JP3548557B2 - フラクショナルn周波数シンセサイザ - Google Patents
フラクショナルn周波数シンセサイザ Download PDFInfo
- Publication number
- JP3548557B2 JP3548557B2 JP2002056183A JP2002056183A JP3548557B2 JP 3548557 B2 JP3548557 B2 JP 3548557B2 JP 2002056183 A JP2002056183 A JP 2002056183A JP 2002056183 A JP2002056183 A JP 2002056183A JP 3548557 B2 JP3548557 B2 JP 3548557B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- signal
- fractional
- circuit
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Description
【発明が属する技術分野】
本発明は、フラクショナル制御を行う周波数シンセサイザに関し、特にVCO出力のスプリアスの低減を可能としたフラクショナル周波数シンセサイザに関する。
【0002】
【従来の技術】
携帯電話機等の無線通信装置では、無線部の部品点数と消費電流の削減を図るため、一種類の周波数シンセサイザを用いて送受信の周波数チャンネル(CH)切り替えを行う方式が用いられる。
【0003】
図27は、従来の、整数分周を行う周波数シンセサイザを示し、(a)は基本構成を、(b)は周波数スペクトルを示している。また、図中のカッコ内は、具体的な数値例を示している。同図(a)に示すように、周波数シンセサイザは、PLL回路として構成され、位相比較回路1Aと、チャージポンプ2Aと、低域通過フィルタ(LPF)3Aと、電圧制御発振器(VCO)4Aと、分周数を整数で切り替えることが可能な分周回路5Aとを備える。
【0004】
位相比較回路1Aは、周波数がfrefである基準信号REFと、VCO(4A)の出力信号を分周回路5Aにより分周した比較信号SIGとを入力し、両者間の位相差を検出する。位相比較回路1Aは、入力信号の位相差に応じたパルス幅を有する、遅れ又は進みの位相誤差信号を出力し、対応する出力端子を介してチャージポンプ2Aに与える。チャージポンプ2Aは、VCO(4A)の入力ノードの電圧値を制御し、その発振周波数を制御する。ここで、チャージポンプ2Aは、遅れ又は進みの位相誤差信号に応じて、互いに極性が異なり、位相誤差信号のパルス幅に応じたパルス幅を有する電流信号CPOUTを出力し、高周波成分を除去するLPF(3A)を介してVCO(4A)の入力ノードの電荷量を、つまりその電圧値を制御する。VCO(4A)は、入力ノードの電圧値に応じた発振周波数で発振する。分周回路5Aは、VCO(4A)の出力信号をN分周(Nは整数)した比較信号SIGを出力する。
【0005】
周波数シンセサイザは、VCO(4A)の出力をN分周した比較信号SIGを位相比較回路1Aにフィードバックし、基準信号REFと、比較信号SIGとの位相が一致するとロックする。つまり、基準信号REFと比較信号SIGとは同じ周波数(fref)の信号となり、VCO(4A)の出力信号は、frefのN倍の周波数(N×fref)となる。このような周波数シンセサイザを用いて、例えば、使用周波数帯が1280MHzで、チャンネル間周波数が100kHzである携帯電話機のチャンネル切り替えを実現する際には、分周数Nを12801や12802などに変更することにより、図27(b)に示すように、周波数がfref(100kHz)の整数倍である複数の周波数チャンネルを切り替えて出力することができる。
【0006】
上記した周波数シンセサイザでは、分周数が整数であるために、出力信号の周波数は、基準信号の周波数frefの整数倍のみとなる。従って、複数の周波数チャンネルを切り替えて使用する際には、基準信号の周波数frefを、チャンネル間の周波数差と同じ周波数に設定する必要がある。ここで、周波数シンセサイザがロックするまでの時間を短くしたい場合には、周波数シンセサイザのループ帯域を広く設定すれば良い。一方、安定したロック状態を得るためには、周波数シンセサイザの帯域を、基準信号の周波数frefよりも十分狭く設定する必要がある。図27の数値例のように、周波数チャンネル間隔が狭く、基準信号の周波数frefが低い場合には、周波数シンセサイザのループ帯域を広くとることができず、従って周波数チャンネル切替を高速で行うことができない。
【0007】
ここで、周波数が高い基準信号を使用して、狭い周波数チャンネル間隔の切り替えを実現する技術として、非整数の分周(分数分周)を行うフラクショナルN周波数シンセサイザが知られている。フラクショナルN周波数シンセサイザは、分周回路の分周比を、時間を区分して異なる分周数に切り替えることによって、時間平均的に非整数の分周を行い、基準信号の非整数倍の周波数を有する出力信号を得ることができる。多くの携帯電話機等では、このようなフラクショナルN周波数シンセサイザが使用される。
【0008】
図28は、従来のフラクショナルN周波数シンセサイザの構成を示している。フラクショナルN周波数シンセサイザは、分周回路5Bの分周数を信号列nによって時系列的に制御する分周数制御回路6Bを備え、分周回路5Bは、複数の分周数を切り替えて、時間平均的に非整数の分周を行う点で、図27に示す周波数シンセサイザと相違する。
【0009】
分周数制御回路6Bは、非整数の分周数の設定値(N+F/M)(N、M:自然数、F:0以上の整数)を入力し、時系列的な分周数の信号列nを出力して、分周回路5Bをフラクショナル制御する。分周回路5Bは、信号列nに従って分周数を切り替えて分周動作をする。分周制御回路6Bが出力する信号列nは、例えば、NとN+1の2値の組み合わせをとり、図28中に示すように、N=200、F=1、M=64に設定した場合には、64回の分周のうち、N=200分周を(M−F)=63回、(N+1)=201分周をF=1回実行する。この期間の平均分周数は、(200×63+201×1)÷64になり、分周回路5Bは、(200+1/64)分周を行うのと等価になる。このため、チャンネル間の周波数が(1/M)×frefとなる基準信号(図中の例では6.4MHz)を使用でき、基準周波数を高く設定することによって、高速ロックが可能になる。
【0010】
上記フラクショナルN周波数シンセサイザでは、周期的にN、N+1の分周数の切り替えが行われると、出力信号にスプリアス(パターンノイズ)が発生するが、分周数がランダム的に切り替わるときには、その発生が低く抑えられることが知られている。そこで、分周数制御回路6Bを、シグマ−デルタ変調器を用いて構成し、分周回路5Bに、その分周数がランダム的に変化するような信号列nを与えるようにする。このような分周数制御回路6Bは、フラクショナルN周波数シンセサイザに、パターンノイズを除去するノイズシェイピング効果を与える。
【0011】
図29は、ノイズシェイピング効果を有する分周数制御回路6Bの構成例を示す。分周数制御回路6Bは、遅延回路Dにより出力を入力に帰還するアキュムレータらなる、縦続接続された3段のシグマ−デルタ変調器1C、2C、3Cと、各シグマ−デルタ変調器の出力を直接又は遅延回路Dを介して加算する重み付け加算器4Cと、重み付け加算器4Cの出力とNとを加算する加算器5Cとを備え、3段一次MASHを構成している。遅延回路Dは、各シグマ−デルタ変調器の動作タイミングを与えるクロック(図示せず)1サイクル分の遅延を付ける。
【0012】
1段目のシグマ−デルタ変調器1Cは、所定の整数入力Fを、クロックのタイミング毎にアキユームレータで累積し、累積値がM以上になるとオーバーフロー信号を出力して、累積値をリセットする。つまり、Mクロックの間にF回だけオーバーフロー信号を出力し、そのときの重み付け加算器4Cの出力値を+1にする。2段目及び3段目のシグマ−デルタ変調器2C、3Cの、それぞれのオーバーフロー出力は、その平均値が0になるように、重み付け加算器4Cの重みが設定される。例えば、3段目のシグマ−デルタ変調器3Cのオーバーフロー信号が出力されると、はじめのクロックサイクルでは値が+1になり、次のクロックサイクルでは値が−2になり、更に次のクロックサイクルでは値が+1になり、その時間平均値は0となる。つまり、シグマ−デルタ変調器2C、3Cは、重み付け加算器4Cの出力にランダム性を与え、その平均値に影響を与えない働きをする。
【0013】
加算器5Cは、重み付け加算器4Cの出力に、Nを加算した時系列な信号列nを出力する。重み付け加算器4Cの出力は、Mクロック分の平均を取ると、上記した動作によりF/Mになり、加算器5Cの出力は(N+F/M)になる。ここで、信号列nのとり得る値は、重み付け加算器4Cのマイナスの値を全て足した値から、プラスの値を全て足した値までの範囲にあり、重みつき加算器4Cの重みを図29のように設定した場合には、N−3≦n≦N+4の範囲になる。
【0014】
フラクショナルN周波数シンセサイザは、定常状態では比較信号SIGと基準信号REFとの位相差が0付近でロックし、出力信号は、基準信号REFの(N+F/M)倍の周波数の信号となる。分周数制御回路6Bの構成を、上記したノイズシェイピング効果を有するものとすることにより、分周数はランダム的に変化し、出力信号中のパターンノイズの発生を抑制することができる。
【0015】
なお特開平10−163860号公報には、基準信号REFと、比較信号SIGとの位相差が、ゼロの近傍の一定範囲にあるときには、位相差をゼロとみなす不感帯特性を有する位相比較回路と、n分周回路(nは1以上の整数)とを使用したPLL回路で、基準信号REF又は比較信号SIGの何れか一方側に、変調回路を設け、位相同期状態において、不感帯特性により生じるVCO出力のジッタの発生を防止する技術が記載されている。
【0016】
【発明が解決しようとする課題】
上述したように、フラクショナルN周波数シンセサイザでは、分周数N又はN+1の切り替え動作を行うことに起因して発生するパターンノイズは、ノイズシェイピング効果を有する分周数制御回路等により、充分に抑制することが可能である。
【0017】
しかし、フラクショナルN周波数シンセサイザでは、パターンノイズとは異なる、他のスプリアス雑音が発生するという現象が認められる。図30は、フラクショナルN周波数シンセサイザの出力のスペクトラム特性を示している。スプリアス成分は、VCO(4B)の出力信号の周波数fvco=(N+F/M)×frefを中心にして、fvcoと、基準信号REF(比較信号SIG)のN高調波であるN×fref(又はN×fsig)との差の周波数に相当する(F/M)×frefの分だけ、上下に離れた位置に発生している。この例では、fref=6.4MHz、N=200、M=64、F=1として、fvco=1280.1MHzを中心に、上下に(F/M)×fref=100kHz離れた1280.0MHz及び1280.2MHzにスプリアスが発生している。
【0018】
上記したような、パターンノイズとは異なるスプリアス雑音の発生は、VCO(4B)の出力信号の一部が、パッケージ又は基板の電源ラインや、アースライン、その他の回路などを介して位相比較回路1Bの入力側に回り込むことによって発生すると考えられる。スプリアス雑音は、周波数シンセサイザの雑音特性を劣化させるため好ましくない。しかし、このスプリアス雑音は、前述のパターンノイズとは本質的に異なる性質の雑音であり、従来のノイズシェイピング効果を与える分周数制御によっても除去することができない。
【0019】
図31は、周波数シンセサイザの出力信号と基準信号とのミキシングの様子を示し、(a)は整数分周の周波数シンセサイザの周波数特性を、(b)はフラクショナルN周波数シンセサイザの周波数特性を示している。以下、図31を参照して上記したスプリアス雑音の発生の原理について説明する。
【0020】
整数分周の周波数シンセサイザでは、出力の周波数fvcoは、前述のように、N×frefになる。また、基準信号REFの高調波成分も、同基準周波数frefの整数倍(位相同期状態では、比較信号SIGの高調波成分もfrefの整数倍であるが、ここでは基準信号REFの関係を例として説明する)である。つまり、図31(a)に示すように、基準信号と出力信号とは同じ周波数成分の信号であるといえる。従って、図27に示す周波数シンセサイザで、位相比較回路(1A)の入力側に、VCO(4A)の出力信号が回り込んでも、基準信号REFとのミキシング結果として、スプリアスが生じるという問題は発生しない。
【0021】
一方、非整数の分周を行うフラクショナルN周波数シンセサイザの場合は、前述のように、VCO(4B)の出力信号の周波数fvcoは、(N+F/M)×frefになる。つまり、図31(b)に示すように、基準信号と出力信号とは異なる周波数成分の信号であるといえる。このため、位相比較回路1Bの入力側に、VCO(4B)の出力信号が回り込むと、基準信号REFとのミキシング結果としてスプリアスが発生する。このスプリアスは、前述のように、fvcoと基準周波数のN高調波(=N×fref)との差の周波数Δf=(F/M)×frefによって発生することが知られている。この周波数成分Δfは、特にF/Mが0又は1に近い値のときには、同図(b)に示すように低周波領域に存在しているため、フィルタにより除去することが困難であり、周波数成分ΔfはそのままVCOの制御信号に含まれることになる。このため、fvcoを中心として、上下にΔfだけ離れた位置のスプリアス雑音となる。
【0022】
なお、特開平10−163860号公報には、位相同期状態においても位相比較回路の位相比較出力が位相差ゼロ付近でゼロとなる不感帯特性を有することにより、前記不感帯で負帰還制御が働かずVCO出力にジッタが発生することを防止する旨が記載されている。しかし、このPLL回路は、分周回路がフラクショナル制御されるものではなく、継続的に整数n(nは1以上)の分周を行うものであるから、前述の低周波成分の発生によるスプリアス雑音を除去するものではない。また、同公報記載のジッタと前述の低周波成分とは本質的に異なるものであることは前述したところから明らかである。
【0023】
本発明は、上記問題を解消し、フラクショナル制御を行う周波数シンセサイザにおいて、VCO出力が位相比較回路の入力側への回り込むことによって発生するスプリアス雑音を低減するフラクショナルN周波数シンセサイザを提供することを目的とする。
【0024】
【課題を解決するための手段】
上記目的を達成するために、本発明の第1の視点のフラクショナルN周波数シンセサイザは、電圧制御発振器の発振出力を複数の分周数で切り替えて分周した信号を比較信号として出力する分周回路と、前記分周回路の分周数の時間平均を非整数値に制御する分周数制御回路と、基準信号と前記比較信号の位相比較結果を位相差信号として出力する位相比較回路とを備え、前記位相差信号に基づいて前記電圧制御発振器の発振周波数を制御するフラクショナルN周波数シンセサイザにおいて、所定周波数の周期性信号を、T周期(Tは2以上の整数)に1回、所定変調幅だけ時間軸方向に変調して前記基準信号として前記位相比較回路に入力する変調手段を備えることを特徴とする。
【0025】
本発明の第1の視点のフラクショナルN周波数シンセサイザでは、特にスプリアスが問題となる非整数部分の値が0又は1に近い値のとき、位相比較回路に入力される基準信号として、周期性信号に対して、基準信号の周波数のN高調波の周期の(2p−1)/2倍(pは自然数)である所定変調幅だけ変調を加える基準信号を採用することにより、周波数シンセサイザの出力信号が位相比較回路の入力側に回り込んだ場合であっても、スプリアス成分となる周波数が、変調を加えないときに比して高い周波数となり、ローパスフィルタで容易に除去することができる。このため、スプリアスを減少させたフラクショナルN周波数シンセサイザが実現する。
【0026】
また、本発明の第2の視点のフラクショナルN周波数シンセサイザは、電圧制御発振器の発振出力を複数の分周数で切り替えて分周した信号を出力する分周回路と、前記分周回路の分周数の時間平均を非整数値に制御する分周数制御回路と、前記分周回路の出力を比較信号とし該比較信号と基準信号の位相比較結果を位相差信号として出力する位相比較回路とを備え、前記位相差信号に基づいて前記電圧制御発振器の発振周波数を制御するフラクショナルN周波数シンセサイザにおいて、前記分周回路の出力を、T周期(Tは2以上の整数)に1回、所定変調幅だけ時間軸方向に変調して前記比較信号として前記位相比較回路に入力する変調手段を備えることを特徴とする。
【0027】
本発明の第2の視点のフラクショナルN周波数シンセサイザでは、位相比較回路に入力される基準信号側に代えて、比較信号として入力される信号に、所定変調幅の変調を加える。本構成によっても、基準信号側に変調を加えるのと同様に、スプリアスが低減されたフラクショナルN周波数シンセサイザが実現する。
【0028】
本発明のフラクショナルN周波数シンセサイザでは、前記分周数制御回路の出力がN−n1とN+n2(Nは自然数、n1、n2は0以上の整数)との間で変動し、n1とn2の大きい方をN1とすると、前記2つの異なる加数が、―N1よりも小さい値と、+N1よりも大きい値とから成る構成とすることができる。或いは、前記分周回路の分周数がN−n1とN+n2との間で変動し、前記所定変調幅が、分周回路の入力側の周期×(n1+n2)÷2の時間よりも大きくする構成を採用してもよい。
分周数制御回路は、分周回路のフラクショナル動作にノイズシェイピング効果を与えるために、設定された変動幅で分周数を増減する。その増減の幅がN−n1≦n≦N+n2であるとき、|−n1|と|+n2|のうち大きい方をN1とすると、2つの異なる加数を、−N1よりも小さな値と、+N1よりも大きな値とに設定する。又は、基準信号の変調幅を分周回路の入力側の周期×(n1+n2)÷2の時間よりも大きな値に設定する。上記のように設定することで、基準信号と比較信号とが同じタイミングでエッジが立ち下がる又は立ち上がることがなくなり、両信号のミキシングが発生しない。このため、基準信号又は比較信号に加える変調幅が、基準信号の周波数のN高調波の周期の(2p−1)/2倍(pは自然数)でなくても、スプリアスの発生を抑制することができる。
【0029】
本発明のフラクショナルN周波数シンセサイザでは、前記変調手段は、前記周期性信号を入力し前記所定変調幅だけ遅延する遅延回路と、該遅延回路の出力を2分周するカウンタと、該カウンタの出力に依存して前記周期性信号又は前記遅延回路の出力を選択するセレクタとを備える構成とすることができる。この場合、変調手段は、周期性信号の1周期毎に、周期性信号と、遅延回路により所定変調幅の変調を加えた信号とを交互に切り替えて出力する。このため、基準信号は、周期性信号のパルス1つおきに遅延が付けられた信号となる。
【0030】
また、本発明のフラクショナルN周波数シンセサイザでは、前記変調手段は、前記分周回路の出力を入力し前記所定変調幅だけ遅延する遅延回路と、該遅延回路の出力を2分周するカウンタと、該カウンタの出力に依存して前記分周回路の出力又は前記遅延回路の出力を選択して出力するセレクタとを備える構成とすることができる。基準信号側に代えて、比較信号に変調を加える場合には、変調手段は、分周回路の出力信号の1周期毎に、分周回路の出力信号と、遅延回路により所定変調幅の変調を加えた信号とを交互に出力する。このため、比較信号は、分周回路の出力信号のパルス1つおきに遅延の付けられた信号となる。
【0031】
また、本発明のフラクショナルN周波数シンセサイザでは、前記変調手段は、前記周期性信号を2つの分周数の何れかで分周する周期性信号分周器と、該周期性信号分周器の分周数を、該周期性信号器の出力周期以上の周期毎に切り替える変調制御回路とを備え、前記周期性信号分周器から前記基準信号を出力することもできる。この場合、基準信号は、例えば周期性信号を、T周期に1回だけ2つの分周数を切り替えて分周する分周器で分周することで、所定変調幅の変調が加えられた信号となる。
【0032】
本発明のフラクショナルN周波数シンセサイザでは、前記変調制御回路は、前記周期性信号分周器の出力を2分周するカウンタと、該カウンタの出力に依存して前記周期性信号分周器の分周数を切り替える切替手段とを備えることが好ましい。この場合、周期性信号分周器の分周数を、その出力側の1周期毎に制御することで、所定変調幅の変調が加えられた基準信号を生成する。
【0033】
本発明のフラクショナルN周波数シンセサイザは、前記分周数制御回路に入力する非整数の値に依存して、前記周期性信号又は前記変調手段の変調出力の何れかを選択して前記基準信号とする選択回路を更に備えてもよく、又は、前記分周数制御回路に入力する非整数の値に依存して、前記変調手段の変調出力又は前記分周回路の出力の何れかを選択して前記比較回路に入力する選択回路を更に備えてもよい。
基準信号又は比較信号に、基準信号の周波数のN高調波の周期の(2p−1)/2倍(pは自然数)の変調を加えることで、スプリアスの周波数成分は、変調を加える前と比較して、非整数の部分の値が0又は1に近い場合には、高い周波数帯にシフトし、非整数部分が1/2に近い値の場合には、低い周波数帯にシフトする。このため、非整数部分の値に応じて、変調した信号又は変調しない信号の何れかを選択することで、全ての非整数の範囲で、スプリアス成分の周波数を低い周波数とならないようにする。
【0034】
本発明のフラクショナルN周波数シンセサイザでは、前記選択回路は、前記非整数の値が0以上で1/4よりも小さいとき及び3/4以上で1よりも小さいときには前記変調出力を選択し、前記非整数の値が1/4以上で3/4よりも小さいときには周期性信号を選択することが好ましい。
非整数値をF/Mとすると、0<F/M<1/4、及び、3/4<F/M<1の範囲では、所定変調幅の変調を加えた場合のスプリアス成分の周波数の方が、変調を加えない場合のスプリアス成分の周波数よりも高くなり、1/4<F/M<3/4の範囲では、変調を加えない場合のスプリアス成分の周波数の方が、所定変調幅の変調を加えた場合の周波数よりも高くなくなる。また、F/M=1/4及びF/M=3/4のときは、両者のスプリアス成分の周波数は、同じになる。選択回路は、非整数値が何れの範囲に属するかに応じて、所定変調幅の変調を加えた信号又は変調を加えない信号を選択し、スプリアス成分の周波数が低い値にならないようにする。
【0035】
本発明のフラクショナルN周波数シンセサイザでは、前記選択回路は、前記非整数の値が0以上で1/4よりも小さいとき及び3/4以上で1よりも小さいときには変調出力を選択し、前記非整数の値が1/4以上で3/4よりも小さいときには比較信号を選択することが好ましい。
【0036】
本発明のフラクショナルN周波数シンセサイザでは、前記変調手段を複数備え、前記分周数制御回路に入力する非整数の値に依存して該複数の変調手段の何れか1つを選択する選択回路を更に備えることができる。スプリアス成分の周波数は、変調幅に従って変化する。このため、変調幅を適切に設定した変調手段を複数用意し、非整数部分の値に応じて何れかの変調手段を選択することで、スプリアス成分の周波数が低い周波数とならないようにする。
【0037】
本発明のフラクショナルN周波数シンセサイザでは、前記周期性信号又は基準信号の周波数をfrefとすると、前記変調手段は、(2p−1)/(2×N×fref)(p、Nは自然数)の変調幅を有する少なくとも1つの第1の変調手段と、q/(N×fref)(q、Nは自然数)の変調幅を有する少なくとも1つの第2の変調手段とを含むことが好ましい。
少なくとも1つの変調手段の変調幅を基準信号の周波数のN高調波の周期の(2p−1)/2倍(pは自然数)に設定し、少なくとも1つの変調手段の変調幅を基準信号の周波数のN高調波の周期の2q倍(qは自然数)に設定し、これらを切り替えて使用する。これにより、非整数の値の全ての範囲でスプリアスの低減が可能になる。
【0038】
本発明のフラクショナルN周波数シンセサイザでは、前記選択回路は、前記非整数の値が0以上で1/4よりも小さいとき及び3/4以上で1よりも小さいときには第1の変調手段を選択し、前記非整数の値が1/4以上で3/4よりも小さいときには前記第2の変調手段を選択することが好ましい。
非整数値をF/Mとすると、0<F/M<1/4、及び、3/4<F/M<1の範囲では、(2p−1)/(2×N×fref)(p、Nは自然数)の変調を加える第1の変調手段を使用する方が、q/(N×fref)(q、Nは自然数)の変調を加える第2の変調手段を使用するよりも、スプリアス成分の周波数が高くなり、1/4<F/M<3/4の範囲では、第2の変調手段を使用する方が、第1の変調手段を使用するよりも、スプリアス成分の周波数が高くなくなる。また、F/M=1/4及びF/M=3/4のときは、両者のスプリアス成分の周波数は、同じになる。選択回路は、非整数値が何れの範囲に属するかに応じて、第1又は第2の変調回路を選択し、スプリアス成分の周波数が低い値にならないようにする。
【0039】
本発明のフラクショナルN周波数シンセサイザでは、前記非整数の分母が2n(nは2以上の整数)であり、前記選択回路は、該非整数の分子の最上位ビットと該最上位ビットの1つ下位のビットとの排他的論理和を選択制御信号とすることが好ましい。
非整数の値を分数で表現したとき、分母を2nとすると、分子のとり得る値は、0から2n−1間での値となる。このとき、分子の上位側2ビットの値の排他的論理和をとると、非整数の値が、0以上で1/4よりも小さいとき及び3/4以上で1よりも小さいときには0となり、1/4以上で3/4よりも小さいときには1となる。このため、分子の上位側2ビットの値の排他的論理和を、選択回路の選択制御信号として使用することができる。
【0040】
本発明のフラクショナルN周波数シンセサイザでは、前記変調手段は、前記分周数制御回路に入力する非整数の値に依存して前記所定変調幅を制御する変調幅切替手段を備えることができる。この場合、非整数部分の値に応じて変調幅を制御できる。このため、スプリアス成分の周波数が低くならないようにすることができる。
【0041】
本発明のフラクショナルN周波数シンセサイザでは、前記変調幅切替手段は、前記非整数値に応じた遅延量を出力する遅延回路を備えることが好ましい。この場合、遅延回路の遅延量を制御することで変調幅を制御し、スプリアス成分の周波数が低い周波数とならないようにする。
【0042】
本発明のフラクショナルN周波数シンセサイザでは、前記遅延回路は、前記非整数の値が0以上で1/4よりも小さいとき及び3/4以上で1よりも小さいときには、遅延量を(2p−1)/(2×N×fref)(p、Nは自然数)にし、前記非整数の値が1/4以上で3/4よりも小さいときには、遅延量をq/(N×fref)(qは0以上の整数、Nは自然数)にすることが好ましい。
非整数値をF/Mとすると、0<F/M<1/4、及び、3/4<F/M<1の範囲では、遅延量が(2p−1)/(2×N×fref)(p、Nは自然数)であるとき方が、遅延量がq/(N×fref)(qは0以上の整数、Nは自然数)であるときよりも、スプリアス成分の周波数が高くなり、1/4<F/M<3/4の範囲では、遅延量がq/(N×fref)であるとき方が、遅延量が(2p−1)/(2×N×fref)であるときよりも、スプリアス成分の周波数が高くなくなる。また、F/M=1/4及びF/M=3/4のときは、両者のスプリアス成分の周波数は、同じになる。遅延回路は、非整数値が何れの範囲に属するかに応じて、遅延量を(2p−1)/(2×N×fref)又はq/(N×fref)に設定し、スプリアス成分の周波数が低い値にならないようにする。
【0043】
本発明のフラクショナルN周波数シンセサイザでは、前記変調手段は、前記分周数制御回路が出力する分周数に、2つの異なる加数を前記分周回路の出力周期以上の周期毎に切り替えて加算する変調制御回路を備える構成とすることができる。この場合、分周回路は、分周数制御回路が出力する信号列に2つの異なる加数を切り替えて加算された分周数で分周し、変調の加えられた比較信号を生成する。
【0044】
本発明のフラクショナルN周波数シンセサイザでは、前記変調制御回路は、前記分周回路の出力を2分周するカウンタと、該カウンタの出力に依存して前記2つの異なる加数を切り替えるセレクタと、該セレクタの出力に前記分周数制御回路が出力する分周数を加算する加算器とを備えることが好ましい。この場合、分周回路は、その出力の1周期毎に、2つの異なる加数を交互に切り替えて加算された分周数で分周を行う。
【0045】
本発明のフラクショナルN周波数シンセサイザでは、前記基準信号と前記比較信号の位相の遅れている方の信号のエッジで前記位相差信号をリセットすることが好ましい。変調を加えることによって、基準信号と比較信号の何れの信号の位相が進んでいるかが明確となるときには、位相の遅れている方の信号で位相差信号をリセットすることができる。このため、チャージポンプの動作が改善され、フロアC/N比の特性が向上する。
【0046】
本発明のフラクショナルN周波数シンセサイザでは、前記位相差信号は、前記分周数制御回路が出力する分周数に、2つの異なる加数のうち、−N1よりも小さい加数を加算したときには前記基準信号でリセットし、+N1よりも大きい加数を加算したときには前記比較信号でリセットすることが好ましい。2つの異なる加数のうち、−N1よりも小さな値を加算したときには、常に基準信号の位相が遅れ、+N1よりも大きな値を加算したときには、常に比較信号の位相が遅れる。このため、何れの信号を用いて位相差信号をリセットすればよいのかが明確となる。
【0047】
本発明のフラクショナルN周波数シンセサイザは、前記基準信号が、所定周波数の周期性信号を、U周期(Uは2以上の整数)に1回、所定変調幅だけ時間軸方向に変調した信号であることが好ましい。基準信号と比較信号の一方のみを変調した場合には、分周回路や分周数制御回路の内部の回路の動作タイミングが、基準信号REFのエッジと重なり合う場合が生じ、スプリアス発生の原因となる。位相比較回路に入力される双方の信号に変調を加えることによって、信号のミキシングを回避する。
【0048】
【発明の実施の形態】
以下、図面を参照し、実施の形態を詳細に説明する。
【0049】
(第1の実施形態例)
図1は、本発明の第1の実施形態例のフラクショナルN周波数シンセサイザの構成を示している。本実施形態例のフラクショナルN周波数シンセサイザは、位相比較回路1と、チャージポンプ2と、低域通過フィルタ(LPF)3と、電圧制御発振器(VCO)4と、フラクショナル制御が可能な分周回路5と、分周回路5を制御する分周数制御回路6と、変調回路7とを備える。本実施形態例のフラクショナルN周波数シンセサイザは、変調回路7を備える点で、図28に示す従来の周波数シンセサイザと相違する。
【0050】
位相比較回路1は、周波数がfrefである周期性信号(以下、基準信号REFと呼ぶ)を変調回路7で変調した信号REFMと、VCO(4)の出力信号を分周回路5により分周した比較信号SIGとを入力し、両者間の位相差を検出する。位相比較回路1は、入力信号の位相差に応じたパルス幅を有する、遅れ又は進みの位相誤差信号を出力し、対応する出力端子up及びdownを介してチャージポンプ2Aに与える。チャージポンプ2は、VCO(4)の入力ノードの電圧値を制御し、その発振周波数を制御する。チャージポンプ2は、遅れ又は進みの位相誤差信号に応じて、互いに極性が異なり、位相誤差信号のパルス幅に応じたパルス幅を有する電流信号CPOUTを出力し、高周波成分を除去するLPF(3)を介してVCO(4)の入力ノードの電荷量を、つまりその電圧値を制御する。
【0051】
VCO(4)は、入力ノードの電圧値に応じた発振周波数で発振して、出力信号OUTを出力する。分周回路5は、VCO(4)の出力信号OUTを入力し、入力信号を分周数制御回路6の出力信号列nに従った分周数で分周し、比較信号SIGとして出力する。分周数制御回路6は、分周回路5の分周数を信号列nによってフラクショナル制御し、分周回路5の分周数を時間平均的に比整数(分数)の値にする。分周数制御回路6は、パターンノイズを除去するため、シグマ−デルタ変調器の一種等のノイズシェイピング効果を有する回路を用いて構成される。
【0052】
変調回路7は、基準信号REFを入力し、基準信号REFのパルスの位置を周期的に、例えば2周期に1回制御して、任意の一定時間幅Δtだけ時間軸方向に変調(移動)した信号REFMを、位相比較回路1に出力する。変調回路7は、位相比較回路1の入力側(信号REFM及び/又は比較信号SIG)に回り込んだVCO出力の周波数成分が、信号REFM又は比較信号SIGとのミキシングにより生じるビート成分の周波数を、LPF(3)の通過帯域外の高域側にシフトし、VCO(4)の周波数制御信号中に含まれないようにする。位相比較回路1は、前述のように、信号REFMと比較信号SIGとが入力され、ロック状態では、双方の信号の周波数が同じになる。このため、VCO(4)の出力信号OUTは、その周波数が基準信号の周波数である基準周波数frefの(N+F/M)倍で、ミキシングによるスプリアスが低減された信号となる。
【0053】
図2は本実施の形態の基本動作をタイミングチャートとして示している。なお、同図のカッコ内は、具体的な数値例を示している。前述のように、変調回路7は、基準信号REFの各パルス信号を、1つおきに時間軸方向に変調幅Δtだけ後方に遅延した信号REFMを出力する。同図の例では、Δtは390psである。位相比較回路1は、信号REFMと比較信号SIGとの位相比較を行い、遅れ又は進みの位相誤差信号を出力する。チャージポンプ2は、位相誤差信号に応じて互いに極性の異なる電流信号CPOUTを出力し、LPF(3)を介してVCO(4)を制御する。
【0054】
通常のPLL動作では、位相比較器に入力される2つの信号の位相差がなくなって、両信号のエッジが一致するように帰還制御されてロック状態となるが、本実施形態例の周波数シンセサイザでは、信号REFMと比較信号SIGとは、それぞれの平均位相が一致するように帰還制御されてロック状態に入る。この結果、ロック状態では、分周数制御回路6により付加される分周数のランダム性を考慮しなければ、比較信号SIGのエッジは、遅延が付けられていないときの信号REFMのエッジと比較すると後方にずれ、遅延が付けられたときの信号REFMのエッジと比較すると前方にずれる。つまり、信号REFMと比較信号SIGとは、交互に進み遅れが生じる。
【0055】
前述のように、チャージポンプ2は、位相比較回路1の2つの出力端子からの信号に基づいて、位相の進み又は遅れに依存したパルス幅を有する電流信号CPOUTを出力し、LPF(3)を介してVCO(4)に入力ノードの電圧を制御する。チャージポンプ2の出力信号CPOUTは、図2に示すように、信号REFMより比較信号SIGの位相が遅れた場合は、極性が正で、両信号間の位相差に相当するパルス幅の電流信号となり、また、位相が進んだ場合は、極性が負で、両信号間の位相差に相当するパルス幅の電流信号となる。上記したように、信号REFMと比較信号SIGとは、交互に進み遅れが生じるため、チャージポンプ2からは、極性が交互に異なるパルス信号が出力される。
【0056】
次に、本実施の形態のスプリアスの発生及びその除去の動作について、詳細に説明する。図3は、信号REFMのフーリエ級数展開による計算結果のスペクトラム特性をグラフとして示している。また、カッコ内は具体的な数値例を示している。グラフの横軸は、基準信号のN高調波成分の周期1/(N×fref)で規格化した変調幅(Δt=D/(N×fref))を、縦軸は、各信号の高調波のパワーレベルを示している。
【0057】
基準信号REFに、変調回路7によってパルス1つおきに変調を加えると、信号REFMの高調波成分は、N×frefの成分と(N+1/2)×frefの成分とが現れる。この2つの高調波成分は、変調回路7で付ける遅延幅を変数として、図3に示すように、実線で示すN×fref成分のパワーと、点線で示す(N+1/2)×fref成分のパワーとが、周期が1/(N×fref)で、位相が互いに180度ずれたかたちで変化する。変調幅が1/(N×fref)の整数倍に近いほど、N×frefの成分のパワーが大きく、1/(N×fref)の(2p−1)/2倍(pは自然数)に近いほど、N×frefの成分のパワーが小さくなる。
【0058】
図4は、各信号の周波数特性をスペクトラムとして示しており、(a)は基準信号REFの周波数特性を、(b)はΔt=0.5/(N×fref)の変調を加えたときの信号REFMの周波数特性を、(c)は位相比較器1における信号のミキシングの周波数特性を示している。同図(a)に示すように、基準信号REFは、基本波成分frefと、その高調波成分2×fref、…N×fref、(N+1)×fref、…とからなる。また、信号REFMは、同図(b)に示すように、低周波領域では、frefの成分と、fref/2の成分とがあり、高調波成分では、N×frefの成分と、(N+1/2)×frefの成分とが生じている。なお、N×frefの成分のパワーと、(N+1/2)×frefの成分のパワーの何れの成分のパワーが強いかは、図3に示したように、変調幅Δtによって定まる。
【0059】
本実施形態例の位相比較回路1において、例えば、VCO(4)の出力信号OUTが、比較信号SIGに回り込んでいる場合を考える。位相比較回路1では、周波数がfvco=(N+F/M)×frefの回り込み信号と、信号REFM高調波成分とがミキシングされる。前述のように、Δtが1/(N×fref)の0.5倍のときには、信号REFMの高調波成分は、N×frefの成分が小さく、(N+1/2)×frefの成分が大きい。このため、位相比較回路1では、(N+F/M)×frefの成分と、(N+1/2)×frefの成分とがミキシングされ、図4(c)の示すように、両者の差の周波数成分に相当するΔf=|F/M−1/2|×frefの成分が、位相比較回路1の出力に現れる。
【0060】
位相比較回路1の出力に現れる周波数成分の具体的な数値例として、fref=6.4MHz、N=200、M=64、F=1の場合を考えてみると、Δf=|1/64−1/2|×6.4MHz=3.1MHzとなる。この成分が信号CPOUTに含まれると、1280.1MHzを中心に、上下3.1MHzはなれた周波数にスプリアスが発生する。しかし、前述の従来の周波数シンセサイザのスプリアス成分(100kHz)に比べて、本実施形態例のスプリアス成分は高い周波数であるため、LPF(3)によってこの周波数成分の信号を容易に除去することができる。従って、スプリアスの発生が低く抑えられる。
【0061】
変調幅Δtについては、基準信号の周期である1/(N×fref)の(2p−1)/2倍(pは自然数)であるときが、最もN×fref成分のパワーが小さくなるために、スプリアスの発生を抑えやすく、その変調幅からずれるに従ってスプリアス抑制の効果が弱まる。これは、本実施形態例では、位相比較回路1でミキシングされる周波数成分をN×frefから(N+1/2)×frefにシフトすることでスプリアスの発生を抑制するためである。従来の周波数シンセサイザでスプリアスの発生が問題となるのは、スプリアス周波数が低くなるF/Mが0に近い場合、或いはF/Mが1に近い場合であるが、本実施形態例では、上記したようにスプリアス成分の周波数を高めて、容易にLPF(3)で除去できる。
【0062】
ここで、変調幅Δtについては、T回に1回以上(Tは2以上の整数)、信号REFMのエッジが比較信号SIGに同期する関係が保てれば、特に問題がない。ただし、変調幅Δtの時間幅に比較して、発振周波数から±(F/M)×fref離れた周波数に現れるスプリアスが大きくなるので、このスプリアスをLPF(3)で十分減衰できる範囲が、Δtの限界時間となる。
【0063】
図5は、本実施形態例のフラクショナルN周波数シンセサイザの周波数スペクトラム特性を示している。この例では、変調回路7の変調幅Δtを、0.5/(1280×106)=390psに設定している。変調回路7を設けることにより、従来の周波数シンセサイザで発生していた、図30に示すような、1280.1MHzを中心に、上下100kHzに現れるスプリアスを十分に減衰させている。
【0064】
図6は、変調回路7の具体的な構成例を示しており、(a)は変調回路の構成例、(b)は変調回路内のカウンタの構成例を示している。変調回路7は、基準信号REFに所定変調幅Δtの遅延を付ける遅延回路71と、遅延回路71の出力を計数するカウンタ73と、セレクタ72とを備える。
【0065】
カウンタ73は、同図(b)に示すように、D型フリップフロップの反転出力QBをD端子に帰還し、基準信号REFを遅延回路71で遅延した信号REFDをクロック入力端子に入力し、正相出力Qを出力する。カウンタ73は、2計数(分周数2)がカウントアップすることで2分周回路を構成し、セレクタ72に信号RSELを出力する。セレクタ72は、基準信号REFと信号REFDを入力し、例えばカウンタからの信号RSELがHレベルである期間は信号REFDを出力し、Lレベルである期間は基準信号REFを出力するようにして、信号REFMを出力する。本実施形態例では、カウンタ73を2分周に設定しているため、信号REFMは、基準信号REFと信号REFDとが交互に出力される。
【0066】
図7は、図6に示す変調回路7の動作をタイムチャートとして示している。遅延回路71は、基準信号REFを所定変調幅Δtだけ遅延して信号REFDとして出力する。カウンタ73は、信号REFDを計数し、これを2分周した信号RESLを出力する。セレクタ72は、RSELがLレベルの期間は基準信号REFを選択して基準信号REFを出力し、RSELがハイレベルの期間は信号REFDを選択して信号REFDを、信号REFMとして出力する。これにより、信号REFMは、基準信号REFのパルス1つおきにΔtだけ遅延された信号となる。
【0067】
以上のように、本実施形態例のフラクショナルN周波数シンセサイザは、基準信号REFに所定変調幅Δtだけ変調を加えることによって、位相比較回路1でミキシングされる周波数を、N×frefから(N+1/2)×frefにシフトし、ビート成分の周波数を高める。このビート成分の周波数は、LPF(3)で十分減衰させることが可能であり、スプリアス雑音を低減した周波数シンセサイザを得ることができる。
【0068】
(第2の実施形態例)
図8は、本発明の第2の実施形態例の周波数シンセサイザを示している。本実施形態例のフラクショナルN周波数シンセサイザは、信号REFMが、クロック信号を生成するクロック源、外部より分周数を制御可能な分周器8、及び、設定値を入力し分周器8を制御する変調制御回路9で生成される点で、先の実施形態例の周波数シンセサイザと相違する。
【0069】
位相比較回路1に入力する信号REFMは、クロック源から出力されるクロック信号を、分周器8で分周して得られる。変調制御回路9は、設定値R、l、m(R、l、mは整数)を入力し、信号列rを出力して分周器8を制御する。信号列rは、例えばR+l、R+mの値を交互にとるようにする。分周器8は、信号列rに従ってその分周比を切り替え、クロック信号を分周比R+l、R+mの何れかの分周比で分周する。この場合、変調幅Δtは、クロック信号の周期の|l−m|/2倍の値になる。また、信号REFMの周期は、クロック信号の周期を(R+(l+m)/2)分周したものとなる。l、mの組み合わせによっては周期にオフセットが生じうる。
【0070】
図9は、変調制御回路9の具体的構成例を示しており、(a)は変調制御回路9の構成例、(b)は変調制御回路9内のカウンタの構成例を示している。変調制御回路9は、分周器8の出力である信号REFMを計数するカウンタ回路91と、カウンタ91の出力により制御されるセレクタ92と、セレクタ92の出力にRを加算する加算器93とを備える。カウンタ91は、同図(b)に示すようにD型フリップフロップを用いて構成され、2分周回路として動作する。セレクタ92は、異なる整数値l、mを入力し、カウンタ回路91の出力RSELに従って、何れかの入力値を選択して出力する。
【0071】
図10は、R=6、l=−1、m=+1の場合の図8及び図9の変調回路部の動作をタイミングチャートとして示している。カウンタ回路91は、分周器8の出力信号REFMのローレベル側のパルスを計数し、パルスの計数毎に出力レベルが切り替わる信号RSELを出力する。セレクタ92は、信号RSELにより制御され、信号RSELがHレベルの期間にm=+1を出力し、Lレベルの期間にl=−1を出力する。セレクタ92の出力は、加算器93でR=6と加算され、信号列rとして出力される。分周器8は、クロック信号を、r=7のときには7分周、r=5のときには5分周し、信号REFMを出力する。本実施形態例では、カウンタ91が2分周動作を行うため、分周比は、7分周と5分周とが交互に切り替わり、平均分周数は6で、変調幅Δtはクロック信号の1周期分となる。
【0072】
(第3の実施形態例)
上記した第1及び第2の実施形態例では、位相比較回路1の基準信号側に変調を加えることでスプリアスの発生を低減するフラクショナルN周波数シンセサイザを示したが、スプリアスは、比較信号SIGに変調を加えることによっても低減できる。これは、位相比較回路1に入力される信号のミキシングによるビートの発生は、位相比較回路1に入力される何れか一方の信号、又は、両方の信号に、出力信号OUTが回り込みことによって生じるからである。つまり、基準信号REFにVCO(4)の出力信号OUTが回り込んでスプリアスが発生するばかりでなく、比較信号SIG側にREF信号が回り込むことによっても、前述のものと同様な原理でスプリアスが発生する。
【0073】
図11は、本発明の第3の実施形態例のフラクショナルN周波数シンセサイザの構成を示している。本実施形態例のフラクショナルN周波数シンセサイザは、図1の変調回路7を、基準信号REF側に設けるのに代えて、比較信号SIG側の分周器5に後続して設けている点で、第1の実施形態例と相違する。図11の変調回路10は、図1の変調回路7と同様に、入力信号のパルス1つおきにΔtの遅延を付ける。図12は、変調回路10の具体的構成例を示し、(a)は変調回路10の構成例を、(b)は変調回路10内のカウンタの構成例を示している。変調回路10は、入力信号が相違するのを除いて、図6に示す変調回路と同様の構成であり、比較信号SIGを入力して信号SIGMを出力する。
【0074】
本実施形態例では、比較信号SIG側に変調回路10を設け、比較信号SIGに、そのパルス1つおきにΔtの遅延を付ける。このΔtは、第1及び第2の実施形態例と同様に、1/(N×fref)の(2p−1)/2倍(pは自然数)であるときが、スプリアス低減の効果が大きい。本実施形態例のように、基準信号REF側の代わりに、比較信号SIG側の信号に変調を加えることによっても、比較信号の高調波と、出力信号OUTとのミキシングにより発生するビート成分の周波数を、高域側にシフトすることができ、第1の実施形態例と同様にスプリアスの発生を防止することが可能である。ここで、変調幅Δtの基準となる周期については、基準信号のN高調波の周期である1/(N×fref)ではなく、VCO(4)の出力周期である1/((N+F/M)×fref)となる。しかし、Nは1よりも十分に大きく、F/Mは1よりも小さいため、
fvco=(N+F/M)×fref≒N×fref
として、1/(N×fref)を基準として取り扱ってもよい。
【0075】
(第4の実施形態例)
図13は本発明の第4の実施形態例のフラクショナルN周波数シンセサイザの構成を示している。本実施形態のフラクショナルN周波数シンセサイザは、図11の変調回路10を分周回路5と位相比較回路1の間に設けるのに代えて、分周数制御回路6と分周器5との間に変調制御回路11を設けている点で、第3の実施形態例と相違する。図14は、変調制御回路11の具体的構成を示し、(a)は変調回路の構成例を、(b)は変調回路内のカウンタの構成例を示している。変調制御回路11は、入出力信号が相違するのを除いて、図9に示す変調制御回路と同様である。変調制御回路11は、信号列nと設定値l、m(l、mは整数)とを入力し、例えば、n+lとn+mとが交互に切り替わる信号列n’を出力する。本実施の形態では、分周回路5の分周数を周期的に制御することで、比較信号SIGに変調を加える。変調幅Δtは、出力信号OUTの周期の|l−m|/2倍となる。
【0076】
(第5の実施形態例)
図15は、本発明の第5実施形態例のフラクショナルN周波数シンセサイザを示している。本実施形態例のフラクショナルN周波数シンセサイザは、変調制御回路11に入力するl、mの値を大きな値にする点で、第4の実施形態例と相違する。本実施形態例では、分周数制御回路6より出力される信号列をn=N+Δn1とし、Δn1の絶対値の最大値をΔn1(max)とすると、例えばl>mのとき、l>+Δn1(max)、かつ、m<−Δn1(max)に設定する。分周数制御回路6の重み付け加算器4Cを図29のように設定したときには、前述のように、−3≦Δn1≦4となるため、Δn1(max)は4になる。
【0077】
図16は、位相比較回路1に入力される信号のエッジを示し、(a)は変調を加えないときのエッジを、(b)はl、mをl>Δn1(max)、m<−Δn1(max)に設定したときのエッジを示している。信号SIGMは、上記したΔn1によって分周数が変化するため、前述の分周数制御回路6の分周数の変化分の幅を持って、図中点線で示した何れかの時点のエッジで立ち下がる。このときの幅をΔTとおくと、ΔTは、VCO(4)の出力信号OUTの周期に、Δn1の最大値とΔn1の最小値との差をかけた値となる。
【0078】
変調を加えないとき、つまり、図15のl、mを共に0に設定したときには、信号SIGMは、図16(a)に示すように、基準信号REFの立ち下がりエッジ付近を中心として、何れかの時点で立ち下がる。一方、l、mの値を分周数の変化の幅よりも大きな値に設定したとき、つまり、l、mをl>Δn1(max)、m<−Δn1(max)に設定したときには、同図(b)に示すように、分周数の変化分Δn1の値に関係なく、信号SIGMは、分周数が(n+l)のときは、基準信号REFの立ち下がりエッジよりも遅れて立ち下がり、分周数が(n+m)のときは、基準信号REFの立ち下りエッジよりも進んで立ち下がる。
【0079】
第4の実施形態例では、l、mの値を本実施形態例のように設定しないときには、基準信号REFのエッジと信号SIGMのエッジとが図16(a)に示すように重なり、双方の信号間のミキシングによってスプリアスが発生する。本実施形態例では、基準信号REFのエッジと信号SIGMのエッジとが、図16(b)に示すように重ならない範囲のl、mを設定することで、双方の信号間のミキシングがなくなり、変調幅Δtの値に依存することなく、スプリアスを低減できる。
【0080】
また、第3の実施形態例では、変調幅Δtの値を基準周波数frefのN高調波の周期の(2p−1)/2倍にしたときに、スプリアス低減の効果が得られる。ここで、信号SIGMの高調波成分は、図3に示す特性と同様に急峻な特性となり、変調幅Δtがわずかに変化しただけでも、その周波数成分が大きく変わる。このため、変調幅Δtは高い精度で生成する必要があるが、例えば基準信号REFを変調する図2の例では、変調幅Δtは390psと極めて短い時間のため、動作環境の変動がある場合などには、その値を維持することは困難である。本実施形態例では、上述のようにミキシングが発生しないため、変調幅Δtについて高い精度が要求されることはなく、容易にスプリアスが低減できる。
【0081】
ここで、図17は、チャージポンプ2の出力電流特性を示し、(a)は変調を加えないときのチャージポンプの動作範囲を、(b)はl、mをl>Δn1(max)、m<−Δn1(max)に設定するときのチャージポンプの動作範囲を示している。チャージポンプ2は、位相比較回路1の位相比較結果の差が0の近傍にある、つまり、位相差がごく小さいときには、その出力電流特性は線形ではなく、ひずみ(非線形性)を生じる。一般に、フラクショナル動作する周波数シンセサイザは、出力の平均位相が基準信号に同期するため、毎回の位相比較では、図16(a)に示すように位相が完全には同期せず、この非線形を含む範囲で動作する。図17(a)のように、チャージポンプの動作範囲に、特性が非線形性の範囲が含まれると、周波数シンセサイザのフロアC/N比が劣化する。本実施形態例では、同図(b)のように、チャージポンプの非線形性の範囲を避けて動作するため、整数分周を行う周波数シンセサイザとほぼ同じの、良好なフロアC/N比が得られる。
【0082】
更に、本実施形態例のフラクショナルN周波数シンセサイザでは、基準信号側のエッジと比較信号側のエッジを重ならないように設定することで、チャージポンプ2の動作を以下に示すように改良することができ、これによってもフロアC/N比が向上する。図18は、チャージポンプの動作をタイミングチャートとして示し、(a)は従来のチャージポンプのリセットのタイミングを、(b)は本実施形態例のチャージポンプのリセットのタイミングを示している。一般に、チャージポンプは、その内部に、極性の異なる2つ電流源を有しており、例えば、遅れの位相誤差信号が入力されると、正の方向に電流を流す電流源を動作させ、進みの位相誤差信号が入力されると、負の方向に電流を流す電流源を動作させる。従来の、位相比較回路1の位相誤差信号をリセットする方法として、特開昭63−204540号公報には、双方の位相誤差信号が入力されると、出力電流は互いに打ち消し合ってキャンセルされ、2つの電流源が動作したことを検知して、位相比較回路にリセット信号を送り、双方の位相誤差信号をリセットする技術が記載されており、同図(a)は、該公報に記載の技術の動作タイミングを示している。
【0083】
位相比較回路1では、例えば立ち下がりエッジ比較で考えると、信号SIGMが立ち下がると、遅れの位相誤差信号を出力し、基準信号REFが立ち下がると、進みの位相誤差信号を出力する。図18(a)の例では、信号SIGMの方が、基準信号REFよりも先に立ち下がる。このため、遅れの位相誤差信号Idownが出力され、次いで進みの位相誤差信号Iupが出力される。このような位相誤差信号が入力されると、チャージポンプ2は、上記したように、正の方向に電流を流す電流源を動作させた後に、負の方向に電流を流す電流源を動作させ、双方の電流源が動作した後に位相比較回路1にリセット信号を送る。図に示す時間τupは、双方の電流源が動作しているのを検知し、リセット信号が位相比較回路1に送られ、進み及び遅れの位相誤差信号がリセットされるのにかかる時間を示している。このように、従来の位相誤差信号のリセットでは、双方の位相誤差信号が同時に出力され、リセットがかかるまでの間では、チャージポンプの出力は、互いに極性の異なる電流を流す電流源が同時に動作することでその出力がキャンセルされていた。
【0084】
本実施形態例では、図16(b)に示したように、変調を加えるl及びmの値を、フラクショナル動作の変動幅Δn1よりも大きくなるようにしているため、分周数が、n+lのときは、必ず、基準信号REFよりも信号SIGMの位相の方が遅れ、n+mのときには、必ず、基準信号REFよりも信号SIGMの位相の方が進む。このため、分周数がn+mのときである図18(b)の例では、位相が遅れる側の信号、つまり、基準信号REFの立ち下がりエッジのタイミングでリセット信号を生成することができる。このようにすることで、進みの位相誤差信号Iupは出力されない。分周数がn+lのときには、信号SIGMの立ち下がりエッジのタイミングでリセット信号を生成することができ、遅れの位相誤差信号Idownは出力されない。
【0085】
チャージポンプでは、2つの電流源が同時に動作するときに、出力電流の立ち上がりと立ち下がり波形の違いや、動作開始時のタイミングずれなどがあり、出力電流が完全にキャンセルされないため、C/N比の劣化につながっていた。本実施形態例では、何れの信号が先に立ち下がり、何れの信号が後に立ち下がるかが明確であるため、遅れ及び進みの位相誤差信号を同時に出力させずにリセット信号を生成することが可能となる。このようにすることで、前述のように、スプリアスが低減してフロアC/N比が向上すると共に、フロアC/N比を更に改善することができる。
【0086】
図19は、実験による、本実施形態例のフラクショナルN周波数シンセサイザの特性と従来のフラクショナルN周波数シンセサイザの特性とを、スペクトラム特性図として示している。また、図20は、実験による、本実施形態例のフラクショナルN周波数シンセサイザの特性と整数分周を行う周波数シンセサイザの特性をスペクトラム特性図として示している。なお、図20では、VCO(4)の出力周波数fvcoをグラフの中心に合わせて示している。図19に示すように、本実施形態例のフラクショナルN周波数シンセサイザの特性(グラフA)は、従来のフラクショナルN周波数シンセサイザの特性(グラフB)に比べて、周波数fvcoを中心に、上下50kHzに現れるスプリアスが除去されているのに加えて、紙面上左右に広がるフロア部分のC/N比が改善されている。また、図20に示すように、本実施形態例のフラクショナルN周波数シンセサイザの特性(グラフA)は、整数分周を行う周波数シンセサイザの特性(グラフC)に比べて、1〜2dB程度の特性の低下は見られるものの、ほぼ同等で、良好なC/N比が得られている。
【0087】
(第6の実施形態例)
図21は、本発明の第6の実施形態例のフラクショナルN周波数シンセサイザの構成を示している。本実施形態例は、加算器13で(N+F/M)に所定の値である−(l+m)/2を加えたものを分周数制御回路6に入力する点で、第4の実施形態例と相違する。第4の実施形態例のフラクショナルN周波数シンセサイザでは、信号SIGMの周期は、出力信号OUTの周期をn+(l+m)/2分周したものとなるため、l+m=0ではないlとmの組み合わせを使用する場合には、周期にオフセットが生じ、平均分周数が変化する。このため、分周制数御回路6に入力する(N+F/M)に所定の値を入力し、このオフセットを補償するとよい。このようにすることで、変調を加えたときと加えないときとで平均分周数が変化することがない。
【0088】
(第7の実施形態例)
前述のように第1及び第3の実施形態例では、F/Mの所望の非整数範囲で、位相比較回路1の入力信号と、VCO(4)の出力信号OUTとのミキシングに基づくスプリアスを低減することが可能である。しかし、0<F/M<1の全ての非整数範囲で低周波成分によるスプリアスを低減し、ロックタイムが高速で、かつ、低雑音のフラクショナルN周波数シンセサイザを実現するためには、以下の理由により、変調回路の動作を切り替え可能に構成するとよい。
【0089】
上記したように、位相比較回路1の入力信号の何れか一方に、変調幅Δt=(1/N×fref)×(2p−1)/2の変調を加えることで、スプリアス成分の周波数は、(F/M)×frefから|F/M−1/2|×frefにシフトする。従来の、変調を加えない場合のスプリアスは、1/2<F/M<1の範囲では、N×frefではなく、(N+1)×frefの高調波とミキシングされて発生することを考慮すると、(1−F/M)×frefの周波数成分となる。また、図3で示したように、変調を加えた信号である信号REFMの高調波成分は、変調幅Δtに依存して変化する。このため、スプリアス成分は、非整数の値F/Mと、変調幅Δtとに依存して、その周波数が変化する。
【0090】
ここで、スプリアス成分となるF/Mと|F/M−1/2|とを比較すると、0<F/M<1/4の範囲では、|F/M−1/2|>F/Mであり、1/4<F/M<1/2の範囲では、F/M>|F/M−1/2|である。1/2<F/M<1の範囲では、(1−F/M)と|F/M−1/2|とを比較すると、1/2<F/M<3/4では、(1−F/M)>|F/M−1/2|であり、3/4<F/M<1では、|F/M−1/2|>(1−F/M)である。
【0091】
つまり、0<F/M<1/4、及び、3/4<F/M<1の範囲では、Δtの変調を加えた上記実施形態例の場合のスプリアス成分の周波数の方が、従来の場合のスプリアス成分の周波数よりも高く、その周波数の最小値はfref×1/4である。また、1/4<F/M<3/4の範囲では、従来のスプリアス成分の周波数の方が、Δtの変調を加えた上記実施形態例のスプリアス成分の周波数よりも高くなり、その周波数の最小値はfref×1/4である。スプリアス成分の周波数が高いほど、LPF(3)で容易に除去できるため、1/4<F/M<3/4の範囲では、従来のフラクショナルN周波数シンセサイザの方が、スプリアスを低く抑えることができる。
【0092】
図22は、従来のフラクショナルN周波数シンセサイザの周波数スペクトルと、第1の実施形態例のフラクショナルN周波数シンセサイザの周波数スペクトルとを示し、(a)は従来のF/M=1/64のときの、(b)は上記実施形態例のF/M=1/64のときの、(c)は従来のF/M=31/64のときの、(d)は上記実施形態例のF/M=31/64のときの周波数スペクトルをそれぞれ示している。同図(a)のように、F/Mが0に近い(F/M<1/4)場合では、無変調の基準信号REFのN高調波と出力信号OUTの周波数fvcoとの差の周波数fspは低周波数域(100kHz)にあるが、上記実施形態例のように、変調幅Δtの変調を加えることで、同図(b)に示すように、周波数fspを高周波数域(3.1MHz)に高めることができる。しかし、同図(c)のように、F/Mが1/2に近い(1/4<F/M<3/4)場合には、無変調の基準信号REFのN高調波と出力信号OUTの周波数fvcoとの差の周波数fspは高周波数域(3.1MHz)にあるが、上記実施形態例のように、変調幅Δtの変調を加えることで、同図(d)に示すように差周波数fspを低周波数域(100kHz)にシフトする。
【0093】
図23は、本発明の第7の実施形態例のフラクショナルN周波数シンセサイザの構成を示している。本実施形態例のフラクショナルN周波数シンセサイザは、F/Mの値に応じて基準信号REF及び信号REFMの何れかを選択する選択回路14を、変調回路7に後続して備える点で、図1に示す第1の実施形態例と相違する。選択回路14は、F/Mの値に応じて基準信号REFと信号REFMの何れかを選択し、0<F/M<1の全非整数(分数)分周範囲でfref×1/4以下の低周波数域の成分の発生を抑制し、スプリアスによる特性劣化を低減する。選択回路14は、N+F/Mを入力し、そのうちF/Mの値が0<F/M<1/4、3/4≦F/M<1の場合、変調回路7からの信号REFMを選択して出力し、1/4≦F/M<3/4の場合、基準信号REFを選択して出力する。
【0094】
図24は、fref=6.4MHz、F=0〜63、M=64における選択回路14の具体的構成例を示し、(a)は選択回路の構成を、(b)は選択回路内の排他的論理和回路の動作を示している。選択回路14は、基準信号REF及び信号REFMと、信号RSELとを入力し、信号RSELに従って何れか一方の信号を出力するセレクタ142と、非整数(F/M)の分子を構成する6ビットデータFのうち、MSBの値及びMSB−1の値を入力し、信号RSELを出力するExOR(排他的論理和回路)141とを備える。セレクタ142は、例えば、信号RSELがLレベルの期間は信号REFMを選択し、Hレベルの期間は基準信号REFを選択する。
【0095】
図24(b)に示すように、Fの上位側2つのビット値が共に0、又は、上位側2つのビット値が共に1の場合、つまり、Fが0〜15まで、又は、Fが48〜63までの中の何れかの場合には、信号RSELがLレベルとなり、セレクタ142は信号REFMを選択する。Fの上位側2つのビット値のうち何れか一方が0、他方が1の場合、つまり、Fが16〜47までの中の何れかの場合には、信号RSELがHレベルとなり、セレクタ142は基準信号REFを選択する。このように、Fが16≦F<48の範囲、つまり1/4≦F/M<3/4である場合には、無変調の基準信号REFを選択し、0≦F/M<1/4、又は、3/4≦F/M<1の範囲では、信号REFMを選択する。
【0096】
本実施形態例では、非整数値であるF/Mの値に応じて適切な信号を選択することで、0<F/M<1の全ての範囲でスプリアス成分の周波数が低くなることを防止するため、LPF(3)によってスプリアスを容易に除去できる。このため、非整数値の全ての範囲で、低雑音で高速ロックタイムを有するフラクショナルN周波数シンセサイザが実現する。本実施形態例のフラクショナルN周波数シンセサイザを、例えば、無線機の送受信用の周波数シンセサイザとして適用した場合には、全てのチャンネルで、所望の周波数の近傍に生じるスプリアスを低減することができる。なお、F/M=1/4又は3/4のときは、上記実施形態例及び従来のスプリアス成分の周波数は同じ値になるため、基準信号REF又は信号REFMの何れの信号を選択するかは任意にすることができる。
【0097】
(第8の実施形態例)
図25は、本発明の第8の実施形態例のフラクショナルN周波数シンセサイザを示している。本実施形態例のフラクショナルN周波数シンセサイザは、基準信号REFを異なる変調幅で変調する変調回路を複数設け、F/Mの値に応じて何れかの変調回路の出力を選択する選択回路を設けた点で、第1の実施形態例と相違する。変調回路15は、例えば、基準信号REFを1周期おきに、Δt=0.5×(1/(N×fref))だけ遅延した信号REFM1を出力する。変調回路16は、例えば、基準信号REFを1周期おきに、Δt=1×(1/(N×fref))だけ遅延した信号REFM2を出力する。
【0098】
選択回路14は、REFM1及びREFM2を入力し、分周数制御回路6に入力するN+F/MのうちF/Mの値に応じてREFM1又はREFM2を選択し、位相比較回路1に出力する。前述のように、変調を加えた基準信号REFに含まれる高調波成分は、変調幅Δtの値によって図3に示すように変化する。選択回路14は、スプリアスの周波数成分が低い周波数とならないような適切な変調幅を有する信号を選択するように設定する。このように設定することで、ミキシングによる生じる低周波成分の周波数領域を、F/Mと変調幅Δtの関係を考慮して適切に調整することが可能になる。
【0099】
(第9の実施形態例)
図26は、本発明の第9の実施形態例のフラクショナルN周波数シンセサイザの構成を示しており、(a)はフラクショナルN周波数シンセサイザの構成を、(b)は本実施形態例で使用する可変変調回路の具体的構成例を示している。本実施形態例のフラクショナルN周波数シンセサイザは、図1の変調回路7が、N+F/Mの値に応じて変調幅を任意に調整できる可変変調回路17に代わる点で、第1の実施形態例と相違する。変調回路17は、基準信号REFを入力し、例えば2回に1回、任意の変調幅Δtの遅延を付けた信号REFMを出力する。このとき、任意の変調幅Δtの値は0(無変調)を含む。
【0100】
可変変調回路17は、図26(b)に示すように、M、Fを入力し、M、Fの値に応じた制御信号を出力するD/A変換回路171と、遅延量が電流により制御可能な遅延回路172とを備える。可変変調回路17は、D/A変換回路171の出力により、遅延回路172で基準信号REFに付ける遅延量を制御し、スプリアスの周波数成分が低い周波数とならないようにする。例えば、D/A変換回路171は、遅延回路172の遅延量(Δt)が、0<F/M<1/4又は3/4<F/M<1のときにはΔtが1/N×frefの(2p−1)/2倍(pは自然数)になるように、1/4≦F/M≦3/4のときにはΔtが1/N×frefのq倍(qは自然数)になるように制御する。変調幅ΔtをF/Mに応じて変更することにより、ミキシングによる生じる低周波成分の周波数領域をVCOの発振周波数に応じて任意に制御することが可能になる。
【0101】
また、図23、図25、及び、図26に示した第7〜第9の実施形態例で説明した0<F/M<1の全範囲でのスプリアスの防止技術は、第1の実施形態例のみでなく、図11に示す第3の実施形態例のフラクショナルN周波数シンセサイザにおいても同様に適用可能である。この場合には、変調を加える側の信号である比較信号SIG側に、F/Mの値に応じて、変調した信号と変調しない信号とを切り替える選択回路、異なる変調幅を有する信号を切り替える選択回路、又は、変調幅の調整が可能な可変変調回路などを設ける。例えば、第3の実施形態例のフラクショナルN周波数シンセサイザに、図23に示す第7の実施形態例の選択回路14を設ける場合には、選択回路14が、VCO(4)の出力信号OUTを(N+F/M)分周する分周回路5の非整数値(F/M)に応じて、比較信号SIG、又は、信号SIGMの何れかを選択し、選択した信号を位相比較回路1に入力すればよい。
【0102】
なお、第5の実施形態例では、分周回路5の分周数をn+l、n+mにすることで、基準信号REFのエッジと信号SIGMのエッジとが重ならない例を説明したが、基準信号REFに加える変調を制御することによっても、基準信号側のエッジと比較信号側のエッジとが重ならないようにすることができる。例えば、第1の実施形態例では、基準信号に変調回路7の変調幅Δtを、所定の値よりも大きな値とすることで、位相比較回路1で信号REFMと比較信号SIGのエッジが重ならない。例えば、分周数制御回路6より出力される信号列がN+n1とn−n2(n1、n2は0以上の整数)との間で変動するとき、比較信号SIGの変動幅は、ΔT=(n1+n2)×VCO(4)の出力の周期となるが、変調回路7の変調幅Δtを、比較信号の変動幅の2分の1、つまりΔT/2で表される時間よりも大きくする。変調幅Δtを上記のように設定することで、信号REFMのエッジと比較信号SIGのエッジとの重なりがなくなり、両信号間のミキシングがなくなるために、スプリアスが除去される。第2の実施形態例においても、同様に、変調幅Δt(=クロックの周期×|l−m|/2)を適宜設定することで、エッジが重ならないようにすることができる。
【0103】
また、第5の実施形態例で説明したリセット信号の生成は、第5の実施形態例の構成に限定されず、位相比較回路に入力される信号のうち、何れの信号が先に立ち下がり(立ち上がり)、何れの信号が後に立ち下がる(立ち上がる)かが明確である位相比較回路について適用が可能である。第5の実施形態例では、比較信号側のエッジを、基準信号のエッジとタイミングが重ならないように調整したが、基準信号側のエッジを、比較信号の分周数の違いによるエッジの変動幅よりも前後にずらしても、同様の効果が得られる。
【0104】
第4から第6の実施形態例では、比較信号SIGに変調を加えて信号SIGMを生成し、これと基準信号REFとを位相比較回路1で位相比較する例を説明したが、基準信号側に図1に示す変調回路7を設け、基準信号REFに変調を加えて信号REFMとし、これを位相比較回路に入力することもできる。つまり、位相比較回路1に入力される2つの信号は、双方とも変調が加えられた信号となる。例えば、第5の実施形態例のように分周回路5の分周数をn+lとn+mとに交互に切り替えて、基準信号REFと信号SIGMのエッジが重ならないようにしても、分周回路5及び分周数制御回路6の内部動作タイミングが、基準信号REFのエッジと重なり合う場合がある。この場合、位相比較回路1において、基準信号REFとそのタイミングの重なる信号が、電源ラインやグランドラインを介して干渉し合うことになり、レベルは低いが基準信号REFの高調波とVCO(4)の出力の周波数のミキシングによるスプリアスが発生する。そこで、基準信号REFに、基準周波数frefのN高調波の周期を(2p−1)/2倍した幅の変調をかけ、信号REFMとして位相比較回路に入力する。このように位相比較回路1に入力される双方の信号に変調をかけることによっても、スプリアスの発生が低減できる。
【0105】
以上、本発明をその好適な実施形態例に基づいて説明したが、本発明のフラクショナルN周波数シンセサイザは、上記実施形態例にのみ限定されるものでなく、上記実施形態例の構成から種々の修正及び変更を施したフラクショナルN周波数シンセサイザも、本発明の範囲に含まれる。例えば、変調を加える周期、又は、分周数を+l、+mする周期などは、2回に1回に限られず、複数回に1回でもよい。
【0106】
【発明の効果】
以上説明したように、本発明のフラクショナルN周波数シンセサイザでは、VCO出力の周波数が基準信号又は比較信号の周期性(周波数)の非整数倍であることに起因して、位相比較回路の出力側に発生する、フラクショナル制御(非整数分周のPLL回路)特有の低周波成分に基づくVCO出力のスプリアスを抑制することできる。つまり、VCO出力の一部が、パッケージや、基板(電源ライン、アースライン等)を介して、基準信号又は比較信号側に回り込んでも、ミキシングにより生じる信号成分が、高周波数域にシフトされるので、位相比較回路の出力側に生じる信号成分は、LPF回路において十分減衰させることが可能となり、VCO出力の周波数の近傍にスプリアスが発生せず、低スプリアスのフラクショナルN周波数シンセサイザが実現する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態例のフラクショナルN周波数シンセサイザの構成を示すブロック図。
【図2】図1のフラクショナルN周波数シンセサイザの基本動作を示すタイミングチャート。
【図3】信号REFMの高調波のフーリエ級数展開による計算結果を示すグラフ。
【図4】各信号の周波数特性であり、(a)は基準信号REFの周波数特性を、(b)は信号REFMの周波数特性を、(c)は位相比較回路でのミキシングの周波数特性を示すスペクトル図。
【図5】図1のフラクショナルN周波数シンセサイザで得られる信号のスペクトラム特性図。
【図6】図1の変調回路7の具体的構成例であり、(a)は変調回路の構成を、(b)は変調回路内のカウンタの構成を示すブロック図。
【図7】図6の変調回路の動作を示すタイムチャート。
【図8】本発明の第2の実施形態例のフラクショナルN周波数シンセサイザの構成を示すブロック図。
【図9】図8の変調制御回路9の具体的構成例あり、(a)は変調制御回路の構成を、(b)は変調制御回路内のカウンタの構成を示すブロック図。
【図10】図9の変調制御回路の動作を示すタイムチャート。
【図11】本発明の第3の実施形態例のフラクショナルN周波数シンセサイザの構成を示すブロック図。
【図12】図11の変調回路10の具体的構成例を示すブロック図。
【図13】本発明の第4の実施形態例のフラクショナルN周波数シンセサイザの構成を示すブロック図。
【図14】図13の変調制御回路11の具体的構成例を示すブロック図。
【図15】本発明の第5の実施形態例のフラクショナルN周波数シンセサイザの構成を示すブロック図。
【図16】位相比較回路1に入力される信号のエッジを示すタイミングチャートで、(a)は変調を加えないときのエッジを、(b)はl、mをl>Δn1(max)、m<−Δn1(max)に設定したときのエッジを示すタイミングチャート。
【図17】チャージポンプ2の出力電流特性であり、(a)は変調を加えないときのチャージポンプの動作範囲を、(b)はl、mをl>Δn1(max)、m<−Δn1(max)に設定するときのチャージポンプの動作範囲を共に示すグラフ。
【図18】チャージポンプの動作タイミングであり、(a)は従来のチャージポンプのリセットのタイミングを、(b)は本実施形態例のチャージポンプのリセットのタイミングを示すタイミングチャート。
【図19】従来のフラクショナルN周波数シンセサイザ、及び、図15のフラクショナルN周波数シンセサイザで得られる信号のスペクトラム特性図。
【図20】整数分周を行う周波数シンセサイザ、及び、図15のフラクショナルN周波数シンセサイザで得られる信号のスペクトラム特性図。
【図21】本発明の第6の実施形態例のフラクショナルN周波数シンセサイザの構成を示すブロック図。
【図22】F/MとΔfとの関係を数値例で示すスペクトル図。
【図23】本発明の第6の実施形態例のフラクショナルN周波数シンセサイザの構成を示すブロック図。
【図24】図23の選択回路14の具体的構成例を示すブロック図。
【図25】本発明の第8の実施形態例のフラクショナルN周波数シンセサイザの構成を示すブロック図。
【図26】本発明の第9の実施形態例のフラクショナルN周波数シンセサイザの構成を示すブロック図。
【図27】従来の整数分周を行う周波数シンセサイザの基本構成を示すブロック図。
【図28】従来のフラクショナルN周波数シンセサイザの構成を示すブロック図。
【図29】ノイズシェイピング効果を有する分周数制御回路の構成例を示すブロック図。
【図30】図28のフラクショナルN周波数シンセサイザで得られるスペクトラム特性図。
【図31】周波数シンセサイザの出力信号と基準信号とのミキシングの様子を示し、(a)は整数分周の周波数シンセサイザの周波数特性を、(b)はフラクショナルN周波数シンセサイザの周波数特性をそれぞれ示すスペクトル図。
【符号の説明】
1 位相比較回路(PD)
2 チャージポンプ(CP)
3 低域通過フィルタ(LPF)
4 電圧制御発振器(VCO)
5 分周回路
6 分周数制御回路
7、10、15、16 変調回路
9、11、12 変調制御回路
8 分周器
13 加算器
14 選択回路
17 可変変調回路
Claims (31)
- 電圧制御発振器の発振出力を複数の分周数で切り替えて分周した信号を比較信号として出力する分周回路と、前記分周回路の分周数の時間平均を非整数値に制御する分周数制御回路と、基準信号と前記比較信号の位相比較結果を位相差信号として出力する位相比較回路とを備え、前記位相差信号に基づいて前記電圧制御発振器の発振周波数を制御するフラクショナルN周波数シンセサイザにおいて、
所定周波数の周期性信号を、T周期(Tは2以上の整数)に1回、所定変調幅だけ時間軸方向に変調して前記基準信号として前記位相比較回路に入力する変調手段を備えることを特徴とするフラクショナルN周波数シンセサイザ。 - 前記変調手段は、前記周期性信号を入力し前記所定変調幅だけ遅延する遅延回路と、該遅延回路の出力を2分周するカウンタと、該カウンタの出力に依存して前記周期性信号又は前記遅延回路の出力を選択するセレクタとを備えることを特徴とする、請求項1に記載のフラクショナルN周波数シンセサイザ。
- 前記変調手段は、前記周期性信号を2つの分周数の何れかで分周する周期性信号分周器と、該周期性信号分周器の分周数を、該周期性信号分周器の出力周期以上の周期毎に切り替える変調制御回路とを備え、前記周期性信号分周器から前記基準信号を出力することを特徴とする、請求項1に記載のフラクショナルN周波数シンセサイザ。
- 前記変調制御回路は、前記周期性信号分周器の出力を2分周するカウンタと、該カウンタの出力に依存して前記周期性信号分周器の分周数を切り替える切替手段とを備えることを特徴とする、請求項3に記載のフラクショナルN周波数シンセサイザ。
- 前記分周回路の分周数がN−n1とN+n2(Nは自然数、n1、n2は0以上の整数)との間で変動し、前記所定変調幅が、分周回路の入力側の周期×(n1+n2)÷2の時間よりも大きいことを特徴とする、請求項1〜4の何れかに記載のフラクショナルN周波数シンセサイザ。
- 前記基準信号と前記比較信号の位相の遅れている方の信号のエッジで前記位相差信号をリセットすることを特徴とする、請求項5に記載のフラクショナルN周波数シンセサイザ。
- 前記分周数制御回路に入力する非整数の値に依存して、前記周期性信号又は前記変調手段の変調出力の何れかを選択して前記基準信号とする選択回路を更に備えることを特徴とする、請求項1又は2に記載のフラクョナルN周波数シンセサイザ。
- 前記選択回路は、前記非整数の値が0以上で1/4よりも小さいとき及び3/4以上で1よりも小さいときには前記変調出力を選択し、前記非整数の値が1/4以上で3/4よりも小さいときには周期性信号を選択することを特徴とする、請求項7に記載のフラクショナルN周波数シンセサイザ。
- 前記変調手段を複数備え、前記分周数制御回路に入力する非整数の値に依存して該複数の変調手段の何れか1つを選択する選択回路を更に備えることを特徴とする、請求項1又は2に記載のフラクショナルN周波数シンセサイザ。
- 前記周期性信号の周波数をfrefとすると、前記変調手段は、(2p−1)/(2×N×fref)(p、Nは自然数)の変調幅を有する少なくとも1つの第1の変調手段と、q/(N×fref)(q、Nは自然数)の変調幅を有する少なくとも1つの第2の変調手段とを含むことを特徴とする、請求項9に記載のフラクショナルN周波数シンセサイザ。
- 前記選択回路は、前記非整数の値が0以上で1/4よりも小さいとき及び3/4以上で1よりも小さいときには第1の変調手段を選択し、前記非整数の値が1/4以上で3/4よりも小さいときには前記第2の変調手段を選択することを特徴とする、請求項10に記載のフラクショナルN周波数シンセサイザ。
- 前記非整数の分母が2n(nは2以上の整数)であり、前記選択回路は、該非整数の分子の最上位ビットと該最上位ビットの1つ下位のビットとの排他的論理和を選択制御信号とする、請求項8又は11に記載のフラクショナルN周波数シンセサイザ。
- 前記変調手段は、前記分周数制御回路に入力する非整数の値に依存して前記所定変調幅を制御する変調幅切替手段を備えることを特徴とする、請求項1又は2に記載のフラクショナルN周波数シンセサイザ。
- 前記変調幅切替手段は、前記非整数値に応じた遅延量を出力する遅延回路を備えることを特徴とする、請求項13に記載のフラクショナルN周波数シンセサイザ。
- 前記遅延回路は、前記非整数の値が0以上で1/4よりも小さいとき及び3/4以上で1よりも小さいときには、遅延量を(2p−1)/(2×N×fref)(p、Nは自然数)にし、前記非整数の値が1/4以上で3/4よりも小さいときには、遅延量をq/(N×fref)(qは0以上の整数、Nは自然数)にすることを特徴とする、請求項14に記載のフラクショナルN周波数シンセサイザ。
- 電圧制御発振器の発振出力を複数の分周数で切り替えて分周した信号を出力する分周回路と、前記分周回路の分周数の時間平均を非整数値に制御する分周数制御回路と、前記分周回路の出力を比較信号とし該比較信号と基準信号の位相比較結果を位相差信号として出力する位相比較回路とを備え、前記位相差信号に基づいて前記電圧制御発振器の発振周波数を制御するフラクショナルN周波数シンセサイザにおいて、
前記分周回路の出力を、T周期(Tは2以上の整数)に1回、所定変調幅だけ時間軸方向に変調して前記比較信号として前記位相比較回路に入力する変調手段を備えることを特徴とするフラクショナルN周波数シンセサイザ。 - 前記変調手段は、前記分周回路の出力を入力し前記所定変調幅だけ遅延する遅延回路と、該遅延回路の出力を2分周するカウンタと、該カウンタの出力に依存して前記分周回路の出力又は前記遅延回路の出力を選択して出力するセレクタとを備えることを特徴とする、請求項16に記載のフラクショナルN周波数シンセサイザ。
- 前記変調手段は、前記分周数制御回路が出力する分周数に、2つの異なる加数を前記分周回路の出力周期以上の周期毎に切り替えて加算する変調制御回路を備えることを特徴とする、請求項16に記載のフラクショナルN周波数シンセサイザ。
- 前記変調制御回路は、前記分周回路の出力を2分周するカウンタと、該カウンタの出力に依存して前記2つの異なる加数を切り替えるセレクタと、該セレクタの出力に前記分周数制御回路が出力する分周数を加算する加算器とを備えることを特徴とする、請求項18に記載のフラクショナルN周波数シンセサイザ。
- 前記分周数制御回路の出力がN−n1とN+n2(Nは自然数、n1、n2は0以上の整数)との間で変動し、n1とn2の大きい方をN1とすると、前記2つの異なる加数が、―N1よりも小さい値と、+N1よりも大きい値とから成ることを特徴とする、請求項18又は19に記載のフラクショナルN周波数シンセサイザ。
- 前記位相差信号は、前記分周数制御回路が出力する分周数に、2つの異なる加数のうち、−N1よりも小さい加数を加算したときには前記基準信号でリセットし、+N1よりも大きい加数を加算したときには前記比較信号でリセットすることを特徴とする、請求項20に記載のフラクショナルN周波数シンセサイザ。
- 前記分周数制御回路に入力する非整数の値に依存して、前記変調手段の変調出力又は前記分周回路の出力の何れかを選択して前記比較回路に入力する選択回路を更に備えることを特徴とする、請求項16又は17に記載のフラクョナルN周波数シンセサイザ。
- 前記選択回路は、前記非整数の値が0以上で1/4よりも小さいとき及び3/4以上で1よりも小さいときには変調出力を選択し、前記非整数の値が1/4以上で3/4よりも小さいときには比較信号を選択することを特徴とする、請求項22に記載のフラクショナルN周波数シンセサイザ。
- 前記変調手段を複数備え、前記分周数制御回路に入力する非整数の値に依存して該複数の変調手段の何れか1つを選択する選択回路を更に備えることを特徴とする、請求項16又は17に記載のフラクショナルN周波数シンセサイザ。
- 前記基準信号の周波数をfrefとすると、前記変調手段は、(2p−1)/(2×N×fref)(p、Nは自然数)の変調幅を有する少なくとも1つの第1の変調手段と、q/(N×fref)(q、Nは自然数)の変調幅を有する少なくとも1つの第2の変調手段とを含むことを特徴とする、請求項24に記載のフラクショナルN周波数シンセサイザ。
- 前記選択回路は、前記非整数の値が0以上で1/4よりも小さいとき及び3/4以上で1よりも小さいときには一方の変調手段を選択し、前記非整数の値が1/4以上で3/4よりも小さいときには他方の変調手段を選択することを特徴とする、請求項25に記載のフラクショナルN周波数シンセサイザ。
- 前記非整数の分母が2n(nは2以上の整数)であり、前記選択回路は、該非整数の分子の最上位ビットと該最上位ビットの1つ下位のビットの排他的論理和を選択制御信号とする、請求項23又は26に記載のフラクショナルN周波数シンセサイザ。
- 前記変調手段は、前記分周数制御回路に入力する非整数の値に依存して前記所定変調幅を制御する変調幅切替手段を備えることを特徴とする、請求項16又は17に記載のフラクショナルN周波数シンセサイザ。
- 前記変調幅切替手段は、前記非整数値に応じた遅延量を出力する遅延回路を備えることを特徴とする、請求項28に記載のフラクショナルN周波数シンセサイザ。
- 前記遅延回路は、前記非整数の値が0以上で1/4よりも小さいとき及び3/4以上で1よりも小さいときには、遅延量を(2p−1)/(2×N×fref)(p、Nは自然数)にし、前記非整数の値が1/4以上で3/4よりも小さいときには、遅延量をq/(N×fref)(qは0以上の整数、Nは自然数)にすることを特徴とする、請求項29に記載のフラクショナルN周波数シンセサイザ。
- 前記基準信号が、所定周波数の周期性信号を、U周期(Uは2以上の整数)に1回、所定変調幅だけ時間軸方向に変調した信号であることを特徴とする、請求項16〜21の何れかに記載のフラクショナルN周波数シンセサイザ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002056183A JP3548557B2 (ja) | 2001-10-02 | 2002-03-01 | フラクショナルn周波数シンセサイザ |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-306745 | 2001-10-02 | ||
JP2001306745 | 2001-10-02 | ||
JP2002056183A JP3548557B2 (ja) | 2001-10-02 | 2002-03-01 | フラクショナルn周波数シンセサイザ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003179490A JP2003179490A (ja) | 2003-06-27 |
JP3548557B2 true JP3548557B2 (ja) | 2004-07-28 |
Family
ID=26623609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002056183A Expired - Fee Related JP3548557B2 (ja) | 2001-10-02 | 2002-03-01 | フラクショナルn周波数シンセサイザ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3548557B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6952125B2 (en) * | 2002-10-25 | 2005-10-04 | Gct Semiconductor, Inc. | System and method for suppressing noise in a phase-locked loop circuit |
JP2008028683A (ja) * | 2006-07-20 | 2008-02-07 | Fujitsu Ltd | 位相同期発振器 |
EP1914893A1 (fr) * | 2006-10-16 | 2008-04-23 | The Swatch Group Research and Development Ltd. | Synthétiseur de fréquence à large bande à suppression d'émissions parasites basses fréquences |
US7876871B2 (en) * | 2006-11-30 | 2011-01-25 | Qualcomm Incorporated | Linear phase frequency detector and charge pump for phase-locked loop |
WO2008149981A1 (ja) | 2007-06-08 | 2008-12-11 | Nec Corporation | 変調装置及びパルス波生成装置 |
JP5876975B2 (ja) * | 2009-10-08 | 2016-03-02 | セイコーエプソン株式会社 | 周波数測定装置及び周波数測定装置における変速分周信号の生成方法 |
JP2012165187A (ja) * | 2011-02-07 | 2012-08-30 | Fujitsu Telecom Networks Ltd | Pll回路 |
-
2002
- 2002-03-01 JP JP2002056183A patent/JP3548557B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003179490A (ja) | 2003-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10587276B2 (en) | Wide range frequency synthesizer with quadrature generation and spur cancellation | |
US6873213B2 (en) | Fractional N frequency synthesizer | |
US7432750B1 (en) | Methods and apparatus for frequency synthesis with feedback interpolation | |
US7885369B2 (en) | PLL frequency generator | |
JP5672092B2 (ja) | スペクトラム拡散クロック発生回路 | |
US20100214031A1 (en) | Spectrum spread clock generation device | |
US8154329B2 (en) | Device and method for phase compensation | |
JP4629310B2 (ja) | 位相同期回路 | |
US20100329388A1 (en) | Frequency synthesizer and polar transmitter having the same | |
WO2004040898A2 (en) | System and method for suppressing noise in a phase-locked loop circuit | |
US9019016B2 (en) | Accumulator-type fractional N-PLL synthesizer and control method thereof | |
KR101307498B1 (ko) | 시그마-델타 기반 위상 고정 루프 | |
JP2000252819A (ja) | Pll回路 | |
JP2001127632A (ja) | 周波数シンセサイザ及び発振周波数制御方法 | |
CN101079632B (zh) | 低抖动的扩频时钟发生器 | |
JP3548557B2 (ja) | フラクショナルn周波数シンセサイザ | |
US8502574B2 (en) | Device and method for generating a signal of parametrizable frequency | |
JP4037212B2 (ja) | 半導体装置 | |
JP3567779B2 (ja) | シンセサイザ及び基準信号生成回路 | |
US11909409B1 (en) | Low jitter PLL | |
TWI411236B (zh) | 相位鎖定迴路電路 | |
JP3797791B2 (ja) | Pllシンセサイザ発振器 | |
KR101263220B1 (ko) | 주파수 합성기 | |
JPH10126263A (ja) | 周波数シンセサイザ装置 | |
JP3267945B2 (ja) | 周波数シンセサイザ装置と周波数生成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031218 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040416 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080423 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120423 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120423 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |