不會發生損傷該舵柱的軸 承。再者,該舵葉片的扭轉區域必須具有封閉的轉換。 200932628 此目標可根據引入扭轉全平衡舵葉片與具有如申請專 利範圍第1項所述特徵的特殊舵柱軸承之功能性協同運作 所描述之類型的舵配置來達成。 因此,根據本發明之舵配置的特徵在於: a.)其由一蛇葉片所構成,具有一低輪廓厚度的一細 長輪廓,較佳地由一全平衡舵葉片所構成’該舵葉片由具 有相同高度或不相等高度之兩個疊置配置的舵葉片部製 0 成,較佳地具有一下方舵葉片部,其高度低於該上方舵葉 ' 片部之高度,並具有朝向該推進器的前緣’其具有大致爲 . 半圓形的輪廓,且設置使得相對於該舵葉片的縱向中心線 (LML·)的一前緣橫向地偏移到該左舷側BB或該右舷側 SB,且另一前緣橫向地偏移到該右舷側SB或該左舷側 • BB,藉此兩舵葉片部之側壁表面聚集到背離該推進器的一 、 尾緣, al.)藉此兩個前緣與該尾緣皆自該舵葉片的上方區域 Q OB向下錐形漸縮到該下方區域UB,並減少該等橫截面表 面, a2.)或者該尾緣爲直線性,並平行於該舵柱,且兩個 前緣皆自該舵葉片的上方區域OB向下錐形漸縮行進到下 方區域UB,並減少該等橫截面表面之大小, a3.)藉此該上方舵葉片部與該下方舵葉片部之橫截面 表面部在該尾緣與該舵葉片的最大輪廓厚度PD之間的區 域中具有一長度L,其對應於該舵葉片之最大輪廓厚度PD 與該前緣之間該上方舵葉片部與該下方舵葉片部之橫截面 200932628 表面部之長度L1的至少1又1/2, a4.)藉此該上方舵葉片部在該左舷側BB上及該下方 舵葉片部在該右舷側SB上分別具有一平坦曲面側壁部,其 在該尾緣的方向上自該等前緣延伸,其長度L2自該等前緣 延伸超過該側壁部之長度L’2到該最大輪廓厚度PD加上一 長度L” 2,其對應於至少該長度L’2的一半,藉此穿出到該 尾緣中的直線側壁部依循該平坦曲面側壁部, ❹ a5.)藉此該上方舵葉片部在該右舷側SB上及該下方 舵葉片部在該左舷側B B上分別具有一強烈拱出的曲面側 - 壁部,其在該尾緣的方向上自該等前緣延伸,其長度L3自 該等前緣延伸超過側壁部之長度L’3到該最大輪廓厚度PD 加上一長度L” 3,其對應於至少該長度L’3的1/3,藉此穿 ' 出到該尾緣中的直線側壁部依循該強烈拱出的曲面側壁 - 部, a6.)藉此兩直線側壁部皆成對具有相同長度,且位在 φ 該等兩側壁部之間的橫截面表面部係對稱地構形,並具有 相同大小, a7.)藉此自該平坦曲面側壁部到該縱向中心線LML 之間的距離大於自該強烈拱出的側壁部到該縱向中心線 LML之間的距離,且位在該等兩曲面側壁部之間的橫截面 表面部係在縱向中心線LML之兩側上非對稱地構形, a8.)藉此形成流體之導引板,對應地模製成前緣的曲 面路線且覆蓋該偏移區域,該等導引板係配置在兩個成疊 置配置的舵葉片部之兩個側向偏移,部之轉換區域中’這 200932628 些導引板具有對流動較有利的一稍長或半圓形輪廓,其拱 出及配合於該舵葉片之外壁,一導引板自該上方舵葉片部 之前緣延伸到其側壁,而另一導引板自該下方舵葉片部之 前緣延伸到其側壁當中, b .) —舵柱,利用至少一軸承在功能上與該舵葉片協 同運作, bl.)藉此,該舵柱,特別地;以锻製鋼或另一適當材 φ 料製成,並與嵌入它的主幹管特別地;以鍛製鋼或另一適 ' 當材料製成,設置在一起,設置在該最大輪廓厚度PD之區 、 域中,或設置在此區域與在此區域中該上方舵葉片部之該 等前緣之間,且與其端面固定裝置延伸超過該上方舵葉片 部之整個高度, ' b2.)藉此,深入插入到該上方舵葉片部中的主幹管即 ' 提供用於該舵柱作爲一懸臂樑,其具有一中央內部縱向 孔,用於接收該舵柱, 〇 b3.)藉此,該主幹管橫截面構形成有薄壁,且該主幹管 在其內壁上其自由端區域中具有一頸軸承,用於支撐該舵 柱及 b4.)藉此,該舵柱在其末端區域中被導引,且其一部 份突出主幹管,並以此部份之末端與該上方舵葉片部連接。 令人驚訝地,顯示出:由於根據本發明之該扭轉舵葉 片的構形做爲一全平衡舵,具有低輪廓厚度及該舵柱的軸 承在該舵葉片之上方舵葉片部中最大輪廓厚度之區域中, 該下方舵葉片部取得一窄輪廓,所以雖然該推進器流出的 -10- 200932628 高速撞擊到該舵葉片之上而沒有額外的力量消耗,亦可得 到優越的舵葉片平衡,即使此舵葉片具有非常大的尺寸, 其僅可由一扭轉舵葉片與該舵葉片定位之功能性協同運作 來達到,但是對其它舵葉片構造或舵柱軸承是不能達到的。 藉由本發明,可產生一舵配置,即由兩個組件即是一 扭轉舵葉片及一舵柱所製成的系統,其中舵柱以特殊的方 式支撐且與該舵葉片協同運作。此舵配置已經令人驚訝地 Φ 發現到爲一種技術解決方案,可藉以建構大型及非常大型 * 的全平衡舵葉片。被深深地插入到該舵葉片之上方舵葉片 、 部中的主幹管以直接方式將該舵力量依頸軸承引入到一船 體中,其中頸軸承係被整合到該上方舵葉片部之下方區域 中。引入的力量以一懸臂樑方式發生,藉此做爲一純彎曲 ' 應力,而沒有扭矩。因此,該主幹管橫截面可構形成具有 相當薄的壁。這些薄壁非常重要,因爲該主幹管的下方部 嵌入在該舵葉片中’即在該上方舵葉片部中,因此對於該 〇 舵葉片的輪廓厚度具有直接的影響。僅有一薄型舵輪廓(因 此具有一低輪廓厚度)有可能建構能量有效率的舵葉片,因 爲一舵輪廓的愈厚’其在該推進性水的加速流動中產生的 阻力愈大。 該扭轉舵葉片與該舵柱的軸承之組合的舵配置之另一 種好處爲使用較高品質的材料。僅由於根據本發明之該舵 柱的軸承在該上方舵葉片部中,因此,可使用高延展性鍛 鋼’使得可以明顯減少重量,並最多可高達該習用舵在相 同功率的5 0 %。 -11- 200932628 該具有該舵柱軸承之組合的舵配置之另一種明顯的好 處爲,由於此種軸承整合在該舵葉片中,即在該上方舵葉 片部中,即有可能建構該全平衡舵或鏟形舵,即實際上無 限制大小。習用舵爲利用一舵角或一舵支撐來半平衡。這 種困難的機械構造幾乎無法在該前緣上扭轉,因爲該固定 的舵角與環繞此角旋轉的舵葉片因此無法自由地模製化。 對於這種半平衡舵而發生的舵葉片內的力量及力矩不相 0 等,較大於具有根據本發明之舵柱之軸承的全平衡舵。朝 向該之推進器的前緣之顯著扭轉意謂相當不經濟的結構性 * 措施,即具有相對應較厚的輪廓。 另一種好處在於由於舵柱之軸承,全平衡舵可能當做 一種構造,其意謂在該等舵角以及它們的舵葉片之間不再 ' 具有狹縫,而該等舵角直到現在皆爲必要。因此,經由這 • 些狹縫的交叉流動即可避免,並亦避免該等相對應的嚴重 氣穴侵蝕。 Q 再者,對於根據本發明之舵配置的構形,由鍛鋼製成 的舵幹管較佳地被延伸到該舵葉片中,即延伸到該上方舵 葉片部,但是僅具有一下方頸軸承。亦由一鍛件製成爲輪 轂的舵柱連接至靠近該水動力中心的舵,所以由於彎曲力 矩僅達成一輕微應力。由此構形可排除疊加之振動。 由於該薄型舵輪廓,以及由於該舵葉片的低輪廓厚 度,可平衡該舵葉片,使得相關於該推進器以非常高速撞 擊到該下方舵葉片部上之流出的高壓對該舵柱的軸承不具 有任何特殊的應力。 -12- 200932628 爲了消除在該舵葉片上的氣穴,根據本發明具有被區 分成一上半部及一下半部的輪廓,藉此由該流動所撞擊到 的它們的前緣或邊緣以某種角度扭轉。該推進器接續的流 動及其與該船中線的角度預先決定了該輪廓前緣被扭轉的 扭轉角度。由於有此種新穎輪廓可供選擇,該推進器紊流 較佳地沿著該舵葉片流動,且在該舵葉片的輪廓表面上不 會發展出造成該氣穴的任何壓力峰値。此改善過的環繞該 Φ 舵的流動造成顯著的燃料節省,並改善操控性。 由於導引板配置在該等兩個疊置配置的舵葉片部之偏 - 移部份的轉換區域中,即可產生一較利於流動的輪廓,所 以可避免另將會出現在這些轉換區域中的氣穴。此即該等 「導引板」構形成流體型式,而可覆蓋該等兩個前緣之轉 換區域。因此,該等導引板承載在在該舵葉片上的偏移區 - 域之區域中’並將其覆蓋,使得水會沿著該等導引板流動, 而非沿著該等偏移區域流動。因此,可降低流動打轉的風 φ 險。因此’該等導引板或它們的移動造成一種橫向橋接, 或覆蓋該上方與該下方舵葉片部之間的轉換區域。此處的 用語「覆蓋(COVer)」係要理解爲該流體之導引板相當大程 度地覆蓋該偏移區域。 根據本發明這種構形有扭轉舵葉片的舵之好處在於, 由於僅在該偏移區域當地構形及配置有導引板,其可覆蓋 該偏移區域並涵蓋整個流體,即可降低該流動分裂的風 險’藉此’該等流體式的導引板由於它們相對較小的尺寸 而對於該船隻的推進行爲不會有任何影響。因此,—「推 -13- 200932628 進中性化效應」可自我調整。 本發明的較佳構造爲申請專利範圍附屬項之主題。 因此,本發明提供一種舵配置,一固定板設置在該上 方舵葉片部與該下方舵葉片部之間,且其固定連接至該等 舵葉片部,藉此該固定板在該縱向中心線LML之兩側上具 有對稱的橫截面部,以及一輪廓及尺寸,其包圍該上方舵 葉片部之底板與該下方舵葉片部之覆蓋板,其具有本身的 φ 輪廓與尺寸。 ' 本發明另一種構造係提供該上方舵葉片部之前緣與該 - 下方舵葉片部之前緣係相對於該縱向中心線LML側向偏 移,到該左舷側BB及該右舷側SB,使得經由該側向偏移, 前緣部至一框架的橫截面之縱向中心線LML所繪出之中心 線M2以至少3°到10°的角度延伸,但是亦可較大,較佳地 • 是 8。。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rudder configuration for a high-speed ship having a torsion rudder that reduces air pockets, and more particularly has a fully balanced rudder as described in claim 1. [Prior Art] The rudder of a vessel, such as a fully balanced rudder, or a balanced profile rudder with or without an articulated fin slab, is known for use in many specific embodiments. Also known as 'a rudder having a torsion rudder blade consisting of two superposed rudder blade portions, the leading edge of which faces the propeller, laterally offset such that the one leading edge is offset to Port side, and the other leading edge is offset to the starboard side. For example, JP (A) Sho 5 8-30896 describes a ship rudder with torsion rudder blades, which consists of an upper part and a lower part, whereby the two The portions are twisted in the direction toward the thruster such that only the regions of the two portions that are related to the leading edges are laterally offset, but extend to the region Q of the leading edges All have the same cross-sectional shape and the same cross-sectional dimensions. GB 332,082 also discloses a rudder having torsion rudder blades with a contoured area facing the propeller, i.e., the leading edges are laterally exposed, whereby the leading edge structures are tapered to taper. The cross-sectional profiles of the two rudder blade portions are configured such that the side wall surfaces on the port side and the starboard side of the two rudder blade segments do not have a dome and are straight until the transverse bend The edges are such that the sidewall surfaces do not have any areas that are outwardly arched with different bend radii. Further, the rudder blade is contoured such that the two cross-sectional surfaces of the two stacked rudder blade portions have the same size ' and 200932628 extends beyond the entire height of the rudder blade. Since the tapered tapered leading edges are formed with sharp-edged slits to withstand air pockets and damage. Improvements to this propulsion must be achieved using the contour configuration of the rudder. The speed of today's ships has been increasing. The stress on the thruster and rudder is higher due to the fast flow rate associated with higher rates. It is known that the symmetry of the contour of the rudder blade causes a negative pressure region on the rudder surface and causes air pockets, thus causing erosion. Air pockets are generated at point 0 where the flow on the rudder blade is extremely accelerated. This means that the strong rotational flow of the propeller strikes the 'rudder blade surface at high speed. Due to this strong acceleration, the static pressure drops below the steam-pressure of the water, so it develops into bubbles and suddenly implosion. These implosions cause damage to the surface of the rudder blade and result in expensive maintenance costs, which often require the installation of new rudder blades. SUMMARY OF THE INVENTION - The object of the present invention is to produce a rudder configuration for a ship having a rudder blade having a considerable size, in particular having a fully balanced rudder blade having a torsion φ rudder leading edge to avoid formation due to cavitation formation. Erosion on the rudder blade, especially when used in high speed vessels with high load thrusters, in which a rudder bearing is placed, wherein the main pipe inserted in the rudder blade directly directs the power of the rudder to the ship In the body, and beyond a neck bearing integrated into the bottom side, the introduction of force occurs when a cantilever beam acts as a pure bending stress without torque. Moreover, the force acting on the area below the rudder blade is produced by the outflow of the propeller having a very high flow rate, which must be absorbed, and the rudder blade must be balanced' and the bearing of the rudder column is not damaged. Furthermore, the torsion region of the rudder blade must have a closed transition. 200932628 This objective can be achieved by a rudder configuration of the type described in the introduction of a torsionally fully balanced rudder blade and a functional co-operation of a special rudder bearing having the features described in the first application of the patent application. Thus, the rudder arrangement according to the invention is characterized in that: a.) it consists of a snake blade having an elongated profile of low profile thickness, preferably consisting of a fully balanced rudder blade. Two rudder blade portions of the same height or unequal height are preferably formed with a lower rudder blade portion having a height lower than the height of the upper rudder blade portion and having a direction toward the thruster The leading edge 'has a substantially semi-circular profile and is arranged such that a leading edge of the longitudinal centerline (LML·) of the rudder blade is laterally offset to the port side BB or the starboard side SB, And the other leading edge is laterally offset to the starboard side SB or the port side BB, whereby the side wall surfaces of the two rudder blade portions are gathered away from the trailing edge of the thruster, al.) Both the edge and the trailing edge taper downwardly from the upper region Q OB of the rudder blade to the lower region UB and reduce the cross-sectional surface, a2.) or the trailing edge is linear and parallel to the Rudder column, and both leading edges are tapered downward from the upper region OB of the rudder blade Tapering to the lower region UB and reducing the size of the cross-sectional surfaces, a3.) whereby the cross-sectional surface portion of the upper rudder blade portion and the lower rudder blade portion is at the trailing edge and the maximum contour of the rudder blade The area between the thicknesses PD has a length L corresponding to the maximum profile thickness PD of the rudder blade and the length L1 of the surface portion of the cross section of the upper rudder blade portion and the lower rudder blade portion 200932628 between the leading edge At least 1 and 1/2, a4.) whereby the upper rudder blade portion has a flat curved side wall portion on the port side BB and the lower rudder blade portion on the starboard side SB, respectively, in the direction of the trailing edge Extending from the leading edges, a length L2 extending from the leading edges beyond the length L'2 of the side wall portion to the maximum contour thickness PD plus a length L" 2 corresponding to at least the length L'2 Half, whereby the straight side wall portion penetrating into the trailing edge follows the flat curved side wall portion, ❹ a5.) whereby the upper rudder blade portion is on the starboard side SB and the lower rudder blade portion is on the port side BB Each has a strongly curved curved side-wall portion, respectively Extending from the leading edges in a direction of the trailing edge, the length L3 extending from the leading edges beyond the length L'3 of the side wall portion to the maximum contour thickness PD plus a length L"3 corresponding to at least the length 1/3 of L'3, whereby the straight side wall portion that passes through the trailing edge follows the strongly curved curved side wall portion, a6.) whereby the two straight side wall portions are paired to have the same length, and The cross-sectional surface portions between the two side wall portions are symmetrically configured and have the same size, a7.) whereby the distance from the flat curved side wall portion to the longitudinal center line LML is greater than a distance from the strongly arched side wall portion to the longitudinal center line LML, and the cross-sectional surface portion between the two curved side wall portions is asymmetrically configured on both sides of the longitudinal center line LML, a8 . . thereby forming a guiding plate for the fluid, correspondingly molding a curved path of the leading edge and covering the offset region, the guiding plates being disposed on two sides of the two rudder blade portions arranged in a stack To the offset, the transition zone of the section 'this 200932628 some guide plates have a favorable flow a slightly longer or semi-circular profile that arches and fits over the outer wall of the rudder blade, a guide plate extending from the front edge of the upper rudder blade portion to the side wall thereof, and another guide plate from the lower rudder blade portion The leading edge extends into its side wall, b.) - the rudder post, with at least one bearing functionally cooperating with the rudder blade, bl.) whereby the rudder post, in particular; forged steel or another suitable material φ material is made and in particular with the main pipe embedded in it; made of forged steel or another suitable material, set together, set in the area of the maximum contour thickness PD, in the domain, or set in this area Between the leading edges of the upper rudder blade portion in this region, and the end face fixing means extending beyond the entire height of the upper rudder blade portion, 'b2.), thereby being deeply inserted into the upper rudder blade portion The main pipe is provided for the rudder post as a cantilever beam having a central internal longitudinal bore for receiving the rudder post, 〇b3.) whereby the main pipe is formed with a thin wall in cross section, and The main pipe has a free end region on its inner wall a neck bearing for supporting the rudder column and b4.) whereby the rudder column is guided in its end region, and a portion thereof protrudes from the main pipe, and the end portion of the portion and the upper rudder blade Department connection. Surprisingly, it is shown that since the configuration of the torsion rudder blade according to the invention is a fully balanced rudder, the profile having the low profile thickness and the bearing of the rudder column has a maximum profile thickness in the rudder blade portion above the rudder blade In the region, the lower rudder blade portion obtains a narrow profile, so even though the thrust of the thruster -10-200932628 hits the rudder blade at a high speed without additional power consumption, superior rudder blade balance can be obtained even if The rudder blade has a very large size that can only be achieved by the functional cooperation of a torsion rudder blade with the rudder blade positioning, but is not achievable for other rudder blade configurations or rudder bearing. With the present invention, a rudder configuration can be created, i.e., a system of two components, a torsion rudder blade and a rudder post, wherein the rudder column is supported in a special manner and cooperates with the rudder blade. This rudder configuration has surprisingly been found to be a technical solution by which large and very large* fully balanced rudder blades can be constructed. The main pipe, which is deeply inserted into the rudder blade above the rudder blade, directly introduces the rudder force into a hull according to the neck bearing, wherein the neck bearing is integrated under the upper rudder blade portion In the area. The introduced force occurs in a cantilever beam, thereby acting as a purely curved 'stress without torque. Thus, the main tube cross section can be configured to have a relatively thin wall. These thin walls are very important because the lower portion of the main pipe is embedded in the rudder blade', i.e., in the upper rudder blade portion, thus having a direct effect on the profile thickness of the rudder blade. Only a thin rudder profile (and therefore a low profile thickness) makes it possible to construct energy efficient rudder blades because the thicker the rudder profile is, the greater the resistance it produces in the accelerated flow of the propellant water. Another benefit of the rudder configuration of the combination of the torsion rudder blade and the bearing of the rudder column is the use of a higher quality material. Only because the bearing of the rudder post according to the present invention is in the upper rudder blade portion, high ductility forged steel can be used so that the weight can be significantly reduced and can be as high as 50% of the same power of the conventional rudder. -11- 200932628 Another significant benefit of the rudder arrangement with the combination of the rudder bearing is that since such a bearing is integrated in the rudder blade, ie in the upper rudder blade portion, it is possible to construct the full balance Rudder or shovel rudder, which is virtually unlimited size. The conventional rudder is semi-equilibrium using a rudder angle or a rudder support. This difficult mechanical construction is almost impossible to twist on the leading edge because the fixed rudder angle and the rudder blade that rotates around this angle are therefore not freely moldable. The force and moment in the rudder blade that occurs for such a semi-equilibrium rudder are not equal to each other, and are larger than the fully balanced rudder having the bearing of the rudder post according to the present invention. A significant twist towards the leading edge of the thruster means a rather uneconomical structural * measure, ie having a relatively thicker profile. Another benefit is that due to the bearing of the rudder post, the fully balanced rudder may be considered as a construction, meaning that there is no longer a slit between the rudder angles and their rudder blades, and that these rudder angles are necessary until now. . Therefore, cross flow through these slits can be avoided and the corresponding severe cavitation erosion is avoided. Further, for the configuration of the rudder configuration according to the invention, the rudder trunk made of forged steel is preferably extended into the rudder blade, ie to the upper rudder blade portion, but with only a lower neck bearing . A rudder column, which is also made of a forging as a hub, is connected to the rudder near the hydrodynamic center, so that only a slight stress is achieved due to the bending moment. This configuration eliminates the superimposed vibrations. Due to the thin rudder profile and due to the low profile thickness of the rudder blade, the rudder blade can be balanced such that the high pressure of the rudder bearing is not related to the high pressure of the propeller striking the lower rudder blade portion at a very high speed Has any special stress. -12- 200932628 In order to eliminate air pockets on the rudder blade, according to the invention there is a profile which is divided into an upper half and a lower half, whereby their leading edge or edge impacted by the flow is some kind The angle is reversed. The subsequent flow of the propeller and its angle to the centerline of the vessel predetermines the angle of twist of the leading edge of the profile being twisted. Because of this novel profile, the turbulent flow of the propeller preferably flows along the rudder blade, and any pressure peaks that cause the cavitation are not developed on the contoured surface of the rudder blade. This improved flow around the Φ rudder results in significant fuel savings and improved handling. Since the guiding plate is disposed in the transition region of the offset portion of the two rudder blade portions of the two overlapping configurations, a flow-friendly contour can be generated, so that it can be avoided in the transition regions. Cavitation. Thus, the "guide sheets" are configured to form a fluid pattern that covers the transition regions of the two leading edges. Thus, the guide plates are carried in the region of the offset zone-domain on the rudder blade and are covered such that water will flow along the guide plates rather than along the offset regions flow. Therefore, the risk of the flow of the flow can be reduced. Thus, the guide plates or their movements cause a lateral bridge or cover the transition between the upper and lower rudder blade portions. The term "COVer" as used herein is understood to mean that the guiding plate of the fluid covers the offset area to a considerable extent. The advantage of the rudder having the torsion rudder blade according to the invention is that since the guide plate is locally configured and arranged only in the offset region, it can cover the offset region and cover the entire fluid, thereby reducing the The risk of flow splitting 'by this' fluid-like guide plates will have no effect on the propulsion behavior of the vessel due to their relatively small size. Therefore, “push-13-200932628 into the neutralization effect” can be self-adjusted. Preferred configurations of the invention are the subject matter of the dependent claims. Accordingly, the present invention provides a rudder arrangement in which a fixed plate is disposed between the upper rudder blade portion and the lower rudder blade portion, and is fixedly coupled to the rudder blade portions, whereby the fixed plate is at the longitudinal centerline LML There are symmetrical cross-sections on both sides, and a profile and dimension that surrounds the bottom plate of the upper rudder blade portion and the cover plate of the lower rudder blade portion, which have their own φ profile and size. Another configuration of the present invention provides that the leading edge of the upper rudder blade portion and the leading edge of the lower rudder blade portion are laterally offset with respect to the longitudinal centerline LML, to the port side BB and the starboard side SB, such that The lateral offset, the center line M2 drawn from the leading edge portion to the longitudinal centerline LML of the cross section of a frame extends at an angle of at least 3° to 10°, but may also be larger, preferably • 8 . .

再者,根據本發明的一種構造係由該平坦拱形曲面側 〇 壁部構成,其位在該等上方與下方舵葉片部的該左舷側BB 與該右舷側SB之上,其長度L4短於位在該等上方與下方 舵葉片部之右舷側SB與左舷側BB上的強烈拱出曲面側壁 部之長度。 再者,本發明又提供該上方與該下方舵葉片部之強烈 拱出曲面側壁部之曲線長度BL1遠大於該上方與該下方舵 葉片部之平坦拱出曲面側壁部之曲線長度BL,所以該上方 與該下方舵葉片部之強烈拱出曲面側壁部之轉換區域ΪΙΒ1 係偏移到與該尾緣成直線行進的側壁部,且該上方與該下 -14 - 200932628 方舵葉片部之平坦拱出曲面側壁部之轉換區域ub係 到在該尾緣方向上直線前進至該尾緣的該等側壁部。 【實施方式】 根據本發明之舵配置200由可達成本發明目的的 功能上協同運作的組件構成,即一較佳的全平衡舵, 有一扭轉舵葉片100,及支撐在其上方區域中的一 140(第1圖、第2圖、第3圖、第7圖及第14圖)。 對於第1圖所示之舵配置200,110代表一船體 爲接收舵柱140的主幹管,而舵葉片爲100。一推進署 被指定到舵葉片100。該推進器軸由ΡΑ代表。 根據第1圖、第2圖、第3圖及第7圖的舵葉片 由兩個疊置配置的舵葉片部10、20構成,其朝向推進g 的前緣11、21係偏移,使得對於舵葉片100之縱向中 LML,該上方舵葉片部10之前緣11側向地偏移至該 側BB,而下方舵葉片部20的前緣2 1側向地偏移至該 側SB(第4圖、第4A圖、第4B圖、第4C圖、第4D 第4E圖及第13圖)。前緣11、21之側向偏移,亦可 上方舵葉片部10之前緣11偏移至該右舷側SB而下方 片部20之前緣21偏移至該左舷側BB而達成。上方舵 部10之兩個側壁表面12、13,與下方舵葉片部20之 表面21、23,在從推進器115至尾緣15之方向,自 1 1、2 1成弧形延伸,且於中間部位加入有直線形側壁部 17與26、27,進入尾緣15而結束。舵葉片部10、20 同具有一尾緣15,然而每個舵葉片部10、20具有一 偏移 兩個 其具 舵柱 ,120 Μ 15 • 100 ϊ 115 心線 左舷 右舷 圖、 因爲 舵葉 葉片 側壁 前緣 :1 6、 皆共 前緣 -15- 200932628 1 1、2 1,通過它們的側向偏移部而達到該扭轉形狀。 舵配置200較佳地是包含—全平衡舵,藉此,雖 使用不同構形的舵,只要它們適合於裝設一扭轉舵葉 及可達成根據本發明之舵葉片構造的好處。兩個疊置 的舵葉片部10、20皆具有相同或不相等高度。較佳地 下方舵葉片部20之高度低於該上方舵葉片部,藉此上 葉片部10之高度對應於下方舵葉片部20之高度的 φ 1/2。兩個舵葉片部10、20之前緣11、21係構形成曲 • 圓形。 - 舵葉片100具有向下錐形延伸的前緣11、21,然 緣15爲直線形’並平行於舵柱1 4 0 (第1圖、第2圖S 圖)。此即兩個舵葉片部10、20之前緣11、21的錐形 使得兩個舵葉片部10、20之橫截面30的大小,對於 - 舵葉片部1〇的相同輪廓構造與下方舵葉片部20的相 廓構造皆自舵葉片100之上方區域OB減少到下方 D UB,所以,由於橫截面30的減少而可達到在該下方區 具有一低輪廓厚度之向下延伸的薄型輪廓,特別地; 兩個舵葉片部10、20之側壁表面12、13及22、23之K 舵葉片100之低輪廓厚度亦爲本發明的基本特徵。 如第13圖所示,朝向推進器115之舵葉片100之 或前緣11、21相對於背離該推進器的邊緣或尾緣15, 至少5°,較佳10°的角度Θ傾斜。 兩個舵葉片部10、20之橫截面部3卜32的長度L 在該最大輪廓厚度PD的兩側上構形成不同。在尾緣 然可 片, 設置 ί是, 方舵 1又 面半 而尾 :第3 路線 上方 同輪 區域 域中 由於 Η泉。 邊緣 係以 、U, 15與 -16 - 200932628 舵葉片100之最大輪廓厚度PD之間的區域中,上方 部10與下方舵葉片部20之橫截面部31之長度L, 舵葉片100之最大輪廓厚度PD與前緣11、21之間 葉片部10與下方舵葉片部20之橫截面部32的長度 即該長度比例較佳地是長度L相對於長度L1爲1又 5圖)。 該舵葉片之構造使得在該左舷側BB上的上方 Φ 部1〇及在該右舷側SB上的下方舵葉片部20具有 • 15方向上分別自前緣11、21延伸的一平坦之曲面 • 1 8、28 ’具有對應於前緣1 1、2 1之側壁部1 8到該 廓厚度PD之長度L’2的長度L2,加上對應於該長 之至少1/3的長度L”2,藉此進入到尾緣15而結束 形側壁部1 6依循平坦曲面側壁部1 8、2 8 (第5圖)。 • 再者’上方舵葉片部10在該右舷側SB上,及 葉片部20在該左舷側BB上分別具有一強烈拱出的 φ 壁部19、29’其在尾緣15的方向上自前緣11、21 具有長度L3對應於自前緣11、21到該最大輪廓厚虔 側壁部19的長度L’3,加上對應於該長度l,3的至 的長度L” 3。進入到尾緣15而結束的直線側壁部 依循強烈拱出的曲面側壁部19、29 (第5圖、元件符丨 因爲兩個舵葉片部10、20之此構造,在兩側上 側壁部在該最大輪廓厚度PD的方向上具有自前緣 及尾緣15之上升路線。 上方舵葉片部10之前緣11與下方舵葉片部2〇 舵葉片 大於在 上方舵 L卜此 1/2(第 舵葉片 在尾緣 側壁部 最大輪 度L,2 的直線 下方舵 曲面側 延伸, :PD之 :少 1/3 17 ' 27 虎 40)。 的該等 1 1、21 之前緣 -17- 200932628 2 1,相對於該縱向中心線LML側向偏移,到該左舷側BB 及該右舷側SB,所以經由該側向偏移,前緣部而繪出之中 心線(Μ 2)位在至少3 °到1 0 °的角度,但是亦可較大,較佳地 是相對於一框架的橫截面之縱向中心線LML成8°。 再者’該舵配置包含一舵柱140,特別地以鍛製鋼或不 同的適當材料製成,其在功能上與舵葉片1〇〇協同運作, 此舵柱藉由至少一軸承150支撐在一主幹管120中,主幹 φ 管特別地;以鍛製剛或不同的適當材料製成。舵柱140設 • 置在上方舵葉片部10之最大輪廓厚度PD的區域中,並僅 - 在此區域中(第1圖、第2圖、第3圖及第15圖),即在構 成該最大輪廓厚度PD之線與該縱向中心線LML之交點處 (第5圖)。舵柱140與其固定裝置145延伸超過舵葉片100 ' 之上方舵葉片部10的整個高度之上,爲了結構,具有舵柱 ' 140的主幹管120亦可設置在該最大輪廓厚度PD與前緣 11、21之間的上方舵葉片部10中。 φ 深入上方舵葉片部10中的主幹管120係作爲一懸臂 樑,其具有一內孔125用於接收舵柱140(第14圖)。主幹 管120的配置藉由將該主幹管插入開口 1〇5中而發生,該 開口的尺寸對應於在上方舵葉片部10之框架40中的主幹 管之外徑(第3圖、第8圖、第8Α圖、第8Β圖、第8C圖)。 主幹管1 20係作爲一懸臂樑,其具有一中心縱向內孔 125用於接收舵葉片100之舵柱140。再者,主幹管120構 形成僅穿入連接於該舵柱末端的舵葉片100到上方舵葉片 部10當中。主幹管120在其內孔125中具有軸承150,用 -18- 200932628 於支撐舵柱140,藉此此軸承150較佳地係位在主幹管i2〇 的下方末端區域120b中。舵柱140之末端140B以一部份 145被導引離開主幹管120。舵柱140之此延伸的部份145 之下方自由端係固定地連接至上方舵葉片部10,如區域 1 70,藉此在此處提供了連接,如果例如該推進器軸必須要 更換鬆開舵葉片100可自舵柱140。舵柱140在區域170中 與該扭轉舵葉片100之連接處係位在該推進器軸PA之上, U 所以爲了拆除該推進器軸,僅有舵葉片1 00必須自舵柱1 40 ' 移除,所以既然該主幹管之下方自由端120b而且舵柱140 - 的下方自由端係位在該推進器軸中央的上方,不必要因一 推進器軸更換而要自主幹管120移除舵柱140。對於第15 圖所示的具體實施例,僅有一單一內軸承150作爲在主幹 ' 管120中舵柱140之軸承;則不需要在主幹管120的外壁 • 上另有舵葉片100之軸承。 舵葉片100係具有一錐形或一凹穴用於接收主幹管 φ 120之下方自由端120b。 主幹管120的橫截面係構形有薄壁,並在其自由端的 區域中具有至少一頸軸承130,用於支撐舵柱140。額外的 軸承亦可設置在該舵柱的主幹管120之其它位置處。舵柱 140在具有一部份140a之末端區域14 0b中被導引離開主幹 管120’並以此部份140a之末端連接至上方舵葉片部1〇(第 1 4 圖)。 根據第3圖及第7圖,上方舵葉片部1〇與下方舵葉片 部20由形成該等側壁的舵板;水平網板或框架40、50,及 -19- 200932628 構成該等兩舵葉片之內部加強件的垂直網板或框架所 成。該等網板具有照明孔及水道孔。 如第3圖、第4圖、第4A圖、第4B圖、第4C圖及 8圖、第8A圖、第8B圖、第8C圖所示,舵葉片1〇〇之 方舵葉片部10的所有框架4 0具有相同形態,相同的側 導引’及重合的前緣11與尾緣15,藉此該等框架的長度 別地自上方框架縮減到最低框架,同樣地該等框架的橫 φ 面之大小由上方縮減到底部’所以前緣1 1傾斜於舵葉 - 100之底部(第1圖)。 - 下方舵葉片部20之所有框架50具有相同的形態、 同的側壁導引及重合的前緣11與尾緣丨5,藉此框架50 長度自個別的上方框架縮減到該最低框架,因此該等框 的橫截面之大小亦自上方縮減到底部,使得前緣i丨係傾 • 於下方舵葉片部20之底部。 由於此種構造’上方舵葉片部1〇與下方舵葉片部 φ 之前緣11、21係向下傾斜,然而尾緣15爲直線形,並 行於舵柱140的縱向軸,如第1圖所示。 兩個舵葉片部10、20可以直接彼此連接。對於第7 與第11圖,兩個舵葉片部10、20彼此由一固定板45連磨 此固定板45在該縱向中心線LML之兩側上具有對稱的 截面部46、47,以及一表面輪廓及尺寸用以包圍上方舵 片部10之底板42與下方舵葉片部20之覆蓋板41,其具 輪廓及尺寸’所以當上方舵葉片輪廓10被設定到固定板 上時,且當下方舵葉片部20由下方設定到固定板45時 構 第 上 壁 個 截 片 相 的 架 斜 20 平 圖 ^ 〇 橫 葉 有 -20- 45 200932628 此板橫向地自設置在一起的舵葉片部10、20突出一非常小 的邊緣區域(第10圖及第11圖)。固定板45具有朝向該推 進器的一半圓形邊緣圓角 Π’,其位在該縱向中心線LML 上,以及背離該推進器的一邊緣15’,其折入兩個舵葉片部 10、20之尾緣15當中。固定板45的側壁表面45a、45b具 有匹配的曲面路線。Further, a structure according to the present invention is constituted by the flat arched curved side wall portion which is located above the port side BB of the upper and lower rudder blade portions and the starboard side SB, and has a length L4. The length of the strongly curved curved side wall portion on the starboard side SB and the port side BB of the upper and lower rudder blade portions. Furthermore, the present invention further provides that the curved length BL1 of the side wall portion of the upper and lower rudder blade portions is substantially larger than the curved length BL of the upper and lower rudder blade portions of the flat curved curved surface portion, so a transition region 上方1 between the upper portion and the side wall of the strongly curved curved surface of the lower rudder blade portion is offset to a side wall portion traveling in line with the trailing edge, and the upper and lower flat arches of the lower -14 - 200932628 square rudder blade portion The transition region ub of the curved side wall portion is linearly advanced to the side wall portions of the trailing edge in the trailing edge direction. [Embodiment] A rudder configuration 200 according to the present invention is constructed of functionally cooperating components that achieve the object of the invention, namely a preferred fully balanced rudder, a torsion rudder blade 100, and a support in the upper region thereof. 140 (Fig. 1, Fig. 2, Fig. 3, Fig. 7, and Fig. 14). For the rudder configuration 200 shown in Figure 1, 110 represents a main hull for receiving the rudder 140 and the rudder blade is 100. A propulsion unit is assigned to the rudder blade 100. The thruster shaft is represented by ΡΑ. The rudder blades according to Figs. 1, 2, 3 and 7 are composed of two rudder blade portions 10, 20 arranged in a superposed manner, which are offset toward the leading edges 11, 21 of the advancement g, so that LML in the longitudinal direction of the rudder blade 100, the leading edge 11 of the upper rudder blade portion 10 is laterally offset to the side BB, and the leading edge 2 1 of the lower rudder blade portion 20 is laterally offset to the side SB (4th Fig. 4A, 4B, 4C, 4D 4E, and 13). The lateral edges of the leading edges 11, 21 are offset, and the leading edge 11 of the upper rudder blade portion 10 may be offset to the starboard side SB and the leading edge 21 of the lower blade portion 20 may be offset to the port side BB. The two side wall surfaces 12, 13 of the upper rudder portion 10 and the surfaces 21, 23 of the lower rudder blade portion 20 extend in a curved shape from the thruster 115 to the trailing edge 15 from 1 1 and 2 1 and The intermediate portion is provided with linear side wall portions 17 and 26, 27, and enters the trailing edge 15 to end. The rudder blade portions 10, 20 have a trailing edge 15, however each rudder blade portion 10, 20 has an offset of two of its rudder posts, 120 Μ 15 • 100 ϊ 115, a starboard starboard starboard map, because the rudder blade The leading edge of the side wall: 16. The common leading edge -15-200932628 1 1 , 2 1, the twisted shape is achieved by their lateral offset portions. The rudder arrangement 200 preferably includes a fully balanced rudder whereby various configurations of rudders are used as long as they are suitable for mounting a torsion rudder blade and the benefits of the rudder blade configuration in accordance with the present invention. The two stacked rudder blade portions 10, 20 all have the same or unequal heights. Preferably, the height of the lower rudder blade portion 20 is lower than the upper rudder blade portion, whereby the height of the upper blade portion 10 corresponds to φ 1/2 of the height of the lower rudder blade portion 20. The front edges 11, 21 of the two rudder blade portions 10, 20 are configured to form a curved circle. - The rudder blade 100 has leading edges 11, 21 extending downwardly conically, and the edge 15 is rectilinear and parallel to the rudder post 140 (Fig. 1, Fig. 2, Fig. S). That is, the taper of the leading edges 11, 21 of the two rudder blade portions 10, 20 is such that the cross-section 30 of the two rudder blade portions 10, 20 is the same contour configuration for the - rudder blade portion 1 and the lower rudder blade portion The phase profile of 20 is reduced from the upper region OB of the rudder blade 100 to the lower D UB, so that due to the reduction of the cross-section 30, a downwardly extending thin profile having a low profile thickness in the lower region can be achieved, in particular The low profile thickness of the K rudder blade 100 of the sidewall surfaces 12, 13 and 22, 23 of the two rudder blade portions 10, 20 is also an essential feature of the present invention. As shown in Fig. 13, the leading edge 11, 21 of the rudder blade 100 toward the propeller 115 is inclined at an angle 至少 of at least 5°, preferably 10°, with respect to the edge or trailing edge 15 facing away from the propeller. The length L of the cross-sectional face 3 of the two rudder blade portions 10, 20 is configured differently on both sides of the maximum profile thickness PD. In the trailing edge, the film can be set, ί is, the square rudder 1 is again half and the tail: the third route is above the same wheel area because of the spring. In the region between the edge, U, 15 and -16 - 200932628, the maximum contour thickness PD of the rudder blade 100, the length L of the cross section 31 of the upper portion 10 and the lower rudder blade portion 20, the maximum contour of the rudder blade 100 The length of the cross-sectional surface 32 of the blade portion 10 and the lower rudder blade portion 20 between the thickness PD and the leading edges 11, 21, that is, the length ratio is preferably a length L of 1 and 5 with respect to the length L1. The rudder blade is constructed such that an upper Φ portion 1 在 on the port side BB and a lower rudder blade portion 20 on the starboard side SB have a flat curved surface extending from the leading edges 11 and 21 in the direction 15 • 1 8, 28' has a length L2 corresponding to the length L'2 of the side wall portion 18 of the leading edge 1 1 , 2 1 to the thickness PD of the profile, plus a length L" 2 corresponding to at least 1/3 of the length, Thereby, the trailing edge 15 is completed and the end wall portion 16 follows the flat curved side wall portions 18, 28 (Fig. 5). Further, the upper rudder blade portion 10 is on the starboard side SB, and the blade portion 20 On the port side BB there is respectively a strongly arched φ wall 19, 29' having a length L3 from the leading edge 11, 21 in the direction of the trailing edge 15 corresponding to the leading edge 11, 21 to the maximum profile thick side wall The length L'3 of the portion 19 is added to the length L"3 corresponding to the length l,3. The straight side wall portion which enters the trailing edge 15 and follows the curved side wall portions 19 and 29 which are strongly arched (Fig. 5, the element symbol 丨 because the two rudder blade portions 10, 20 are constructed, the side wall portions are on both sides The direction of the maximum profile thickness PD has a rising path from the leading edge and the trailing edge 15. The upper rudder blade portion 10 front edge 11 and the lower rudder blade portion 2 rudder blade are larger than the upper rudder L 1/2 (the rudder blade) In the side wall of the trailing edge, the maximum rotation L, 2 extends straight below the rudder surface, :PD: 1/3 17 '27 Tiger 40). The 1 1 and 21 front edge -17- 200932628 2 1, With respect to the longitudinal center line LML laterally offset to the port side BB and the starboard side SB, the center line (Μ 2) drawn by the leading edge portion is at least 3° via the lateral offset. An angle of 10°, but can also be larger, preferably 8° with respect to the longitudinal centerline LML of the cross-section of a frame. Further, the rudder configuration comprises a rudder post 140, in particular forged steel or Made of different suitable materials, functionally cooperating with the rudder blade 1〇〇, the rudder column is at least one axis 150 is supported in a main trunk 120, the trunk φ tube is specially formed; it is made of a forged or different suitable material. The rudder column 140 is disposed in the region of the maximum contour thickness PD of the upper rudder blade portion 10, and only - in this area (Fig. 1, Fig. 2, Fig. 3, and Fig. 15), that is, at the intersection of the line constituting the maximum contour thickness PD and the longitudinal center line LML (Fig. 5). 140 and its fixture 145 extend over the entire height of the rudder blade portion 10 above the rudder blade 100'. For the structure, the trunk tube 120 having the rudder column '140 can also be disposed at the maximum profile thickness PD and the leading edge 11, 21 Between the upper rudder blade portion 10. φ The main trunk tube 120 in the upper rudder blade portion 10 is a cantilever beam having an inner hole 125 for receiving the rudder post 140 (Fig. 14). The arrangement occurs by inserting the main pipe into the opening 1〇5, the size of the opening corresponding to the outer diameter of the main pipe in the frame 40 of the upper rudder blade portion 10 (Fig. 3, Fig. 8, and Fig. 8) , Figure 8 and Figure 8C. The main pipe 1 20 is a cantilever beam with a middle The longitudinal bore 125 is for receiving the rudder post 140 of the rudder blade 100. Further, the trunk pipe 120 is configured to penetrate only the rudder blade 100 connected to the end of the rudder post into the upper rudder blade portion 10. The main pipe 120 is therein The bore 125 has a bearing 150 therein for supporting the rudder post 140 with -18-200932628, whereby the bearing 150 is preferably tethered in the lower end region 120b of the main trunk tube i2〇. The end 140B of the rudder post 140 is partially 145 is directed away from the main trunk 120. The lower free end of the extended portion 145 of the rudder post 140 is fixedly coupled to the upper rudder blade portion 10, such as the region 170, thereby providing a connection there if, for example, the propeller shaft must be replaced and loosened The rudder blade 100 can be self-steering column 140. The rudder post 140 is tied above the thruster shaft PA in the region 170 with the torsion rudder blade 100, U. Therefore, in order to remove the propeller shaft, only the rudder blade 100 must be moved from the rudder column 1 40' Except, since the lower free end 120b of the main pipe and the lower free end of the rudder post 140- are above the center of the propeller shaft, it is not necessary to remove the rudder post 140 by the autonomous main pipe 120 due to replacement of a propeller shaft. . For the embodiment shown in Fig. 15, only a single inner bearing 150 is used as the bearing of the rudder post 140 in the trunk 'tube 120; then there is no need to have a bearing for the rudder blade 100 on the outer wall of the main pipe 120. The rudder blade 100 has a taper or a recess for receiving the lower free end 120b of the main trunk φ 120. The trunk tube 120 is configured to have a thin wall in cross section and has at least one neck bearing 130 in its free end region for supporting the rudder post 140. Additional bearings may also be placed at other locations of the mains 120 of the rudder post. The rudder post 140 is guided away from the main trunk 120' in the end region 140b having a portion 140a and joined to the upper rudder blade portion 1'' at the end of the portion 140a (Fig. 14). According to FIGS. 3 and 7, the upper rudder blade portion 1A and the lower rudder blade portion 20 are formed by the rudder plates forming the side walls; the horizontal stencils or frames 40, 50, and -19-200932628 constitute the two rudder blades The vertical stencil or frame of the internal reinforcement. The stencils have illumination holes and water channel holes. As shown in FIG. 3, FIG. 4, FIG. 4A, FIG. 4B, FIG. 4C and FIG. 8, FIG. 8A, FIG. 8B, and FIG. 8C, the rudder blade 1 is swayed by the rudder blade portion 10 All frames 40 have the same configuration, the same side guides 'and coincident leading edges 11 and trailing edges 15, whereby the length of the frames is reduced from the upper frame to the lowest frame, as well as the transverse φ of the frames. The size of the face is reduced from the top to the bottom 'so the leading edge 1 1 is inclined to the bottom of the rudder blade - 100 (Fig. 1). - all of the frames 50 of the lower rudder blade portion 20 have the same configuration, the same side wall guide and coincident leading edge 11 and trailing edge 丨 5, whereby the length of the frame 50 is reduced from the individual upper frame to the lowest frame, thus The cross-section of the frame is also reduced in size from the top to the bottom so that the leading edge is tilted to the bottom of the lower rudder blade portion 20. Due to this configuration, the upper rudder blade portion 1 〇 and the lower rudder blade portion φ leading edges 11 and 21 are inclined downward, but the trailing edge 15 is linear, parallel to the longitudinal axis of the rudder column 140, as shown in FIG. . The two rudder blade portions 10, 20 can be directly connected to each other. For the seventh and eleventh figures, the two rudder blade portions 10, 20 are joined to each other by a fixing plate 45. The fixing plate 45 has symmetrical cross-section portions 46, 47 on both sides of the longitudinal center line LML, and a surface. The contour and dimensions are used to surround the bottom plate 42 of the upper rudder blade portion 10 and the cover plate 41 of the lower rudder blade portion 20, which have the contour and size 'so when the upper rudder blade profile 10 is set to the fixed plate, and when the lower rudder is When the blade portion 20 is set from the lower side to the fixed plate 45, the frame slope of the upper wall segment is 20 flat. The horizontal blade has -20-45 200932628. The rudder blade portions 10 and 20 which are horizontally disposed from each other. Highlight a very small edge area (Figures 10 and 11). The fixing plate 45 has a semicircular edge rounded corner ' toward the pusher, which is located on the longitudinal centerline LML, and an edge 15' facing away from the pusher, which is folded into the two rudder blade portions 10, 20 Among the trailing edges 15 The side wall surfaces 45a, 45b of the fixing plate 45 have matching curved paths.

如第3圖及第10圖所示,下方舵葉片部20在該下方 0 區域中相鄰固定板45,其框架50具有對應於框架40之橫 • 截面構形及形狀,但是對框架40而言其繞縱向中心線LML - 旋轉180°(第4D圖、第4E圖、第8C圖、第8E圖、第8F 圖)。 根據第7圖、第8圖、第8A圖、第8C圖及第8D圖, ' 橫截面A、B、C及D的框架40相對於輪廓爲相同,但是 單一框架40的橫截面自上方縮減到底部,所以前緣11爲 傾斜。具有固定板45之區段D在區段C之後。下方舵葉片 ❹ 部20之區段E、F及G的框架50具有與框架40之輪廓相 同的輪廓,但是具有框架40之強烈拱出曲面側壁部29之 該等側壁係在該左舷側BB上(第8D圖、第8E圖及第8F 圖),然而具有第7圖之具體實施例的強烈拱出曲面側壁部 19之框架40的該等側壁係位在該右舷側SB上(第8圖、第 8A圖、第8B及第8C圖)。下方舵葉片部20之框架50的 橫截面相對於它們的長度由上方縮減到底部,使得下方舵 葉片部20之前緣21亦爲傾斜(第7圖)。 具有用於引入主幹管120之開口 105的上方舵葉片部 -21 - 200932628 10之上方覆蓋板43示於第9圖。第10圖所示爲從舵葉片 100之下方所作之視圖,具有其兩個舵葉片部1〇、2〇及框 架 4 0、5 0。 在該上方舵葉片部10中用於接收舵柱14〇的主幹管 120之開口 105或孔的直徑比舵葉片部1〇之最大輪廓厚度 PD小。由於此構形’即可產生一非常薄型的舵葉片輪廓。 該舵葉片100具有其兩個舵葉片部10、20之構形及橫 〇截面輪廓使得上方及下方舵葉片部10、20之平坦拱出曲面 • 側壁部18、28之長度L2、L’ 2短於上方及下方舵葉片部 - 1〇、20之強烈拱出曲面側壁部19、29之長度L3(第5圖及 第6圖)。上方舵葉片部1 〇之側壁部1 8到該縱向中心線LML 之距離α相等於側壁部19之距離αΐ。高到尾緣15,距離 〇:、〇:1永遠一樣大’但是它們在尾緣15的方向上縮減。 _ 在前緣Π的方向上’得到以下的距離比例: a 2 < a 3 ❹ a A < a 5 a 6 < a Ί. 然後’接著最大輪廓厚度PD。在該前緣的方向上,則 得到以下的距離比例: a S > a 9 a 10 > a 11 a 12 > a 13 a 14 > a 15 a 16 > a 17 -22- 200932628 a 18 > a 19, 其中此距離a 16到a 17之比例大約是2:1。第6圖清 楚顯示該等距離彼此之間的比例,即該等距離α 9、α 1 1、 α13、α15、α17、α19 相對於距離 α8、αΙΟ、α12、α 14、α16、α18,在前緣11的方向上明顯縮減。此具有所 示距離之橫截面輪廓延伸通過上方舵葉片部10之所有橫 截面及該下方舵葉片之所有橫截面,因爲上方舵葉片部1〇 φ 之所有橫截面具有相同形態,下方舵葉片部20之橫截面亦 • 相同,即藉由考慮其事實的狀態,舵葉片1 00之橫截面或 . 框架相對於它們的長度及朝向該等前緣之它們的區域由上 方漸縮到底部(第10圖)。 根據第14圖之另一具體實施例,上方與下方舵葉片部 " 10、20之強烈拱出曲面側壁部19、29之曲線長度BL1係 - 遠大於上方與下方舵葉片部10、20之平坦拱出曲面側壁部 18、28之曲線長度BL,所以上方與下方舵葉片部1〇、20 φ 之強烈拱出曲面側壁部19、29之轉換區域ϋΒΙ係偏移到與 尾緣15成直線行進的側壁部17、27,且上方與下方舵葉片 部10、20之平坦拱出曲面側壁部18、28之轉換區域ϋΒ係 偏移到在該尾緣1 5方向上直線前進至尾緣1 5的側壁部 16、26,使得相對轉換區域UB的轉換區域UB1朝向尾缘。 此即側壁部18、19及28、29之長度如下: L3 > L2 L'2< L'3 L4 > L'4 -23- 200932628 (第14圖) 收斂於尾緣15之上方舵葉片部10與下方舵葉片部20 之直線形側壁部1 6、1 7、2 6、2 7之腳,較佳地是具有相同 長度,但是亦有可能有不相等長度的構造。 本發明亦包括一種舵配置,其中扭轉舵葉片100具有 延伸超過兩個舵葉片部10、20之上的一鰭板。 如第16圖到第23圖所示,導引板200、20 1(轉向裝置) H 係設置在兩個疊置的舵葉片部10、20之兩個側向偏移,部 ' A1、A2之轉換區域中,這些導引板係對應於前緣11、21 • 之曲面路線而模製成,並利於流動,拱出稍長或半圓形輪 廓,藉此一個導引板200自上方舵葉片部10的前緣11延 伸到其側壁當中,而另一個導引板201自下方舵葉片部20 ' 之前緣2 1延伸到其側壁當中,且該等導引板彼此連接,並 將它們的邊緣(200d、201d)朝向彼此。 兩個導引板200、201完成一流體,其覆蓋了兩個舵葉 φ 片部10、20之偏移區域之間的轉換區域。上方舵葉片部10 以及下方舵葉片部20分別具有一帶狀略微拱出導引板200 或201,其被調適爲該舵葉片之外壁形狀,藉此該兩個導引 板之每一個具有朝向前緣11、21或推進器115之部份200b 或201b,係位在該等前緣的區域中,並爲其構件,即爲該 前緣的一整合零件。再者,每個導引板200或201具有一 後方帶狀部200c或201c,其位在該舵的側壁上或整合在其 中(第17圖、第18圖、第19圖及第20圖)。兩個導引板 200、201之部份200b或201b係位在前緣1卜21之區域中, -24- 200932628 並具有大致爲蓋狀的構形200a、201a,其在當由前緣11、 21的前方觀看時具有一大致爲半圓形的形態(第16圖及第 22圖),藉此這些蓋狀部份200b、201b類似於前緣11、21 被偏移到該左舷側B B及該右舷側S B (第22圖)。 兩個蓋狀部份200b、201b共同形成兩個錐形半部 200’ b、201’ b,其對接於它們的基底側(第16圖、第17 圖、第20圖)。因此,作成上方舵葉片部1 〇之左舷側的側 φ 壁、導引板200、及作成下方舵葉片部20之右舷側處的側 • 壁,具有導引板201,藉此該等導引板200、201設置成它 - 們的帶狀及片狀構形的部份200、201c係位在該舵葉片的 側壁中,而朝向推進器1 15之部份200b、201b係位在前緣 1 1、2 1的區域中。 位在兩個前緣11、21區域中的部份200b、201b將它 • 們的邊緣200d、201d朝向彼此及與前緣11、21熔接在一 起(第22圖)。 Q 對於根據第24圖的具體實施例而言,構形成半圓形的 一流體之導引板210設置在兩個舵葉片部10、20之偏移區 域中。 根據本發明之舵配置其特徵爲如該等申請專利範圍所 指明的特點,由在本說明中所解釋的具體實施例,及由在 圖示及圖面中所呈現的具體實施例。導引板200、201及放 置在兩個舵葉片部10、20之偏移區域中的210具有在本說 明中所描述及在圖面中所呈現的構造,且亦爲本發明之主 題以及該舵葉片構造。 -25- 200932628 【圖式簡單說明】 本發明的具體實施例將在以下參照圖式進行解釋。 第1圖爲舵配置之側視圖,由一扭轉全平衡舵葉片, 其具有一上方與一下方舵葉片部;及支撐在該上方舵葉片 部中的一舵柱,所製成。 第2圖爲該舵配置的扭轉舵葉片之示意立體圖。 第3圖爲扭轉舵葉片骨架示意圖,其中移除了船體, 0 及該等兩個舵葉片部中具有某些板狀框架。 • 第4圖、第4A圖、第4B圖及第4C圖爲根據第3圖 . 之舵葉片的上方舵葉片部之板狀框架的上視圖。 第4D圖爲根據第3圖之舵葉片的下方舵葉片部之板 狀框架的放大圖。 _ 第4E圖爲根據第3圖之舵葉片的下方舵葉片部之板狀 * 框架的放大圖。 第5圖爲根據第4圖之板狀框架的放大圖。 Q 第6圖爲根據第4圖之板狀框架的放大圖,其中指示 該側緣區域到該框架的縱向中心線之距離。 第7圖爲該扭轉全平衡舵葉片之另一具體實施例的骨 架圖,其中在該上方舵葉片部與該下方舵葉片部中設置有 數個板狀框架。 第8圖、第8A圖、第8B圖、第8C圖爲從根據第7 圖之舵葉片的上方舵葉片部之四個板狀框架之上方所視之 放大圖,其中具有開口用於接收該舵柱的主幹管。 第8D圖、第8E圖、第8F圖爲從根據第7圖之舵葉 -26- 200932628 片的下方舵葉片部之三個板狀框架之上方所視之放大圖。 第9圖爲從根據第7圖之舵葉片的上方舵葉片部之覆 蓋板的上方所視之放大圖,其中具有開口用於接收該舵柱 的主幹管。 第10圖爲從根據第7圖之舵配置的扭轉舵葉片之上視 放大圖。 第11圖爲根據第7圖之舵配置在該上方舵葉片部與該 φ 下方舵葉片部之間設置的一固定板之上視放大圖,其輪廓 ' 及尺寸包括該上方舵葉片部之底板與該下方舵葉片部之覆 . 蓋板之輪廓與尺寸。 第12圖爲該扭轉舵葉片之前視圖。 第13圖爲舵葉片之側視圖,其中舵葉片邊緣在該推進 ' 器側作傾斜延伸。 - 第14圖爲在另一具體實施例的上方舵葉片之框架的 橫截面輪廓所作之上視圖。 φ 第15圖爲該舵柱的垂直截面,其中舵柱由主幹管支承 著以便在該舵柱安裝上方舵葉片部。 第16圖爲該扭轉舵葉片之下方所作之立體圖,其中在 該舵的兩個舵葉片部之偏移區域中具有流體式的導引板。 第1 7圖爲根據第1 6圖之舵的側視圖。 第18圖爲根據第16圖之舵的後視圖。 第19圖爲根據第16圖之舵的前視立體圖。 第20圖爲根據第16圖之舵的側視立體圖。 第21圖爲根據第16圖之舵的前視立體圖。 -27- 200932628 第22圖爲根據第16圖之舵從舵葉片的前緣之前方所 作的示意圖,其中顯具有S形設置的導引板。 第23圖爲根據第16圖之舵從其下方所作之立體圖。 第24圖爲從該扭轉舵葉片之下方所作之立體圖,其中 顯示在該舵的兩個舵葉片部之偏移區域中具有一半圓形流 體式的導引板,以完成半圓形流體。 【主要元件符號說明】 ❹ 10 上 方 舵 葉 片 部 10 上 方 舵 葉 片 輪 廓 11 _、,一 刖 緣 11, 半 圓 形 邊 緣 圓 角 12 側 壁 表 面 13 側 壁 表 面 15 尾 緣 15, 邊 緣 16 直 線 形 側 壁 部 17 直 線 形 側 壁 部 18 平 坦 曲 面 側 壁 部 19 強 烈 拱 出 曲 面 側壁部 20 下 方 舵 葉 片 部 21 一、赁- 刖 緣 26 直 線 形 側 壁 部 27 直 線 形 側 壁 部 28 平 坦 曲 面 側 壁 部 -28- 200932628As shown in FIGS. 3 and 10, the lower rudder blade portion 20 is adjacent to the fixed plate 45 in the lower 0 region, and the frame 50 has a cross-sectional configuration and shape corresponding to the frame 40, but for the frame 40. It is rotated by 180° around the longitudinal center line LML - (4D, 4E, 8C, 8E, 8F). According to Figures 7, 8, 8A, 8C, and 8D, the frame 40 of the cross sections A, B, C, and D are the same with respect to the contour, but the cross section of the single frame 40 is reduced from above. To the bottom, the leading edge 11 is inclined. Section D with fixed plate 45 is after section C. The frame 50 of sections E, F and G of the lower rudder blade dam 20 has the same contour as the contour of the frame 40, but the side walls of the strongly curved curved side wall portion 29 of the frame 40 are attached to the port side BB. (Fig. 8D, Fig. 8E, and Fig. 8F), however, the side walls of the frame 40 of the strongly arched curved side wall portion 19 having the embodiment of Fig. 7 are on the starboard side SB (Fig. 8 , Figure 8A, Figure 8B and Figure 8C). The cross-section of the frame 50 of the lower rudder blade portion 20 is reduced from the upper side to the bottom portion with respect to their length, so that the leading edge 21 of the lower rudder blade portion 20 is also inclined (Fig. 7). The upper cover plate 43 having the upper rudder blade portion - 21 - 200932628 10 for introducing the opening 105 of the trunk pipe 120 is shown in Fig. 9. Figure 10 is a view from below the rudder blade 100 with its two rudder blade portions 1 〇, 2 〇 and frames 40, 50. The diameter of the opening 105 or the hole of the main pipe 120 for receiving the rudder column 14 in the upper rudder blade portion 10 is smaller than the maximum contour thickness PD of the rudder blade portion 1A. Due to this configuration, a very thin rudder blade profile can be produced. The rudder blade 100 has a configuration of its two rudder blade portions 10, 20 and a cross-sectional profile such that the upper and lower rudder blade portions 10, 20 are flattened out of the curved surface. The lengths L2, L' of the side wall portions 18, 28 are 2 Shorter than the upper and lower rudder blade portions - 1 〇, 20, the length L3 of the curved curved side wall portions 19, 29 (Fig. 5 and Fig. 6). The distance α from the side wall portion 18 of the upper rudder blade portion 1 to the longitudinal center line LML is equal to the distance α 侧壁 of the side wall portion 19. Up to the trailing edge 15, the distance 〇:, 〇: 1 is always as large as 'but they are reduced in the direction of the trailing edge 15. _ In the direction of the leading edge ’, the following distance ratio is obtained: a 2 < a 3 ❹ a A < a 5 a 6 < a Ί. Then 'the maximum contour thickness PD. In the direction of the leading edge, the following distance ratio is obtained: a S > a 9 a 10 > a 11 a 12 > a 13 a 14 > a 15 a 16 > a 17 -22- 200932628 a 18 > a 19, wherein the ratio of the distance a 16 to a 17 is approximately 2:1. Figure 6 clearly shows the ratio of the equidistances to each other, i.e. the equidistances α 9, α 1 1 , α13, α15, α17, α19 with respect to the distances α8, αΙΟ, α12, α 14, α16, α18, before The direction of the rim 11 is significantly reduced. This cross-sectional profile with the indicated distance extends through all cross sections of the upper rudder blade portion 10 and all cross sections of the lower rudder blade, since all cross sections of the upper rudder blade portion 1 〇 φ have the same configuration, the lower rudder blade portion The cross section of 20 is also the same, that is, by considering the state of the fact, the cross section of the rudder blade 100 or the frame is tapered from the top to the bottom with respect to their length and their areas facing the leading edges (the 10)). According to another embodiment of Fig. 14, the curved length BL1 of the strongly curved curved side wall portions 19, 29 of the upper and lower rudder blade portions <10, 20 is much larger than the upper and lower rudder blade portions 10, 20 The curve length BL of the curved side wall portions 18, 28 is flatly arched, so that the transition regions of the upper and lower rudder blade portions 1 〇, 20 φ of the strongly curved curved side wall portions 19, 29 are offset to line with the trailing edge 15 The traveling side wall portions 17, 27, and the transition regions of the flat and curved curved side wall portions 18, 28 of the upper and lower rudder blade portions 10, 20 are offset to linearly advance to the trailing edge 1 in the trailing edge 15 direction The side wall portions 16, 26 of 5 are such that the transition region UB1 with respect to the transition region UB faces the trailing edge. That is, the lengths of the side wall portions 18, 19 and 28, 29 are as follows: L3 > L2 L'2 < L'3 L4 > L'4 -23- 200932628 (Fig. 14) Converging on the rudder blade above the trailing edge 15 The legs 10, the legs of the linear side wall portions 16, 17, 26, and 27 of the lower rudder blade portion 20 preferably have the same length, but may have configurations of unequal lengths. The present invention also includes a rudder configuration in which the torsion rudder blade 100 has a fin extending over the two rudder blade portions 10, 20. As shown in Figs. 16 to 23, the guide plates 200, 20 1 (steering device) H are disposed on two lateral offsets of the two stacked rudder blade portions 10, 20, and the portions 'A1, A2 In the transition region, the guiding plates are molded corresponding to the curved path of the leading edges 11, 21, and facilitate flow, arching a slightly longer or semi-circular contour, whereby a guiding plate 200 from the upper rudder The leading edge 11 of the blade portion 10 extends into its side wall, and the other guiding plate 201 extends from the leading edge 2 1 of the lower rudder blade portion 20' into its side wall, and the guiding plates are connected to each other and their The edges (200d, 201d) face each other. The two guide plates 200, 201 complete a fluid that covers the transition region between the offset regions of the two rudder blades φ, 10, 20. The upper rudder blade portion 10 and the lower rudder blade portion 20 respectively have a strip-shaped slightly arched guide plate 200 or 201 adapted to the outer wall shape of the rudder blade, whereby each of the two guide plates has an orientation The leading edge 11, 21 or portion 200b or 201b of the pusher 115 is located in the region of the leading edge and is a component thereof, i.e., an integral part of the leading edge. Furthermore, each of the guide plates 200 or 201 has a rear strip portion 200c or 201c which is located on or integrated with the side wall of the rudder (Fig. 17, Fig. 18, Fig. 19 and Fig. 20) . The portions 200b or 201b of the two guide plates 200, 201 are located in the region of the leading edge 1b, -24-200932628 and have a generally cap-shaped configuration 200a, 201a, which is when the leading edge 11 The front view of 21 has a substantially semi-circular shape (Figs. 16 and 22), whereby the cap portions 200b, 201b are offset to the port side BB similarly to the leading edges 11, 21. And the starboard side SB (Fig. 22). The two cap portions 200b, 201b collectively form two tapered halves 200'b, 201'b which abut against their base sides (Fig. 16, Fig. 17, Fig. 20). Therefore, the side φ wall on the port side of the upper rudder blade portion 1 、, the guide plate 200, and the side wall at the starboard side of the lower rudder blade portion 20 are formed, and the guide plate 201 is provided. The plates 200, 201 are arranged such that their strip-like and sheet-like portions 200, 201c are positioned in the side walls of the rudder blade, while the portions 200b, 201b facing the pusher 1 15 are at the leading edge. In the area of 1 1 and 2 1 . The portions 200b, 201b located in the regions of the two leading edges 11, 21 align their edges 200d, 201d toward each other and with the leading edges 11, 21 (Fig. 22). Q For the specific embodiment according to Fig. 24, a guide plate 210 for forming a semicircular fluid is disposed in the offset region of the two rudder blade portions 10, 20. The rudder configuration according to the present invention is characterized by what is indicated by the scope of the claims, the specific embodiments explained in the description, and the specific embodiments presented in the drawings and drawings. The guide plates 200, 201 and the 210 placed in the offset region of the two rudder blade portions 10, 20 have the configurations described in the description and presented in the drawings, and are also the subject of the present invention and Rudder blade construction. -25- 200932628 [Schematic Description of the Drawings] Specific embodiments of the present invention will be explained below with reference to the drawings. Figure 1 is a side elevational view of the rudder configuration made up of a torsionally fully balanced rudder blade having an upper and a lower rudder blade portion; and a rudder post supported in the upper rudder blade portion. Figure 2 is a schematic perspective view of the torsion rudder blade of the rudder configuration. Figure 3 is a schematic view of the torsion rudder blade skeleton with the hull removed, 0 and some of the rudder blade portions having some slab-like frames. • Fig. 4, Fig. 4A, Fig. 4B, and Fig. 4C are top views of the plate-like frame of the upper rudder blade portion of the rudder blade according to Fig. 3. Fig. 4D is an enlarged view of the plate-like frame of the lower rudder blade portion of the rudder blade according to Fig. 3. _ Figure 4E is an enlarged view of the plate-shaped * frame of the lower rudder blade portion of the rudder blade according to Fig. 3. Fig. 5 is an enlarged view of the plate-like frame according to Fig. 4. Q Fig. 6 is an enlarged view of the plate-like frame according to Fig. 4, indicating the distance of the side edge region to the longitudinal center line of the frame. Fig. 7 is a perspective view of another embodiment of the torsionally fully balanced rudder blade, wherein a plurality of plate-like frames are disposed in the upper rudder blade portion and the lower rudder blade portion. Fig. 8, Fig. 8A, Fig. 8B, and Fig. 8C are enlarged views from above the four plate-like frames of the upper rudder blade portion of the rudder blade according to Fig. 7, with an opening for receiving the The main pipe of the rudder post. Fig. 8D, Fig. 8E, and Fig. 8F are enlarged views from the top of the three plate-like frames of the lower rudder blade portion of the rudder blade -26-200932628 according to Fig. 7. Fig. 9 is an enlarged plan view from above the cover plate of the upper rudder blade portion of the rudder blade according to Fig. 7, having an opening for receiving the main pipe of the rudder column. Fig. 10 is an enlarged view of the top of the torsion rudder blade from the rudder configuration according to Fig. 7. Figure 11 is an enlarged plan view showing a fixed plate disposed between the upper rudder blade portion and the lower rudder blade portion according to the rudder configuration of Fig. 7, the outline 'and the size including the bottom plate of the upper rudder blade portion And the lower rudder blade portion. The outline and size of the cover. Figure 12 is a front view of the torsion rudder blade. Figure 13 is a side view of the rudder blade with the rudder blade edge extending obliquely on the side of the propulsion. - Figure 14 is a top plan view of the cross-sectional profile of the frame of the upper rudder blade in another embodiment. Fig. 15 is a vertical section of the rudder post, wherein the rudder post is supported by the main pipe to mount the upper rudder blade portion at the rudder post. Figure 16 is a perspective view of the underside of the torsion rudder blade with a fluid guide plate in the offset region of the two rudder blade portions of the rudder. Figure 17 is a side view of the rudder according to Figure 16. Figure 18 is a rear elevational view of the rudder according to Figure 16. Figure 19 is a front perspective view of the rudder according to Figure 16. Figure 20 is a side perspective view of the rudder according to Figure 16. Figure 21 is a front perspective view of the rudder according to Figure 16. -27- 200932628 Figure 22 is a schematic view of the rudder according to Fig. 16 from the front of the leading edge of the rudder blade, in which a guide plate having an S-shaped arrangement is shown. Figure 23 is a perspective view of the rudder according to Fig. 16 from below. Figure 24 is a perspective view from below the torsion rudder blade showing a semi-circular fluid guide plate in the offset region of the two rudder blade portions of the rudder to complete the semi-circular fluid. [Main component symbol description] ❹ 10 Upper rudder blade portion 10 Upper rudder blade profile 11 _,, a rim flange 11, semicircular edge rounded corner 12 Side wall surface 13 Side wall surface 15 Trailing edge 15, Edge 16 Linear side wall portion 17 Straight side wall portion 18 Flat curved side wall portion 19 Strongly curved curved side wall portion 20 Lower rudder blade portion 21 I. renting - rim 26 straight side wall portion 27 straight side wall portion 28 flat curved side wall portion -28- 200932628

29 強 烈 拱 出 曲 面 側 壁部 30 橫 截 面 表 面 30 尾 緣 3 1 橫 截 面 表 面 部 32 橫 截 面 表 面 部 40 框 架 41 覆 蓋 板 42 底 板 43 上 方 覆 蓋 板 45 固 定 板 45a 側 壁 表 面 45b 側 壁 表 面 46 對 稱 橫 截 面 表 面 部 47 對 稱 橫 截 面 表 面 部 50 框 架 100 扭 轉 全 平 衡 舵 葉 片 105 開 P 1 10 船 體 115 推 進 器 120 主 幹 管 120b 下 方 末 端 區 域 125 內 孔 130 頸 軸 承 140 舵 柱 140a 部 份 -29- 200932628 140b 末端區域 145 固定裝置 150 軸承 200 舵配置 200 導引板 201 導引板 200a 蓋狀構造 200b 蓋狀部份 w 201a 蓋狀構造 201b 蓋狀部份 200c 後方帶狀部 201c 後方帶狀部 . 200,b 錐形半部 201,b 錐形半部 200d 邊緣 201d 邊緣 ® 2 10 導引板 OB 上方區域 UB 下方區域 LML 縱向中心線 BB 左舷側 SB 右舷側 OB 轉換區域 〇B 1 轉換區域 M2 中>L、線 -30 200932628 A 1 橫向偏移部 A2 橫向偏移部29 Strongly curved curved side wall portion 30 Cross-sectional surface 30 Trailing edge 3 1 Cross-sectional surface portion 32 Cross-sectional surface portion 40 Frame 41 Covering plate 42 Floor plate 43 Upper cover plate 45 Fixing plate 45a Side wall surface 45b Side wall surface 46 Symmetrical cross-section surface Section 47 Symmetrical Cross Section Surface 50 Frame 100 Torsion Fully Balanced Rudder Blade 105 Open P 1 10 Hull 115 Propeller 120 Main Pipe 120b Lower End Zone 125 Inner Hole 130 Neck Bearing 140 Rudder Post 140a Part -29- 200932628 140b End Area 145 Fixing device 150 Bearing 200 Rudder arrangement 200 Guide plate 201 Guide plate 200a Cover structure 200b Cover portion w 201a Cover structure 201b Cover portion 200c Rear strip portion 201c Rear strip portion. 200, b Conical half 201, b Cone half 200d Edge 201d Edge® 2 10 Guide plate OB Upper area UB Lower area LML Longitudinal center line BB Port side The starboard side SB OB 〇B conversion region in a transition region M2 > L, -30 200932628 A 1 line portion laterally offset laterally offset portion A2

-31--31-

Claims (1)

200932628 十、申請專利範圍: 1. 一種具有減少氣穴之扭轉舵之高速船隻用的舵配置, 該扭轉舵特別地;全平衡舵,該舵配置包含一舵葉片 (100),其具有指定給該舵葉片之一推進器(115),其設 置在一可驅動推進器軸(PA)上;及連接至舵葉片(140) 之一舵柱(140), 其特徵在於 該舵配置(200) a.)由一舵葉片所構成,該舵葉片具有一低輪廓 厚度的一薄型輪廓,較佳地由一全平衡舵葉片(100)所 構成,該舵葉片係由具有相同高度或不相等高度之兩 個疊置配置的舵葉片部(10, 20)製成,較佳地具有一下 方舵葉片部(20),其高度低於上方舵葉片部(10)之高度 ,並具有朝向到該推進器(115)時的前緣(11, 21),其具 有大致爲半圓形的輪廓,且設置使得相對於該舵葉片 (100)的縱向中心(LML)—前緣(11)橫向地偏移到該左 舷側(BB)或該右舷側(SB),且另一前緣(21)橫向地偏移 到該右舷側(SB)或該左舷側(BB),藉此兩舵葉片部(10, 20)之側壁表面(12,13; 22,23)聚集到背離該推進器 (1 15)的一尾緣(15), al.)藉此前緣(11,21)與該尾緣(15)皆自該舵葉片 (100)的上方區域(OB)向下錐形縮減到該下方區域(UB) ,並減少該橫截面表面(30), a2.)或該尾緣U5)爲直線形,且平行於該舵柱(140) ,而兩前緣(11,21)自該上方區域(〇B)向下錐形縮減到 -32- 200932628 該下方區域(UB),並減少該橫截面表面(30), a3.)藉此該上方舵葉片部(10)與該下方舵葉片部 (20)之橫截面表面部(3 1)在該舵葉片(100)之尾緣(15) 與最大輪廓厚度(PD)之間的區域中具有一長度(L),其 對應於該舵葉片(100)之最大輪廓厚度(PD)與該前緣 (11,21)之間該上方舵葉片部(10)與該下方舵葉片部 (20)之橫截面表面部(32)之長度(L1)的至少1又1/2, a4.)藉此該上方舵葉片部(10)在該左舷側(BB)上 w 及該下方舵葉片部(20)在該右舷側(SB)上分別具有一 平坦曲面側壁部(18,28),其在該尾緣(15)的方向上自 該等前緣(11, 21)延伸,其長度(L2)自該等前緣(11,21) 延伸超過該側壁部(18)之長度(L’2)到該最大輪廓厚度 . (PD)加上一長度(L”2),其對應於至少該長度(L’2)的一 半,藉此穿出到該尾緣(15)中的直線側壁部(16,26)依 循該平坦曲面側壁部(18, 28), a5.)藉此該上方舵葉片部(10)在該右舷側(SB)上 〇 及下方舵葉片部(20)在該左舷側(BB)上分別具有強烈 拱出的曲面側壁部(19, 29),其在該尾緣(15)的方向上 自該等前緣(11,21)延伸,其長度(L3)自該等前緣(11, 21)延伸超過該側壁部(19)之長度(L’3)到該最大輪廓厚 度(PD)加上一長度(L”3),其對應於至少該長度(L’3)的 1/3,藉此穿出到該尾緣(15)中的直線側壁部(17, 27)依 循強烈拱出的曲面側壁部(19, 29), a6_)藉此兩直線側壁部(16; 17; 26, 27)皆成對具 有相同長度,且位在該等兩側壁部(16; 17; 26, 27)之間 -33- 200932628 的橫截面表面部係對稱地構形,並具有相同大小, a7.)藉此該平坦曲面側壁部(18; 28)到該縱向中 心線(LML)之間的距離大於該強烈拱出的側壁部(19; 29)到該縱向中心線(LML)之間的距離,且位在該等兩 平坦曲面側壁部(1 8 ; 28)之間的橫截面表面部係在該 縱向中心線(LML)之兩側上非對稱地構形, a8.)藉此形成流體之導引板(200,201)相對應地 模製成該等前緣(11,21)的曲面路線,且覆蓋該偏移區 域,該等導引板(200, 201)係配置在兩個疊置配置舵葉 片部(10, 20)之兩個側向偏移,部之轉換區域中,這些 導引板具有對該流動較有利的一稍長或半圓形輪廓, 其拱出及配合於該舵葉片之外壁,一導引板(200)自該 上方舵葉片部(10)之前緣(1 1)延伸到其側壁,而另一導 引板(201)自該下方舵葉片部(20)之前緣(21)延伸到其 側壁當中, b.) —舵柱(140)利用至少一軸承在功能上與該舵 葉片(100)協同運作, bl.)藉此該舵柱(140),特別地;以鍛製鋼或另一 適當材料製成,並與穿進它的主幹管(1 2〇)設置在一起 ,特別地;以鍛製鋼或另一適當材料製成,其設置在 該最大輪廓厚度(PD)之區域中,或設置在此部與在此 部中該上方舵葉片部(10)之該等前緣之間,且與其端面 固定裝置(145)延伸超過該上方舵葉片部(10)之整個高 度, b2_)藉此深度插入到該上方舵葉片部(10)中的主 -34- 200932628 幹管(120)即提供用於舵柱(140)作爲一懸臂樑,其具有 —中央內部縱向孔(125),用於接收該舵柱(140), b3.)藉此該主幹管橫截面設置有薄壁,且該主幹管 (120)在其內壁上其自由端區域中具有一頸軸承(130) ,用於支撐舵柱(140)及 b4.)藉此該舵柱(140)被導引在其末端區域(140b) 中,且其一部份(140a)突出主幹管(120),並連接至此 部份(140a)之末端與上方舵葉片部(10)。 ® 2.如申請專利範圍第1項所述之舵配置,其中 一固定板(4 5)設置在該上方舵葉片部(10)與該下 方舵葉片部(20)之間,且其固定連接至該等舵葉片部 (10,20),藉此該固定板(45)在縱向中心線(LML)之兩側 ' 上具有對稱的橫截面表面部(46, 47),以及一表面輪廓 . 及尺寸,其包括有該上方舵葉片部(10)之底板(42)與該 下方舵葉片部(2 0)之覆蓋板(41),其具有本身的輪廓與 ^ 尺寸。 © 3. 如申請專利範圍第1或2項所述之舵配置,其中 該上方舵葉片部(10)之前緣(11)與該下方舵葉片 部(20)之前緣(21)係相對於該縱向中心線(LML)側向偏 移,到該左舷側(BB)及該右舷側(SB),使得拉伸經由該 側向偏移,前緣之中心線(M2)以至少3°到10°的角度行 進,但是亦可較大,較佳地是與一框架的橫截面表面 之縱向中心線(LML)成8°。 4. 如申請專利範圍第1至3項中任一項所述之舵葉片配 -35- 200932628 置,其中 位在該等上方與下方舵葉片部(10,20)之左舷側 (BB)與右舷側(SB)上的該等平坦拱出曲面側壁部(18, 28)之長度(L4)短於位在該等上方與下方舵葉片部(1〇, 20)之右舷側(SB)與左舷側(BB)上的該等強烈拱出曲面 側壁部(19,29)之長度(L5)。 5. 如申請專利範圍第1至4項中任一項所述之舵葉片配 置,其中 該上方與下方舵葉片部(10,20)之強烈拱出曲面 側壁部(19,29)之曲線長度(BL1)遠大於該上方與下方 舵葉片部(10,20)之平坦拱出曲面側壁部(18,28>之曲 線長度(BL),使得該上方與下方舵葉片部(10,20)之強 烈拱出曲面側壁部(19,29)之轉換區域(ϋΒΙ)係偏移到 與尾緣(15)成直線行進的側壁部(17,27),且該上方與 下方舵葉片部(10,20)之平坦拱出曲面側壁部(18, 28) 之轉換區域(ϋΒ)係偏移到在該尾緣方向上直線前進至 該尾緣(15)的該等側壁部(16, 26)。 6. 如申請專利範圍第1至5項中任一項所述之舵配置, 其中 在該上方舵葉片部(10)中用於接收該主幹管(120) 之開口(105)或孔的直徑略微小於該舵葉片部(1〇)之最 大輪廓厚度(PD)。 7. 如申請專利範圍第1至6項中任一項所述之舵配置, 其中 -36- 200932628 朝向該推進器(115)之舵葉片(loo)之邊緣或前緣 (11,21)係以至少r ’較佳ίο。的角度沒傾斜於背離該 推進器(115)的該邊緣或尾緣(15)。 8.如申請專利範圍第1至7項中任一項所述之舵配置, 其中 設置在該等兩個疊置配置舵葉片部(10,20)之兩 個側向偏移,部(Al,A2)之該轉換區域中且相對應地模 製成該等前緣(11, 21)之曲面路線的導引板(200,201) 具有一稍長的拱出輪廓,藉此具有一朝向該前緣(11, 21)的部份(200b,201b)的兩個導引板(200,201)之每一 者皆位在該等前緣的區域中,並爲該前緣的一整合部 份,且具有一帶狀部(200c,201c),其承載在該舵的側 壁上或整合於其中,藉此位在該等前緣(11,21)之區域 中的該等兩導引板(200,201)之該等部份(200b,201b) 具有一蓋狀構造(200a,201a),藉此該上方舵葉片部(10) 之左舷側的側壁具有該導引板(200),而該下方舵葉片 部(20)之右舷側的側壁具有該導引板(201),藉此該等 導引板(200,201)係位在該上方舵葉片部(10)與該下方 舵葉片部(20)之轉換區域中,使得該等帶狀部份(200c; 201c)係位在該舵葉片的該等側壁中,並覆蓋該轉換區 域,藉此朝向該推進器(11 5)之導引板(200, 20 1 )之部份 (200b,20 lb)係位在該等前緣(1 1,21)的區域中。 -37-200932628 X. Patent application scope: 1. A rudder configuration for a high speed vessel with a torsion rudder that reduces air pockets, the torsion rudder in particular; a fully balanced rudder, the rudder configuration comprising a rudder blade (100) having a designation assigned to a rudder blade one of the rudder blades (115) disposed on a drivable propeller shaft (PA); and a rudder column (140) coupled to one of the rudder blades (140), characterized in that the rudder configuration (200) a.) consisting of a rudder blade having a thin profile of low profile thickness, preferably consisting of a fully balanced rudder blade (100) having the same height or unequal height The two rudder blade portions (10, 20) of the stacked configuration are preferably provided with a lower rudder blade portion (20) having a lower height than the upper rudder blade portion (10) and having a direction toward the a leading edge (11, 21) of the pusher (115) having a generally semi-circular profile and disposed such that it is transverse to the longitudinal center (LML)-leading edge (11) of the rudder blade (100) Offset to the port side (BB) or the starboard side (SB) and the other leading edge (21) Offward to the starboard side (SB) or the port side (BB), whereby the side wall surfaces (12, 13; 22, 23) of the two rudder blade portions (10, 20) are gathered away from the thruster (1) a trailing edge (15), al.) of the 15) whereby the leading edge (11, 21) and the trailing edge (15) are tapered downwardly from the upper region (OB) of the rudder blade (100) to below a region (UB) and reducing the cross-sectional surface (30), a2.) or the trailing edge U5) is linear and parallel to the rudder post (140), and the two leading edges (11, 21) are from the top The area (〇B) is tapered down to -32-200932628 the lower area (UB) and reduces the cross-sectional surface (30), a3.) whereby the upper rudder blade portion (10) and the lower rudder blade The cross-sectional surface portion (31) of the portion (20) has a length (L) in a region between the trailing edge (15) of the rudder blade (100) and the maximum profile thickness (PD), which corresponds to the rudder The maximum profile thickness (PD) of the blade (100) and the length of the cross-sectional surface portion (32) of the upper rudder blade portion (10) and the lower rudder blade portion (20) between the leading edge (11, 21) ( L1) at least 1 and 1/2, a4.) The sheet portion (10) has a flat curved side wall portion (18, 28) on the port side (BB) and the lower rudder blade portion (20) on the starboard side (SB) at the trailing edge ( 15) extending from the leading edges (11, 21), the length (L2) extending from the leading edges (11, 21) beyond the length (L'2) of the side wall portion (18) to the maximum Contour thickness. (PD) plus a length (L"2) corresponding to at least half of the length (L'2), thereby passing out to the straight side wall portion of the trailing edge (15) (16, 26) According to the flat curved side wall portion (18, 28), a5.) whereby the upper rudder blade portion (10) is on the starboard side (SB) and the lower rudder blade portion (20) is on the port side (BB) The upper side has a strongly curved curved side wall portion (19, 29) extending from the leading edges (11, 21) in the direction of the trailing edge (15), the length (L3) of which from the leading edge ( 11, 21) extending beyond the length (L'3) of the side wall portion (19) to the maximum contour thickness (PD) plus a length (L"3) corresponding to at least the length (L'3) of 1 /3, thereby passing through the straight line into the trailing edge (15) The side wall portions (17, 27) follow the strongly curved curved side wall portions (19, 29), a6_) whereby the two straight side wall portions (16; 17; 26, 27) are paired to have the same length and are located in the same The cross-sectional surface portions of the -33-200932628 between the two side wall portions (16; 17; 26, 27) are symmetrically configured and have the same size, a7.) whereby the flat curved side wall portion (18; 28) is The distance between the longitudinal centerlines (LML) is greater than the distance between the strongly arched side wall portions (19; 29) to the longitudinal centerline (LML) and is located at the side walls of the two flat curved surfaces (1 8 28) The cross-sectional surface portion between them is asymmetrically configured on both sides of the longitudinal center line (LML), a8.) The fluid guiding plate (200, 201) is thereby correspondingly molded Forming a curved path of the leading edges (11, 21) and covering the offset region, the guiding plates (200, 201) are disposed in two of the two overlapping rudder blade portions (10, 20) Laterally offset, in the transition region of the portion, the guide plates have a slightly longer or semi-circular profile that is advantageous for the flow, which is arched and fitted to the outer wall of the rudder blade, The guide plate (200) extends from the front edge (11) of the upper rudder blade portion (10) to the side wall thereof, and the other guide plate (201) extends from the front edge (21) of the lower rudder blade portion (20). To its side wall, b.) - the rudder post (140) functionally cooperates with the rudder blade (100) with at least one bearing, bl.) whereby the rudder post (140), in particular; forged steel or Made of another suitable material and placed with the main pipe (1 2 〇) that is inserted into it, in particular; made of wrought steel or another suitable material, which is placed in the area of the maximum profile thickness (PD) Or between the portion and the leading edge of the upper rudder blade portion (10) in the portion, and the end surface fixing device (145) extends beyond the entire height of the upper rudder blade portion (10), B2_) The main-34-200932628 trunk (120), which is inserted deep into the upper rudder blade portion (10), is provided for the rudder post (140) as a cantilever beam having a central internal longitudinal bore (125) ) for receiving the rudder post (140), b3.) whereby the main pipe cross section is provided with a thin wall, and the main pipe (120) is The inner wall has a neck bearing (130) in its free end region for supporting the rudder column (140) and b4.) whereby the rudder column (140) is guided in its end region (140b), and A portion (140a) projects the main tube (120) and is connected to the end of the portion (140a) and the upper rudder blade portion (10). 2. The rudder arrangement according to claim 1, wherein a fixing plate (45) is disposed between the upper rudder blade portion (10) and the lower rudder blade portion (20), and is fixedly connected To the rudder blade portions (10, 20), whereby the fixing plate (45) has a symmetrical cross-sectional surface portion (46, 47) on both sides of the longitudinal centerline (LML), and a surface profile. And dimensions including a bottom plate (42) of the upper rudder blade portion (10) and a cover plate (41) of the lower rudder blade portion (20) having their own contours and dimensions. 3. The rudder arrangement of claim 1 or 2, wherein the leading edge (11) of the upper rudder blade portion (10) and the leading edge (21) of the lower rudder blade portion (20) are relative to the rudder configuration The longitudinal centerline (LML) is laterally offset to the port side (BB) and the starboard side (SB) such that the stretch is offset by the lateral direction, and the centerline (M2) of the leading edge is at least 3° to 10 The angle of ° travels, but can also be larger, preferably 8° to the longitudinal centerline (LML) of the cross-sectional surface of a frame. 4. The rudder blade according to any one of claims 1 to 3, wherein the rudder blade is provided on the port side (BB) of the upper and lower rudder blade portions (10, 20). The length (L4) of the flat arched curved side wall portions (18, 28) on the starboard side (SB) is shorter than the starboard side (SB) of the upper and lower rudder blade portions (1, 20). The lengths (L5) of the curved side wall portions (19, 29) on the port side (BB) are strongly curved. 5. The rudder blade arrangement according to any one of claims 1 to 4, wherein the upper and lower rudder blade portions (10, 20) have a curved length of the curved curved side wall portion (19, 29) (BL1) is much larger than the curved length (BL) of the flat arched curved side wall portion (18, 28) of the upper and lower rudder blade portions (10, 20) such that the upper and lower rudder blade portions (10, 20) The transition region (ϋΒΙ) of the strongly arched curved side wall portion (19, 29) is offset to the side wall portion (17, 27) traveling in line with the trailing edge (15), and the upper and lower rudder blade portions (10, 20) The transition region (ϋΒ) of the flat arched curved side wall portion (18, 28) is offset to the side wall portions (16, 26) that linearly advance in the trailing edge direction to the trailing edge (15). 6. The rudder configuration according to any one of claims 1 to 5, wherein in the upper rudder blade portion (10), the opening (105) or the diameter of the hole for receiving the main pipe (120) Slightly smaller than the maximum profile thickness (PD) of the rudder blade portion (1〇). 7. The rudder configuration according to any one of claims 1 to 6. Positioning, wherein -36- 200932628 is toward the edge or leading edge (11, 21) of the rudder blade (115) of the propeller (115) at an angle of at least r 'better than the propeller (115) The rudder configuration according to any one of claims 1 to 7, wherein the rudder blade portions (10, 20) are disposed in the two stacked configurations. The two lateral offsets, the guide plates (200, 201) of the transition regions of the portions (Al, A2) and correspondingly molded into the curved edges of the leading edges (11, 21) have a slight a long arched profile whereby each of the two guide plates (200, 201) having a portion (200b, 201b) facing the leading edge (11, 21) is located at the leading edge In the region, and is an integral part of the leading edge, and has a strip portion (200c, 201c) carried on or integrated into the side wall of the rudder, thereby being located at the leading edge (11, The portions (200b, 201b) of the two guide plates (200, 201) in the region of 21) have a cap-like configuration (200a, 201a) whereby the port side of the upper rudder blade portion (10) side The side wall has the guiding plate (200), and the starboard side wall of the lower rudder blade portion (20) has the guiding plate (201), whereby the guiding plates (200, 201) are tied thereto. a transition region between the rudder blade portion (10) and the lower rudder blade portion (20) such that the strip portions (200c; 201c) are positioned in the side walls of the rudder blade and cover the conversion region, Thereby, a portion (200b, 20 lb) of the guide plates (200, 20 1 ) toward the pusher (115) is located in the region of the leading edges (1, 21). -37-
TW097143317A 2007-11-13 2008-11-10 Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder TWI370084B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE202007015941U DE202007015941U1 (en) 2007-11-13 2007-11-13 Oars for ships
EP07024061.9A EP2060484B2 (en) 2007-11-13 2007-12-12 Rudder for ships
DE202008010759 2008-08-13
DE202008012125 2008-09-11
DE202008013604 2008-10-14

Publications (2)

Publication Number Publication Date
TW200932628A true TW200932628A (en) 2009-08-01
TWI370084B TWI370084B (en) 2012-08-11

Family

ID=40547791

Family Applications (2)

Application Number Title Priority Date Filing Date
TW097143320A TWI363728B (en) 2007-11-13 2008-11-10 Rudder for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder
TW097143317A TWI370084B (en) 2007-11-13 2008-11-10 Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW097143320A TWI363728B (en) 2007-11-13 2008-11-10 Rudder for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder

Country Status (10)

Country Link
EP (2) EP2060485B1 (en)
JP (2) JP5175690B2 (en)
KR (3) KR101466991B1 (en)
AT (2) ATE458670T1 (en)
DE (2) DE502008000377D1 (en)
ES (2) ES2341393T3 (en)
HK (2) HK1132719A1 (en)
HR (2) HRP20100156T1 (en)
PT (2) PT2060486E (en)
TW (2) TWI363728B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113371171A (en) * 2021-06-18 2021-09-10 武汉理工大学 Deformable rudder blade with self-adaptive deflection front edge and deflection method
TWI761522B (en) * 2017-05-30 2022-04-21 德商貝克海洋系統有限公司 Rudder blade, rudder blade hub for a rudder blade and construction kit for a rudder blade hub

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302733B1 (en) * 2011-11-17 2013-09-03 현대중공업 주식회사 Rudder of vessel and rudder part construction method of vessel
NO336848B1 (en) * 2013-03-08 2015-11-16 Rolls Royce Marine As Rudders rudder device
KR101942349B1 (en) 2013-04-10 2019-01-25 현대중공업 주식회사 Twist type rudder and vessel including the same
KR101939861B1 (en) * 2014-05-26 2019-01-18 현대중공업 주식회사 A rudder for ship
CN108974312B (en) * 2017-05-30 2022-08-30 贝克船舶系统有限公司 Rudder blade with a rudder blade hub and rudder blade hub for a rudder blade
CN107264763B (en) * 2017-06-22 2019-08-02 中国人民解放军海军工程大学 A kind of design method of anti-cavitation distortion rudder
EP3489128A1 (en) * 2017-11-28 2019-05-29 Becker Marine Systems GmbH Blade of an oar with modular structure, segment for a blade of an oar for a device for improving propulsion and method for producing a blade of an oar
KR102138459B1 (en) * 2019-01-30 2020-07-27 한국조선해양 주식회사 Steering apparatus and ship having the same
KR102024176B1 (en) * 2019-06-11 2019-09-23 이상욱 Manufacturing method of twisted type rudder
KR102305888B1 (en) * 2020-01-30 2021-09-27 현대중공업 주식회사 Steering apparatus and ship having the same
DE202020103872U1 (en) * 2020-07-03 2020-08-13 Becker Marine Systems Gmbh Rowing trunk for a watercraft and watercraft with a rowing trunk
CN116788492B (en) * 2023-08-22 2023-10-27 南通德玛瑞机械制造有限公司 Rudder blade capable of being quickly assembled and disassembled and processing device thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB332082A (en) 1929-08-07 1930-07-17 Amos Lowrey Ayre Improvements in ships' rudders
DE1140484B (en) * 1958-04-30 1962-11-29 Maierform Holding Sa Ship rudder with staggered upper and lower rudder halves
FR1251898A (en) * 1960-03-24 1961-01-20 Eta Corp Advanced rudder
JPS577798A (en) * 1980-06-16 1982-01-14 Mitsui Eng & Shipbuild Co Ltd Reaction rudder
JPS5830896A (en) 1981-08-18 1983-02-23 Ishikawajima Harima Heavy Ind Co Ltd Reaction rudder without discontinuous part
JPS6190700U (en) * 1984-11-20 1986-06-12
DE8708276U1 (en) * 1987-06-12 1987-08-27 Willi Becker Ingenieurbuero Gmbh, 2000 Hamburg, De
JPH02144296A (en) * 1988-11-25 1990-06-04 Sumitomo Heavy Ind Ltd Local flow generation preventing structure in discontinuous part of reaction rudder
JPH089359B2 (en) * 1992-01-23 1996-01-31 川崎重工業株式会社 Marine suspension rudder
JPH06305487A (en) * 1993-04-21 1994-11-01 Hitachi Zosen Corp Rudder
JPH07237594A (en) * 1994-02-28 1995-09-12 Hitachi Zosen Corp Rudder in ship
JPH0911990A (en) * 1995-06-30 1997-01-14 Hitachi Zosen Corp Rudder
JPH11105794A (en) * 1997-10-03 1999-04-20 Sanoyasu Hishino Meisho:Kk Deformation reaction rudder
KR100346512B1 (en) * 1999-07-07 2002-08-01 삼성중공업 주식회사 A rudder of ship
DE202004006453U1 (en) 2004-04-23 2004-11-11 Becker Marine Systems Gmbh & Co. Kg Oars for ships
DE202005013583U1 (en) * 2005-06-30 2005-11-03 Becker Marine Systems Gmbh & Co. Kg Rudder stock for water craft, has end sections made of wrought iron, and middle stock section connected with end sections and made of carbon fibrous composite or graphite fibers, which form middle stock section in the form of windings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI761522B (en) * 2017-05-30 2022-04-21 德商貝克海洋系統有限公司 Rudder blade, rudder blade hub for a rudder blade and construction kit for a rudder blade hub
CN113371171A (en) * 2021-06-18 2021-09-10 武汉理工大学 Deformable rudder blade with self-adaptive deflection front edge and deflection method
CN113371171B (en) * 2021-06-18 2022-11-15 武汉理工大学 Deformable rudder blade capable of adaptively deflecting front edge and deflection method

Also Published As

Publication number Publication date
DE502008000377D1 (en) 2010-04-01
ATE457925T1 (en) 2010-03-15
ES2340741T3 (en) 2010-06-08
KR101466991B1 (en) 2014-12-01
EP2060485A1 (en) 2009-05-20
PT2060485E (en) 2010-06-08
TWI370084B (en) 2012-08-11
EP2060486A1 (en) 2009-05-20
HRP20100291T1 (en) 2010-06-30
HK1132719A1 (en) 2010-03-05
DE502008000400D1 (en) 2010-04-08
KR20090049545A (en) 2009-05-18
EP2060486B1 (en) 2010-02-17
ATE458670T1 (en) 2010-03-15
JP5175690B2 (en) 2013-04-03
KR20130039747A (en) 2013-04-22
KR101421375B1 (en) 2014-08-13
TW200930617A (en) 2009-07-16
TWI363728B (en) 2012-05-11
JP2009120191A (en) 2009-06-04
KR20090049551A (en) 2009-05-18
JP4901843B2 (en) 2012-03-21
ES2341393T3 (en) 2010-06-18
PT2060486E (en) 2010-03-12
HRP20100156T1 (en) 2010-04-30
HK1132718A1 (en) 2010-03-05
JP2009120190A (en) 2009-06-04
EP2060485B1 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
TW200932628A (en) Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder
US8091498B2 (en) Rudder arrangement for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder
TWI302894B (en) Rudder for ships
JP5014205B2 (en) Marine high-performance rudder
TW200920656A (en) Rudder for ships
JP5767365B2 (en) Ship having step type hull and outboard fin
US20170197687A1 (en) Vessel Comprising An Aft Foil Oriented To Provide A Forwardly Directed Component Of Lift Force
KR20040077972A (en) Line design and propulsion system for a directionally stable, seagoing boat with rudder propeller drive system
CN107428403B (en) Ship with a detachable cover
CN101541630A (en) Stern shape for displacement type ship
CN102186721A (en) Duct for ship and ship \
TW201006726A (en) Rudder arrangement for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder
KR20100001932U (en) Rudder arrangement for ships having higher speeds comprising a cavitation-reducing twisted in particular balanced rudder
JP2010042796A5 (en)
KR102408226B1 (en) Asymmetric diagonal full spade rudder structure having a small rudder bulb
JP2016107715A (en) Rudder, rudder unit and marine vessel
CN107054599A (en) Stern rectification construction and ship
JP4842904B2 (en) Ship propulsion mechanism
JP6203349B1 (en) Ship rudder
JP3531813B2 (en) Rudder fin
CN113682417A (en) Novel three-keel type ship structure
AU2020200754A1 (en) Active stabilizing device and method
JP2009292414A (en) Marine vessel
JP2010115971A (en) Monohull water jet propulsive ship
JPH07156870A (en) Endless stabilizer