TW200930617A - Rudder for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder - Google Patents

Rudder for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder Download PDF

Info

Publication number
TW200930617A
TW200930617A TW097143320A TW97143320A TW200930617A TW 200930617 A TW200930617 A TW 200930617A TW 097143320 A TW097143320 A TW 097143320A TW 97143320 A TW97143320 A TW 97143320A TW 200930617 A TW200930617 A TW 200930617A
Authority
TW
Taiwan
Prior art keywords
rudder
rudder blade
side wall
segments
segment
Prior art date
Application number
TW097143320A
Other languages
Chinese (zh)
Other versions
TWI363728B (en
Inventor
Dirk Lehmann
Mathias Kluge
Henning Kuhlmann
Original Assignee
Becker Marine Sys Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202007015941U external-priority patent/DE202007015941U1/en
Priority claimed from DE202008014375U external-priority patent/DE202008014375U1/en
Application filed by Becker Marine Sys Gmbh & Co Kg filed Critical Becker Marine Sys Gmbh & Co Kg
Publication of TW200930617A publication Critical patent/TW200930617A/en
Application granted granted Critical
Publication of TWI363728B publication Critical patent/TWI363728B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • B63H2025/388Rudders with varying angle of attack over the height of the rudder blade, e.g. twisted rudders

Abstract

The rudder for ships comprises a twisted balanced rudder blade (100) having a slender profile and having a low profile thickness and comprising a propeller (115) facing the rudder blade and a rudder pipe located in the upper region of the rudder blade with rudder post (140) located therein, wherein the rudder blade (100) comprises two superposed rudder blade sections (10, 20) having different heights whose front nose strips (11, 21) facing the propeller are offset in such a manner that one nose strip (11) is offset to port (BB) or starboard (SB) and the other nose strip (21) is offset to starboard (SB) or port (BB), wherein the two side wall surfaces of the rudder blade (100) converge into an end strip (30) facing away from the propeller and have different arc profiles.

Description

200930617 九、發明說明: 【發明所屬之技術領域】 本發明關於一種高速船隻用之舵,該舵包含一減少氣 穴之扭轉舵,特別地如申請專利範圍第1項所述之平衡舵。 【先前技術】 船隻的舵,例如平衡舵,或者具有或不具有一鏈接鰭 板之平衡式輪廓舵,於多種具體實施例中爲已知。亦已知 的是船隻用的舵具有由兩個疊置的舵葉片段所構成的一扭 ® 轉舵葉片,其面向該推進器之鼻端帶係側向偏移,使得一 鼻端帶偏移到左舷,而另一鼻端帶偏移到右舷。 因此,如JP(A) Sho 58-30896描述一種具有一扭轉舵葉 片的船舵,其由一上部及一下部構成,其中兩部份皆在它 們面向該推進器的方向上扭轉,特別是使得該等兩個部份 中僅有相關於該等鼻端帶的區域被側向偏移,然而延伸到 該等兩部份之末端帶的區域皆具有相同的橫截面形狀,及 相同的橫截面尺寸。 GB 332,082類似地揭示一種具有一扭轉舵葉片之船隻 用的舵,其面向該推進器之輪廓區域,即該等鼻端帶側向 地向右舷及左舷,該等鼻端帶係構形成縮減到一尖端。該 等兩個舵葉片段之橫截面輪廓構形成位在該左舷及右舷側 上的該等兩個舵葉片段之側壁表面,由該等末端帶之間無 曲率及成直線地行進,最遠到該側向彎曲的鼻端帶,所以 該等側壁表面不包含具有不同曲率半徑的向外彎曲的區 域。此外,該舵葉片之輪廓構造使得一個位在另一個之上 -5- 200930617 的兩個舵葉片表面之兩個橫截面表面爲相同大小,並延伸 超過該舵葉片的整個高度。由於該等鼻端帶縮減到一尖 端,即形成一尖銳邊緣的凹痕,其會曝露於氣穴及破壞。 對於該推進的改進必須利用此舵的輪廓構造來達到。 現今船隻的速度都持續在增加當中。由於關聯於較高 速度之較快流動速度造成增加了該推進器及該舵上的負 載。已知舵葉片之輪廓的對稱性造成該舵表面上的壓力較 低區域,而造成氣穴及侵蝕。氣穴係在該舵葉片上,流動 ® 會極其加速的點處發生。在此例中,該推進器之強烈旋轉 流動會以高速撞擊到該舵葉片表面上。由於此強烈加速, 該靜壓會下降低於水的蒸氣壓,導致氣泡形成,並會突然 地內爆。這些內爆會帶來該舵葉片表面之破壞,其會造成 昂貴的維修費用;經常必須使用新的舵葉片。 【發明内容】 本發明的目的係要提供一種大型及非常大型船隻用的 舵,特別是具有一扭轉舵前緣的平衡舵葉片,其中特別是 ❹ 當用於具有高負載推進器之快速船隻時即可避免由於氣穴 形成造成該舵葉片之侵蝕效應。此外,由具有非常高流速 的推進器流所產生作用在該舵葉片的下方區域中的力量必 須被中止,且該舵葉片抵銷而不會有對該舵柱的軸承發生 任何損害。 此目的可在根據初始具有如申請專利範圍第1項所述 之特徵中所述的型式的舵中達到。 據此,根據本發明之舵的特徵如下: -6- ❹BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rudder for a high-speed ship, the rudder including a torsion rudder for reducing a cavitation, in particular, the balance rudder according to claim 1 of the patent application. [Prior Art] The rudder of a vessel, such as a balance rudder, or a balanced profile rudder with or without a link fin, is known in various embodiments. It is also known that a rudder for a ship has a twisted® rudder blade consisting of two overlapping rudder blade segments that are laterally offset from the nose end of the thruster such that a nose end is biased Move to the port side and the other nose strap is offset to the starboard side. Thus, as described in JP (A) Sho 58-30896, a rudder having a torsion rudder blade is constructed which consists of an upper portion and a lower portion, both of which are twisted in the direction in which they face the propeller, in particular Only the areas of the two portions associated with the nose strips are laterally offset, whereas the regions extending to the end strips of the two portions have the same cross-sectional shape and the same cross-section. size. GB 332,082 similarly discloses a rudder for a vessel having a torsion rudder blade facing the contoured region of the propeller, ie the nose straps are laterally to the starboard and port side, the nose straps are reduced to A cutting edge. The cross-sectional contours of the two rudder blade segments are formed on the side wall surfaces of the two rudder blade segments on the port and starboard sides, and the end belts travel without curvature and in a straight line, the farthest To the laterally curved nose strip, the sidewall surfaces do not include outwardly curved regions having different radii of curvature. In addition, the rudder blade is contoured such that the two cross-sectional surfaces of the two rudder blade surfaces one above the other -5 - 200930617 are the same size and extend beyond the entire height of the rudder blade. Since the nose strips are reduced to a pointed end, a sharp edged indentation is formed which is exposed to air pockets and damage. Improvements to this propulsion must be achieved using the contour configuration of the rudder. The speed of today's ships continues to increase. The thruster and the load on the rudder are increased due to the faster flow velocity associated with higher speeds. It is known that the symmetry of the contour of the rudder blade causes a lower pressure region on the rudder surface, causing cavitation and erosion. Air pockets are found on the rudder blade at the point where the flow ® will accelerate. In this case, the strong rotational flow of the thruster impinges on the surface of the rudder blade at a high speed. Due to this strong acceleration, the static pressure drops below the vapor pressure of the water, causing the formation of bubbles and a sudden implosion. These implosions can cause damage to the surface of the rudder blade, which can result in expensive maintenance costs; new rudder blades must often be used. SUMMARY OF THE INVENTION It is an object of the present invention to provide a rudder for large and very large vessels, in particular a balanced rudder blade having a torsion rudder leading edge, in particular ❹ when used in a fast vessel with a high load propeller The erosion effect of the rudder blade due to cavitation formation can be avoided. In addition, the force acting on the lower region of the rudder blade by the flow of the propeller having a very high flow rate must be aborted and the rudder blade cancels without any damage to the bearing of the rudder post. This object can be achieved in a rudder according to the type initially described in the feature of claim 1 of the patent application. Accordingly, the features of the rudder according to the present invention are as follows: -6- ❹

200930617 a.)由一平衡的舵葉片所構成,較佳地該舵葉片 小輪廓厚度之細長輪廓,其包含具有相同或不同高g 個疊置的舵葉片段,較佳地是包含一下方舵葉片段, 度相較於該上方舵葉片段之高度爲較小,並包含該等 帶,其面向該推進器,並具有大致成半圓形的輪廓, 置成相對於舵葉片之縱向中心線LML —鼻端帶被偏卷 舷側BB或右舷側SB,而另一鼻端帶被側向偏移到宅 SB或左舷側BB,其中該等兩個舵葉片段之側壁表· 到一背離該推進器的末端帶中, al.)其中該等兩個鼻端帶及該末端帶伴隨著橫截 積自該舵葉片上方區域OB到下方區域UB減小而以錐 減的方式延伸, a2.)或該末端帶直線及平行於該舵柱延伸,且該等 鼻端帶伴隨著橫截面面積自該舵葉片上方區域OB到 區域UB減小而以錐形縮減的方式延伸, a3.)其中該上方舵葉片段與該下方舵葉片段之橫 段在該末端帶與該舵葉片之最大輪廓厚度PD之間的 中具有一長度L,其對應於在該舵葉片之最大輪廓厚 與該等鼻端帶之間該上方舵葉片段與該下方舵葉片段 截面段的長度L 1之至少1又1 /2倍, a4.)其中在該左舷側BB上的上方舵葉片段與在 舷側SB上的下方舵葉片段每一者皆包含以平坦拱形 式延伸側壁段,及自該等鼻端帶在該末端帶的方向 伸’其具有一長度L2,自該等鼻端帶延伸超過該等個 •具有 :的兩 其高 1鼻端 其設 •到左 ‘舷側 匯集 丨面面 :形縮 ;兩個 I下方 :截面 區域 度PD :之橫 :該右 i的方 上延 丨壁段 -7- 200930617 之長度L’2,直到該最大輪廓厚度PD加上長度L"2,此長 度L"2爲對應於長度L’2的至少1/3,其中以平坦拱形方式 延伸的側壁段與結束於該末端帶之以直線延伸的側壁段相 鄰接; a5.)其中在該左舷側BB上的上方舵葉片段與在該右 舷側SB上的下方舵葉片段每一者皆包含以拱形的方式延 伸的高度彎曲側壁段,及自該等鼻端帶在該末端帶的方向 上延伸,其具有一長度L3,自該等鼻端帶延伸超過該等側 © 壁段之長度L’3,直到該最大輪廓厚度PD加上長度L”3, 長度L"3對應於長度L’3的至少1/3,其中以拱形方式延伸 的高度彎曲側壁段與結束於該末端帶之以直線延伸的側壁 段相鄰接; a6.)其中該兩個以直線延伸側壁段皆成對具有相同長 度,且位在該等兩個側壁段之間的橫截面段具有相同大 小,並對稱地構形;及 a7.)其中在自該縱向中心線LML以平坦拱形方式延伸 ® 的該等側壁段之間的距離,大於在自該縱向中心線LML的 高度拱形延伸側壁段之間的距離,而位在於該縱向中心線 LML之兩側上以拱形方式延伸的該等兩個側壁段之間的橫 截面段係非對稱地構形;及 b.)該舵柱較佳地配置在該最大輪廓厚度PD的區域 中,或在此與其中該上方舵葉片段之鼻端帶之間,較佳地 與其末端繫緊裝置延伸超過該上方舵葉片段之整個高度。 令人驚訝地已發現由於該扭轉舵葉片之構造作爲根據 -8- 200930617 本發明的一平衡舵,其具有一小輪廓厚度,且在該舵葉片 的上方舵葉片段,在該最大輪廓厚度之區域安裝該舵柱, 該下方舵葉片段取得一窄輪廓,所以雖然該推進器流之高 速撞擊在該舵葉片上,該舵葉片的平衡可能不需要消耗額 外力量而達到,即使當此具有最大尺寸亦如此,其僅需藉 由安裝有該舵葉片的扭轉舵葉片之功能性協同運作來達 到,但其不能夠利用其它舵葉片構造及舵柱安裝來達到。 本發明提供一種包含一扭轉舵葉片之舵。此舵爲技術 ^ 解決方案,此方案令人驚訝地被發現有利於建造大型及非 常大型平衡舵葉片。舵管深入到具有該舵柱之舵葉片的上 方舵葉片段中,藉由整合在該上方舵葉片段之下方區域中 的環軸承,直接將該舵力量導引到船體中。該等力量係以 一懸臂樑方式引入,即作爲純彎曲應力而沒有扭矩。因此, 該舵管橫截面可設計成一相當薄的壁。此薄壁性質非常重 要,因爲該舵管的下方部份收容在該舵葉片中,即在該上 方舵葉片段中,因此,對於該舵葉片的輪廓厚度具有直接 〇 的影響。僅薄型舵輪廓,即一小輪廓厚度者,才有可能建 構節能的舵葉片,因爲該舵輪廓愈厚,其在該推進器水的 加速流動中產生的阻力愈大。 該舵的另一種實質的好處爲,由於此種在該舵葉片中 的整合式安裝,即在該上方舵葉片段中’該平衡舵或鏟形 舵之設計首次成爲可能,且幾乎無限制大小。習用的舵爲 利用舵角或舵支撐來作半平衡。因爲該固定舵角及對其環 繞旋轉的舵葉片並非如此自由形成,這種複雜的機械結構 -9- 200930617 很少會在該前緣處扭轉。發生在這些半平衡的舵中舵葉片 內部力量及力矩非均句地大於具有根據本發明之舵柱安裝 的平衡舵中者。面向該推進器之該舵葉片前緣的顯著扭轉 將代表相當大建構性不經濟的度量,即具有相對應較厚的 輪廓。 另一種好處爲由於該舵柱的安裝,做爲結構型式的平 衡舵首次成爲可能,其意謂在先前需要的舵角與其舵葉片 之間不再存有間隙。因此,通過這些間隙的側向流動即可 ❹ 避免,且亦可避免與其相關的嚴重氣穴侵蝕。 此外,在根據本發明之舵配置的具體實施例中,較佳 由鍛鋼構成的舵管被延伸到該舵葉片中,即延伸到該上方 舵葉片段中,但僅具有一下方套環軸承。該舵柱,類似於 輪轂具有一鍛造件,其連接靠近於到該舵該水動力中心, 其結果僅有一由於彎曲力矩的小負載。由此構造可排除疊 置振動。 由於該薄型舵輪廓,且因此由於該舵葉片的小輪廓厚 〇 胃度,可不需要特殊加強該舵柱的軸承,以平衡相對於該推 進器流的高壓以非常高速撞擊在該下方舵葉片段的該舵葉 片。 爲了消除在該舵葉片處的氣穴,此將根據本發明的輪 廓區分成一上半部及一下半部,其鼻端帶或前緣以某些角 度扭轉。該推進器尾波流及該流動與該船中線的角度由該 輪廓前緣被扭轉多少角度來規定。由於此新的輪廓變化, 該推進器渦流可沿著該舵葉片較佳地流動,且在該舵葉片 10- 200930617 的輪廓表面上不會形成會促進氣穴的壓力峰値。該改善環 繞該舵的流動可以顯著地節省燃料,並可改善操控性。 本發明的較佳具體實施例爲附屬申請專利範圍之標 的。 本發明的另一種較佳具體實施例在於該舵葉片的扭轉 區域具有封閉轉換區。爲此目的,形成流體的擋板根據該 等鼻端帶之致動輪廓而形成,並覆蓋該偏移區域,其具有 利於一流動、彎曲及長狀或半圓形輪廓,該輪廓配合於該 ® 舵葉片的外壁,該等擋板配置在兩個疊置的舵葉片段之兩 個側向偏移段之轉換區域中,其中一擋板自該上方舵葉片 段之鼻端帶延伸入其側壁當中,而另一擋板自該下方舵葉 片段之鼻端帶延伸入其側壁當中。 由於擋板配置在該等兩個疊置的舵葉片段之偏移段的 轉換區域中,一有利於流動的輪廓即可產生,藉此可避免 將會發生在這些轉換區域中的氣穴。藉此,以流動體方式 Ο 構形的「擋板」構形成覆蓋該等兩個鼻端帶之間的轉換區 域。因此,該等擋板在該等偏移區域的區域中抵接該舵葉 片並予以覆蓋這些’使得水可沿著該等擋板流動,而非沿 著該等偏移區域流動。藉此,可降低紊流的風險。因此, 該等擋板或它們的移動造成一種側向橋接,或覆蓋該上方 與該下方舵葉片段之間的轉換區域。該用語「覆蓋」在本 例中可瞭解爲該等流體之擋板大大的覆蓋該偏移區域。 在具有根據本發明所構形的一扭轉舵葉片之舵的情況 下,可以得到降低分流的風險之益處,其係藉由僅構形或 -11- 200930617 配置在該偏移區域中的擋板茲覆蓋該等偏移面而成爲一流 體,藉此,同時,由於該相對較小的尺寸,該流體式的擋 板對於該船隻的推進行爲沒有影響。藉此建立一「與推進 無關的效應j。 該舵另包含一舵柱,與該舵葉片功能上協同運作,其 具有至少一軸承,其中該舵柱(特別是由锻鋼或另一適當材 料製成):連同收容該柱的該舵管(尤其是由鍛鋼或另一適 當材料製成)係配置在該最大輪廓厚度PD的區域中,或在 此與其中的上方舵葉片段之鼻端帶之間,及附有末端繫緊 裝置而延伸超過在該上方舵葉片段之整個高度,且其中用 於伸入到該上方舵葉片段作爲一懸臂樑的該舵柱之舵管, 其具有一中央縱向孔來收容該舵柱,且其中該舵管橫截面 設計成薄壁式,且該舵管較佳地是在其自由端的區域中在 該內壁側上具有一套環軸承用於安裝該舵柱,且其中在其 末端區域中該舵柱自具有一區段的該舵管導引出來,且此 區段的末端連接至該上方舵葉片段。 該扭轉舵葉片與該舵柱的安裝組合成的舵之另一個好 處爲使用較高品質的材料。由於將該舵柱安裝在該上方舵 葉片段僅可使用高強度锻鋼,使得可達到降低實質重量, 並亦可達成降低成具有相同效能之習用舵的5 0%。 因此,本發明提供一種繫緊板,其配置在該上方舵葉 片段與該下方舵葉片段之間,且其固定連接至該等舵葉片 段,其中該繫緊板在該縱向中心線LML之兩側上具有對稱 的橫截面段,其具有輪廓及尺寸,其圍住該上方舵葉片段 -12- 200930617 之基板與該下方舵葉片段之覆蓋板,其皆具有它們的輪廓 與尺寸。 本發明另一具體實施例提供該上方舵葉片段之鼻端帶 與該下方舵葉片段之鼻端帶,係相對於該縱向中心線LML 側向偏移到左舷側BB及右舷側SB,使得經由該側向偏移 鼻端帶段所繪出之中心線M2相對於與一框架的橫截面積 之縱向中心線LML以至少3°到10°之角度α,較佳以8°的 角度延伸。 再者,根據本發明提供一具體實施例,其由位在該左 舷側ΒΒ與該右舷側SB上的該等上方及下方舵葉片段之平 坦彎曲拱形側壁段構成,其長度L4相較於位在該右舷側 SB與該左舷側BB上的該等上方及下方舵葉片段之高度彎 曲拱形側壁段之長度L5爲較短。 本發明另外提供該等上方與下方舵葉片段之高度彎曲 拱形側壁段之弧長BL1大於該等上方與下方舵葉片段之平 坦彎曲拱形側壁段之弧長BL,所以該等上方與下方舵葉片 段之高度彎曲拱形側壁段到沿直線延伸到該末端帶之該等 側壁段之轉換區域UB1及該等上方與下方舵葉片段之平坦 彎曲拱形側壁段到沿直線延伸到該末端帶之側壁段的轉換 區域UB在該末端帶之方向上偏移。 【實施方式】 根據本發明的舵200由兩個功能上協同運作的組件構 成,即具有一扭轉舵葉片100的平衡舵與安裝在其上方區 域中的一舵柱140(第1圖、第2圖、第3圖、第7圖及第 -13- 200930617 14 圖)。 在如第1圖所示的舵200中,110代表船體,120代表 用於收容該舵柱140的舵管,而100代表該舵葉片。一推 進器115被指定到舵葉片100。該推進器軸由PA代表。 根據第1圖、第2圖、第3圖及第7圖之舵葉片100 由兩個疊置的舵葉片段10、20構成,其面向該推進器115 之鼻端帶11、21之偏移使得相對於該舵葉片100之縱向中 心線LML該上方舵葉片段1 0之鼻端帶1 1側向偏移到左舷 ® BB,而該下方舵葉片段20的鼻端帶21側向偏移到右舷 SB(第4圖、第4A圖、第4B圖、第4C圖、第4D圖、第 4E圖及第13圖)。鼻端帶11、21之側向偏移之達成使得上 方舵葉片段10之鼻端帶11偏移到右舷SB,而下方舵葉片 段20之鼻端帶21偏移到左舷BB。上方舵葉片段10的兩 個側壁表面12、13及下方舵葉片段20的側壁表面21、23 在一末端帶15背離推進器115之方向上以一拱形方式自鼻 端帶11、21延伸,並插入通向末端帶15且直線延伸的側 壁段16、17及26、27。兩個舵葉片段10、20具有一共用 末端帶15,然而每個舵葉片段10、20具有一鼻端帶11與 21,藉此該扭轉可由於它們的側向位移而達到。 較佳地舵200包含一平衡舵。如果不同構形的舵,適 合匹配於扭轉的舵葉片且可達到根據本發明之舵葉片構造 的好處,則這些舵亦可使用。兩個疊置的舵葉片段10、20 皆具有相同或不同的高度。較佳地下方舵葉片段20具有相 較於該上方舵葉片段之高度較小的高度,上方舵葉片段10 -14- 200930617 之高度對應於至少1又1/2倍下方舵葉片段20的高度。兩 個舵葉片段10、20之鼻端帶11、21係構形成半圓弧狀。 舵葉片1〇〇具有向下錐形延伸的鼻端帶11、21,然而 由兩個舵葉片段10、20形成的末端帶15爲直線形,並平 行於舵柱140延伸(第1圖、第2圖及第3圖)。兩個舵葉片 段10、20之鼻端帶11、21的錐形輪廓使得相同輪廓構造 的兩個舵葉片段10、20、上方舵葉片段10、下方舵葉片段 20之相同輪廓構造之橫截面表面30的大小自舵葉片100 ® 的上方區域OB減小到該下方區域UB,所以由於橫截面表 面30的減小,即得到具有一小輪廓厚度之向下延伸的薄型 輪廓,其尤其是由兩個舵葉片段1〇、20之側壁表面12、13 及22、23的輪廓所得到。舵葉片100之小輪廓厚度亦爲本 發明的基本特徵。 如第13圖所示,面向推進器115之舵葉片100之邊緣 或鼻端帶11、21係相對於背離推進器115的邊緣或末端帶 15至少5°,較佳10°的角度Θ傾斜地行進。在該最大輪廓 厚度PD的兩側上兩個舵葉片段10、20之橫截面段31、32 的長度L、L1爲不同的構形。上方舵葉片段10與下方舵葉 片段20之橫截面段31在末端帶15與舵葉片100之最大輪 廓厚度PD之間的區域中之長度L較大於在舵葉片100之最 大輪廓厚度PD與鼻端帶11、21之間的上方舵葉片段10與 下方舵葉片段20之橫截面段32的長度L1大。在此例中, 該長度比例較佳地爲長度L相較於長度L1爲1又1/2倍(第 5圖)。 -15- 200930617 段 帶 白 最 至 末 右 方 向 1 ' PD 方 由 側 之 ΒΒ 線 地 舵葉片之構形使得在該左舷側BB上的上方舵葉片 10與在該右舷側SB上的下方舵葉片段20每一者皆包含 側壁段18、28,其以一平坦拱形的方式延伸,及在末端 15的方向上自鼻端帶11、21延伸,其具有一長度L2, 鼻端帶1 1、21延伸超過側壁段1 8之長度L’ 2,直到該 大輪廓厚度PD加上一長度L_'2,其對應於長度L’ 2的 少1/3,其中以一平坦拱形方式延伸的側壁段28與由於 端帶15結束之直線延伸的側壁段16(第5圖)相鄰接。 ® 再者,在該左舷側BB上的上方舵葉片段10與在該 舷側SB上的下方舵葉片段20每一者皆包含一以拱形的 式延伸的高度彎曲側壁段19、29,並在該末端帶15的方 上自鼻端帶11、12延伸,其具有一長度L3,自鼻端帶1 21延伸超過側壁段19之長度L’3,直到該最大輪廓厚度 加上長度L"3,其對應於長度L’3的至少1/3。以一拱形 式延伸的高度彎曲側壁段19、29與由於該末端帶15與 之直線延伸的側壁段17、27(第5圖、第4D圖)相鄰接。 〇 由於此種兩個舵葉片段10、20的構造,在兩側上該 壁段在該最大輪廓厚度PD的方向上,具有自鼻端帶11 21及自末端帶15上升的輪廓。 該上方舵葉片段10之鼻端帶11與下方舵葉片段20 鼻端帶2 1係相對於縱向中心線LML側向偏移到左舷側 及右舷側SB,使得經由該側向偏移鼻端帶段所繪之中心 M2以至少3。到10°的α角度延伸,但是亦可較高’較佳 是與一框架的橫截面之縱向中心線LML成8° ° -16- 200930617 舵200另包含一舵柱140,尤其是以鍛鋼 料製成,其與舵葉片100功能上協同運作, 軸承150安裝在之是以鍛鋼或另一適當材 120中。舵柱140係配置在上方舵葉片段1〇 度PD之區域中,且僅在其中(第1圖、第2 第15圖),即在代表該最大輪廓厚度PD與 LML之直線的交會點處(第5圖)。舵柱140 置145延伸超過舵葉片100之上方舵葉片g 度。爲了建構的原因,具有舵柱140的舵管 在該最大輪廓厚度PD與鼻端帶11、21之間 段10中。 深伸入上方舵葉片段10中作爲一懸臂榜 有一內孔125用於收容舵柱140(第14圖)。 該舵管的外徑,藉由插入該舵管到上方舵葉』 架40中的間隙105中而配置著(第3圖、第S 第8B圖、第8C圖)。 當作懸臂樑的舵管120具有的中央內縱 收容舵葉片100之舵柱140。此外,只要舵葉 該舵柱末端,該舵管120即構形成僅延伸到 10中。在內孔125內,舵管120具有用於安 軸承150,此軸承150較佳地配置在舵管120 域120b中。舵柱140的末端14 0b以其區段 導引出來。蛇柱140的此加長區段145的下 定連接至上方舵葉片段10,在170處,其中 或另一適當材 且藉由至少一 料製成一舵管 的最大輪廓厚 圖、第3圖及 該縱向中心線 連同其繫緊裝 3: 10之整個高 120亦可配置 的上方舵葉片 委的舵管120具 舵管120根據 片段10之各框 丨圖、第8 A圖、 向孔1 2 5,用於 j片100連接至 上方舵葉片段 裝舵柱140的 的下方未端區 145自舵管120 方自由端係固 提供一連接, -17- 200930617 如果該推進器軸需要被更換可使其自舵柱140釋放舵葉片 100。在此例中,舵柱140在區域170與扭轉舵葉片100的 連接位在該推進器軸PA之上方,所以爲了拆除該推進器 軸,舵葉片100僅需要自舵柱140移除,不需要自舵管120 撤除舵柱140來更換一推進器軸,因爲該舵管的下方自由 端120b以及舵柱140的下方自由端皆位在該推進器軸的中 央之上。在第15圖所示的具體實施例中,僅提供一單一內 軸承150用於安裝舵柱140在舵管120中;可省略在舵管 120的外壁上舵葉片100的另一個軸承。 舵葉片100具有一收縮或凹穴,如160所示,用於收 容舵管120的下方自由端120b。 舵管120的橫截面設計成薄壁,在其自由端的區域中 其內壁側上具有至少一套環軸承130,用於安裝舵柱140。 該舵柱的額外軸承亦可設置在舵管120的其它位置處。在 其末端區域140b中,舵柱140以區段140a自舵管120被導 引出來,且此區段140a之末端連接至上方舵葉片段10(第 14 圖)。 根據第3圖及第7圖,上方舵葉片段10與下方舵葉片 段20由形成該等側壁及水平網板或框架40、50,及形成該 等兩個舵葉片之內部加強件的垂直網板或框架之舵板所組 成。該等網板具有照明及污水孔。 如第3圖、第4圖、第4A圖、第4B圖、第4C圖及第 8圖、第8A圖、第8B圖、第8C圖所示,舵葉片100之上 方舵葉片段10的所有框架40具有相同形狀、相同側壁導 18· 200930617 引及匹配的鼻端帶11與末端帶15,該等框架的長度分別自 最上方框架減少到該最下方框架,因此該等框架的橫截面 表面之大小由上方減少到底部,所以鼻端帶11朝向舵葉片 100之基底傾斜地延伸(第1圖)。 下方舵葉片段20之所有框架50具有相同形狀、相同 側壁導引及匹配的鼻端帶21與末端帶15,框架50的長度 分別自最上方框架減少到該最下方框架,因此該等框架的 橫截面表面之大小由上方減少到底部,使得鼻端帶11朝向 ® 舵葉片20之基底傾斜地延伸。 由於此種構型,上方舵葉片段10與下方舵葉片段20 之鼻端帶11、21向下傾斜地延伸,然而末端帶15爲直線 形延伸,且平行於舵柱140的縱向軸,如第1圖所示。 兩個舵葉片段10、20彼此直接連接。在第7圖及第11 圖中,兩個舵葉片段10、20藉由一繫緊板45彼此連接。 此繫緊板45在該縱向中心線LML的兩側上具有對稱的橫 截面段46、47,及一表面輪廓及多處尺寸,其圍住該上方 ◎ 舵葉片段10之基板42與該下方舵葉片段20之覆蓋板41, 其皆具有它們的輪廓與尺寸,所以當上方舵葉片輪廓10在 繫緊板45上將其一個設置的另一個之上,且下方舵葉片段 20自下方設置在繫緊板45時,此由一個設置在另一個之上 的舵葉片段10、20側向地突出一非常小的邊緣區域(第10 圖及第11圖)。繫緊板45具有位在該中央縱向線LML上一 半圓形邊緣圓角11’,面向該推進器及背離該推進器之一邊 緣15’,其通入兩個舵葉片段10、20之末端帶15。繫緊板 -19- 200930617 45的側壁表面45a、45b具有匹配的弧形輪廓。 如第3圖及第10圖所示,下方舵葉片段20在該下方 區域中接合繫緊板45,其框架50具有一橫截面構造及形狀 可對應於框架40者,但具有框架40環繞其中央縱向線LML 旋轉90°(第4D圖、第4E圖、第8D圖、第8E圖、第8F 圖)。 根據第7圖、第8圖、第8A圖、第8B圖及第8C圖, 區段A、B、C及D之框架40以輪廓而言爲相同,但個別 ® 框架40之橫截面表面自上方減少到底部,所以鼻端帶1 1 傾斜地延伸。區段C利用繫緊板45接合於區段D。下方舵 葉片段20之區段E、F及G的框架50具有與框架40之輪 廓相同的輪廓,但具有框架50之高度彎曲拱形側壁段29 之側壁位在該左舷側BB(第8D圖、第8E圖及第8F圖), 然而在第7圖的示例性具體實施例中,具有高度彎曲拱形 側壁段19之框架40之側壁位在該右舷側SB上(第8圖、 第8A圖、第8B圖及第8C圖)。下方舵葉片段20之框架 50的橫截面對於它們的長度由上方減少到底部,使得下方 舵葉片段20之鼻端帶21亦傾斜地延伸(第7圖)。 第9圖所示爲上方舵葉片段10之上方覆蓋板43,其具 有間隙105用於引入舵管120。第10圖所示爲具有其兩個 舵葉片段10、20與框架40及50之舵葉片100的視圖。 在上方舵葉片段10中用於收容舵柱140的舵管120之 間隙105或孔的直徑略微小於舵葉片段1〇之最大輪廓厚度 PD。由於此構造’即可造成一非常薄型的舵葉片輪廓。 -20- 200930617 具有其兩個舵葉片段ίο、20之舵葉片100的構造及橫 截面輪廓爲上方及下方舵葉片段10、20之平坦彎曲拱形側 壁段18、28之長度L2、L’ 2短於上方及下方舵葉片段10、 20之高度彎曲拱形側壁段19、29之長度L3(第5圖及第6 圖)。上方舵葉片段10之側壁段18到該縱向中心線LML 之距離α相等於側壁段19之距離《1。一直到末端帶15, 距離α、α 1永遠相同,但它們在末端帶1 5之方向上減少。 以下的距離關係在鼻端帶1 1的方向上得到: a 2 < a 3 a 4 < a 5 a 6 < a Ί 然後,依循最大輪廓厚度PD。然後以下的距離關係在 該鼻端帶的方向上得到: a 8 > a 9 a 10 > a 11200930617 a.) consisting of a balanced rudder blade, preferably an elongated profile of the rudder blade with a small profile thickness, comprising rudder blade segments having the same or different heights of g superposition, preferably comprising a lower rudder segment The blade segment is smaller in height than the upper rudder blade segment and includes the bands facing the thruster and having a generally semi-circular profile disposed relative to the longitudinal centerline of the rudder blade LML—the nasal end band is deflected by the side BB or the starboard side SB, while the other end band is laterally offset to the house SB or the port side BB, wherein the side walls of the two rudder blade segments are facing away from the In the end belt of the propeller, al.) wherein the two nose end belts and the end belt extend in a conical manner as the cross-sectional product decreases from the upper region OB of the rudder blade to the lower region UB, a2. Or the end strip extends straight and parallel to the rudder post, and the nose strips extend in a tapered manner as the cross-sectional area decreases from the rudder blade upper region OB to the region UB, a3.) a cross section of the upper rudder blade segment and the lower rudder blade segment at the end band Between the maximum contour thickness PD of the rudder blade and a length L corresponding to the upper rudder blade segment and the lower rudder blade segment between the maximum profile thickness of the rudder blade and the nose end bands The length L 1 is at least 1 and 1 /2 times, a4.) wherein the upper rudder blade segment on the port side BB and the lower rudder blade segment on the side SB each comprise a side wall segment extending in the form of a flat arch And extending from the end strips in the direction of the end band 'having a length L2 extending from the nose strips beyond the ones; having: two of its heights 1 nose setting to the left side丨 丨 : 形 形 形 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; L"2, the length L"2 is at least 1/3 corresponding to the length L'2, wherein the side wall segment extending in a flat arch manner is adjacent to the side wall segment extending in a straight line ending the end band; a5.) Wherein the upper rudder blade segment on the port side BB and the lower rudder blade on the starboard side SB Each of the segments includes a highly curved sidewall segment extending in an arched manner and extending from the nose straps in the direction of the end band, having a length L3 from which the nose strap extends beyond Side © the length L'3 of the wall segment until the maximum profile thickness PD is added to the length L"3, the length L"3 corresponds to at least 1/3 of the length L'3, wherein the curved portion of the wall is extended in an arcuate manner Adjacent to a side wall section extending in a straight line extending from the end strip; a6.) wherein the two linearly extending side wall sections are all in the same length in pairs, and the cross section between the two side wall sections has The same size and symmetrically configured; and a7.) wherein the distance between the side wall segments extending in a flat arched manner from the longitudinal centerline LML is greater than the height arched from the longitudinal centerline LML Extending the distance between the side wall segments, and the cross-sectional sections between the two side wall sections extending in an arcuate manner on both sides of the longitudinal centerline LML are asymmetrically configured; and b.) The rudder post is preferably disposed in the region of the maximum profile thickness PD Preferably, or between the nose straps of the upper rudder blade segment, the end tie means extends beyond the entire height of the upper rudder blade segment. Surprisingly, it has been found that the configuration of the torsion rudder blade is a balance rudder according to the invention according to -8-200930617, which has a small profile thickness, and the rudder blade segment above the rudder blade, at the maximum profile thickness The rudder post is mounted in the area, the lower rudder blade segment has a narrow profile, so although the high speed of the propeller flow impinges on the rudder blade, the balance of the rudder blade may be achieved without consuming extra force, even if this has the largest The same is true for the dimensions, which only need to be achieved by the functional cooperative operation of the torsion rudder blades with the rudder blades, but which cannot be achieved with other rudder blade configurations and rudder mounting. The present invention provides a rudder comprising a torsion rudder blade. This rudder is a technical ^ solution that was surprisingly found to be beneficial for the construction of large and very large large-scale rudder blades. The rudder tube penetrates into the upper rudder blade segment of the rudder blade having the rudder post, and the rudder force is directly guided into the hull by a ring bearing integrated in the lower region of the upper rudder blade segment. These forces are introduced in a cantilever beam, ie as pure bending stress without torque. Therefore, the rudder tube cross section can be designed as a relatively thin wall. This thin-walled nature is important because the lower portion of the rudder tube is housed in the rudder blade, i.e., in the upper rudder blade segment, and thus has a direct 〇 effect on the contour thickness of the rudder blade. Only a thin rudder profile, i.e., a small profile thickness, makes it possible to construct an energy-efficient rudder blade because the thicker the rudder profile, the greater the resistance it creates in the accelerated flow of the propeller water. Another substantial benefit of the rudder is that due to this integrated installation in the rudder blade, the design of the balance rudder or shovel rudder is made possible for the first time in the rudder blade segment, and is almost unlimited in size. . The conventional rudder is semi-equilibrium using the rudder angle or rudder support. Since the fixed rudder angle and the rudder blade for its orbiting rotation are not so freely formed, this complicated mechanical structure -9-200930617 rarely twists at the leading edge. The internal forces and moments of the rudder blades occurring in these semi-balanced rudders are non-uniformly larger than those in the balance rudder with the rudder post mounted according to the present invention. The significant torsion of the leading edge of the rudder blade facing the thruster will represent a relatively unconstructive measure of constructiveness, i.e., having a relatively thick profile. Another benefit is that for the rudder column installation, a balanced rudder as a structural type is first possible, meaning that there is no longer a gap between the previously required rudder angle and its rudder blade. Therefore, lateral flow through these gaps can be avoided and severe cavitation erosion associated with them can be avoided. Moreover, in a particular embodiment of the rudder arrangement according to the present invention, a rudder tube preferably constructed of forged steel is extended into the rudder blade, i.e., into the upper rudder blade segment, but having only a lower collar bearing. The rudder post, similar to the hub, has a forged member that is attached to the hydrodynamic center of the rudder, with the result that there is only a small load due to bending moments. This configuration eliminates overlapping vibrations. Due to the thin rudder profile, and therefore due to the small profile of the rudder blade, it is possible to eliminate the need to specifically strengthen the rudder post bearing to balance the high pressure relative to the propeller flow to impact the lower rudder blade segment at a very high speed. The rudder blade. In order to eliminate air pockets at the rudder blade, this will be divided into an upper half and a lower half according to the present invention, with the nose end band or leading edge twisted at some angle. The thruster wake flow and the angle of the flow to the ship's centerline are defined by how much the leading edge of the profile is twisted. Due to this new profile change, the propeller vortex can flow preferably along the rudder blade, and a pressure peak that promotes cavitation is not formed on the contoured surface of the rudder blade 10-200930617. This improvement in the flow around the rudder can result in significant fuel savings and improved handling. Preferred embodiments of the invention are subject to the scope of the appended claims. Another preferred embodiment of the invention resides in that the torsion region of the rudder blade has a closed transition zone. For this purpose, a fluid-forming baffle is formed according to the actuating profile of the nose strips and covers the offset region, which facilitates a flow, bend and a long or semi-circular contour, the contour being adapted to the The outer wall of the rudder blade, which is disposed in the transition region of the two laterally offset segments of the two overlapping rudder blade segments, wherein a baffle extends from the nose end band of the upper rudder blade segment into it Among the side walls, the other baffle extends from the nose end band of the lower rudder blade segment into its side wall. Since the baffle is disposed in the transition region of the offset segments of the two stacked rudder blade segments, a flow-friendly profile can be created whereby air pockets that will occur in these transition regions can be avoided. Thereby, a "baffle" in the form of a flow body Ο is formed to cover the transition region between the two nose end bands. Thus, the baffles abut the rudder blades in the region of the offset regions and cover these so that water can flow along the baffles rather than along the offset regions. Thereby, the risk of turbulence can be reduced. Thus, the baffles or their movements cause a lateral bridging or covering the transition area between the upper and lower rudder blade segments. The term "overlay" is used in this example to understand that the baffles of the fluids greatly cover the offset region. In the case of a rudder having a torsion rudder blade configured in accordance with the present invention, the benefit of reducing the risk of shunting is achieved by means of a baffle configured only in configuration or -11-200930617 in the offset region. The offset faces are covered to become a fluid, whereby at the same time, due to the relatively small size, the fluid baffle has no effect on the propulsion behavior of the vessel. Thereby establishing a "effect unrelated to propulsion j. The rudder further comprises a rudder post functionally cooperating with the rudder blade, having at least one bearing, wherein the rudder post (especially from forged steel or another suitable material) Made with: the rudder tube (especially made of forged steel or another suitable material) accommodating the column is disposed in the region of the maximum profile thickness PD, or the nose of the upper rudder blade segment therein a rudder tube between the belts and the rudder column with the end tie-down device extending beyond the entire height of the upper rudder blade segment and extending into the upper rudder blade segment as a cantilever beam a central longitudinal bore for receiving the rudder post, and wherein the rudder tube has a thin-walled cross-section, and the rudder tube preferably has a set of ring bearings on the inner wall side in the region of its free end for The rudder post is mounted, and wherein the rudder post is guided from the rudder tube having a section in its end region, and the end of the section is connected to the upper rudder blade segment. The torsion rudder blade and the rudder post The installation of the rudder into another The use of higher quality materials. Since the rudder column can be mounted on the upper rudder blade segment, only high-strength forged steel can be used, so that the actual weight can be reduced, and the conventional rudder with the same performance can be achieved. 0%. Accordingly, the present invention provides a tie plate disposed between the upper rudder blade segment and the lower rudder blade segment and fixedly coupled to the rudder blade segments, wherein the tie plate is at the longitudinal center A symmetrical cross-sectional section on both sides of the line LML has a contour and a size that encloses the substrate of the upper rudder blade segment -12-200930617 and the cover plate of the lower rudder blade segment, both of which have their contours and Another embodiment of the present invention provides a nose end band of the upper rudder blade segment and a nose end band of the lower rudder blade segment, laterally offset from the longitudinal centerline LML to a port side BB and a starboard side SB. So that the center line M2 drawn through the laterally offset nose strip section is at an angle α of at least 3° to 10° with respect to the longitudinal centerline LML of the cross-sectional area of a frame, preferably 8° Angle extension. Again, According to the present invention, there is provided a specific embodiment comprising a flat curved arched side wall section of the upper and lower rudder blade segments located on the port side sill and the starboard side SB, the length L4 being compared to the position The length L5 of the highly curved arcuate side wall section of the upper and lower rudder blade segments on the starboard side SB and the port side BB is shorter. The present invention additionally provides a highly curved arched side wall of the upper and lower rudder blade segments. The arc length BL1 of the segment is greater than the arc length BL of the flat curved arched side wall segments of the upper and lower rudder blade segments, so the height of the upper and lower rudder blade segments is curved to extend the arcuate sidewall segment to a straight line extending to the end band The transition region UB1 of the side wall segments and the flat curved arched side wall segments of the upper and lower rudder blade segments are offset from the transition region UB extending linearly to the side wall segments of the end band in the direction of the end band. [Embodiment] The rudder 200 according to the present invention is composed of two functionally cooperative components, that is, a balance rudder having a torsion rudder blade 100 and a rudder column 140 installed in an upper region thereof (Fig. 1, Fig. 2) Figure, Figure 3, Figure 7 and Figure 13-200930617 14 Figure). In the rudder 200 as shown in Fig. 1, 110 represents a hull, 120 represents a rudder tube for accommodating the rudder column 140, and 100 represents the rudder blade. A pusher 115 is assigned to the rudder blade 100. The thruster shaft is represented by a PA. The rudder blade 100 according to Figures 1, 2, 3 and 7 is composed of two superposed rudder blade segments 10, 20 which face the offset of the nose end belts 11, 21 of the pusher 115. The nose end band 1 1 of the upper rudder blade segment 10 is laterally offset to the port side BB with respect to the longitudinal centerline LML of the rudder blade 100, and the nose end band 21 of the lower rudder blade segment 20 is laterally offset. To the starboard side SB (Fig. 4, Fig. 4A, Fig. 4B, Fig. 4C, Fig. 4D, Fig. 4E, and Fig. 13). The lateral offset of the nose straps 11, 21 is such that the nose end band 11 of the upper rudder blade segment 10 is offset to the starboard SB and the nose end band 21 of the lower rudder blade segment 20 is offset to the port BB. The side wall surfaces 12, 13 of the upper rudder blade segment 10 and the side wall surfaces 21, 23 of the lower rudder blade segment 20 extend from the nose end bands 11, 21 in an arched manner in the direction of an end band 15 facing away from the pusher 115. And inserting the side wall segments 16, 17 and 26, 27 leading to the end band 15 and extending in a straight line. The two rudder blade segments 10, 20 have a common end band 15, however each rudder blade segment 10, 20 has a nose end band 11 and 21 whereby the twist can be achieved due to their lateral displacement. Preferably, the rudder 200 includes a balance rudder. These rudders can also be used if the rudders of different configurations are adapted to the torsion rudder blades and the benefits of the rudder blade construction according to the present invention are achieved. The two superposed rudder blade segments 10, 20 have the same or different heights. Preferably, the lower rudder blade segment 20 has a smaller height than the height of the upper rudder blade segment, and the height of the upper rudder blade segment 10-14-200930617 corresponds to at least 1 and 1/2 times the lower rudder blade segment 20 height. The nose end bands 11, 21 of the two rudder blade segments 10, 20 are formed in a semi-arc shape. The rudder blade 1 has a nose end band 11, 21 extending downwardly, whereas the end band 15 formed by the two rudder blade segments 10, 20 is rectilinear and extends parallel to the rudder post 140 (Fig. 1, Figure 2 and Figure 3). The tapered profile of the nose end bands 11, 21 of the two rudder blade segments 10, 20 is such that the two rudder blade segments 10, 20, the upper rudder blade segment 10, and the lower rudder blade segment 20 of the same contour configuration have the same contour configuration. The size of the section surface 30 is reduced from the upper region OB of the rudder blade 100 ® to the lower region UB, so that due to the reduction of the cross-sectional surface 30, a downwardly extending thin profile with a small profile thickness is obtained, in particular It is obtained from the contours of the side wall surfaces 12, 13 and 22, 23 of the two rudder blade segments 1 and 20. The small profile thickness of the rudder blade 100 is also an essential feature of the invention. As shown in Fig. 13, the edge or nose straps 11, 21 of the rudder blade 100 facing the pusher 115 are inclined at an angle of at least 5, preferably 10, from the edge or end band 15 facing away from the pusher 115. . The lengths L, L1 of the cross-sectional sections 31, 32 of the two rudder blade segments 10, 20 on both sides of the maximum profile thickness PD are of different configurations. The length L of the cross section 31 of the upper rudder blade segment 10 and the lower rudder blade segment 20 between the end belt 15 and the maximum contour thickness PD of the rudder blade 100 is greater than the maximum contour thickness PD and nose at the rudder blade 100. The upper rudder blade segment 10 between the end bands 11, 21 is greater than the length L1 of the cross-sectional segment 32 of the lower rudder blade segment 20. In this example, the length ratio is preferably such that the length L is 1 and 1/2 times larger than the length L1 (Fig. 5). -15- 200930617 Section with white up to the last right direction 1 'PD side by side 线 The line rudder blade is configured such that the upper rudder blade 10 on the port side BB and the lower rudder blade on the starboard side SB Each of the segments 20 includes side wall segments 18, 28 that extend in a flat arched manner and extend from the nose end bands 11, 21 in the direction of the end 15 having a length L2, nose end band 1 1 21 extends beyond the length L' 2 of the side wall segment 18 until the large profile thickness PD is added to a length L_'2, which corresponds to less than 1/3 of the length L'2, wherein it extends in a flat arch The side wall section 28 is adjacent to the side wall section 16 (Fig. 5) which extends due to the end of the end band 15. Further, the upper rudder blade segment 10 on the port side BB and the lower rudder blade segment 20 on the side SB each comprise a highly curved side wall section 19, 29 extending in an arched manner, and Extending from the nose end strips 11, 12 on the end strip 15 has a length L3 extending from the nose end strip 1 21 beyond the length L'3 of the side wall section 19 until the maximum contour thickness plus length L" 3, which corresponds to at least 1/3 of the length L'3. The highly curved side wall sections 19, 29 extending in an arch shape are adjacent to the side wall sections 17, 27 (Fig. 5, Fig. 4D) which extend linearly with the end strip 15. Due to the construction of such two rudder blade segments 10, 20, on the two sides the wall segment has a profile from the nose end band 11 21 and from the end band 15 in the direction of the maximum profile thickness PD. The nose end band 11 of the upper rudder blade segment 10 and the lower rudder blade segment 20 nose band 2 1 are laterally offset relative to the longitudinal centerline LML to the port side and starboard side SB such that the nose is offset via the lateral direction The center M2 drawn by the band is at least 3. Extending to an angle of 10°, but also higher 'preferably 8° ° with the longitudinal centerline LML of the cross section of a frame -16-200930617 The rudder 200 further comprises a rudder post 140, especially forged steel It is made to function functionally with the rudder blade 100, which is mounted in forged steel or another suitable material 120. The rudder post 140 is disposed in the region of the upper rudder blade segment 1 PD degree PD, and is only in it (Fig. 1, Fig. 2 and Fig. 15), that is, at the intersection of the line representing the maximum contour thickness PD and LML. (Figure 5). The rudder post 140 is extended 145 beyond the rudder blade g degrees above the rudder blade 100. For construction reasons, the rudder tube with the rudder post 140 is in the segment 10 between the maximum profile thickness PD and the nose end strips 11, 21. Extending deep into the upper rudder blade segment 10 as a cantilever list, an inner hole 125 is provided for receiving the rudder post 140 (Fig. 14). The outer diameter of the rudder tube is placed by inserting the rudder tube into the gap 105 in the upper rudder blade frame 40 (Fig. 3, Fig. 8B, Fig. 8C). The rudder tube 120, which is a cantilever beam, has a central inner longitudinal direction that accommodates the rudder post 140 of the rudder blade 100. Further, the rudder tube 120 is configured to extend only to 10 as long as the rudder blade ends the rudder post. Within bore 125, rudder tube 120 is provided for mounting bearing 150, which is preferably disposed in rudder tube 120 domain 120b. The end 14 0b of the rudder post 140 is guided by its section. The lengthened section 145 of the pillar 140 is connected to the upper rudder blade segment 10, at 170, or another suitable material and at least one material is formed into a maximum contour thickness map of the rudder tube, FIG. 3 and The longitudinal centerline, together with the rudder tube 120 of the upper rudder blade, which can be configured as the entire height 120 of the tie 3: 10, has a rudder tube 120 according to the frame of the segment 10, FIG. 8A, and the hole 1 2 5. The lower end region 145 for the j-piece 100 connected to the upper rudder blade segment rudder post 140 provides a connection from the free end of the rudder tube 120, -17-200930617 if the propeller shaft needs to be replaced. It causes the rudder blade 100 to be released from the rudder post 140. In this example, the connection of the rudder post 140 to the torsion rudder blade 100 in the region 170 is above the propeller shaft PA, so in order to remove the propeller shaft, the rudder blade 100 only needs to be removed from the rudder post 140, and does not need The rudder stock 140 is removed from the rudder tube 120 to replace a propeller shaft because the lower free end 120b of the rudder tube and the lower free end of the rudder post 140 are located above the center of the propeller shaft. In the embodiment illustrated in Fig. 15, only a single inner bearing 150 is provided for mounting the rudder post 140 in the rudder tube 120; the other bearing of the rudder blade 100 on the outer wall of the rudder tube 120 may be omitted. The rudder blade 100 has a constriction or recess, as shown at 160, for receiving the lower free end 120b of the rudder tube 120. The cross section of the rudder tube 120 is designed as a thin wall having at least one set of ring bearings 130 on its inner wall side in the region of its free end for mounting the rudder post 140. Additional bearings for the rudder post may also be placed at other locations on the rudder tube 120. In its end region 140b, the rudder post 140 is guided from the rudder tube 120 by a section 140a, and the end of this section 140a is connected to the upper rudder blade segment 10 (Fig. 14). According to Figures 3 and 7, the upper rudder blade segment 10 and the lower rudder blade segment 20 are formed by the vertical walls forming the side walls and the horizontal slabs or frames 40, 50, and the internal reinforcement forming the two rudder blades. The rudder board of the board or frame. The stencils have illumination and sewage holes. As shown in Fig. 3, Fig. 4, Fig. 4A, Fig. 4B, Fig. 4C and Fig. 8, Fig. 8A, Fig. 8B, and Fig. 8C, all of the rudder blade segments 10 above the rudder blade 100 are shown. The frame 40 has the same shape, the same side wall guide 18·200930617 leads to the matching nose end band 11 and the end band 15, the length of the frames being reduced from the uppermost frame to the lowermost frame, respectively, so the cross-sectional surface of the frames The size is reduced from the top to the bottom, so the nose end band 11 extends obliquely toward the base of the rudder blade 100 (Fig. 1). All of the frames 50 of the lower rudder blade segment 20 have the same shape, the same sidewall guide and matching nose straps 21 and end straps 15, the length of the frame 50 being reduced from the uppermost frame to the lowermost frame, respectively, so that the frames The size of the cross-sectional surface is reduced from above to the bottom such that the nose end band 11 extends obliquely towards the base of the rudder blade 20. Due to this configuration, the upper rudder blade segment 10 and the nose end belts 11, 21 of the lower rudder blade segment 20 extend obliquely downward, whereas the end band 15 extends linearly and parallel to the longitudinal axis of the rudder post 140, as in the first Figure 1 shows. The two rudder blade segments 10, 20 are directly connected to each other. In Figs. 7 and 11, the two rudder blade segments 10, 20 are connected to each other by a tie plate 45. The tie plate 45 has symmetric cross-sectional sections 46, 47 on both sides of the longitudinal centerline LML, and a surface profile and a plurality of dimensions surrounding the base 42 of the upper rudder blade segment 10 and the lower portion The cover plates 41 of the rudder blade segments 20 all have their contours and dimensions, so that when the upper rudder blade profile 10 is placed one above the other on the tie plate 45, and the lower rudder blade segment 20 is set from below When the plate 45 is fastened, this bulges from the rudder blade segments 10, 20 placed one above the other, projecting a very small edge area (Figs. 10 and 11). The tie plate 45 has a rounded corner 11' on the central longitudinal line LML, facing the pusher and facing away from one of the edges 15' of the pusher, which opens into the ends of the two rudder blade segments 10, 20 With 15. The side wall surfaces 45a, 45b of the tie plates -19- 200930617 45 have matching curved profiles. As shown in Figures 3 and 10, the lower rudder blade segment 20 engages the tie plate 45 in the lower region, the frame 50 having a cross-sectional configuration and shape that may correspond to the frame 40, but having a frame 40 surrounding it. The center longitudinal line LML is rotated by 90° (Fig. 4D, Fig. 4E, Fig. 8D, Fig. 8E, Fig. 8F). According to Figures 7, 8, 8A, 8B, and 8C, the frames 40 of the segments A, B, C, and D are identical in outline, but the cross-sectional surfaces of the individual® frames 40 are self-contained. The upper portion is reduced to the bottom, so the nose end band 1 1 extends obliquely. Section C is joined to section D by a tie plate 45. The frame 50 of sections E, F and G of the lower rudder blade segment 20 has the same contour as the contour of the frame 40, but the side wall of the highly curved arched side wall section 29 having the frame 50 is located on the port side BB (Fig. 8D 8E and 8F), however, in the exemplary embodiment of Fig. 7, the side wall of the frame 40 having the highly curved arched side wall section 19 is located on the starboard side SB (Fig. 8, Fig. 8A). Figure, Figure 8B and Figure 8C). The cross-section of the frame 50 of the lower rudder blade segment 20 is reduced from above to the bottom for their length such that the nose end band 21 of the lower rudder blade segment 20 also extends obliquely (Fig. 7). Figure 9 shows the upper cover plate 43 above the upper rudder blade segment 10 with a gap 105 for introducing the rudder tube 120. Figure 10 shows a view of the rudder blade 100 with its two rudder blade segments 10, 20 and frames 40 and 50. The gap 105 or the diameter of the hole in the upper rudder blade segment 10 for accommodating the rudder tube 140 is slightly smaller than the maximum contour thickness PD of the rudder blade segment 1〇. Due to this configuration, a very thin rudder blade profile can be created. -20- 200930617 The construction and cross-sectional profile of the rudder blade 100 with its two rudder blade segments ίο, 20 is the length L2, L' of the flat curved arched side wall segments 18, 28 of the upper and lower rudder blade segments 10, 20 2 is shorter than the length L3 of the curved arched side wall sections 19, 29 of the upper and lower rudder blade segments 10, 20 (Figs. 5 and 6). The distance a of the side wall section 18 of the upper rudder blade segment 10 to the longitudinal centerline LML is equal to the distance "1" of the side wall section 19. Up to the end band 15, the distances α, α 1 are always the same, but they decrease in the direction of the end band 15 . The following distance relationship is obtained in the direction of the nose end band 1 1 : a 2 < a 3 a 4 < a 5 a 6 < a Ί Then, the maximum profile thickness PD is followed. Then the following distance relationship is obtained in the direction of the nose band: a 8 > a 9 a 10 > a 11

a 12 > a 13 a 14 > a 15 a 16 > a 17 a 18 > a 19, 其中距離al6到距離al7的比例約爲2:1。第6圖清 楚地顯示該等距離與另一個之比例,即距離α9、all、α 13、α15、α17、α19在鼻端帶11之方向上實質上相對於 距離α8、α10、α12、α14、α16、α18減少。此具有所 示距離之橫截面輪廓延伸通過上方舵葉片段10之所有橫 -21- 200930617 截面及通過該下方舵葉片之所有橫截面,因爲上方 段1 〇的所有橫截面具有相同形狀,其亦應用到下方 段20的橫截面,且特別考慮到事實上舵葉片100之 或框架相對於它們的長度及相對於它們面向該等鼻 區域由上方縮減到底部(第10圖)。 根據第14圖所示之另一具體實施例,上方與下 片段10、20之高度彎曲拱形側壁段19、29之弧長 於上方與下方舵葉片段10、20之平坦彎曲拱形側壁 ® 28之弧長BL,所以上方與下方舵葉片段10、20之 曲拱形側壁段1 9、29到沿直線延伸到末端帶1 5之 17、27之轉換區域UB1及上方與下方舵葉片段10 平坦彎曲拱形側壁段1 8、28到沿直線行進到末端费 側壁段16、26的轉換區域ϋΒ,在該末端帶15之方 移,使得轉換區域UB1相對於轉換區域UB爲面向 帶。在此例中,側壁部18、19及28、29之長度如^ L3 > L2 ❹ L, 2 < L, 3 L4 > L’ 4 (第14圖) 聚集到末端帶15之上方舵葉片段10與下方舵 20之直線形側壁段16、17、26、27之腳較佳地具有 度,但是亦有可能有不相等長度的構形。 本發明亦包括一種舵,其中扭轉舵葉片100具 超過兩個舵葉片段10、20的一鰭板。 舵葉片 舵葉片 橫截面 端帶之 方舵葉 BL1大 段18、 高度彎 側壁段 、20之 〶15之 向上偏 該末端 葉片段 相同長 有延伸 -22- 200930617 如第16圖至第23圖所示,擋板200、201(變流器)根 據鼻端帶11、21之致動輪廓形成,並覆蓋該偏移區域,且 具有一利於流動、彎曲、長狀或半圓形輪廓,該擋板200、 201放置在兩個叠置的舵葉片段1〇、20之兩個側向偏移段 A1、A2之轉換區域中,其中一擋板200自上方舵葉片段10 之鼻端帶11延伸進入其側壁中,而另一擋板201自下方舵 葉片段20之鼻端帶21延伸進入其側壁中,且其利用位在 彼此面對的邊緣(200d、201d)而彼此接合。 兩個擋板200、201係加入到覆蓋兩個舵葉片段1〇、20 之偏移區域之間的轉換區域的一流體。上方舵葉片段10以 及下方舵葉片段20兩者之每一者具有一帶狀且略微彎曲 的擋板2 00或201,其可配合於該舵葉片的外壁形狀,其中 該等兩個擋板之每一擋板位在面向鼻端帶11、21或推進器 115之區段200b或201b,且爲一組件,即爲該鼻端帶之整 合組件。再者,每個擋板2 00或201具有一後方帶狀段200c 或201c,其抵接於該舵的側壁或整合在其中(第17圖、第 18圖、第19圖及第20圖)。兩個擋板200、201之區段2 00 b 或201b位在鼻端帶11、21的區域中,並具有一大約爲蓋 狀的構造2 00a、201a,其在當鼻端帶11、21由前方觀視時 (第16圖及第22圖)時具有一大致半圓形狀,其中這些蓋狀 區段200b、201b類似於鼻端帶11、21係偏移到左舷BB及 右舷SB(第22圖)。 兩個蓋狀區段200b、201b共同形成角半部200’ b、 2〇1’ b,其利用它們的基底側彼此抵接(第16圖、第17圖、 -23- 200930617 第20圖)。因此,上方舵葉片段10之左舷側側壁包含擋板 200,且下方舵葉片段20之右舷側側向邊緣包含擋板201, 擋板200、201之配置使得它們的帶狀及珠狀的區段2 00c、 201c位在該舵葉片的側壁中,然而它們面向推進器115之 區段2 00b、201b位在鼻端帶11、21之區域中。 位在兩個鼻端帶 11、21之區域中的區段200b、201b 利用彼此面對的邊緣200d、201d彼此銲接在一起,並銲接 到鼻端帶1 1、21(第22圖)。 對於根據第24圖的具體實施例,構形成半圓形的一流 體式的擋板210設置在兩個舵葉片段10、20之偏移區域中。 根據本發明之舵的特徵爲該等申請專利範圍所指明的 特徵,並由在本說明中所解釋的具體實施例,及由在圖面 及圖式中所示的示例性具體實施例所特徵化。擋板200、201 以及配置在兩個舵葉片段10、20之偏移區域中的210具有 在本說明中所描述及在圖面中所顯示的具體實施例,並類 似於該舵葉片構造,其亦爲本發明之標的。 【圖式簡單說明】 本發明之示例性具體實施例在以下參照圖式進行解 釋。在圖面當中: 第1圖爲舵的側視圖,該舵包含具有一上方及一下方 舵葉片段之扭轉平衡舵葉片及包含安裝於該上方舵葉片段 中的一舵柱, 第2圖爲該舵的扭轉舵葉片之示意圖, 第3圖爲具有該移除外殻,及在該等兩個舵葉片段中 -24- 200930617 一些板狀加強肋之扭轉舵葉片的示意骨架圖, 第4圖、第4A圖、第4B圖及第4C圖爲根據第3圖之 舵葉片的上方舵葉片段之四個板狀框架, 第4D圖爲根據第3圖之舵葉片的下方舵葉片段之一板 狀框架的放大圖, 第4E圖爲根據第3圖之舵葉片的下方舵葉片段之板狀 框架, 第5圖爲根據第4圖之板狀框架的放大再現圖, ® 第6圖爲根據第4圖之板狀框架的放大再現圖,其具 有該側緣區域到該框架的縱向中心線之距離的資訊, 第7圖爲該扭轉平衡舵葉片之另一具體實施例的骨架 圖,其包含配置在該上方舵葉片段與該下方舵葉片段中的 複數個板狀框架, 第8圖、第8A圖、第8B圖及第8C圖爲根據第7圖之 舵葉片的上方舵葉片段之四個板狀框架的上視放大圖,其 具有間隙來收容該舵柱的舵管, 第8D圖、第8E圖及第8F圖爲根據第7圖之舵葉片的 下方舵葉片段之三個板狀框架的上視放大圖, 第9圖爲根據第7圖之舵葉片的上方舵葉片段之覆蓋 板’從上方所視放大圖,其具有間隙用於收容該舵柱的舵 管; 第10圖爲根據第7圖之舵配置的扭轉舵葉片,從下方 所視放大圖; 第11圖爲根據第7圖之舵配置,從在該上方舵葉片段 -25- 200930617 的 置 設 間 之 段 緊 接 蛇; 方寸 上尺 該與 括廓 包輪 寸之 尺板 處蓋 片多覆 葉及之 舵廓段 方輪片 下其葉 該,舵 與圖方 大下 放該 視與 所板 方基 上之 之段 板片 葉 斜 傾 上 側 器 進 .1 1 二 推 該 ;在 圖有 視具 UBI, 之圖 片視 葉側 舵之 轉片 扭葉 該舵 爲爲 圖 圖 2 3 11 11 的 緣 邊 片 葉 舵 第第的 伸 延 的 架 框 之 片 葉 舵 方 上 的 例 施 實圖 體視 具之 一 視 另所 從方 爲上 圖之 廊 輪 第面 截 橫 ο 5 11 的 柱 舵 該 有 裝 安 中 段 片 葉 舵 方 上 該·’ 在面 置截 配直 爲垂 圖的 柱 舵 第之 管 舵 第16圖爲從該扭轉舵葉片之下方所視之視圖,其中在 該舵的兩個舵葉片段之偏移區域中具有流體式的擋板; 第17圖爲根據第16圖之舵的側視圖; 第18圖爲根據第16圖之舵的後視圖; 第19圖爲根據第16圖之舵的示意前視圖; 第20圖爲根據第1 6圖之舵的示意側視圖; ❹ 第21圖爲根據第16圖之舵的示意前視圖; 第22圖爲根據第16圖之舵從配置成S形的擋板之舵 葉片的鼻端帶之前方所視的示意圖; 第23圖爲從根據第16圖之舵的下方所視之視圖;及 第24圖爲從除了在該舵的兩個舵葉片段之偏移區域 中一半圓形流體之外具有擋板的該扭轉舵葉片之下方所視 之視圖。 【主要元件符號說明】 -26- 200930617a 12 > a 13 a 14 > a 15 a 16 > a 17 a 18 > a 19, wherein the ratio of the distance from al6 to the distance al7 is about 2:1. Figure 6 clearly shows the ratio of the equidistance to the other, i.e. the distances α9, all, α 13, α15, α17, α19 are substantially relative to the distances α8, α10, α12, α14 in the direction of the nose end belt 11, Α16 and α18 decrease. This cross-sectional profile with the indicated distance extends through all of the transverse 21-200930617 sections of the upper rudder blade segment 10 and all cross sections through the lower rudder blade, since all cross sections of the upper section 1 具有 have the same shape, Apply to the cross section of the lower section 20, and in particular to the fact that the rudder blades 100 or the frame are reduced from the top to the bottom with respect to their length and with respect to them facing the nose regions (Fig. 10). According to another embodiment shown in Fig. 14, the arcs of the highly curved arched side wall sections 19, 29 of the upper and lower segments 10, 20 are longer than the flat curved arched side walls of the upper and lower rudder blade segments 10, 20® 28 The arc length BL, so the curved side wall segments 19, 29 of the upper and lower rudder blade segments 10, 20 to the transition region UB1 extending straight to the end belts 15, 17 and 27 and the upper and lower rudder blade segments 10 The flat curved arched side wall sections 18, 28 extend to a transition zone 沿 in a straight line to the end cost side wall sections 16, 26, and are displaced in the direction of the end strip 15 such that the transition area UB1 faces the belt with respect to the transition area UB. In this example, the lengths of the side wall portions 18, 19 and 28, 29 are as follows: L L > L2 ❹ L, 2 < L, 3 L4 > L' 4 (Fig. 14) are gathered above the end belt 15 The legs 16 and the legs of the linear side walls 16, 17, 26, 27 of the lower rudder 20 preferably have degrees, but may also have configurations of unequal lengths. The invention also includes a rudder wherein the torsion rudder blade 100 has a fin of more than two rudder blade segments 10, 20. The rudder blade rudder blade cross-section end belt square rudder blade BL1 large segment 18, highly curved sidewall segment, 20 〒 15 upward biased the end leaf segment the same length has an extension -22- 200930617 as shown in Figures 16 to 23 It is shown that the baffles 200, 201 (converters) are formed according to the actuating profile of the nose end belts 11, 21 and cover the offset region, and have a flow-like, curved, elongated or semi-circular contour. The plates 200, 201 are placed in the transition region of the two laterally offset segments A1, A2 of the two stacked rudder blade segments 1, 20, one of which is from the nose end band 11 of the upper rudder blade segment 10 Extending into its side wall, another baffle 201 extends from the nose end strip 21 of the lower rudder blade segment 20 into its side wall and engages each other with edges (200d, 201d) that face each other. The two baffles 200, 201 are added to a fluid that covers the transition region between the offset regions of the two rudder blade segments 1 , 20 . Each of the upper rudder blade segment 10 and the lower rudder blade segment 20 has a strip-shaped and slightly curved baffle 200 or 201 that can be fitted to the outer wall shape of the rudder blade, wherein the two baffles Each of the baffles is located in a section 200b or 201b facing the nose end strips 11, 21 or the pusher 115 and is an assembly that is an integral component of the nose end strip. Furthermore, each baffle 200 or 201 has a rear strip section 200c or 201c that abuts or is integrated into the side wall of the rudder (Figs. 17, 18, 19, and 20). . The sections 2 00 b or 201b of the two baffles 200, 201 are located in the region of the nose end bands 11, 21 and have a large approximately cap-like configuration 200a, 201a at the nose end bands 11, 21 When viewed from the front (Figs. 16 and 22), there is a substantially semicircular shape, wherein the cap segments 200b, 201b are similar to the nose end bands 11, 21 offset to the port side BB and the starboard SB (22nd) Figure). The two cap-shaped segments 200b, 201b collectively form angled half portions 200'b, 2〇1'b which abut each other with their base sides (Fig. 16, Fig. 17, Fig. -23-200930617 Fig. 20) . Therefore, the port side wall of the upper rudder blade segment 10 includes the baffle 200, and the starboard side lateral edge of the lower rudder blade segment 20 includes the baffle 201, and the baffles 200, 201 are configured such that their strip and beaded regions Segments 2 00c, 201c are located in the side walls of the rudder blade, however they face sections 200b, 201b of the pusher 115 in the region of the nose end strips 11, 21. The segments 200b, 201b located in the region of the two nasal end bands 11, 21 are welded to each other by the edges 200d, 201d facing each other, and welded to the nose end bands 1 1 and 21 (Fig. 22). For the embodiment according to Fig. 24, a baffle 210 configured to form a semicircular body is disposed in the offset region of the two rudder blade segments 10, 20. The features of the rudder according to the present invention are those specified in the scope of the claims, and are characterized by the specific embodiments explained in the specification and by the exemplary embodiments shown in the drawings and drawings. Chemical. The baffles 200, 201 and 210 disposed in the offset regions of the two rudder blade segments 10, 20 have particular embodiments as described in the description and in the drawings, and are similar to the rudder blade configuration, It is also the subject of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Exemplary embodiments of the present invention are explained below with reference to the drawings. In the figure: Figure 1 is a side view of the rudder, the rudder comprising a torsional balance rudder blade having an upper and a lower rudder blade segment and a rudder post mounted in the upper rudder blade segment, Figure 2 is Schematic diagram of the torsion rudder blade of the rudder, Fig. 3 is a schematic skeleton diagram of the torsion rudder blade having the removal casing and the two rudder blade segments in the two rudder blade segments -24-200930617, 4th Fig. 4A, 4B and 4C are four plate-shaped frames of the upper rudder blade segment of the rudder blade according to Fig. 3, and Fig. 4D is a lower rudder blade segment of the rudder blade according to Fig. 3. An enlarged view of a plate-shaped frame, Fig. 4E is a plate-like frame of the lower rudder blade segment of the rudder blade according to Fig. 3, and Fig. 5 is an enlarged reproduction view of the plate-shaped frame according to Fig. 4, ® Fig. 6 An enlarged view of the plate-like frame according to Fig. 4, which has information on the distance from the side edge region to the longitudinal centerline of the frame, and Fig. 7 is a skeleton view of another embodiment of the torsion-balanced rudder blade. Included in the upper rudder blade segment and the lower rudder blade segment a plurality of plate-like frames, and FIG. 8, FIG. 8A, FIG. 8B, and FIG. 8C are enlarged top views of four plate-shaped frames of the upper rudder blade segment of the rudder blade according to FIG. The rudder tube for accommodating the rudder column, Fig. 8D, Fig. 8E and Fig. 8F are enlarged top views of three plate-shaped frames of the lower rudder blade segment of the rudder blade according to Fig. 7, and Fig. 9 is based on 7 is a magnified view of the upper rudder blade section of the rudder blade of the figure, which has a gap for steering the rudder tube of the rudder post; FIG. 10 is a torsion rudder blade according to the rudder configuration of FIG. Figure 11 is a magnified view from the bottom; Figure 11 is the rudder configuration according to Figure 7, from the section between the set of the upper rudder blade segment -25-200930617 next to the snake; the square inch and the bracket wheel At the ruler plate, the cover plate has multiple cover leaves and the rudder profile section under the square wheel piece. The rudder and the figure are placed under the view and the plate on the square base plate is inclined to the upper side. 1 1 The second is to push the picture; the picture has the UBI, the picture is the leaf side rudder, the rotor is twisted, the rudder is taken as the picture 2 3 11 11 The rim of the rim of the rudder is the first piece of the frame of the blade of the rudder on the rudder side of the turret. One of the sights of the body is the other side of the porch. The rudder of the 11th rudder shall have the rudder side of the middle section of the slab. The rudder of the rudder of the rudder of the section of the section is shown in the figure. The 16th picture of the rudder is viewed from below the torsion rudder blade, wherein a fluid-type baffle in the offset region of the two rudder blade segments of the rudder; FIG. 17 is a side view of the rudder according to FIG. 16; and FIG. 18 is a rear view of the rudder according to FIG. Figure 19 is a schematic front view of the rudder according to Fig. 16; Fig. 20 is a schematic side view of the rudder according to Fig. 16. Fig. 21 is a schematic front view of the rudder according to Fig. 16; A schematic view of the rudder according to Fig. 16 from the front end of the nose end of the rudder blade of the S-shaped baffle; Fig. 23 is a view from below of the rudder according to Fig. 16; and Fig. 24. For baffles from a semi-circular fluid other than the offset region of the two rudder blade segments of the rudder Torsion of the lower rudder blade depending on the view. [Main component symbol description] -26- 200930617

10 上 方 舵 葉 片 段 11 鼻 端 帶 1 1 ? 半 圓 形 邊 緣 圓 角 12 側 壁 表 面 13 側 壁 表 面 15 末 端 帶 155 邊 緣 16 延 直 線 行 進 側 壁 段 17 延 直 線 行 進 側 壁 段 18 平 坦 曲 面 拱 形 側 壁 段 19 高 度 彎 曲 拱 形 側 壁 段 20 下 方 舵 葉 片 段 21 鼻 上山 帶 21 側 壁 表 面 22 側 壁 表 面 23 側 壁 表 面 26 延 直 線 行 進 側 壁 段 27 延 直 線 行 進 側 壁 段 28 平 坦 曲 面 拱 形 側 壁 段 29 高 度 彎 曲 拱 形 側 壁 段 30 末 端 帶 30 橫 截 面 表 面 30 橫 截 面 區 域 3 1 橫 截 面 表 面 段 32 橫 截 面 表 面 段 -27- 20093061710 Upper rudder blade segment 11 Nasal end belt 1 1 ? Semicircular edge rounded corner 12 Side wall surface 13 Side wall surface 15 End belt 155 Edge 16 Longitudinal running side wall section 17 Longitudinal running side wall section 18 Flat curved arched side wall section 19 Height Curved arched side wall section 20 Lower rudder blade section 21 Nasal upper mountain belt 21 Side wall surface 22 Side wall surface 23 Side wall surface 26 Longitudinal running side wall section 27 Longitudinal running side wall section 28 Flat curved arched side wall section 29 Highly curved arched side wall section 30 End band 30 cross-section surface 30 cross-sectional area 3 1 cross-section surface section 32 cross-section surface section -27- 200930617

40 框 架 41 覆 蓋 板 42 基 板 43 上 方 覆 蓋 板 45 繫 緊 板 4 5a 側 壁 表 面 45b 側 壁 表 面 46 對 稱 的 橫 截 面 表 面 段 47 對 稱 的 橫 截 面 表 面 段 50 框 架 100 扭 轉 舵 葉 片 105 間 隙 110 船 體 115 推 進 器 120 舵 管 120b 下 方 末 上山 區 域 125 內 孔 130 環 軸 承 140 舵 柱 140a 區 段 140b 末 端 區 域 145 繫 緊 裝 置 150 軸 承 160 凹 穴 200 舵 -28- 20093061740 Frame 41 Covering plate 42 Substrate 43 Upper cover plate 45 Tie plate 4 5a Side wall surface 45b Side wall surface 46 Symmetrical cross section Surface section 47 Symmetrical cross section Surface section 50 Frame 100 Torsional rudder blade 105 Gap 110 Hull 115 Propeller 120 rudder tube 120b lower end uphill area 125 inner hole 130 ring bearing 140 rudder post 140a section 140b end area 145 tie device 150 bearing 160 pocket 200 rudder-28- 200930617

200 擋 板 201 擋 板 200a 蓋 狀 構 造 201a 蓋 狀 構 造 200c 後 方 帶 狀 段 201c 後 方 帶 狀 段 200d 邊 緣 200b 蓋 狀 區 段 201b 蓋 狀 段 200’b 角 半 部 201,b 角 半 部 201d 邊 緣 210 流 體 式 擋 板 OB 上 方 域 UB 下 方 區 域 BB 左 舷 側 SB 右 舷 側 LML 縱 向 中 心 線 M2 中 心 線 ϋΒΙ 轉 換 Tot 域 (JB 轉 換 區 域 A1 側 向 偏 移 段 A2 側 向 偏 移 段 -29-200 baffle 201 baffle 200a cover structure 201a cover structure 200c rear strip segment 201c rear strip segment 200d edge 200b cap segment 201b cap segment 200'b corner half 201, b corner half 201d edge 210 Fluid baffle OB Upper field UB Lower area BB Port side SB Starboard side LML Longitudinal center line M2 Center line 转换 Conversion Tot field (JB conversion area A1 Lateral offset section A2 Lateral offset section -29-

Claims (1)

200930617 十、申請專利範圍: 1. 一種具有減少氣穴之扭轉舵之高速船隻用之舵,該扭轉 舵尤其是平衡舵,該船隻用之舵包含一舵葉片(1〇〇),其 具有配置在一可驅動推進器軸(PA)上之推進器(115),其 關聯於該舵葉片,及連接至該舵葉片(100)之舵柱(140), 其特徵在於 該舵(200) a.)由一平衡的舵葉片(100)所構成,該舵葉片較佳 地具有小輪廓厚度細長輪廓的,且包含具有相同或不同 高度的兩個叠置的舵葉片段(10、20),較佳地是包含一下 方舵葉片段(20),其高度比上方舵葉片段(10)之高度小, 並包含鼻端帶(11、21),其面向推進器(115),並具有大 致成半圓形的輪廓,其設置成相對於縱向中心線(LML) 一鼻端帶(1 1)被側向偏移到左舷側(BB)或右舷側(SB),而 另一鼻端帶(21)被側向偏移到右舷側(SB)或左舷側(BB) ’其中該等兩個舵葉片段(10、20)之側壁表面(12、13; 22 、23)匯集到一背離該推進器(115)之末端帶(15)中, al.)其中該等兩個鼻端帶(11、21)及該末端帶(15) 伴隨著自該舵葉片(100)的上方區域(OB)到下方區域(UB) 之橫截面區域(30)減小而以錐形縮減的方式向下延伸, a2.)或該末端帶(15)以直線及平行於該舵柱(140)延 伸,且該等兩個鼻端帶(11, 21)伴隨著自上方區域(OB)到 下方區域(UB)之橫截面區域(30)減小而以錐形縮減的方 式向下延伸, -30- 200930617 a3.)其中該上方舵葉片段(10)與該下方舵葉片段(20) 之橫截面段(31)在末端帶(15)與舵葉片(100)之最大輪廓 厚度(PD)之間的區域中具有一長度(L),其對應於至少1 又1/2倍在該舵葉片(100)之最大輪廓厚度(PD)與該等鼻 端帶(11、21)之間該上方舵葉片段(10)與該下方舵葉片段 (20)之橫截面表面段(32)的長度(L1), a4.)其中在該左舷側(BB)上的上方舵葉片段(10)與 在該右舷側(SB)上的下方舵葉片段(20)每一者皆包含一 側壁段(18、28),其以平坦拱形的方式延伸,並在該末端 帶(15)的方向上自該等鼻端帶(11、21)延伸,其具有一長 度(L2),自該等鼻端帶(11、21)延伸超過該等側壁段(18) 之長度(L’2),直到該最大輪廓厚度(PD)加上長度(L"2), 該長度(L"2)對應於長度(L’2)的至少1/3,其中以平坦拱 形方式延伸的側壁段(18、28)伴隨有結束於該末端帶(15) 之以直線延伸的側壁段(16、26), a5.)其中在該左舷側(BB)上的上方舵葉片段(1〇)與 在該右舷側(SB)上的下方舵葉片段(20)每一者皆包含一 高度彎曲側壁段(19、29),其以拱形的方式延伸,並在該 末端帶(15)的方向上自該等鼻端帶(11、21)延伸,其具有 一長度(L3),自該等鼻端帶(11、21)延伸超過該側壁段(19) 之長度(L’3),直到該最大輪廓厚度(PD)加上長度(L"3), 該長度(L"2)對應於長度(L’3)的至少1/3,其中以拱形方 式延伸的高度彎曲側壁段(19,29)伴隨有結束於該末端 帶(15)之以直線延伸的側壁段(17、27), -31- 200930617 a6.)其中該等兩個以直線延伸側壁段(16、17; 26、 27)皆成對具有相同長度,且位在該等兩個側壁段(16、17; 26、27)之間的橫截面段具有相同大小,並對稱地構形及 > a7.)其中以平坦拱形方式延伸的側壁段(18、28)到 該縱向中心線(LML)之間的距離大於以高度拱形延伸側 壁段(19、29)到該縱向中心線(LML)之間的距離,而位在 於該縱向中心線(LML)之兩側上以平坦拱形方式延伸的 〇 該等兩個側壁段(18、28)之間的橫截面表面段係非對稱地 構形。 2. 如申請專利範圍第1項所述之舵,其中 該舵葉片(100)的扭轉區域具有封閉的轉換。 3. 如申請專利範圍第1或2項所述之舵,其中 形成流體的擋板(200, 201)根據該等鼻端帶(11,21) 之致動輪廓而形成,並覆蓋該偏移區域,其具有利於流 動、彎曲及長狀或半圓形輪廓,其配合於該舵葉片的外 壁,該等擋板配置在兩個疊置的舵葉片段(1〇, 20)之兩個 側向偏移段之轉換區域中,其中一擋板(2〇〇)自該上方舵 葉片段(10)之鼻端帶(11)延伸入其側壁,而另一擋板(201) 自該下方舵葉片段(20)之鼻端帶(21)延伸到其側壁。 4. 如申請專利範圍第1至3項中任一項所述之舵’其中 該舵葉片(100)在功能上與具有至少一軸承之舵柱 (140)協同運作, b.)其中該舵柱(140)是以鍛鋼或另一適合材料製成 -32- 200930617 者,結合收容該柱的舵管(120),舵管(120)以锻鋼或另一 適合材料製成者,係配置在最大輪廓厚度(PD)的區域中 ,或配置在此與在其中該上方舵葉片段(10)之鼻端帶之間 ’並具有末端繫緊裝置(145)時延伸超過該上方舵葉片段 (10)之整個高度, bl.)其中伸入到該上方舵葉片段(10)作爲一懸臂樑 之舵柱(140)之舵管(120),其具有用於收容該舵柱(140) 之中心縱向孔(125), ® b2.)其中該舵管橫截面係設計成爲薄壁,且該舵管 (120)較佳地於其自由端之區域中在內壁側上具有一套環 軸承(130)用於安裝該舵柱(140),及 b3.)其中在其末端區域(140b)中,該舵柱(140)以一 區段(140a)自舵管(120)導引出來,且此區段(140a)之末端 連接至該上方舵葉片段(10)。 5. 如申請專利範圍第1至4項中任一項所述之舵,其中 一繫緊板(45)配置在該上方舵葉片段(10)與該下方 〇 舵葉片段(20)之間,且穩固連接至該舵葉片段(10、20), 其中該繫緊板(45)在該縱向中心線(LML)之兩側上具有對 稱的橫截面段(46、47),以及一表面輪廓及多處尺寸,其 圍住該上方舵葉片段(10)之基板(4 2)與該下方舵葉片段 (20)之覆蓋板(41),其具有它們的輪廓與多處尺寸。 6. 如申請專利範圍第1至5項中任一項所述之舵,其中 該上方舵葉片段(10)之鼻端帶(11)與該下方舵葉片 段(2 0)之鼻端帶(21)係相對於該縱向中心線(LML)側向偏 -33- 200930617 移到左舷側(BB)及右舷側(SB),使得經由該側向偏移鼻端 帶段所繪之中心線(M2)相對於與一框架的橫截面區域之 縱向中心線(LML)以至少3°到10°,較佳以8°的角度α延 伸。 7. 如申請專利範圍第1至6項中任一項所述之舵,其中 位在該左舷側(ΒΒ)與該右舷側(SB)上的該等上方及 下方舵葉片段(10、20)之平坦曲面拱形側壁段(18、28)之 長度(L4),比相較於位在該右舷側(SB)與該左舷側(BB)上 的該等上方及下方舵葉片段(10、20)之高度彎曲拱形側壁 段(19、29)之長度(L5)短。 8. 如申請專利範圍第1至7項中任一項所述之舵,其中 該等上方與下方舵葉片段(10、20)之高度彎曲拱形側 壁段(19、29)之弧長(BL1)大於該等上方與下方舵葉片段 (10、20)之平坦彎曲拱形側壁段(18、28)之弧長(BL),所 以該等上方與下方舵葉片段(10、20)之高度彎曲拱形側壁 段(19、29)到以直線延伸到末端帶(15)之該等側壁段(17 、27)之轉換區域(ϋΒΙ),及該等上方與下方舵葉片段(10 、20)之平坦彎曲拱形側壁段(18、28)到以直線延伸到末 端帶(15)之側壁段(16、2 6)的轉換區域(ϋΒ)在該末端帶之 方向上偏移。 9. 如申請專利範圍第1至8項中任一項所述之舵,其中 在該上方舵葉片段(10)中用於收容該舵管(120)之該 間隙(105)或洞的直徑,比相較於該舵葉片段(1〇)之最大 輪廓厚度(PD)略小。 -34- 200930617 10.如申請專利範圍第1至9項中任一項所述之舵,其中 面向該推進器(115)之舵葉片(1〇〇)之邊緣或鼻端帶 (11、21)係相對於背離該推進器(115)的邊緣或末端帶(15) 以至少5°,較佳1 0°的角度/3傾斜地延伸。 11·如申請專利範圍第1至1〇項中任一項所述之舵,其中 配置在該等兩個疊置的舵葉片段(10、20)之兩個側向 偏移段(Al、A2)之轉換區域中,並根據鼻端帶(11、21) 之拱形輪廓所形成的該等擋板(200、201),具有一曲面的 ^ 長狀輪廓,其中該等兩個擋板(200、201)之每一擋板位於 —區段(2 00b、201b),其在該等鼻端帶之區域中面向該等 鼻端帶(11、21),並爲該鼻端帶的一整合組件,且具有一 帶狀段(2 00 c、201c),其抵接於該舵的側壁或整合在其中 ,其中位在該等鼻端帶(11、21)之區域中的兩個擋板(2 00 、201)之區段(200b、201b)具有一蓋狀的構形(2 00 a、20U) ,其中該上方舵葉片段(10)之左舷側壁包含該擋板(200) ,而該下方舵葉片段(20)之右舷側壁包含該擋板(201), ^ 其中該等擋板(200、201)係配置在該上方舵葉片段(10)與 該下方舵葉片段(20)之轉換區域中,所以帶狀段(200c、 201c)位在該舵葉片的側壁中,並覆蓋該轉換區域,其中 面向該推進器(115)之該等擋板(200、201)之區段(200b、 201b)位在該等鼻端帶(11、21)之區域中。 -35-200930617 X. Patent application scope: 1. A rudder for a high-speed vessel with a torsion rudder for reducing air pockets, in particular a balance rudder, the rudder for the vessel comprising a rudder blade (1〇〇) having a configuration a propeller (115) on a driveable propeller shaft (PA) associated with the rudder blade and a rudder post (140) coupled to the rudder blade (100), characterized in that the rudder (200)a .) consisting of a balanced rudder blade (100) preferably having an elongated profile of small profile thickness and comprising two superposed rudder blade segments (10, 20) having the same or different heights, Preferably, a lower rudder blade segment (20) is included, the height of which is smaller than the height of the upper rudder blade segment (10), and includes a nose end band (11, 21) that faces the pusher (115) and has a rough a semi-circular profile that is arranged to be laterally offset to the port side (BB) or starboard side (SB) with respect to the longitudinal centerline (LML), one end band (1), and the other end band (21) is laterally offset to the starboard side (SB) or port side (BB) where the two rudder blade segments (10, 20) The side wall surfaces (12, 13; 22, 23) are brought together in an end band (15) facing away from the pusher (115), al.) wherein the two nasal end bands (11, 21) and the end The belt (15) extends downward in a tapered manner with a decrease in the cross-sectional area (30) from the upper region (OB) to the lower region (UB) of the rudder blade (100), a2.) or The end band (15) extends in a straight line and parallel to the rudder column (140), and the two nose end bands (11, 21) are accompanied by a cross-sectional area from the upper region (OB) to the lower region (UB) ( 30) decreasing and extending downward in a tapered manner, -30-200930617 a3.) wherein the upper rudder blade segment (10) and the lower rudder blade segment (20) are at the end section (31) (15) having a length (L) in the region between the maximum profile thickness (PD) of the rudder blade (100), which corresponds to at least 1 and 1/2 times the maximum profile thickness of the rudder blade (100) ( PD) and the length (L1) of the cross-sectional surface section (32) of the upper rudder blade segment (10) and the lower rudder blade segment (20) between the nasal end bands (11, 21), a4. On the port side The upper rudder blade segment (10) on BB) and the lower rudder blade segment (20) on the starboard side (SB) each include a side wall segment (18, 28) that extends in a flat arched manner And extending from the nose straps (11, 21) in the direction of the end strap (15), having a length (L2) extending from the nose straps (11, 21) beyond the sidewall segments (18) the length (L'2) up to the maximum profile thickness (PD) plus the length (L"2), the length (L"2) corresponding to at least 1/3 of the length (L'2), wherein The side wall sections (18, 28) extending in a flat arched manner are accompanied by side wall sections (16, 26) extending in a straight line ending in the end strip (15), a5.) on the port side (BB) The upper rudder blade segment (1 〇) and the lower rudder blade segment (20) on the starboard side (SB) each comprise a highly curved side wall segment (19, 29) that extends in an arched manner and Extending from the nose straps (11, 21) in the direction of the end strap (15), having a length (L3) extending from the nose straps (11, 21) beyond the sidewall segments (19) Length (L 3) up to the maximum profile thickness (PD) plus the length (L"3), the length (L"2) corresponding to at least 1/3 of the length (L'3), wherein the height extending in an arched manner is curved The side wall sections (19, 29) are accompanied by side wall sections (17, 27) extending in a straight line ending in the end strip (15), -31-200930617 a6.) wherein the two side walls extend in a straight line (16, 17; 26, 27) all of the same length, and the cross-sectional sections between the two side wall sections (16, 17; 26, 27) have the same size and are symmetrically configured and > a7 .) wherein the distance between the side wall segments (18, 28) extending in a flat arched manner to the longitudinal centerline (LML) is greater than the height of the arcuately extending sidewall segments (19, 29) to the longitudinal centerline (LML) The distance between the two side wall sections (18, 28) extending in a flat arch on both sides of the longitudinal centerline (LML) is asymmetrically structured shape. 2. The rudder of claim 1, wherein the torsion region of the rudder blade (100) has a closed transition. 3. The rudder according to claim 1 or 2, wherein the fluid-forming baffles (200, 201) are formed according to an actuation profile of the nose strips (11, 21) and cover the offset a region having a flow-oriented, curved and elongated or semi-circular profile that fits the outer wall of the rudder blade, the baffles being disposed on two sides of two stacked rudder blade segments (1, 20) In the transition region to the offset segment, one of the baffles (2〇〇) extends from the nose end band (11) of the upper rudder blade segment (10) into its side wall, and the other baffle (201) from below The nose end band (21) of the rudder blade segment (20) extends to its side wall. 4. The rudder according to any one of claims 1 to 3 wherein the rudder blade (100) functionally cooperates with a rudder column (140) having at least one bearing, b.) wherein the rudder The column (140) is made of forged steel or another suitable material - 32-200930617, combined with a rudder tube (120) accommodating the column, and the rudder tube (120) is made of forged steel or another suitable material. Extending beyond the upper rudder blade segment in the region of maximum profile thickness (PD), or between here and between the nose end band of the upper rudder blade segment (10) and having an end tie device (145) (10) the entire height, bl.) a rudder tube (120) extending into the upper rudder blade segment (10) as a rudder post (140) of a cantilever beam, having a rudder tube (140) for receiving the rudder post (140) a central longitudinal bore (125), ® b2.) wherein the rudder tube cross section is designed to be thin walled, and the rudder tube (120) preferably has a set of rings on the inner wall side in the region of its free end A bearing (130) is used to mount the rudder post (140), and b3.) wherein in its end region (140b), the rudder post (140) is in a section (140a) Steerer (120) out of the guide, and the end of this section (140a) of the rudder blade is connected to the upper segment (10). 5. The rudder according to any one of claims 1 to 4, wherein a tie plate (45) is disposed between the upper rudder blade segment (10) and the lower rudder blade segment (20) And firmly connected to the rudder blade segment (10, 20), wherein the tie plate (45) has symmetrical cross-sectional segments (46, 47) on both sides of the longitudinal centerline (LML), and a surface The contour and the plurality of dimensions enclose the substrate (42) of the upper rudder blade segment (10) and the cover plate (41) of the lower rudder blade segment (20) having their contours and multiple dimensions. 6. The rudder according to any one of claims 1 to 5, wherein the nose end band (11) of the upper rudder blade segment (10) and the nose end band of the lower rudder blade segment (20) (21) is moved to the port side (BB) and the starboard side (SB) with respect to the longitudinal centerline (LML) lateral offset -33-200930617, such that the centerline drawn by the laterally offset nose strip section (M2) extends at an angle α of at least 3° to 10°, preferably 8°, with respect to a longitudinal centerline (LML) of a cross-sectional area of a frame. 7. The rudder according to any one of claims 1 to 6, wherein the upper and lower rudder blade segments (10, 20) on the port side (ΒΒ) and the starboard side (SB). The length (L4) of the flat curved arched side wall sections (18, 28) is compared to the upper and lower rudder blade segments (10) on the starboard side (SB) and the port side (BB) The length (L5) of the highly curved arched side wall sections (19, 29) of 20) is short. 8. The rudder according to any one of the preceding claims, wherein the upper and lower rudder blade segments (10, 20) are curved at an arc length of the curved arched side wall segments (19, 29) ( BL1) is larger than the arc length (BL) of the flat curved arched side wall segments (18, 28) of the upper and lower rudder blade segments (10, 20), so the upper and lower rudder blade segments (10, 20) a highly curved arched side wall section (19, 29) to a transition region (ϋΒΙ) extending in a straight line to the side wall sections (17, 27) of the end strip (15), and the upper and lower rudder blade segments (10, 20) The flat curved arched side wall sections (18, 28) are offset from the transition zone (ϋΒ) extending in a straight line to the side wall sections (16, 26) of the end strip (15) in the direction of the end strip. 9. The rudder according to any one of claims 1 to 8, wherein the gap (105) or the diameter of the hole for receiving the rudder tube (120) in the upper rudder blade segment (10) The ratio is slightly smaller than the maximum profile thickness (PD) of the rudder blade segment (1〇). The rudder according to any one of the preceding claims, wherein the rudder blade (1 〇〇) facing the thruster (115) has an edge or a nose end band (11, 21). ) extending obliquely at an angle /3 of at least 5°, preferably 10°, relative to the edge or end strip (15) facing away from the pusher (115). The rudder according to any one of claims 1 to 1 wherein the two laterally offset segments (Al, two of the two overlapping rudder blade segments (10, 20) are disposed. The baffles (200, 201) formed in the transition region of A2) and according to the arched profile of the nose end strips (11, 21) have a curved profile with a curved surface, wherein the two baffles Each of the flaps (200, 201) is located in a section (200b, 201b) that faces the nose strips (11, 21) in the region of the nose strips and is the nose strip An integrated assembly having a strip section (200c, 201c) that abuts or is integrated into a side wall of the rudder, wherein two of the areas of the nose strips (11, 21) are located The section (200b, 201b) of the baffle (200, 201) has a cap-like configuration (200a, 20U), wherein the port side wall of the upper rudder blade segment (10) contains the baffle (200) And the starboard side wall of the lower rudder blade segment (20) includes the baffle (201), wherein the baffles (200, 201) are disposed on the upper rudder blade segment (10) and the lower rudder blade segment ( 20) Conversion In the domain, so the strip segments (200c, 201c) are located in the side wall of the rudder blade and cover the transition region, wherein the segments (200b) of the baffles (200, 201) facing the pusher (115) 201b) is located in the region of the nasal end bands (11, 21). -35-
TW097143320A 2007-11-13 2008-11-10 Rudder for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder TWI363728B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE202007015941U DE202007015941U1 (en) 2007-11-13 2007-11-13 Oars for ships
EP07024061.9A EP2060484B2 (en) 2007-11-13 2007-12-12 Rudder for ships
DE202008010759 2008-08-13
DE202008012125 2008-09-11
DE202008013604 2008-10-14
DE202008014375U DE202008014375U1 (en) 2007-11-13 2008-10-29 Rudder for ships at higher speeds with a cavitation-reducing, twisted, in particular Vollschweberuder

Publications (2)

Publication Number Publication Date
TW200930617A true TW200930617A (en) 2009-07-16
TWI363728B TWI363728B (en) 2012-05-11

Family

ID=40547791

Family Applications (2)

Application Number Title Priority Date Filing Date
TW097143320A TWI363728B (en) 2007-11-13 2008-11-10 Rudder for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder
TW097143317A TWI370084B (en) 2007-11-13 2008-11-10 Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW097143317A TWI370084B (en) 2007-11-13 2008-11-10 Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a full-balanced rudder

Country Status (10)

Country Link
EP (2) EP2060485B1 (en)
JP (2) JP5175690B2 (en)
KR (3) KR101466991B1 (en)
AT (2) ATE458670T1 (en)
DE (2) DE502008000377D1 (en)
ES (2) ES2341393T3 (en)
HK (2) HK1132719A1 (en)
HR (2) HRP20100156T1 (en)
PT (2) PT2060486E (en)
TW (2) TWI363728B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302733B1 (en) * 2011-11-17 2013-09-03 현대중공업 주식회사 Rudder of vessel and rudder part construction method of vessel
NO336848B1 (en) * 2013-03-08 2015-11-16 Rolls Royce Marine As Rudders rudder device
KR101942349B1 (en) 2013-04-10 2019-01-25 현대중공업 주식회사 Twist type rudder and vessel including the same
KR101939861B1 (en) * 2014-05-26 2019-01-18 현대중공업 주식회사 A rudder for ship
PL3409575T3 (en) * 2017-05-30 2022-10-03 Becker Marine Systems Gmbh Rudder blade with a rudder blade hub and rudder blade hub for a rudder blade
CN108974312B (en) * 2017-05-30 2022-08-30 贝克船舶系统有限公司 Rudder blade with a rudder blade hub and rudder blade hub for a rudder blade
CN107264763B (en) * 2017-06-22 2019-08-02 中国人民解放军海军工程大学 A kind of design method of anti-cavitation distortion rudder
EP3489128A1 (en) * 2017-11-28 2019-05-29 Becker Marine Systems GmbH Blade of an oar with modular structure, segment for a blade of an oar for a device for improving propulsion and method for producing a blade of an oar
KR102138459B1 (en) * 2019-01-30 2020-07-27 한국조선해양 주식회사 Steering apparatus and ship having the same
KR102024176B1 (en) * 2019-06-11 2019-09-23 이상욱 Manufacturing method of twisted type rudder
KR102305888B1 (en) * 2020-01-30 2021-09-27 현대중공업 주식회사 Steering apparatus and ship having the same
DE202020103872U1 (en) * 2020-07-03 2020-08-13 Becker Marine Systems Gmbh Rowing trunk for a watercraft and watercraft with a rowing trunk
CN113371171B (en) * 2021-06-18 2022-11-15 武汉理工大学 Deformable rudder blade capable of adaptively deflecting front edge and deflection method
CN116788492B (en) * 2023-08-22 2023-10-27 南通德玛瑞机械制造有限公司 Rudder blade capable of being quickly assembled and disassembled and processing device thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB332082A (en) 1929-08-07 1930-07-17 Amos Lowrey Ayre Improvements in ships' rudders
DE1140484B (en) * 1958-04-30 1962-11-29 Maierform Holding Sa Ship rudder with staggered upper and lower rudder halves
FR1251898A (en) * 1960-03-24 1961-01-20 Eta Corp Advanced rudder
JPS577798A (en) * 1980-06-16 1982-01-14 Mitsui Eng & Shipbuild Co Ltd Reaction rudder
JPS5830896A (en) 1981-08-18 1983-02-23 Ishikawajima Harima Heavy Ind Co Ltd Reaction rudder without discontinuous part
JPS6190700U (en) * 1984-11-20 1986-06-12
DE8708276U1 (en) * 1987-06-12 1987-08-27 Willi Becker Ingenieurbuero Gmbh, 2000 Hamburg, De
JPH02144296A (en) * 1988-11-25 1990-06-04 Sumitomo Heavy Ind Ltd Local flow generation preventing structure in discontinuous part of reaction rudder
JPH089359B2 (en) * 1992-01-23 1996-01-31 川崎重工業株式会社 Marine suspension rudder
JPH06305487A (en) * 1993-04-21 1994-11-01 Hitachi Zosen Corp Rudder
JPH07237594A (en) * 1994-02-28 1995-09-12 Hitachi Zosen Corp Rudder in ship
JPH0911990A (en) * 1995-06-30 1997-01-14 Hitachi Zosen Corp Rudder
JPH11105794A (en) * 1997-10-03 1999-04-20 Sanoyasu Hishino Meisho:Kk Deformation reaction rudder
KR100346512B1 (en) * 1999-07-07 2002-08-01 삼성중공업 주식회사 A rudder of ship
DE202004006453U1 (en) 2004-04-23 2004-11-11 Becker Marine Systems Gmbh & Co. Kg Oars for ships
DE202005013583U1 (en) * 2005-06-30 2005-11-03 Becker Marine Systems Gmbh & Co. Kg Rudder stock for water craft, has end sections made of wrought iron, and middle stock section connected with end sections and made of carbon fibrous composite or graphite fibers, which form middle stock section in the form of windings

Also Published As

Publication number Publication date
DE502008000377D1 (en) 2010-04-01
ATE457925T1 (en) 2010-03-15
TW200932628A (en) 2009-08-01
ES2340741T3 (en) 2010-06-08
KR101466991B1 (en) 2014-12-01
EP2060485A1 (en) 2009-05-20
PT2060485E (en) 2010-06-08
TWI370084B (en) 2012-08-11
EP2060486A1 (en) 2009-05-20
HRP20100291T1 (en) 2010-06-30
HK1132719A1 (en) 2010-03-05
DE502008000400D1 (en) 2010-04-08
KR20090049545A (en) 2009-05-18
EP2060486B1 (en) 2010-02-17
ATE458670T1 (en) 2010-03-15
JP5175690B2 (en) 2013-04-03
KR20130039747A (en) 2013-04-22
KR101421375B1 (en) 2014-08-13
TWI363728B (en) 2012-05-11
JP2009120191A (en) 2009-06-04
KR20090049551A (en) 2009-05-18
JP4901843B2 (en) 2012-03-21
ES2341393T3 (en) 2010-06-18
PT2060486E (en) 2010-03-12
HRP20100156T1 (en) 2010-04-30
HK1132718A1 (en) 2010-03-05
JP2009120190A (en) 2009-06-04
EP2060485B1 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
TW200930617A (en) Rudder for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder
US8091498B2 (en) Rudder arrangement for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder
CN101531248B (en) Rudder arrangement for ships with higher speeds with a cavitation reducing twisted rudder, in particular with a balancing rudder
EP2058220B1 (en) Stern shape for displacement type ship
JP5002378B2 (en) Marine propulsion efficiency improvement device and its construction method
CA2639804C (en) Rudder arrangement for ships having higher speeds comprising a cavitation-reducing twisted, in particular balanced rudder
KR20100001932U (en) Rudder arrangement for ships having higher speeds comprising a cavitation-reducing twisted in particular balanced rudder
JP5393160B2 (en) Stern shape of a displacement type ship
WO2019239869A1 (en) Ship rudder and ship
CN109070986B (en) Rudder for ship and ship
JP5634567B2 (en) Stern shape of a displacement type ship
CN113682417A (en) Novel three-keel type ship structure
CN107054599A (en) Stern rectification construction and ship
JP2008247322A (en) Two-shaft twin skeg ship