TW200836488A - Linear phase frequency detector and charge pump for phase-locked loop - Google Patents

Linear phase frequency detector and charge pump for phase-locked loop Download PDF

Info

Publication number
TW200836488A
TW200836488A TW096145780A TW96145780A TW200836488A TW 200836488 A TW200836488 A TW 200836488A TW 096145780 A TW096145780 A TW 096145780A TW 96145780 A TW96145780 A TW 96145780A TW 200836488 A TW200836488 A TW 200836488A
Authority
TW
Taiwan
Prior art keywords
signal
clock
phase
frequency detector
charge pump
Prior art date
Application number
TW096145780A
Other languages
English (en)
Inventor
Gang Zhang
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200836488A publication Critical patent/TW200836488A/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • H03L7/1974Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division
    • H03L7/1976Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division using a phase accumulator for controlling the counter or frequency divider
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop

Description

200836488 九、發明說明: 【發明所屬之技術領域】 本揭示案大體係關於電路,且更特定言之係關於鎖相迴 路。 【先前技術】 鎖相迴路(PLL)通常用於許多電子電路中且在通信電路 中尤其重要。舉例而言,數位系統使用時脈信號以觸發同
T電路(例如,正反器)。傳輸器系統及接收器系統分別將 區域振盪器(LO)信號用於增頻轉換及降頻轉換。無線通信 系統中之無線設備(例如,蜂巢式電話)通常將時脈信號用 於數位電路且將LO信號用於傳輸器電路及接收器電路。 時脈信號及LO信號經常以在PLL内操作之電壓控制振盈器 (VCO)產生。 PLL通常包括相位頻率制器、充電系、迴路濾波器及 VCO。相位頻率偵測器、充電栗、迴路渡波器共同债測在 參考信號與得自VC〇之時脈信號之間的相位誤差且產生用 於vco之控制信?虎。控制信號調整vc〇之頻率,使得時脈 信號鎖定至參考信號。 口相位頻^測器通常產生通常被稱為上行信號及下行信 號之-對信號。—信號通常視時脈信號相對於參考作號早 或晚而在每—時脈循環中被接通較長。上行信號及下_ 號用於將充電㈣之電流源搞合至輸出。理想地,相 ㈣測器及充電果應具有輸出電荷對相位誤差之線、 函數。然而因於用於充„之電路的失配,通常 127185.doc 200836488 成此線性轉移函數。因此,來自上行信號之輸出電荷經常 由於相同量值但相反極性之相位誤差而不等於來自下行信 號之輸出電荷。此電荷誤差係歸因於充電泵中之上行/下 行電流失配,此情況可由電晶體設備失配及其他因素引 起。歸因於電流失配之充電泵的非線性可引起額外相位雜 訊,該雜訊可能降級效能。 • 因此,在此項技術中需要可為PLL提供良好效能之相位 頻率偵測器及充電泵。 ⑩ 【發明内容】 本文中描述用於達成PLL中之相位頻率偵測器及充電泵 之線性運算的技術。在一態樣中,相位頻率摘測器使用新 時序/定時方案以產生上行信號及下行信號,使得充電泵 中之上行/下行電流失配不會有助於一階的非線性失真。 新時序方案僅使用上行信號或僅使用下行信號以重設相位 頻率偵測器内之正反器。以新時序方案,充電栗中之上行/ 下打電流失配不在充電泵之輸出中顯現。因此,即使在存 在電體设備失配之情況下亦可達成良好效能。 在—設計巾,PLL包括相位頻率m及充電栗。相位 頻率债測器接收參考信號及時脈信號,基於參考信號及時 ' =信號產生第-信號及第二信號’且僅基於第一信號重設 第-信號及第二信號。第一信號及第二信號可分別為上行 信號及下行信號。或者,第一信號及第二信號可分別為下 行信號及上行信號。相位頻率偵測器可延遲第一信號一預 定量,基於所延遲之第一信號及第二信號產生重設信號, 127I85.doc 200836488 且以重設信號重設第一信號及第二信號。充電泵接收第一 信號及第二信號,且產生指示在參考信號與時脈信號之間 的相位誤差之輸出信號。相位頻率偵測器及充電泵可如下 所述被實施。 以下更詳細描述揭示案之各種態樣及特徵。 【實施方式】 本文中所述之技術可用於諸如整數-N型pLL、分數^型 PLL、夕;f旲數除法器(MMD)、積分三角(sigma-delta)頻率 合成器等之各種類型的電路。整數,型PLL用整數除法器 比N除來自VCO之振盪器信號的頻率,其中NSi。分數_N 型PLL用非整數除法器比R(例如,有時用N且其他時間用 N+1)除振盪器信號之頻率,其中n<r<n+i。積分三角頻率 合成器利用積分三角調變器以產生用於分數…型PLL之非 整數除法器比R。 圖1展示具有分數_NSPLL u〇及積分三角調變器1川之 積分三角頻率合成器100之設計的方塊圖。P LL U〇包括相 位頻率偵測器120、充電泵130、迴路濾波器14〇、電壓控 制振靈器(VCO) 150及除法器160。 相位頻率偵測器120自參考振盪器(圖1中未圖示)接收參 考心遽且自除法器16〇接收時脈信號,比較兩信號之相位 且提供指示在參考信號與時脈信號之間的相位誤差/差之 上行信號及下行信號。時脈信號亦可被稱為分割時脈信 就、反饋信號等。上行信號及下行信號亦通常稱為早信號 及晚信號、提前信號及推遲信號等。充電泵13()接收上行 127185.doc 200836488 信號及下行信號且產生輸出信號,其為指示所偵測之相位 誤差的電流Icp。 迴路慮波器140濾波來自充電泵J30之輸出信號且產生用 於VCO 150之控制信號Vctrl。迴路濾波器14〇調整控制信 號’使得時脈信號之相位或頻率被鎖定至參考信號之相位 或頻率。迴路濾波器14〇具有通常經選擇以達成用於pLL 、 110之所要閉合迴路回應的頻率回應。舉例而言,迴路濾 波斋140之頻率回應可基於在獲取及追蹤效能與PLL雜訊效 Φ 能之間的折衷來選擇。 VCO 150產生具有由來自迴路濾波器14〇之控制信號所 確定之頻率的振盪器信號。除法器160用N及]Si+1之整數因 子除振盪器信號之頻率且提供時脈信號。大體而言,^^可 為任何正整數值。積分三角調變器17〇接收除法器比尺,其 可表示為:
R = fVCO fref 方程式(1) Φ 其中/vc。為用於VCO iso之所要頻率;且 /re/為參考信號之頻率。 ' 、積分三角調變器170產生用於除法器160之除法器控制以 - 達成除法器比R。此除法器控制可為指導除法器160用N或 N+1除之1位元控制。舉例而言,除法器控制上之邏輯低 (〇’)可對應於用N除,且除法器控制上之邏輯高⑺可對應 於用N+1除。除法器_±零及__之百Μ㈣Μ· 來確定。然而,零以量化雜訊移位至較高頻率且良好相位 127185.doc 200836488 雜訊特徵可經達成以用於來自vco 150之振盪器信號的方 式分布於除法器控制上。 圖1展示PLL及頻率合成器之例示性設計。大體而言, PLL及頻率合成器可以比圖〗中所示更少、額外及/或不同 的電路區塊來實施。舉例而言,vc〇 15〇可用電流數位至 類比轉換器(iDAC)及電流控制振蘯器(IC〇)來替換。除法 器160可為固定整數_N除法器。迴路濾波器14〇可為具有可 變迴路回應之適應性迴路濾波器,其可用於改變pLL迴路 頻寬及/或阻尼。一或多個額外除法器亦可用於除振盪器 信號以產生在所關注之其他頻率下的一或多個額外時脈信 號。 圖2展示相位頻率偵測器12〇a及充電泵13〇&之設計,其 可分別用於圖1中之相位頻率偵測器12〇及充電泵13〇。 在相位頻率偵測器12〇α内,參考信號及時脈信號被分別 提供至D正反器220a及220b之時脈輸入。正反器22(^及 220b之資料(D)輸入耦合至電源且接收邏輯高。正反器 220a及220b之資料(Q)輸出分別提供上行信號及下行信 號。上行#號指示相對於時脈信號早的參考信號。下行信 號指示相對於時脈信號晚的參考信號。AND(及)閘222接 收上行信號及下行信號,且對兩信號執行邏輯AND。延遲 單元224延遲AND閘222之輸出一預定時間量t〇n且將重設 信號提供至正反器220a及220b之重設(R)輸入。 在充電泵130a内,電流源230a及230b與開關232a及232b 串聯耦合且在電源與電路接地之間。電流源23〇&提供之 127I85.doc 200836488 電,且電流源230b&供lD〇WN之電流。開關232a接收上 行k號,且當被上行信號上之邏輯高接通時將電流源23〇a 搞合至充電泵130a之輸出。開關232b接收下行信號,且當 被下行信號上之邏輯高接通時將電流源23〇b耦合至充電系 130a之輸出。
藉由單元224之T0N延遲用於對抗充電泵中之死區。電流 源230a及230b需要某時間量以接通且切斷。由於在轉變時 間期間上行信號及下行信號中之相位資訊丟失,因此轉變 時間被稱為死區。T0N延遲對抗死區。 圖3展示說明圖2中之相位頻率偵測器12〇a之操作的時序 圖。最初,上行信號及下行信號處於邏輯低。在時間 Τη ’參考信號自邏輯低轉變至邏輯高,正反器22〇&被觸 發,且上打信號轉變至邏輯高。在時間Τη,時脈信號自 邏輯低轉變至邏輯高,正反器22补被觸發,且下行信號轉 變至邏輯高。當上行信號與下行信號兩者皆處於邏輯高 時’ AND閘222之輸出轉變至邏輯高。在時間τ"(其近似為 比Τ12晚的TGN) ’重設信號轉變至邏輯高,正反器⑽與 220b皆被重設,且上行信號及下行信號轉變至邏輯低。 在時間T14,時脈信號自邏輯低轉變至邏輯高,正反器 220b被觸發’且下行信號轉變至邏輯高。在時間τ”,參 考信號自邏輯低轉變至邏輯高,正反器被觸發,且上 行信號轉變至邏輯高。當上行信號與下行信號兩者皆處於 邏輯高時’娜閘222之輸出轉變至邏輯高。在時間Tl6洋 比Τ〗5遲約Τ0Ν)’重設信號轉變至邏輯高,正反器線 127185.doc -10- 200836488 220b白被重设,且上行信號及下行信號轉變至邏輯低。 如圖3中所示’在每一時脈循環中於上行信號及下行信 號上產生兩脈衝。上行信號導引下行信號且在參考信號相 對於時脈信號為早時具有較長脈衝。相反地,下行信號導 引上仃彳§號且在參考信號相對於時脈信號為晚時具有較長 脈衝在每-時脈循環中,#有較早上升邊緣之信號首先 。又疋其正反器,且具有較晚上升邊緣之信號重設兩正反 二、口此,參考“號在其比時脈信號晚時重設兩正反器, 且時脈信號在其比參考信號晚時重設兩正反器。 圖3亦說明圖2中之充電泵13〇a的操作。當上行信號導引 下行信號時,電流源230a自時間Tu至時間T13提供lup之電 源供應電流(sourcing current),且電流源23〇b自時間Τΐ2至 日守間丁13灰供Id〇wn2電源吸入電流(sinking current)。淨輸 出電流為自時間Tn至時間Tu在電源供應電流與電源吸入 電流之間的差。 當下行信號導引上行信號時,電流源230b自時間τ14至 時間Τ!6提供ID0WNi電源吸入電流,且電流源23〇a自時間 Τμ至時間Τ1ό提供IUP2電源供應電流。淨輸出電流為自時 間Tu至時間Τ1ό在電源供應電流與電源吸入電流之間的 差。 理想地’電流源230a及23Ob應提供相同量之電流,使得 k =id〇wn。然而,歸因於電晶體設備失配及其他因素,ιυρ 通常不專於Idown。在Iup與Idown之間的失配可被模擬為 Id〇wn=I及1= ϊ + ,其中I為標稱電流且ΔΙ為電流失配之 127185.doc -11 - 200836488 量° 當上行信號導引下行信號(例如,自砗 ^ + ㈢牯間至時間Tl3) 時,來自充電泵130a之淨輸出電荷可被表示為· Q(dt) = I*dt + AI*dt + AI*T0N, 方程式(2) 其中dt為#考信號之上升邊緣與時脈信號之上升邊緣之 間的時間差;且 '' Q(dt)為上行信號導引下行信號時之輸出電荷。
^下行^號導引上行信號(例如,自時簡T 2- + 曰吋間Tl4至時間τ16) 時’來自充電泵130a之淨輸出電荷可被表示為· Q(-dt) = -I*dt + AI*T〇N , 方程式(3) 其中-dt為在參考信號之上升邊緣與時脈信號之上升邊緣之 間的時間差;且 Q(-dt)為下行信號導引上行信號時之淨電荷。 在方程式(2)及(3)中,項"I*dt"及"-I*dt”對應於所要組 份,項"ΔΙΜΓ對應於非線性失真組份,且項δι*τ〇ν對應於 直流(DC)偏移。DC偏移導致在參考信號與時脈信號之間 的靜態相位偏移且大體不影響效能。然而,非線性組份可 能降級相位雜訊且引起其他有害效應。 圖4A展示來自充電泵i3〇a之輸出電荷q比相位誤差⑽之 轉移函數。相位誤差及時間差為有關的且可被給定為: 2;r dt/Tj^ ’其中tref為參考信號之一循環的持續時間。 理想地’轉移函數應為具有由電流I所確定之斜率的直 線。然而’細因於電流失配,轉移函數由負相位誤差之 127185.doc •12· 200836488 一直線及正相位誤差之另一直線構成。若Iup>I〇。·,則正 相位誤差之直線具有較高斜率,如圖3及圖4Α中所示。 圖4Β展示充電泵130a比相位誤差之增益函數。充電泵 增益G可被給定為G = dQ/d0。理想地,充電泵增益對於所 有相位誤差應為恆定的。然而,歸因於電流失配Δι,充電 泵增盈為負相位誤差之一值及正相位誤差之另一值。若 U >ID〇WN,則正相位誤差之充電泵增益較高,如圖3及圖4Β 中所示。 電流失配ΔΙ可由用於實施電流源23〇a& 23〇b之電晶體設 備中之失配、充電泵之電源電壓中之改變及其他因素引 起。設備失配可藉由使用大設備尺寸且遵循良好設計準則 來減小。然而’大設傷尺寸佔用更多電路面積,此情況為 不合需要的。此外,設備失配即使以大設備尺寸亦不被完 全消除。因此,可預期充電泵具有某電流失配。 在一態樣中,相位頻率偵測器使用新時序/定時方案以 產生上行尨號及下行信號,使得充電泵中之上行/下行電 流失配不會有助於一階的非線性失真。新時序方案僅使用 上行信號或僅使用下行信號以重設相位頻率偵測器内之正 反器。此不同於圖2中所示之時序方案,#中上行信號與 下行信號兩者皆可重設正反器。以新時序方案,充電泵中 之上行/下行電流失配不在充電泵之輸出中顯現。因此, 即使在充電泵中存纟電晶體設備失配之情況了,亦可 良好效能。 圖5A展示相位頻率偵測器12〇b及充電泵13扑之設計,其 127185.doc -13- 200836488 可分別用於圖1中之相位頻率偵測器12〇及充電泵13〇。相 位頻率僅測器120b僅基於上行信號而重設其正反器。 在相位頻率偵測器12〇b内,參考信號及時脈信號被分別 提供至D正反器520a及520b之時脈輸入。正反器520a及 52〇|3之〇輸入耦合至電源。正反器520a及520b之Q輸出分 別提供上行信號及下行信號。延遲單元522延遲上行信號 ' 預定牯間量td。AND閘524接收所延遲之上行信號及下 行信號,對兩信號執行邏輯AND,且將重設信號提供至正 # 反器52〇a及52〇b之R輸入。 充電泵130b包括電流源530a&53〇b與開關532a& 532b, 其串聯耦合且在電源與電路接地之間。開關532&接收上行 仏唬且將電流源530a耦合至充電泵輸出。開關532b接收下 行信號且將電流源530b耦合至充電泵輸出。 圖5B展示相位頻率偵測器12〇c之設計,其亦可用於圖1 中之相位頻率偵測器12〇。相位頻率偵測器12〇〇僅基於下 行信號而重設其正反器。相位頻率偵測器12〇c包括正反器 籲 52如及52〇1)、延遲單元 522及AND閘 524。然而,不同於圖 5A,延遲單兀522延遲下行信號預定時間量&。ANd閘 524接收所延遲之下行信號及上行信號,且將重設信號提 ^ 供至正反器520a及520b。 如圖5A及圖5B中所示,相位頻率偵測器之新時序方案 可以較少電路來實施。其他電路亦可經設計以僅基於上行 信號或僅基於下行信號來重設正反器。 圖6展示說明圖5A中之相位頻率偵測器n〇b之操作的時 127185.doc •14- 200836488 序圖。最初’上行信號及下行信號處於邏輯低。在時間 T21 ’參考信號轉變至邏輯高,正反器52〇a被觸發,且上 行信號轉變至邏輯高。在時間T22,時脈信號轉變至邏輯 南’正反器520b被觸發,且下行信號轉變至邏輯高。在時 間Τη(其近似為比晚的Td),在and閘522之輸入處的延 遲上行#號與下行信號兩者皆處於邏輯高,且AND閘522 將邏輯咼提供於重設信號上。正反器520a與520b接著皆被 重設’且上行信號及下行信號轉變至邏輯低。
在時間Τη,時脈信號轉變至邏輯高,正反器52〇b被觸 發,且下行信號轉變至邏輯高。在時間,參考信號轉 k至邏輯高,正反器52〇a被觸發,且上行信號轉變至邏輯 间在時間丁26(其近似為比Τη晚的TD),在AND閘522之輸 入處的延遲上行信號與下行信號兩者皆處於邏輯高,且and 閘522將邏輯高提供於重設信號上。正反器^^與”叽接 著皆被重設,且上行信號及下行信號轉變至邏輯低。 如圖6中所示,僅上行信號重設正反器而不管參考信號 還疋時脈信號較早。在每一時脈循環中,具有較早上升邊 緣之信號首先設定其正反器,且上行信號重設兩正反器。 圖6亦說明圖5A中之充電泵13〇b的操作。當上行信號導 引下行信號(例如,自時間τζι至時間T23)時,來自充電泵 130b之輸出電荷可被表示為: 方程式(4) Q(dt) =I*dt + AI*dt + AI*(TD -dt) = I*dt + AI*TD 〇 127185.doc 200836488 當下行信號導引上行信號(例如,自時間τ24至時間T26) 時,來自充電泵130b之輸出電荷可被表示為:
Q(-dt) = -I*dt + AI*TD 方程式(5) 在方程式(2)及(3)中’項及"·ι*(|ί,,對應於所要組 份,且項對應於DC偏移。電流源53〇&及53〇b中之 上行/下行電流失配不在充電泵13 〇b之輸出中顯現。非線 性組份藉由在上行信號之上升邊緣之後引入固定延遲Td來 B 取消。非線性組份之取消導致(a)輸出電荷q對相位誤差⑽ 之轉移函數類似於圖4 A中所示之理想轉移函數,及(b)充 電泵增盈類似於圖4B中所示之理想增益函數。 固定延遲TD可如下選定為··
Td > T0N + dtj^ 方程式(6) 其中T0N為用於解決充電泵之死區的接通時間,·且 dtMAX為當鎖定Pll時在參考信號之上升邊緣與時脈信 號之上升邊緣之間的預期最大時間差。 ⑩ 通常僅在鎖定PLL時需要藉由相位頻率偵測器及充電泵 進行之線性操作。相位雜訊、雜訊位準及其他規範正常適 . 用於鎖定PLL。當鎖定PLL時,在相位頻率偵測器之輸入 • 處的參考信號與時脈信號之間存在時間/相位差之一範 圍。時間/相位差之此範圍可視諸如用於除法器16〇之因子 N及N+1、來自德耳塔_西格瑪調變器17〇之除法器控制(其 可視德耳塔-西格瑪調變器之拓撲或設計而定)等之各種因 素而定。時間/相位差之範圍可經由電腦模擬、經驗量測 127185.doc -16- 200836488 等來確^。舉例而言,可獲得在特定PLL及德耳塔.西格瑪 調變器設計之頻㈣定期間❹時脈#環之時^相μ 的直:圖。dW接著可基於直方圖來選擇(例如,設定等 於覆蓋時脈循環之目標百分比(例如,99%)的時間/相位 差)。 選擇足夠長的固定延遲〜(例如,如方程式(6)中所示)確 保充電栗内之電流源將對於所有輸人條件完全被接通。此 又確保經指定以重設正反器之信號(例如,圖5八中之上行 信號)在敎PLL時實際上將在以遲之後重設正反器。固 定延遲亦可為可程式化值。 當未鎖定PLL時,時間,相位差dt可能大於dtMAx。當上行 信號導引下行信號時,下行信號之上升邊緣在τ〇Ν:後重 設正反ϋ。當下行信號導引上行信號時,上行信號之上升 !緣在td之後重設正反器。當未鎖定pLL時相位頻率债測 器及充電泵仍適當運行但未線性化,此情況為正常可接受 行為。 大體而言’ PLL可包括相位頻率偵測器,該相位頻率偵 測器接收參考信號及時脈㈣’基於參考信號及時脈信號 產生第一信號及第二信號,且僅基於第一信號而重設第一° 信號及第二信號。第一信號及第二信號可分別對應於上行 信號及下行信號,且可分別基於參考信號及時脈信號而產 生,(例如)如圖5Α中所示。或者,第一信號及第二信號可 分別對應於下行信號及上行信號,且可分別基於時脈信號 及參考信號而產生,(例如)如圖5Β中所示。相位頻率偵測 127185.doc -17· 200836488 器可延遲第一信號一預定量,基於所延遲之第一信號及第 一 ^號產生重設信號,且基於重設信號而重設第一信號及 第二信號。預定延遲量可(例如)如方程式中所示經選 擇’或可為可程式化的。 充電栗接收第一信號及第二信號,且產生指示在參考信 说與時脈信號之間的相位誤差之輸出信號。充電泵可基於 第一信號將第一電流提供至輸出信號,且可基於第二信號 將第二電流提供至輸出信號,第一電流及第二電流具有相 反極性。相位頻率偵測器及充電泵可如圖5 a或圖5B中所 示或以一些其他設計來實施。 圖7展示用於操作PLL之過程700。第一信號及第二信號 基於參考信號及時脈信號而產生(區塊712)。第一信號及第 二信號僅基於第一信號而重設(區塊714)。指示在參考信號 與時脈k號之間的相位誤差之輸出信號基於第一信號及第 二信號而產生(區塊716)。輸出信號可以迴路濾波器來濾波 以產生用於vco之控制信號(區塊718)。來自vco之振盪器 信號可除以多個整數因子(例如,Ν&Ν+1μχ產生時脈信號 (區塊720)。除法器控制可經產生(例如,藉由積分三角調 變器以雜訊成形來產生)以選擇多個整數因子來達成非整 數除法器比(區塊722)。 本文中所述之線性相位頻率偵測器及充電泵可用於如上 所提及之各種類型的PLL,且對於積分三角分數氺型孔乙 尤其有利。積分二角分數Α型PLL·藉由積分三角調變器使 用雜訊成形以將量化雜訊推向較高頻率,其可更容易地被 127185.doc -18· 200836488 迴路澹波器140濾波。充電泵中之非線性可引起較高頻率 雜訊折疊回至較低頻率且降級效能。如上所述,線性化充 電泵減小雜訊摺疊效應。線性化充電泵亦可減小自非線性 混合及相互調變所產生之分數雜訊(8{)111〇或外來載頻調。 本文中所述之線性相位頻率偵測器及充電泵可提供各種 優點。即使在存在電晶體設備中之失配及充電泵中的電流 源之有限輸出阻抗的情況下亦可達成線性操作。因此,可 放免對電流源之電流匹配要求,可改良對充電泵之電壓順 應性要求,且可對充電泵使用較小電晶體尺寸。此外,可 改良近載波相位雜訊,可降低分數雜訊位準,且可改良整 體PLL效能。電晶體設備失配現僅可引起參考雜訊,其在 經適當設計之分數-N型PLL中可被抑制在雜訊位準之下。 本文中所述之線性相位頻率偵測器及充電泵可用於各種 電子電路中。以下描述線性相位頻率偵測器及充電泵對於 無線通信設備之使用。 圖8展示無線通信系統中之無線設備8〇〇之設計的方塊 圖。無線設備800可為蜂巢式電話、終端機、個人數位助 理(PDA)、手機或某其他設備。無線通信系統可為分碼多 重存取(CDMA)系統、分時多重存取(TdmA)系統、分頻多 重存取(FDMA)系統、全球行動通信(gsm)系統、正交 FDMA(OFDMA)系統、無線區域網路(WLAN)等。 無線設備800包括數位處理器810及收發器83〇,其支援 雙向通#。數位處理器810可以一或多個特殊用途積體電 路(ASIC)等實施。收發器830可以一或多個1〇7積體電路 127185.doc •19· 200836488 (RFIC)等實施。 對於資料傳輸,編碼器812處理(例如,格式化、編碼及 交錯)待傳輸之資料,且調變器814進一步處理(例如,調變 及擾碼)編碼資料以產生資料碼片。在收發器830内,傳輸 (TX)基頻單元832執行諸如數位至類比轉換、濾波、放大 等之基頻處理。混頻器834將基頻信號增頻轉換至射頻 (RF)。TX RF單元836執行諸如濾波及功率放大之信號調 節,且產生RF調變信號,該RF調變信號經由天線840而傳 輸。 對於資料接收,接收(RX) RF單元842自天線840接收輸 入RF信號且執行諸如低雜訊放大及濾波之信號調節。混頻 器844將所調節之RF信號自RF降頻轉換至基頻。RX基頻單 元846執行諸如濾波、放大、類比至數位轉換等之基頻處 理。解調變器(Demod) 816處理(例如,解擾碼及解調變)來 自單元846之輸入樣本且提供符號估計。解碼器81 8處理 (例如,解交錯及解碼)符號估計且提供所解碼之資料。大 體而言,藉由資料處理器810及收發器830進行之處理視無 線系統之設計而定。 處理器820可支援諸如視訊、音訊、圖形等等之各種應 用。控制器/處理器860指導無線設備800内之各處理單元 的操作。記憶體862儲存用於無線設備800之程式碼及資 料。 VCO/PLL 822產生用於數位處理器810内之處理單元的 時脈信號。VCO/PLL 850產生由混頻器834用於增頻轉換 127185.doc -20- 200836488 之傳輸LO信號及由混頻器844用於降頻轉換之接收LO信 號。VCO/PLL 822及VCO/PLL 850可各使用線性相位頻率 偵測器及充電泵以改良效能。參考振盪器864產生用於 VCO/PLL 822及/或VCO/PLL 850之參考信號。參考振盪器 864可為晶體振盪器(XO)、電壓控制XO (VCXO)、溫度補 償XO(TCXO)或某其他類型之振盪器。 本文中所述之相位頻率偵測器、充電泵及PLL可在類比 1C、RFIC、ASIC、數位信號處理器(08?)、數位信號處理 設備(DSPD)、可程式化邏輯設備(PLD)、場可程式化閘陣 列(FPGA)、處理器、控制器、微控制器、微處理器及其他 電子單元中實施。相位頻率偵測器、充電泵及PLL可以諸 如 N-MOS、P-MOS、CMOS、BJT、GaAs等等之各種1C 製 程技術來製造。相位頻率偵測器、充電泵及PLL亦可以離 散組件實施。 提供本揭示案之先前描述以使得任何熟習此項技術者能 夠進行或使用本揭示案。對本揭示案之各種修改對於熟習 此項技術者將為容易明白的,且本文中所界定之一般原理 在不脫離本揭示案之精神或範疇的情況下可應用於其他變 體。因此,不期望本揭示案限於本文中所述之實例,而與 本文所揭示之原理及新奇特徵最廣泛地一致。 【圖式簡單說明】 圖1展示分數·Ν型PLL之方塊圖。 圖2展示相位頻率偵測器及用於PLL之充電泵。 圖3展示圖2中之相位頻率偵測器的時序圖。 127185.doc -21- 200836488 圖4A展示用於圖2中之充電泵的電荷轉移函數。 圖4B展示用於圖2中之充電泵的增益函數。 圖5 A展示線性相位頻率偵測器及充電泵。 圖5B展示另一線性相位頻率偵測器及充電泵。 圖6展示用於圖5A中之相位頻率偵測器的時序圖。 圖7展示用於操作PLL之過程。 圖8展示無線通信設備之方塊圖。 【主要元件符號說明】
100 積分三角頻率合成器 110 分數-N型PLL 120 相位頻率偵測器 120a 相位頻率偵測器 120c 相位頻率偵測器 120b 相位頻率偵測器 130 充電泵 130a 充電泵 130b 充電泵 140 迴路濾波器 150 電壓控制振盈器(VCO) 160 除法器 170 積分三角調變器 220a 正反器 220b 正反器 222 AND閘 127185.doc •22- 200836488
224 延遲單元 230a 電流源 230b 電流源 232a 開關 232b 開關 520a 正反器 520b 正反器 522 延遲單元 524 AND閘 530a 電流源 530b 電流源 532a 開關 532b 開關 800 無線設備 810 數位處理器/資料處理器 812 編碼器 814 調變器 816 解調變器(Demod) 818 解碼器 820 處理器 822 YCO/PLL 830 收發器 832 傳輸(TX)基頻單元 834 混頻器 127185.doc -23- 200836488 836 TX RF單元 840 天線 842 接收(RX)RF單元 844 混頻器 846 RX基頻單元 850 VCO/PLL 860 控制器/處理器 862 記憶體 864 參考振盪器 127185.doc -24-

Claims (1)

  1. 200836488 十、申請專利範圍: 1 · 一種設備,其包含: 一相位頻率偵測器, 其經組態以接收一參考信號及一 柃脈信號、基於該炱老 >考“唬及該時脈信號產生第一信號 及第二信號且僅基於該m 唬 一 该弟一信號重設該第一信號及該第 —仏號,及 〇電泵/、、^組怨以接收該第一信號及該第二信
    2. 號,且產生-指示在該參考信號與該時脈信號之間的相 位誤差之輸出信號。 如請求m備’其中該第—信號為—指示該參考作 號相對於該時脈㈣為早的上行㈣,且其巾該第二^ 號為-指示該參考信號相對於該時脈信號為晚的下行‘ 3·如請求項1之設備,其中該第一卢躲盔 . τ ^ ^ 仏唬為一指示該參考作
    號相對於該時脈信號為晚的下行信號,且其中該第二^ 號為一指示該參考信號相對於該時脈信號為早的上行信 號。 口 4.如請求項1之設備,其中該相位頻率偵測器經組態以延 遲該第一信號一預定量、基於該經延遲之第一作號產生 一重設信號且基於該重設信號重設該第一信號及該第二 信號。 5,如請求項4之設備,其中該相位頻率偵測器經組態以進 一步基於該第二信號產生該重設信號。 6·如請求項1之設備,其中該相位頻率偵測器包含·· 127185.doc 200836488 信號且提供該 一第一正反器,其經組態以接收該參考 第一信號, 一第二正反器,其經組態 第二信號, 以接收該時脈信號且提供該 一延遲單元,其經組態以延遲該第— _ l說一預定量,及 一電路,其經組態以基於該經延遲 一 # % 士 、避之弟一#號及該第 一彳。說產生一用於該第一正反器 ^ 々弟一正反ι§之重設 仿5虎。
    如請求項1之設備,其中該相位頻率偵測器包含: 第一正反器,其經組態以接收該時脈信號且提供該 第一信號, 、/ πΓ第二正反器,其經組態以接收該參考信號且提供該 第二信號, 一延遲單元,其經組態以延遲該第一信號一預定量,及 Υ電路,其經組態以基於該經延遲之第一信號及該第 一#號產生一用於該第一正反器及該第二正反器之 信號。 & 如明求項1之設備,其中該充電泵包含: ^第—電流源,其經組態以將第一電流提供至該輪出 信號, 第二電流源,其經組態以將第二電流提供至該輪 口 ^ ’該第一電流與該第二電流具有相反極性, 一 __ $ —開關,其經組態以在由該第一信號致能時將該 第電流源耦合至該輸出信號,及 127185.doc 200836488 一第二開關,其經組態以在由該第二信號致能時將該 弟一電流源麵合至該輪出信號。 9·如請求項1之設備,其進一步包含: 一除法器,其經組態以使一振盪器信號除以多個整數 因子以產生該時脈信號。 ' 10·如請求項9之設備,其進一步包含: - 一積分三角調變器,其經組態以接收一非整數除法器 比且產生一除法器控制以選擇用於該除法器之該等多個 • 整數因子。 11·如請求項4之設備,其中延遲之該預定量在達成頻率鎖 定之後大於在該參考信號與該時脈信號之間的一預期最 大時間差。 12.如請求項4之設備,其中延遲之該預定量在達成頻率鎖 定之後大於一說明該充電泵之一死區的接通時間加上在 該參考信號與該時脈信號之間的一預期最大時間差。 13·如請求項4之設備,其中延遲之該預定量為可程式化 ® 的。 14. 一種積體電路,其包含: 一相位頻率偵測器,其經組態以接收一參考信號及一 ' 時脈信號、基於該參考信號及該時脈信號產生第一信號 及第二信號且僅基於該第一信號重設該第一信號及該第 二信號;及 一充電泵,其經組態以接收該第一信號及該第二信 號’且產生一指示在該參考信號與該時脈信號之間的相 127185.doc 200836488 位誤差之輸出信號。 15.如請求項14之積體電路,其中該相位頻率偵測器經*〜 、、几 以延遲該第一信號一預定量、基於該經延遲之第一 號 產生一重設信號且基於該重設信號重設該第一信號及該 第二信號。 Λ 16· —種方法,其包含: 基於一參考信號及一時脈信號產生第一信號及第一 ^ 一"信 號;
    僅基於该弟一信號重設該第一信號及該第二信號;及 基於該第一信號及該第二信號產生一輸出信號,該輪 出信號指示在該參考信號與該時脈信號之間的相位誤 差。 、 17.如請求項16之方法,其中該重設該第一信號及該第二信 號包含: ^ 延遲該第一信號一預定量, 基於該經延遲之第一信號產生一重設信號,及 基於該重設信號重設該第一信號及該第二信號。 18·如請求項16之方法,其中該產生該輸出信號包含: 基於该第一信號將第一電流提供至該輸出信號,及 基於該第二信號將第二電流提供至該輸出信號,該第 一電流與該第二電流具有相反極性。 19.如請求項16之方法,其進一步包含: 使一振盪器信號除以多個整數因子以產生該時脈信 號;及 I27185.doc -4 - 200836488 產生一除法器控制以選擇該等多個整數因子來達成一 非整數除法器比。 20· —種裝置,其包含: 用於基於—參考信號及-時脈信號產生第-信號及第 '一 #號之構件; 用於僅基於該第一信號重設該第一信號及該第二㈣ 之構件;及 用於基於該第一信號及該第二信號產生一輸出信號之 構件該輸出仏號指不在該參考信號與該時脈信號之間 的相位誤差。 2i•如請求項2〇之裝置,其中該用於重設該第—信號及該第 二信號之構件包含: 用於延遲該第一信號一預定量之構件, 用於基於該經延遲之第-信號產生-重設信號之構 件,及 用於基於該重設信號重設該第一信號及該第二信號之 構件。 22· —種無線設備,其包含: 一鎖相迴路,其包括: 一相位頻率偵測器,其經組態以接收一參考信號及 -時脈信號、基於該參考信號及該時脈信號產生第:作 號及第二信號且僅基於該第一信號重設該第一信號及; 第二信號,及 Λ 一充電泵,其經組態以接收該第一信號及該第二信 127185.doc 200836488 號,且產生一指示在該參考信號與該時脈信號之間的相 位誤差之輸出信號。 23·如睛求項22之無線設備’其中該鎖相迴路進—步包括: 除法器’其經組恶錢_振a器信號除以多個整數 因子以產生該時脈信號,及 -積分三角調變器,其經組態以接收_非整數除法器 比且產生一除法器控制以選擇用於該除法器之該等多個 整數因子。
    127185.doc -6-
TW096145780A 2006-11-30 2007-11-30 Linear phase frequency detector and charge pump for phase-locked loop TW200836488A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/565,062 US7876871B2 (en) 2006-11-30 2006-11-30 Linear phase frequency detector and charge pump for phase-locked loop

Publications (1)

Publication Number Publication Date
TW200836488A true TW200836488A (en) 2008-09-01

Family

ID=38988311

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096145780A TW200836488A (en) 2006-11-30 2007-11-30 Linear phase frequency detector and charge pump for phase-locked loop

Country Status (7)

Country Link
US (1) US7876871B2 (zh)
EP (1) EP2087593B1 (zh)
JP (2) JP5180225B2 (zh)
KR (1) KR101141084B1 (zh)
CN (1) CN101542907B (zh)
TW (1) TW200836488A (zh)
WO (1) WO2008067324A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006102925A1 (en) * 2005-03-31 2006-10-05 Freescale Semiconductor, Inc. Method for noise reduction in a phase locked loop and a device having noise reduction capabilities
WO2008069803A1 (en) * 2006-12-08 2008-06-12 Thomson Licensing Identification of video signals in a video system
US8108453B2 (en) * 2007-12-17 2012-01-31 Applied Micro Circuits Corporation System and method for filter response switching
US8441575B2 (en) * 2007-12-27 2013-05-14 Himax Technologies Limited Audio clock regenerator with precise parameter transformer
US8258877B2 (en) * 2009-03-18 2012-09-04 University Of Southern California Feed-back and feed-forward systems and methods to reduce oscillator phase-noise
US8169265B2 (en) * 2009-04-29 2012-05-01 Mediatek Inc. Phase lock loop circuits
CN101826869B (zh) * 2009-12-29 2012-07-18 国民技术股份有限公司 含双电流源电荷泵及双比较器复位电路的锁相环电路
CN102299710B (zh) * 2010-06-23 2013-06-19 奇岩电子股份有限公司 具有改进相位检测机制的锁相环
EP2633620B1 (en) * 2010-10-26 2018-02-28 Marvell World Trade Ltd. Pll dual edge lock detector
CN102457269B (zh) * 2010-10-27 2016-01-13 深圳艾科创新微电子有限公司 一种鉴频鉴相电路及其应用于锁相环的方法
CN102035543A (zh) * 2010-12-13 2011-04-27 成都成电硅海科技股份有限公司 锁相环电路
US8461890B1 (en) * 2011-07-20 2013-06-11 United Microelectronics Corp. Phase and/or frequency detector, phase-locked loop and operation method for the phase-locked loop
KR101238440B1 (ko) * 2011-12-30 2013-02-28 주식회사 더즈텍 위상 손실 검출기
US9065457B2 (en) 2012-04-26 2015-06-23 Skyworks Solutions, Inc. Circuits and methods for eliminating reference spurs in fractional-N frequency synthesis
US8989332B2 (en) * 2012-04-26 2015-03-24 Skyworks Solutions, Inc. Systems and methods for controlling frequency synthesis
JP5793127B2 (ja) * 2012-10-11 2015-10-14 旭化成エレクトロニクス株式会社 周波数シンセサイザ
US9094025B1 (en) 2013-03-15 2015-07-28 Gsi Technology, Inc. Systems and methods of phase frequency detection involving features such as improved clock edge handling circuitry/aspects
US9444471B2 (en) 2013-06-06 2016-09-13 Freescale Semiconductor, Inc. Phase detector and phase-locked loop
CN103490770B (zh) * 2013-09-05 2016-01-20 浙江大学 一种基于c波段连续波应答机的快速锁定装置
US9270288B2 (en) * 2013-11-27 2016-02-23 Silicon Laboratories Inc. Time-to-digital converter based on a voltage controlled oscillator
US9300305B1 (en) * 2014-12-02 2016-03-29 Mediatek Inc. Frequency synthesizer and related method for improving power efficiency
KR101905097B1 (ko) * 2016-02-17 2018-10-08 한국과학기술원 위상 검출기
US10200514B2 (en) * 2016-06-29 2019-02-05 Intel IP Corporation Pre-high-efficiency (HE)-short training field preamble transmission for the HE-trigger based physical layer convergence protocol (PLCP) protocol data unit (PPDU)
CN107911112A (zh) * 2017-11-15 2018-04-13 中国科学技术大学 一种带电荷泵电流校准技术的低参考杂散电荷泵型锁相环电路
EP3573241B1 (fr) * 2018-05-24 2022-08-03 The Swatch Group Research and Development Ltd Oscillateur de référence à rapport cyclique variable, synthétiseur de fréquence et récepteur de signaux avec l'oscillateur de référence
US11095295B2 (en) 2018-06-26 2021-08-17 Silicon Laboratories Inc. Spur cancellation for spur measurement
CN109274367A (zh) * 2018-09-05 2019-01-25 东南大学 一种抗电荷泵失配对锁相环拉入范围造成限制的鉴相器
US10659060B2 (en) 2018-09-27 2020-05-19 Silicon Laboratories Inc. Spur cancellation with adaptive frequency tracking
US10680622B2 (en) 2018-09-27 2020-06-09 Silicon Laboratories Inc. Spur canceller with multiplier-less correlator
US10819353B1 (en) 2019-10-04 2020-10-27 Silicon Laboratories Inc. Spur cancellation in a PLL system with an automatically updated target spur frequency
US11038521B1 (en) 2020-02-28 2021-06-15 Silicon Laboratories Inc. Spur and quantization noise cancellation for PLLS with non-linear phase detection
US11316522B2 (en) 2020-06-15 2022-04-26 Silicon Laboratories Inc. Correction for period error in a reference clock signal
CN113643733B (zh) * 2021-08-17 2023-10-13 群联电子股份有限公司 信号调制装置、存储器存储装置及信号调制方法
US11595047B1 (en) * 2022-03-03 2023-02-28 Ciena Corporation Apparatus and methods for a phase frequency detector with a wide operational range
CN117133230B (zh) * 2023-10-26 2024-01-26 成都利普芯微电子有限公司 Led显示驱动芯片及共阴led显示系统、共阳led显示系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5815041A (en) * 1996-04-12 1998-09-29 Silicon Image, Inc. High-speed and high-precision phase locked loop having phase detector with dynamic logic structure
US6151296A (en) * 1997-06-19 2000-11-21 Qualcomm Incorporated Bit interleaving for orthogonal frequency division multiplexing in the transmission of digital signals
JPH11225072A (ja) * 1998-02-05 1999-08-17 Fujitsu Ltd スプリアス抑制装置、スプリアス抑制方法およびフラクショナルnシンセサイザ
US6049233A (en) * 1998-03-17 2000-04-11 Motorola, Inc. Phase detection apparatus
KR100301043B1 (ko) * 1998-08-08 2001-09-06 윤종용 지연동기루프의위상비교기및지연동기방법
US6959063B1 (en) * 2000-02-29 2005-10-25 Telefonaktiebolaget L M Ericsson (Publ) Fractional-N phase locked loop
ATE311039T1 (de) * 2000-06-28 2005-12-15 Thomson Licensing Hochfrequenz-oszillator
AU2002211571A1 (en) 2000-10-10 2002-04-22 Xtremespectrum, Inc. Ultra wide bandwidth noise cancellation mechanism and method
US6605935B2 (en) * 2001-03-21 2003-08-12 Telefonaktiebolaget L M Ericsson (Publ) Linear fast-locking digital phase detector
US7042970B1 (en) * 2001-06-15 2006-05-09 Analog Devices, Inc. Phase frequency detector with adjustable offset
JP3548557B2 (ja) * 2001-10-02 2004-07-28 Nec化合物デバイス株式会社 フラクショナルn周波数シンセサイザ
US7092475B1 (en) * 2002-09-25 2006-08-15 National Semiconductor Corporation Phase-frequency detector with linear phase error gain near and during phase-lock in delta sigma phase-locked loop
US6924704B2 (en) * 2003-10-20 2005-08-02 Procomm, Inc. Charge pump for phase-locked loop
KR20050122665A (ko) * 2004-06-25 2005-12-29 삼성전자주식회사 다중 셀 구조를 갖는 이동통신 시스템에서 섹터다이버시티를 제공하는 직교 주파수 분할 다중 심벌 전송방법 및 송수신 장치
US7203475B2 (en) * 2004-09-14 2007-04-10 Broadcom Corporation Multiple rate local oscillation generator and applications thereof

Also Published As

Publication number Publication date
WO2008067324A1 (en) 2008-06-05
US20080129352A1 (en) 2008-06-05
EP2087593A1 (en) 2009-08-12
KR101141084B1 (ko) 2012-07-12
EP2087593B1 (en) 2013-07-17
CN101542907B (zh) 2012-07-04
US7876871B2 (en) 2011-01-25
JP5180225B2 (ja) 2013-04-10
JP5547259B2 (ja) 2014-07-09
KR20090074081A (ko) 2009-07-03
JP2010512063A (ja) 2010-04-15
JP2013059058A (ja) 2013-03-28
CN101542907A (zh) 2009-09-23

Similar Documents

Publication Publication Date Title
TW200836488A (en) Linear phase frequency detector and charge pump for phase-locked loop
US9851696B2 (en) Circuit, a time-to-digital converter, an integrated circuit, a transmitter, a receiver and a transceiver
US6002273A (en) Linear low noise phase-frequency detector
KR101228394B1 (ko) 게이팅된 시간-디지털 변환기를 갖는 디지털 위상-록 루프
JP5307291B2 (ja) アキュムレータおよび位相デジタル変換器を使用する2ポイント変調のデジタル位相同期ループ
US9160353B2 (en) Phase frequency detector and charge pump for phase lock loop fast-locking
WO2005004315A2 (en) Chopped charge pump
Hussein et al. A 50–66-GHz phase-domain digital frequency synthesizer with low phase noise and low fractional spurs
KR20160101974A (ko) 지연 고정 루프들을 이용한 로컬 오실레이터 신호 생성
AU2015399336B2 (en) Frequency divider, phase-locked loop, transceiver, radio station and method of frequency dividing
Huang et al. Low-noise fractional-N PLL with a high-precision phase control in the phase synchronization of multichips
JP2014522213A (ja) 集積回路上のコア間でのクロック共有
US20070252620A1 (en) Phase offset control phase-frequency detector
US8040996B2 (en) Method and system for RF signal generation utilizing a synchronous multi-modulus divider
Tao et al. A 1.6-GHz 3.3-mW 1.5-MHz wide bandwidth ΔΣ fractional-N PLL with a single path FIR phase noise filtering
Zhang Linearised charge pump independent of current mismatch through timing rearrangement
Saadat et al. Simulation and improvement of two digital adaptive frequency calibration techniques for fast locking wide-band frequency synthesizers
Lin et al. A programmable duty cycle corrector based on delta-sigma modulated PWM mechanism
Ali et al. A Fast Locking Ring Oscillator Based Fractional-N DPLL With an Assistance From a LUT-Based FSM
Xu et al. Enhanced FIR-embedded noise reduction method with hybrid phase detection for semidigital fractional-N phase-locked loops
Wu et al. Millimeter-Wave FMCW Signal Generators for Radar Applications
Zarkeshvari DLL-based fractional-N frequency synthesizers
Chore et al. Study of VLSI Implementation of Fractional-N PLL using 32nm and 45nm Technology
Hung et al. A 0.06-ps RMS SSC-induced jitter, ΔΣ-dithering-free, 6-GHz spread-spectrum clock generator for serial-ATA generation
Bourdi et al. Multimode Δ-Σ-Based Fractional-N Frequency Synthesizer