TW200924263A - Heat-resistant positive electrode mixture and all-solid-state lithium secondary battery using the same - Google Patents

Heat-resistant positive electrode mixture and all-solid-state lithium secondary battery using the same Download PDF

Info

Publication number
TW200924263A
TW200924263A TW097135827A TW97135827A TW200924263A TW 200924263 A TW200924263 A TW 200924263A TW 097135827 A TW097135827 A TW 097135827A TW 97135827 A TW97135827 A TW 97135827A TW 200924263 A TW200924263 A TW 200924263A
Authority
TW
Taiwan
Prior art keywords
positive electrode
sulfide
composite material
heat
solid electrolyte
Prior art date
Application number
TW097135827A
Other languages
English (en)
Inventor
Yoshinori Saito
Yoshikatsu Seino
Hiroyuki Tamura
Kyoko Sugiyama
Original Assignee
Idemitsu Kosan Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co filed Critical Idemitsu Kosan Co
Publication of TW200924263A publication Critical patent/TW200924263A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

200924263 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種耐熱性正極複合材料及使用彼之全固 體鐘二次電池。 【先前技術】 近年來,個人數位助理、可攜式電子設備、家庭用小型 蓄電裝置、以馬達作為動力源之兩輪摩托車、電動汽車、 混合動力汽車等中所使用之鋰 丁一 ·人電池之需求不斷增 加。 上述經離子二次電池中#用亡 / 有機系電解液作為電解質。 有機系電解液顯示出較高之離子 、 卞得導度,但因係液體且具 有可燃性,故擔心茂漏、失火等之安全性。 作為確保經離子二次電池之入 絲 王性之方法,正在研究一 種使用無機固體電解質來代替 電池。 ,機系電解液之全固體二次 二次電池中,必須充分確 ^ φ v - ^ _ '、電解質_正極活性物質界面 之電子傳導、電子授受及離子傳導。 為使用有機系電解液之二次 液滲透至正極中,充八引扭 之情形時,有機系電解 甲充分引起正極活性 解液之離子傳導,從 電子傳導及電 離子傳導。另方Γ 確保電子傳導、電子授受及 固體電與固體電解料之混合断, 肚电鮮貞興正極活性物 確保電子傳導、電子授受及離子傳導面較少,從而難以充分 I34658.doc 200924263 為了充分確保電子傳導、電 是增加固體電解質应又又及離子傳導,較好的 …活性物質之接觸面積。 為日加接觸面積之方法, 密度成形體之製作。為如以包含正極複合材料之高 g* Μ ο 1複合材料般之粉體之情形 ^ 可藉由使用有漿料之鑄fγ + 升 筒壓製等η一 ^漿成形、4塗佈漿料後利用滾 製等進仃塵密化而製作高密度成形體。然而,為了刺 用该等方法而獲得成形體 貝精由乾燥或燒成將漿料中 =麟去(專利文獻υ,漿料中所含有之正極複合材料必 溶劑除去溫度下具有熱穩定性。而作為現有之鐘二次 電池中所廣泛使用的正極活性物質,列舉有L心〇2,但 LiCo〇2係熱穩定性較差之化合物。 專利文獻2中揭示了 ―種固體電解f,其包含即便於室 溫下亦顯W較高之經離子傳導性之硫化物系結晶化玻 璃 '然而’專利文獻i中所記载之電解f需要大量之高價 經’因此不利於工業方面。x,專利文獻2中所記載之電 解質’其製造過程中進行5001以上之加熱處理。而該加 熱處理需要特殊之設備,從而不利於工業方面。 非專利文獻1中揭示了一種顯示出良好之循環特性之全 固體鋰二次電池。非專利文獻i中所記載之全固體鋰二次 電池,使用有固體電解質及正極複合材料中具有非晶質構 造之硫化物系玻璃電解質。硫化物系玻璃電解質於用作正 極複合材料之情形時,熱性不穩定。因此,非專利文獻i 所揭示之全固體鋰二次電池無法用於需要耐熱性之用途 中。 134658.doc 200924263 專利文獻1 :日本專利特開2006-2488%號公報 專利文獻2 :日本專利特開2002-109955號公報 6 2002 非專利文獻 1 : Materials integration Vol. 15 No 25〜30頁 本發明之目的在於提供一種具有熱穩定性及經時穩定性 之耐熱性正極複合材料。 【發明内容】 根據本發明’係提供以下之正極複合材料等。
• 種耐熱性正極複合材料,其係包含由下述式(1 )所辛 不之化合物及結晶度為5〇〇/0以上之硫化物系固體電解質 者: 、
LiNixM,.x〇2 (1) (式中,X為滿足0.1<x<0.9之數;Μ為選自由Fe、c〇、Mn 及A1所組成群之元素)。 2 · 種耐熱性正極複合材料,其係包含由下述式(2)所表 U 示之化合物及結晶度為50。/。以上之硫化物系固體電解質 者:
LiNixM,.x.yLy02 (2) (式中,X為滿足0.1<x<0,9之數,y為滿足〇 〇i<y<〇 9之 數’ X及y為滿足〇<l_x_y之數; Μ及L分別為選自由Fe、c〇、Μη&Αι所組成群之元素, 且為彼此不同之元素)。 3·如1或2之耐熱性正極複合材料,其中 134658.doc 200924263 上述硫化物系固體電解質至少包含鋰(Li)、磷(p)及硫 (s)。 4.如1至3中任一項之耐熱性正極複合材料,其中 上述硫化物系固體電解質係於l8(rc以上、21(rc以下之 溫度下’對包含經(Li)、磷(p)及硫(s)之硫化物系玻璃固體 電解質進行3〜240小時熱處理,或者於高於21(rc、且33〇 C以下之溫度下進行〇·卜240小時熱處理而成者。 5·如請求項1至4中任一項之耐熱性正極複合材料,其中 上述硫化物系固體電解質於X射線繞射(<:ιιΚα:λ = 1.5418A)$’M20 = i7.8i〇.3deg、18.2±O.3deg、19.8±O.3 deg、21·8±〇.3 deg、23.8±0.3 deg、25.9±0.3 deg、29.5±0·3 deg、30.0±〇·3 deg具有繞射峰。 6. 一種混合液,其包含如1至5中任一項之耐熱性正極複 合材料及溶劑。 ?, 一種正極,其係由如1至5中任一項之耐熱性正極複合 材料而獲得者。 σ 8· 種全固體鐘電池’其含有如7之正極。 9· 一種全固體鋰電池,其係對如8之全固體鋰電池進— 步進行加熱處理而成者。 10’種具備如8或9之全固體鋰電池而成之裝置。 11 ·如睛1至5中任一項之耐熱性正極複合材料,其中 由上述式(1)或(2)所表示之化合物之平均—次粒 001〜3D ^ ^ •〜μ1η,上述硫化物系固體電解質之平均一次粒徑 〇·01 〜30 μιη。 134658.doc 200924263 1 2 ·如1至5中任一項之耐熱性正極複合材料,其中 由上述式(1)或(2)所表示之化合物之平均一次粒禋χ與上 述硫化物系電解質之平均一次粒徑Υ滿足式(3): Υ (3)。 根據本發明,可提供一種具有熱穩定性及經時穩定性之 耐熱性正極複合材料。 【實施方式】 本發明之第1態樣之正極複合材料包含由下述式(丨)所表 示之化合物及硫化物系固體電解質。作為由下述式(1)所表 示之化合物’較好的是LiNiQ.8C〇0.2O2 :
LiNixM,.x〇2 (1) (式中’ X為滿足〇.1<χ<〇 9之數;河為選自由Fe、C〇、Mn 及A1所組成群之元素)。 本發明之第2之態樣之正極複合材料包含由下述式(2) 所表示之化合物及硫化物系固體電解質。作為由下述 (2)所表不之化合物,較好的是
LiNi1/3Co丨/3Mn丨/3〇2 :
LiNixM,.x.yLy〇2 (2) (式中,X為滿足〇.1<χ<〇 9之數,y為滿足〇 〇1<y<〇 9之 數,X及y為滿足Od-Xj之數; Μ及L刀別為選自由Fe、所組成群之元素, 且為彼此不同之元素)。 亦可代替式(1)或(2)所表示之化合物,而使用以
Tl V、Cr、Mn、Fe、Cu、Zn、Mg、Ga、Zr、Nb、 134658.doc -10- 200924263
Si等其他金屬取代式(1)或(2)之過渡金屬之一部分而成的 化合物。 硫化物系固體電解質較好的是至少含有鋰(Li)、磷(p)及 硫(S),例如可由硫化鋰與五硫化二磷、或硫化鋰與單體 磷及單體硫、進而硫化鋰、五硫化二磷、單體磷及/或單 體硫等原料而製造。上述硫化物系固體電解質亦可係進一 步實施阻燃處理而成者。 對於硫化物系固體電解質而言,較好的是結晶度為5〇% 以上100。/。以下。於硫化物系固體電解質之結晶度未滿5〇% 之情形時’作為正極複合材料時之熱穩定性較差,又,裡 離子傳導度較低’因此有無法充分發揮電池性能之虞。 再者、、'° 日日度可藉由使用 NMR (nuclear magnetic resonance, 核磁共振)光譜儀而測定。具體而言,對硫化物系固體電 解質之固體31P_NMR光料行測定,對於所獲得之固體 、NMR光譜,使用非線性最小平方法,將以7〇〜i2〇 p㈣ 觀測到之共振線分離為高斯曲線,並求出各曲線之面積 比,藉此測定出結晶度。 較好的是,硫化物系固體電解f可由硫化經、五硫化二 磷及/或、單體磷及單體硫而製造。 對於硫化經而言,並未作特別限制,可使用工業上可獲 得者’但較好的是高純度之硫化鋰。 較好的是,硫化鋰中’硫氧化物之鋰鹽之總含量較好的 是〇.15質量%以下’更好的是〇 lfp/〇以下且Ν·甲基胺 基丁酸經之含量較好的是〇.15質量%以下,更好的是〇」質 134658.doc 200924263 ϊ%以下。當硫氧化物之鋰鹽之總含量為0.15質量%以下 ^利用溶融急冷法或機械研磨法所獲得之固體電解質成 為玻璃狀電解質(完全非晶質)。亦即,當硫氧化物之鋰鹽 之總含量超過0.15質量%時,所獲得之電解質自最初便有 可能為結晶化物,該結晶化物之離子傳導度較低。進而, 即便對該結晶化物實施熱處理,結晶化物中亦不會發生變 化,k而有無法獲得高離子傳導度之硫化物系固體電解質 之虞。 、
又,當N-甲基胺基丁酸鋰之含量為〇15質量%以下時, 不會出現N -曱基胺基丁酸鐘之劣 < 匕物使链電池之循環性能 降低之情況。 如此,當使用減少了雜質之硫化鋰時,可獲得高離子傳 導性電解質。 作為該固體物質中所使用之硫化鐘之製造法,只要係可 減少至少上述雜質之方法即可’未作特別限制。 例如’亦可藉由對利用以下之方法所製造之硫化鐘進行 純化而獲得。 於以下之製造法中,尤其好的是a或b之方法: a.於非質子性有機溶劑中去奇 m Ύ使虱氧化鋰與硫化氫於〇〜1 50 °C下進行反應而生成硫氫化鍾,繼而,於15G〜富c下對 該反應液騎料氫化(日本專㈣開平7_3刪2號公 報)。 b•於非質子性有機溶劑中,使氫氡化鋰與硫化氫於 150〜2航下反應,而直接生成硫化鐘(日本專利特開平7、_ 134658.doc 12 200924263 33〇3 12號公報)。 c.使氫氧化鋰與氣體狀硫源於13〇〜4451之溫度下反應(曰 本專利特開平9-283 1 56號公報)。 作為以上述方式而獲得之硫化鋰之純化方法,並未作特 另J限制。作為較佳之純化法’例如列舉國際公開 2005/40039號等。 具體而言,使用有機溶劑,於100。(:以上之溫度下,對 以上述方式而獲得之硫化鋰進行清洗。 π洗中所使用之有機溶劑,較好的是非質子性極性溶 hJ進而,更好的疋硫化鐘製造中所使用之非質子性有機 溶劑與清洗中所使用之非質子性極性有機溶劑相同。 作為清洗中較佳使用之非質子性極性有機溶劑,例如, 列舉醯胺化合物、内醯胺化合物、尿素化合物、有機硫化 合物、環狀有Μ化合物等非f子性之極性有機化合物, 可適合用作單獨溶劑、或混合溶劑。尤其是,N•甲基_2_ 比洛咬嗣(NMP,N-Methyl-2-pyrrolidone)可被選作優良之 溶劑。 對於清洗中所使用之有機溶劑之量並未作特別限定, 又’清洗之次數亦未作特別限定,較好的是2次以上。清 洗則較好的是於氮、氩等惰性氣體下進行。 / ★於清洗中所使用之有機溶劑之沸點以上之溫度下,於氮 等惰:生氣體氣流下,且於常壓或減壓下,對經清洗之硫化 鋰進行5分鐘以上、較好的是約2〜3小時以上之乾燥 可獲得本發明中所使用之硫化鋰。 μ曰 134658.doc ,13· 200924263 對於p2s5而言’只要係工業上製造、 牙即可’未作 特別限定便可使用。再者,亦可代替p 上丄 而使用具有所 相笔之莫耳比之單體碌(P)及單體硫⑻。單體碟⑺及 硫⑻只要係工業上製造、經銷者即可,未作特別: 可使用。 史 上述硫化鋰與五硫化二 比’通常為50:50〜80:20, 磷或單體磷及單體硫之混合莫耳 較好的是60:40〜75:25。
尤其好的是,Li2S:P2S5=68:32〜74:26(莫耳比)左右 對於硫化物系固體電解質而言,只要整體之結晶度為 50%以上,則亦可係硫化物系玻璃固體電解質與硫化物系 結晶化玻璃固體電解質之混合物。 作為硫化物系玻璃固體電解質之製造方法,具有溶融急 冷法及機械研磨法(MM (Mechanical Milling)法)。 於利用熔融急冷法之情形時,以特定量乳缽將pjs與
LkS混合’使該等形成為顆粒狀者,並放入經塗碳之石英 管中而真空封入。於特定之反應溫度下反應後,投入冰中 進行急冷,藉此獲得硫化物系玻璃固體電解質。 此時之反應溫度較好的是4〇〇°c〜1000°c,更好的是800 °C〜900〇C。 又’反應時間較好的是〇.i小時〜12小時,更好的是ι〜12 小時。 上述反應物之急冷溫度通常為1〇充以下,較好的是〇°C 以下’其冷卻速度通常為1〜10000 K/sec左右’較好的是 10〜10000 K/sec 。 134658.doc -14- 200924263 於利用MM法之情形時,以特定量乳绰將ρ2§5與Li2S混 合’利用機械研磨法使該等反應特定時間,藉此獲得硫化 物系玻璃固體電解質。 對於使用了上述原料之機械研磨法,可於室溫下進行反 應。藉由MM法可於室溫下製造出玻璃固體電解質,因此 具有不會引起原料之熱分解而可獲得添加組成之玻璃固體 電解質之優點。 又’ MM法中’亦具有於玻璃固體電解質之製造之同 時’可使玻璃固體電解質微粉末化之優點。 MM法可使用旋轉球磨機、轉動球磨機、振動球磨機、 行星式球磨機等各種形式。 作為MM法之條件’例如,於使用有行星式球磨機之情 形時’可將紅轉速度設為數十〜數百旋轉/分鐘,進行〇. 5小 時〜100小時處理。 以上’對利用熔融急冷法及MM法之硫化物系玻璃固體 電解質之具體例進行了說明,溫度條件及處理時間等製造 條件亦可相應於使用設備等而進行適當調整。 之後’於特定之溫度下對声斤獲得之硫化物系玻璃固體電 解質進行熱處理’而生成硫化物系結晶化玻璃固體電解 質。 生成硫化物系結晶化玻璃固體電解質之熱處理溫度,較 好的是180°C〜330°C,更好的是20CTC〜32(TC,尤其好的是 210〇C 〜310〇C。 若溫度低於180°C,則有時會不易獲得結晶度較高之詰 134658.doc 200924263 晶化玻璃,若溫度高於33(TC,則有產生結晶度較低之結 晶化玻璃之虞。 熱處理時間於180°C以上21 (TC以下之溫度之情形時,較 好的是3〜240小時,尤其好的是4~230小時。又,於高於 210°C且330°C以下之溫度之情形時,較好的是〇.1〜240小 時,尤其好的是0.2〜235小時,更好的是〇.3〜230小時。 若熱處理時間短於〇. 1小時,則有時會不易獲得結晶度 較高之結晶化玻璃’若長於240小時,則有產生結晶度較 低之結晶化玻璃之虞。 該硫化物系結晶化玻璃固體電解質’較好的是於χ射線 繞射((:ιιΚα:λ=1.5418Α)中,於2Θ = 17·8±0.3 deg、18.2±0.3 deg、19.8±0.3 deg、21·8±0.3 deg、23·8±〇·3 deg、25.9±0·3 deg、29_5±0·3 deg、30·0±0·3 deg具有繞射峰。 具有上述結晶構造之固體電解質,具有極其高之鋰離子 傳導性。 為了使電子作為導電助劑而於極性活性物質内順利地移 動,亦可於本發明之正極複合材料中適當添加具有電性導 ,性之物質。作為具有電性導電性之物f,未作特別限 疋’可單獨或混合使用如乙炔黑、碳黑、碳奈米管般之導 電性物質或者如聚苯胺、聚乙炔、聚吡咯般之導電性高分 子。 一本發明之正極複合材料,可將由上述式⑴或式⑺所表 不之化合物及硫化物系固體電解質加以混合而製造。由式 ⑴或式⑺所表化合物及硫化㈣固體電解質之混合 134658.doc •16- 200924263 會署::()或式⑺所表不之化合物:硫化物系固體電解質 更重比),較好的是50〜9〇:5〇〜1()。 是〇由H)或(2)所表示之化合物之平均一次粒徑,較好的 =人;、立徑較好的是0.01〜30 μηι,尤其好 去 μΐΏ。藉此’可期望電池性能即充放電效率變
佳,性能得到提高。 手I 二系之化合物之平均一次粒徑χ與硫 (3):人粒徑Υ,較好的是^式⑺: 呈,9從+材料與電解f之接觸面積得到最Α限度地改 善從而電池性能、亦即輸出特性變佳。 儀粒徑係指利用雷射繞射絲 ==:Tmicronsizer~_ 二經時穩定性優異。 纖形等、成形體製;=要於使用了漿料之 其製造中含有回焊步 ,或燒成之情形,或者 用之汽車用電池等。 '、達到高溫之引擎周邊所使 本發明之正極複合材料,因盆 定性,故具有可大幅緩和電^ :之熱穩定性及經時穩 制之優點。 製造條件及設置場所之限 藉由塗佈包含本發明之正極複合材料及溶劑之混合液, 134658.doc 200924263 可形成全固體鋰電池之正極。 對於上述混合液而言,本發明之 溶劑甲。本發明之τ拉、备人 口材科不溶解於 會二ί 材料之比重通常大於溶劑之比 因此於上述混合液中通常形成沈澱, 較好的是使用藉由糌杜笙你Έ 4 、/成正極時 之混合液。使極複合材料均-地分散而成
混合液中所使用之溶劑,較好的是與正極複合材料之反 應性較低之溶劑,亦可藉由對正極複合材料表面進行塗層 專處理使正極複合材料不與溶劑發生反應,而使用與正極 複合材料之反應性較高之溶劑。 上述溶較好的是有機溶劑’更好的是烴系有機溶劑,例 如己貌、庚院、甲苯、三甲苯、十氫萘等。 該等溶财’考慮时佈後之乾燥步驟,較好的是作為 低濟點溶劑之己院、甲苯、二甲$,而考慮到混合液之維 持難以使用瘵發速度較快之低沸點溶劑,從而較好的是 甲苯、二甲苯等。 混合液中所使用之溶劑,較好的是進行脫水處理以使水 分含置降低。溶劑之水分含量通常為30 ppm以下,較好的 疋1 〇 ppm以下’更好的是1 〇 以下。 亦可於含有正極複合材料及溶劑之混合液中進—步添加 黏合劑。 上述黏合劑只要與正極複合材料之反應性較低即可, 未作特別限定,較好的是熱塑性樹脂及熱固性樹脂,更 好的是聚矽氧烷、聚烷二醇、聚四氟乙烯(PTFE, 134658.doc -18· 200924263 polytetrafluoroethylene)、聚偏二敗乙浠(PVDF,Polyvinylidene fluoride)、苯乙婦丁二稀橡膠(SBR,styrene-butadiene rubber)、苯乙烯丁二烯橡膠/羧曱基纖維素(SBR/CMC, styrene-butadiene rubber/carboxymethyl cellulose) ' 聚氧化 乙稀(PEO,polyethylene oxide)、分支 PEO、聚苯醚 (PPO,polyphenylene oxide)、PEO-PPO共聚物、分支PEO-PPO共聚物、含有烷基硼烷之聚醚。 再者,對於黏合劑而言,從薄片化容易性、防止界面電 阻之增加且防止充放電容量之降低之觀點考慮,尤其好的 是SBR、聚烷二醇。 本發明之全固體鋰電池,係由包含本發明之正極複合材 料之正極、負極、及夾持於正極及負極間的包含硫化物系 固體電解質之固體電解質層而構成。 固體電解質層中所含有之硫化物系固體電解質,可與正 極複合材料中所含有之硫化物系固體電解質相同亦可不 同,較好的是相同。 圖1係表示本發明中之全固體鋰電池之一實施形態之概 略剖面圖。全固體鋰電池1於包含正極10及負極30之一對 電極間夾持有固體電解質層20,其中上述正極10包含本發 明之正極複合材料。於正極10及負極30分別設置有集電體 40及 42 ° 正極10包含本發明之正極複合材料,且係藉由將本發明 之正極複合材料以膜狀形成於固體電解質層20之至少一部 分而製作。作為製膜方法,除了上述之塗佈包含本發明之 134658.doc -19· 200924263 正極複合材料及溶劑之混合液而形成之方法外,例如,亦 可使用喷射法、氣膠沈積法、冷卻喷塗法、賤鑛法、氣相 成長法、加Μ製法或噴塗法等。利用上述方法進行製 膜’藉此可進一步減小電極材料層之空隙率,且可改善電 子傳導、電子授受及離子傳導。 固體電解制獅藉由_例如喷㈣錢膠沈積法將 硫化物系固體電解質製膜而製造。又,亦可利用冷卻喷塗 法、滅鑛法、氣相成县、本., U日攻長法(Chermcal Vap〇r Dep〇shi〇n : CVD,化學氣相沈積).喑 質之製膜。積)或喷塗法等進仃硫化物系固體電解 系^亦具有如下方法,即,塗佈、塗敷混合有硫化物 :固體電解質與溶劑或黏合劑(結著材料或高分子 4)之溶液後,將溶劑除去而成膜化之方法。又,亦可藉 2電解質進仃加屋塵製而成膜,其中該電解質係將固體 八質自身或固體電解質與黏合劑(結著材料或高分子化 &物等)或支持體(用以增強固體電解質層之強度、或者防 止固體電解質自身 組合而成。 a路之材料或化合物等m行混合· 除了因應電池之用途所適合之厚度及寬度不同之外,亦 慮正極材料及負極材料之組合’因此可根據用途等 而適*選擇最佳製臈法。 :劑只要不會對固體電解質之性能造成不良影響即可, 彳特別限定’例如列舉非水系溶劑。 作為非水系溶劑,例如,列舉乾燥庚烧、甲苯、己烧、 134658.doc -20· 200924263 四氫0夫喃(THF,tetrahydrofuran)、N-甲基0比咯σ定酮、乙 腈、及二曱氧乙烷、碳酸二曱酯等電解液中所使用之溶 劑,較好的是水分含量為1 00 ppm以下,更好的是為50 ppm以下之溶劑。 作為黏合劑,可使用熱塑性樹脂或熱固性樹脂。例如, 可列舉聚矽氧烷、聚烷二醇、聚乙烯、聚丙烯、聚四氟乙 烯(PTFE)、聚偏二氟乙烯(PVDF)、四氟乙烯六氟乙烯共 聚物、四氟乙稀-六氟丙烯共聚物(FEP,Fluorinated ethylene propylene)、四氟乙烯-全氟烧基乙浠醚共聚物 (PFA,tetrafluoroethylene-perfluoroalkyl)、偏二氟乙稀-六 氟丙稀共聚物、偏二氟乙稀-三氟氣乙稀共聚物、乙稀-四 氣乙稀共聚物(ETFE 樹脂,ethylene tetrafluoroethylene resin)、聚三氟氣乙稀(PCTFE,Polychlorotrifluoroethylene)、 偏二氟乙稀-五氟丙稀共聚物、丙稀-四氟乙稀共聚物、乙稀-三貌氣乙稀共聚物(ECTFE,Ethylene-chlorotrifluororthylene)、 偏二氟乙烯-六氟丙稀-四氟乙稀共聚物、偏二氟乙稀-全氟 甲基乙烯基醚-四氟乙烯共聚物、乙烯-丙烯酸共聚物或上 述材料之(Na+ )離子交聯體、乙烯-曱基丙烯酸共聚物或上 述材料之(Na+ )離子交聯體、乙烯-丙烯酸甲酯共聚物或上 述材料之(Na+ )離子交聯體、乙烯-曱基丙烯酸甲酯共聚物 或上述材料之(Na+)離子交聯體。 其中較好的是聚矽氧烷、聚烷二醇、聚偏二氟乙烯 (PVDF)、聚四氟乙稀(PTFE)。 負極30能夠以與正極10相同方式而製作。作為負極30之 134658.doc •21 - 200924263 作中所使用之負極材料’可使用電池領域中用作負極活 性,質者。例如’碳材料’具體而言,列舉人造石墨、石 墨,纖維、樹脂燒成碳、熱分解氣相成長碳、焦、炭、中間 匕厌微求(MCMB,meso-earb〇n micr〇_beads)、〇夫喃曱醇樹 月曰燒成奴、多并苯、瀝青系碳纖維、氣相成長碳纖維、天 :石墨及難石墨化碳。亦可為該等之混合物。較好的是人 造石墨。又’亦可將金屬鋰 '金屬銦、金屬鋁或金屬矽之
金屬自身或該等金屬與其他元素或化合物組合而成之合 金’用作負極材料。 於本發明中’固體電解質層2〇包含硫化物系固體電解 ’因此即便於負極材料中使用金屬鐘或石墨(graphite), 負極與固體電解質;允 B 發生反應’從而可顯示出良好之 電池性能。 x、正極複合材料同樣,將導電助劑及/ 或硫化物系固體電解皙 貝芯δ °負極材料中所使用之硫化物 系固體電解質,魴榀沾a & 、#子的疋與固體電解質層中所使用之硫化 物系固體電解質相同。 作為集電體40 欽、鈷、錄、鋅 體或箔狀體等。 42,可使用包含銅 '鎂、不鏽鋼、鈦、 鋁、鍺、銦、鋰、或該等合金等之板狀 集電體40、42可分別相n女π 同亦可不同。例如,集電體 田 _ HU 丁 使用銅落’集電體辦亦可使用㈣ 全固體鐘電池可藉由腺 將上述電池用構件貼合、接合而製 造。作為接合之方法,右蚪々讲 有對各構件進行積層、加壓•壓著 134658.doc •22- 200924263 之方法’或通過兩個滾筒間進行加a之方法(_ t〇 r〇ii) 等。 又亦可經由於接合面具有離子傳導性之活性物質或不 會抑制離子傳導性之接著物質而進行接合。 對於接合而言,亦可在固體電解質之結晶構造不會發生 變化之範圍内進行加熱熔固。 x 、:,較好的是可對利用上述方法所製造之全固體鋰電池 進步進行加熱處理而使之成為高輸出功率之電池。加熱 處理時之加熱溫度較好的是1Gm β χ,加熱處㈣ 間通常為0.1〜1 〇小時。 再者’全固體ϋ電池之加熱處理亦包括僅對電池元件部 分進行加熱處理之情形,該電池元件僅包含負㉟、固體電 解質成形體及正極。又,全固體鋰電池之加熱處理不包括 安全裝置、包裝(wrapping)等之加熱處理。 本發明之全固體鋰電池可成為二次電池及一次電池中之 任者,可用於時鐘、行動電話機、個人電腦、汽車、發 電機等裝置中。尤其是因為本發明之全固體鋰電池安全性 較高,故藉由使用本發明之全固體鋰電池而可提高裝置之 設計自由度。 上述裝置中,汽車包括驅動源為電動機之電動汽車、及 組合使用電動機與内燃機構作為驅動源之混合動力汽車, 而該等汽車需要大電流及大電壓。 本發明之全固體鋰電池串聯及/或並聯相連而形成電池 胞,藉此可釋放較大之電力。將複數之電池胞進一步串聯 134658.doc •23· 200924263 及/或並聯連接而形成電池模組(電池組、電池單元),藉此 可形成上述/飞車所需之大電流·大電壓充滿之電池。 [實施例] 製造例 (1) 硫化鋰(Li2S)之製造 硫化鋰係依據日本專利特開平7_33〇312號公報之第工態 樣(兩步驟法)之方法製造而成。具體而言,向安裝有攪拌 翼之10升之高壓釜中添加N-甲基-2-吡咯啶酮(NMP) 3326.4 2 -:v 〇 (33.6莫耳)及氳氧化鋰287 4 g 〇2莫耳),以3〇〇卬瓜升溫至 1C。升溫後,以3升/分鐘之供給速度向液體中吹入硫 化氫2小時。繼而’使該反應液於氮氣流下(2〇0 cc/分鐘) 升/JIL ’對已反應之硫化氫之一部分進行脫硫氫化。伴隨著 升溫’藉由上述硫化氫與氫氧化鋰之反應而副生成之水開 始蒸發,該水藉由冷凝器冷凝後抽出至系統外部。當水在 系統外部蒸餾之同時反應液之溫度上升,而於達到1 8〇 之時點則停止升溫,並保持為固定溫度。脫硫化氫反應結 ,; 束後(約80分鐘)結束反應,從而獲得硫化鋰。 (2) 硫化鋰之純化 對上述(1)中所獲得之5〇〇 mL之漿料反應溶液(NMP-硫化 鐘毁料)中之NMP進行傾析後,添加經脫水之NMP 1 〇〇 mL ’於10 5 °C下攪拌約1小時。保持其溫度之同時對NMP 進行傾析。進而添加NMP 100 mL,於105°C下攪拌約1小 時,保持其溫度之同時對NMP進行傾析,重複進行相同之 操作總計4次。當傾析結束後,於氮氣流下23(TC (NMP之 134658.doc -24- 200924263 /弗點以上之/見度)下,將硫化鋰於常壓下乾燥3小時。對所 獲得之硫化鋰中之雜質含量進行測定。 再者’亞硫酸鐘(Li2S〇3)、硫酸鋰(Li2S04)以及硫代硫酸 鋰(Li2S2〇3)之各硫氧化物,及N_甲基胺基丁酸鋰 之含置,係藉由離子層析法而定量。其結果,硫氧化物之 矣《 έ量為0.13質量%,LMAB為〇 〇7質量0/〇。 (3)硫化物系固體電解質之製造 將藉由上述而製造之以^與hi (八丨心丨^^製)用於起始材 料。將該等調整為70對3〇之莫耳比所得之25〇 g之混合 物’放入填充有氧化錯製球之SUS製容器(容量6.7 L)中, 於露點-4G°C以下之乾燥環境氣體下及室温下,藉由振磨 機以200小時施加! kJ/kg · s之機械能量進行機械研磨處 理’藉此獲得白黃色粉末之硫化物系固體電解質粉體。 對於所獲得之粉末’進行粉末χ射線繞射測定 (C^KaM.MuA)。所獲得之圖示於圖2中。藉由該圖, 確認原料結晶之峰完全消失’該硫化物系固體電解質粉體 玻璃化。又,所獲得之硫化物系玻璃固體電解質(非晶質 玻璃電解質)之結晶度為〇%。 將所獲得之非晶質玻璃電解質粉體放入 則管中並密閉,於贿下實施2小時之燒成 製作出硫化物系結晶化玻璃固體電解質(結晶化玻璃電解 質)。 所獲得之結晶化玻璃電解質之平均一次粒徑為3叫。再 者’平均-次粒徑係藉由雷射繞射式粒度分布測定儀 134658.doc -25- 200924263 SEISHIN LASER MICR0N SIZER LMS_3〇(清新企業製)而 測定。後述之正極活性物質(例如,LiNiQ sC〇g々Ο2)之平均 一次粒徑亦以相同之方式而測定。
對於藉由上述而製作之結晶化玻璃電解質,進行粉末X 射線繞射測定((:ιιΚα:λ=1.5418Α)。確認所獲得之社曰化玻 璃電解質,於胸7級3deg、18.2±G.3deg、H〇 3 deg > 21.8±0.3 deg > 23.8±0.3 deg > 25.9±〇.3 deg,29.5±0.3 deg、30.0±0.3 deg具有繞射峰。所獲得之結果示於圖3。 又’確認所獲得之結晶化玻璃電解質之結晶度為观以 上。該、结晶度係藉由如下而算出,即,使用麵_ CMXP3 02NMR裝置(日本電子股份有限公司製),於以下之 條件下測定固體3〗P-NMR光譜’並對所獲得之固體3IpNMR 光譜,使用非線性最小平方法將以70〜120 ppm觀測到之共 振線分離為高斯曲線,並根據各曲線之面積比而算出。 固體31P-NMR光譜之測定條件 觀測核:31P 觀測頻率:121.339 MHz 測定溫度:室溫 測定法:MAS法 脈衝系列:單脈衝 90°脈衝寬度:4 魔角旋轉之旋轉數:8600 Hz
FID (flame — deteeti〇n,火焰離子化偵測)測定 後直至下人施加脈衝為止之等待時.間:1 〜2000 S 134658.doc -26- 200924263 (設定為最大之自旋-晶格鬆他(spin_lattice relaxati〇n)時間 之5倍以上) 積算次數:64次 化學位移係使用(NH+HPCU(化學位移丨33 ppm)作為外 部基準而決定。 為了防止由於试樣充填時之空氣中之水分而引起的變 質,於連續地流入惰性氣體之乾燥盒中,將試樣填充於密 閉性之試樣管中。 " 實施例1 根據「8〇11(!81扛16(:〇11111111心3如113,¥〇1.90,版7,卩.439- 442,1994」’調製 LiNi〇,8Co〇 2〇2(平均一次粒徑:1〇 。 將該LiNiuCowO2與製造例中所調製之結晶化玻璃電解質 以重量比1:1混合,而形成正極複合材料。以乳缽將該正 極複合材料粉碎5分鐘,於錠劑成形機中填充約〇3 g之正 極複合材料,施加4〜6河以之壓力而形成正極複合材料成 形體,進而,將作為電極之碳石墨(TIMCAL製, 與製造例中所調製之結晶化玻璃電解質以重量比1:1混入 而成之複合材料約10 mg,分別置於成形體之兩面並再 次利用錠劑成形機施加壓力,藉此製作出包含電極、正極 複合材料成形體及電極此3層的交流阻抗測定用成形體(直 徑約為10 mm ’厚度約為2 mm)。 對所獲侍之交流阻抗測定用成形體實施交流阻抗洌定。 再者,交流阻抗法之測定係於室溫(28 9t)T進行第—^ 之測定’升溫i19〇°C為止後’降溫至室溫(26代)為止^ 134658.doc -27- 200924263 進行第二次測定。結果示於圖4。 根據圖4可知,斗、 #溫前之測定曲線及升 + 即便經過19〇。匚之古、 皿後之測疋曲線 向溫下亦無較大之電阻成 線之形狀幾乎—勒各 电阻成刀之變化.,曲 穩定性優異。 μ即#疋本發明之正極複合材料熱 比較例1 以與實施例 且以與實施 除了使用liCg〇2而代替LiNi。8C。。2〇2之外 相同之方式’製作交流阻抗測定用成形體 例1相同之方式進行評估。結果示於圖5。 根據圖5可知,丼、θ义 , ^ 升▲刖之測定曲線及升溫後之洌定曲绫 因經過I90t之高溫下 ^ ^曲線 線之形狀有較大之不…成分之變化,曲 引起正極複合材料之性狀之變化。 …下,而 實施例2 以:^例中所調製之結晶化玻璃電解質及⑽丨。8。。。办 極、-ΙΓ:8混合,而形成正極複合材料。以乳蛛將該正 :口材枓粉碎5分鐘’使用管式爐將經粉碎之正極複合 材料於150C下加熱處理3〇分鐘。 使用經熱處理之正極複合材料製作電池。使用約包含 複合材料之正極、約包含〇.2g之製造例中所調 製之硫化物系結晶化玻璃電解質之電解質層、及包含㈣ =之負極’製作包含正極、電解質及負極此3層之厚度約 為1 mm、直徑約為16 mm之電池。 對所製作之電池之充放電特性進行評估。充放電特性評 134658.doc -28· 200924263 ,係使用充放電自動測定裝置(東方技研股份有限公司 製)’將上限電塵設為3·7 乂及下限電廢設為i5 V,將電流 密度為1〇0私,、進行。其結果,所獲得之電池之: 始充電量約為100 mAh/g。 實施例3 除了未對利用乳钵而粉碎之正極複合材料進行加熱處理 之外,卩與實施例2相同之方式製作電池,以與實施例2相 $之方式進行評估。其結果為,所獲得之電池之初始充電 量約為80 mAh/g。根據實施例2及實施例3,確認使用了本 發明之正極複合材料之電池,即便其製造過程中包含加熱 處理之情形,亦不會引起充放電特性之較大變化。 比較例2 除了使用LiCo〇2代替LiNi0.8Co〇.2〇2之外,以與實施例2 相同之方式製作電池,以與實施例2相同之方式進行評 估。其結果,所獲得之電池之初始充電量約為35 mAh/g。 比較例3 ’除了使用LiCo〇2代替LiNi0.8C〇0.2〇2之外,以與實施例3 相同之方式製作電池,以與實施例2相同之方式進行評 估。其結果’所獲得之電池之初始充電量約為7〇mAh/g。 比較例2及比較例3中’確認藉由進行加熱處理而引起初 始充電量之大幅降低,正極複合材料中使用了 Lic〇〇2之電 池,與正極複合材料中使用了 LiNiwCowO2之電池相比, 熱穩定性劣化。 比較例4 134658.doc •29· 200924263 代替結晶化玻璃電解質,而使用製造例中所製作之非晶 質玻璃電解質來作為正極複合材料中所使用之硫化物系固 體電解質’除此之外以與實施例2相同之方式製作電池, 以與實施例2相同之方式進行評估。其結果,所獲得之電 池之初始充電量約為50 mAh/g。 比較例5
代替結晶化玻璃電解質,而使用製造例中所製作之非晶 質玻璃電解質來作為正極複合材料中所使用之硫化物系固 體電解質,除此之外以與實施例3相同之方式製作電池, 以與實施例2相同之方式進行評估。其結果,所獲得之電 池之初始充電量約為120 mAh/g。 比較例4及比較例5中,仙藉由進行加#處理而引起初 始充電量之大幅降低,正極複合材料中使用了非晶質玻璃 電解質之電池,與正極複合材料中使用了結晶化玻璃電解 質之電池相比,熱穩定性劣化。 實施例4 將製造例中所調製之結晶化玻璃電解質及LiNi。8C〇。a。 以重量比1:1混合而製作正極複合材#,在惰性環境=體 内保存一個月時間。之後,進行正極複合材料之xrd (χ_ ray diffraction,X射線繞射)測定,其結果,確認即便與 LiNiwCouO2單體之XRD圖案相比,正極複合材料之繞射 峰亦未發生變化,從而本發明之正極複合材料之經時穩定 性優異。 再者,X射線繞射測定(XRD)之測定條件係為如下所示 134658.doc •30- 200924263 者。 裝置:(股)Rigaku 製 Ultima-Ill X射線:Cu-Κα射線(波長1.54O6A,利用石墨單色器單 色化)2Θ-Θ反射法、連續掃描(丨〇。/分鐘) 取樣間隔:0.02。 狹縫 DS、SS : 2/3。,RS : 0.6 mm 比較例6
製作將製造例中所調製之結晶化玻璃電解質及LiCo〇2以 重量比1:1混合而成之正極複合材料,在惰性環境氣體内 保存一個月時間。之後,進行正極複合材料之XRJ)測定。 其結果’確認與LiCo〇2單體之xrd圖案相比,正極複合材 料之繞射峄於低角度側發生了位移,晶格常數發生了變 化。其結果,與本發明之正極複合材料相比,包含結晶化 玻璃電解質及LiCo〇2之正極複合材料經時性不穩定。 實施例5 根據曰本專利特開平1〇_316431號公報而調製 UNhsCoovAlowCh(平均一次粒徑:5 μπι)。以乳缽將7〇 mg之LiNio.sCoojAlo.wO2與3〇 mg之製造例中所調製之結 晶化玻璃電解質混合而形成正極複合材料。 向15·5 mm#之模具中投入製造例中所 巧Y所调製之結晶化玻璃 電解質200 mg,於154 MPa下壓製3次。嫩 繼而,投入正極複 模具對包含結 合材料100 mg,並於53 0 MPa下壓製3次, 晶化玻璃電解質之層及包含正極複合松 1科之層的積層體之 顆粒物進行打孔。利用2片鈦箔夾住兮 μ靖粉物,並設置於 134658.doc •31 - 200924263 電池胞中°將該電池胞於300t下加熱30分鐘,使結晶化 玻璃電解質破璃陶竟化。 自積層體之正極複合材料之相反侧貼附銦箔(丨5 mm彡, 0.1 mm厚)作為負極,製作出電池。 對所獲得之電池’將充放電之電流密度設為25〇 μΑ/cm ,截止上限電壓設為36 V,下限電壓設為ι·5 V, 並進行評估°其結果,初始充電容量為165 mAh/g,放電 容量為11 5 mAh/g。
比較例7 除 了使用 LiCo02代替 LiNin 〇Γη αι ^ 八々UN丨08ϋ〇0,丨5AV〇5〇2之外,以與實 施例5相同之方式製作電池。對 耵所攫仔之電池,將充放電 之電雄·度设為250 μΑ/cm2,截|卜卜up ♦ ρ 截止上限電壓設為39V,下 限電壓設為1.5 V,並進行評估。盆姓 a 具結果,所獲得之電池 未能作為二次電池而發揮作用。 實施例6 v _人孤徑马10 μηι)代替
LiNi〇.8Co〇15Al〇.〇502之外,以盘實 /、貫知例5相同之方式製作電 池。對所獲得之電池,將充放電之、 氣乍電 μΑ/cm2,截止上限電壓設為3 , ^ ^ ^ 250 • V’下限電壓設為1 ς v 並進行評估。其結果,初始充 ^· 容量為95 mAh/g。 $為135 mAh/g,放電 實施例7 除了使用與實施例i相同之 LiNi0.8C〇0.15Al0.05O2之外,以邀 1 ι〇.β〇〇.2〇2 代替 與實施例5相同之方式製作電 134658.doc • 32 - 200924263 池。對於所獲得之電池,將 _ Δ/ 2 # 玫電之電流密度設為250 μΑ/cm,截止上限電壓設為36 ^ , • 下限電壓設為1.5 V, 並進行評估。其結果,初始充電 容Ah/ 里 4 145 mAh/g,放電 合 Ϊ:马 105 mAh/g 〇 產業上之可利用性 本發明之正極複合材料可用 *八王11)體鋰二次電池。 本發明之全固體鋰二次電池 ,_ ^ Γ用作個人數位助理、可攜 式電子設備、家庭用小型蓄雷驻
Λ 备4裝置、以馬達為電力源之兩 輪摩托車、電動汽車、混合動力汽車等之電池。 【圖式簡單說明】 圖1係表示本發明中之全固體鐘電池之-實施形態之概 略剖面圖。 圖2係製造例中所製作之硫化物系固體電解質之乂射線繞 射光譜圖。 圖3係表示製造例中所製作之結晶化玻璃電解質之粉末乂 射線繞射之測定結果的圖。 圖4係表示實施例β所製作之離子傳導度測定用成形體 之離子傳導度之測定結果的圖。 圖5係表示比較例丨中所製作之離子傳導度測定用成形體 之離子傳導度之測定結果的圖。 【主要元件符號說明】 1 全固體鋰電池 10 正極 20 固體電解質層 134658.doc -33· 200924263 30 負極 40, 42 集電體 134658.doc -34

Claims (1)

  1. 200924263 十、申請專利範圍:
    2. 述式(1)所表系 系固體電解質 種耐熱性正極複合材料,其係包含由下 化S物及結晶度為50%以上之硫化物 者: LiNixM,.x〇2 ⑴ (式中,X為滿足01<χ<〇 9之數;]^為 „ Α , 曰田、c〇、綱 及Α1所組成群之元素)。 一種耐熱性正極複合材料,其係包含由下述式⑺所表系 之化合物及結晶度為5 0 %以上之硫化物系固體電解質 者: LiNixM,.x.yLy〇2 (2) (式中,X為滿足〇·1<χ<〇9之數,y為滿足〇,〇iq<〇9之 數’ X及y為滿足〇<l_x_y之數; Μ及L分別為選自由Fe、c〇、Μη&Αι所組成群之元 素’且為彼此不同之元素 3. 如請求項1或2之耐熱性正極複合材料,其中 上述硫化物系固體電解質至少包含鋰(Li)、磷(p)及硫 (S)。 4. 如請求項1或2之耐熱性正極複合材料,其中 上述硫化物系固體電解質係於18〇。(:以上、210°C以下 之溫度下’對包含鋰(Li)、填(p)及硫(s)之硫化物系玻螭 固體電解質進行3〜240小時熱處理,或者於高於21 (TC、 且330°C以下之溫度下進行〇. 1〜240小時熱處理而成者。 5 ·如請求項1或2之耐熱性正極複合材料,其中 134658.doc 200924263 上述硫化物系固體電解質於 (ΟυΚα:λ=ι 541〇Α,. 、於 X 射線繞射 •M18A) t ’ 於20=17 8±〇 de8 ' 19.8 + 0 3 H § ' ^.2 + 0.3 ~ϋ.3 deg、21·8±〇·3 deg、23 8 + “」 °·3 deg,29 5 + n, g 23·8±°·3 deg,25.9± 6. 一種、、曰人/ g、3〇.〇±〇.3deg具有繞射峰。 極複合材料及溶劑。 、纟_任—項之耐熱性正 7. 一種正極,JL在丄. 再係由如請求項丨至5 Φ紅 s 複合材料而獲得者。 、之耐熱性正極 8· 一種全固體雜^4. A 龍電池’其含有如請求項7之正極。 •種王固體鐘電池,其係對如請求 進一步進行加熱處理而成者。 目體鐘電池 10. -種具備如請求項8或9之全固體㈣池 U·如請求項1或2之耐熱性正極複合材料,其巾 。二二述式⑴或(2)所表示之化合物之平均-次粒徑為 為〇〇13Γ’上迷硫化物系固體電解質之平均—次粒徑 兩 υ·υ 1 〜3Ο μιη。 12.如請求項丨或2之耐熱性正極複合材料,其中 由上述式⑴或(2)所表示之化合物之平均一次粒徑聽 上述硫化物系電解質之平均一次粒徑Υ滿足式(3):、 X芎 Υ (3)。 134658.doc
TW097135827A 2007-09-21 2008-09-18 Heat-resistant positive electrode mixture and all-solid-state lithium secondary battery using the same TW200924263A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007245304 2007-09-21
JP2008172329 2008-07-01

Publications (1)

Publication Number Publication Date
TW200924263A true TW200924263A (en) 2009-06-01

Family

ID=40467851

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097135827A TW200924263A (en) 2007-09-21 2008-09-18 Heat-resistant positive electrode mixture and all-solid-state lithium secondary battery using the same

Country Status (3)

Country Link
JP (1) JP5615551B2 (zh)
TW (1) TW200924263A (zh)
WO (1) WO2009038037A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416115A (zh) * 2019-01-08 2020-07-14 三星电子株式会社 用于固态二次电池的正极、其制备方法、正极组件及固态二次电池
US11791452B2 (en) 2018-02-02 2023-10-17 Honda Motor Co., Ltd. Positive electrode for solid-state batteries, solid-state battery and method for producing solid-state battery

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277859B2 (ja) * 2007-12-03 2013-08-28 セイコーエプソン株式会社 硫化物系リチウムイオン伝導性固体電解質ガラスおよび全固体リチウム二次電池
JP5187502B2 (ja) * 2008-03-06 2013-04-24 住友電気工業株式会社 リチウム電池
CA2740352A1 (en) * 2008-10-13 2010-04-22 K. Jordan Lampert Mixed lithium nickel cobalt oxide and lithium nickel manganese cobalt oxide cathodes
JP2011040281A (ja) * 2009-08-11 2011-02-24 Samsung Electronics Co Ltd 全固体二次電池
JP2011065982A (ja) 2009-08-18 2011-03-31 Seiko Epson Corp リチウム電池用電極体及びリチウム電池
JP2011060649A (ja) * 2009-09-11 2011-03-24 Toyota Motor Corp 電極活物質層、全固体電池、電極活物質層の製造方法および全固体電池の製造方法
JP6071171B2 (ja) * 2010-09-01 2017-02-01 出光興産株式会社 電極材料及びそれを用いたリチウムイオン電池
JP2012160415A (ja) * 2011-02-03 2012-08-23 Idemitsu Kosan Co Ltd 二次電池用電極材料、電極及び二次電池
JP5445527B2 (ja) * 2011-07-13 2014-03-19 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
US20140377664A1 (en) 2012-01-10 2014-12-25 The Regents Of The University Of Colorado, A Body Corporate Lithium all-solid-state battery
JP2013258079A (ja) * 2012-06-13 2013-12-26 Nagase Chemtex Corp 結晶成分を含む正極合材
JP6288716B2 (ja) 2014-06-25 2018-03-07 国立大学法人東京工業大学 硫化物固体電解質材料の製造方法
JP6877084B2 (ja) * 2015-07-31 2021-05-26 国立大学法人東京工業大学 α−リチウム固体電解質

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922732A (ja) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd ポリマー電解質二次電池
JP2001273895A (ja) * 2000-03-27 2001-10-05 Toshiba Corp 非水電解質二次電池とその製造方法
JP2002260736A (ja) * 2000-12-27 2002-09-13 Mitsubishi Chemicals Corp リチウム二次電池
JP5108205B2 (ja) * 2005-02-28 2012-12-26 国立大学法人静岡大学 全固体型リチウム二次電池
JP4833594B2 (ja) * 2005-06-27 2011-12-07 日本電信電話株式会社 リチウム2次電池及びその製造方法
US7993782B2 (en) * 2005-07-01 2011-08-09 National Institute For Materials Science All-solid lithium battery
JP2008027581A (ja) * 2006-06-23 2008-02-07 Idemitsu Kosan Co Ltd 電極材料、電極及び全固体二次電池
JP2008103146A (ja) * 2006-10-18 2008-05-01 Idemitsu Kosan Co Ltd 固体電解質及びそれを用いた二次電池
JP5048993B2 (ja) * 2006-10-19 2012-10-17 出光興産株式会社 正極合材用硫化物系固体電解質及びその製造方法
JP5001621B2 (ja) * 2006-10-20 2012-08-15 出光興産株式会社 固体電解質及びそれを用いた固体二次電池
JP2008103280A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 正極合材及びそれを用いた全固体二次電池
JP4989183B2 (ja) * 2006-10-20 2012-08-01 出光興産株式会社 極材及びそれを用いた固体二次電池
JP5448020B2 (ja) * 2007-03-23 2014-03-19 トヨタ自動車株式会社 合材層の製造方法および固体電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11791452B2 (en) 2018-02-02 2023-10-17 Honda Motor Co., Ltd. Positive electrode for solid-state batteries, solid-state battery and method for producing solid-state battery
CN111416115A (zh) * 2019-01-08 2020-07-14 三星电子株式会社 用于固态二次电池的正极、其制备方法、正极组件及固态二次电池

Also Published As

Publication number Publication date
WO2009038037A1 (ja) 2009-03-26
JPWO2009038037A1 (ja) 2011-01-06
JP5615551B2 (ja) 2014-10-29

Similar Documents

Publication Publication Date Title
TW200924263A (en) Heat-resistant positive electrode mixture and all-solid-state lithium secondary battery using the same
KR101886003B1 (ko) Li 리치 안티페로브스카이트 화합물, 이를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP6206900B2 (ja) 固体電解質シート、電極シート、及び全固体二次電池
JP5559989B2 (ja) 全固体二次電池及びそれを備えてなる装置
JP5368711B2 (ja) 全固体リチウム二次電池用の固体電解質膜、正極膜、又は負極膜、及びそれらの製造方法並びに全固体リチウム二次電池
JP4989183B2 (ja) 極材及びそれを用いた固体二次電池
JP6136612B2 (ja) リチウムイオン二次電池用電極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2024032847A (ja) 二次電池
US20130149604A1 (en) Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2008103280A (ja) 正極合材及びそれを用いた全固体二次電池
JP2010033732A (ja) リチウム電池用被コーティング固体電解質、及びそれを用いた全固体二次電池
US10741842B2 (en) Solid-state battery
JP2010033876A (ja) ポリマー被覆固体電解質、及びそれを用いた全固体二次電池
JP2016134316A (ja) 固体電解質
KR20150132128A (ko) 전지, 전해질층, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
JP2008103204A (ja) 正極活物質及びそれを用いた二次電池
CN108923061B (zh) 固体电解质材料和全固体锂电池
JP2014221714A (ja) リチウムイオン伝導性固体電解質シート及びその製造方法
JP2008103203A (ja) 固体電解質及びそれを用いた全固体二次電池
JP7010011B2 (ja) 硫化物固体電解質
JP2008103259A (ja) 固体電解質シート、電極シート及びそれを用いた全固体二次電池
JP2010033877A (ja) 電極合材、及びそれを用いた全固体二次電池
JP2013222530A (ja) 全固体電池及び全固体電池の充放電方法
JP2014086222A (ja) 二次電池の製造方法
JP5001621B2 (ja) 固体電解質及びそれを用いた固体二次電池