RU2685699C1 - Вращающаяся электрическая машина - Google Patents

Вращающаяся электрическая машина Download PDF

Info

Publication number
RU2685699C1
RU2685699C1 RU2018103065A RU2018103065A RU2685699C1 RU 2685699 C1 RU2685699 C1 RU 2685699C1 RU 2018103065 A RU2018103065 A RU 2018103065A RU 2018103065 A RU2018103065 A RU 2018103065A RU 2685699 C1 RU2685699 C1 RU 2685699C1
Authority
RU
Russia
Prior art keywords
slots
external
coil
internal
teeth
Prior art date
Application number
RU2018103065A
Other languages
English (en)
Inventor
Масафуми НАМБА
Синя УРАТА
Хидео НАКАИ
Хироюки ХАТТОРИ
Синдзи ВАКАМАЦУ
Original Assignee
Тойота Дзидося Кабусики Кайся
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тойота Дзидося Кабусики Кайся filed Critical Тойота Дзидося Кабусики Кайся
Application granted granted Critical
Publication of RU2685699C1 publication Critical patent/RU2685699C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/145Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having an annular armature coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

Изобретение относится к вращающейся электрической машине. Устройство включает кольцевой статор, внутренний ротор, внешний ротор и тороидальную катушку. Кольцевой статор включает в себя внутренние зубья, выступающие радиально внутрь, и внешние зубья, выступающие радиально наружу. Внутренний ротор обращен к радиально внутренней стороне кольцевого статора. Внешний ротор обращен к радиально внешней стороне кольцевого статора. Тороидальные катушки размещаются в каждой внутренней щели между любыми смежными двумя из внутренних зубьев и соответствующей одной внешней щели между смежными двумя из внешних зубьев. Общее число множества внешних щелей превышает общее число множества внутренних щелей. Число катушек, размещаемых во всех внешних щелях, превышает или равно числу катушек, размещаемых во всех внутренних щелях. Техническим результатом является улучшение коэффициента заполнения и уменьшение потерь в обмотке. 4 з.п. ф-лы, 11 ил.

Description

Область техники
Изобретение относится к вращающейся электрической машине и, в частности, к вращающейся электрической машине, включающей в себя ротор, предоставленный на радиально внутренней стороне кольцевого статора, и ротор, предоставленный на радиально внешней стороне кольцевого статора.
Уровень техники
Традиционно, предлагается вращающаяся электрическая машина с тороидальной обмоткой, включающая в себя ротор, предоставленный на радиально внутренней стороне статора, и ротор, предоставленный на радиально внешней стороне статора.
Фиг. 11 показывает конфигурацию электромотора, который представляет собой существующую вращающуюся электрическую машину, описанную в публикации заявки на патент Японии № 2007-185012 (JP 2007-185012 А). Электромотор включает в себя статор 100, внутренний ротор 20 и внешний ротор 30.
Статор 100 формируется из ярма 114 статора, внешних зубьев 112 и внутренних зубьев 113. Внешние зубья 112 и внутренние зубья 113 предоставляются на ярме 114 статора. Трехфазные тороидальные катушки 115 наматываются вокруг ярма 114 статора. Катушки 115 соединяются друг с другом в соединении "звездой" или соединении "треугольником". Фиг. 11 показывает только одну фазную катушку 115 из трехфазных катушек.
Внутренний ротор 20 удерживается с возможностью вращения в статоре 100. Внутренний ротор 20 формируется из внутреннего ярма и внутреннего постоянного магнита. Внешний ротор 30 удерживается с возможностью вращения за пределами статора 100. Внешний ротор 30 формируется из внешнего ярма и внешнего постоянного магнита. Внутренний ротор 20 и внешний ротор 30 вращаются под влиянием магнитных полей, которые формируются посредством тока, протекающего через каждую из катушек 115. Каждый из внутреннего ротора 20 и внешнего ротора 30 представляет собой ротор с поверхностными магнитами, в котором постоянный магнит размещается на поверхности ярма.
Внешние зубья 112 выступают радиально наружу из ярма 114 статора. Внутренние зубья 113 выступают радиально внутрь из ярма 114 статора. Внутренние зубья 113 предоставляются в идентичном числе с внешними зубьями 112. Внешняя щель 116 предоставляется между любыми смежными двумя из внешних зубьев 112, чтобы вставлять катушку 115. Внутренняя щель 117 предоставляется между любыми смежными двумя из внутренних зубьев 113, чтобы вставлять катушку 115. Форма и площадь каждой внешней щели 116 задаются таким образом, что они являются идентичными форме и площади каждой внутренней щели 117.
Публикация заявки на патент Японии № 2008-113480 (JP 2008-113480 А) описывает, что в электромоторе, включающем в себя ротор, предоставленный на радиально внутренней стороне статора, и ротор, предоставленный на радиально внешней стороне статора, внешние зубья предоставляются на внешней стороне практически кольцевого ярма зубьев статора, и внутренние зубья предоставляются на внутренней стороне практически кольцевого ярма статора. Катушки размещаются вокруг ярма в тороидальной обмотке. Прямая линия, которая соединяет центральную точку дальнего конца каждого из внешних зубьев с центральной точкой дальнего конца каждого из внутренних зубьев, и прямая линия, которая соединяет центр электромотора с центральной точкой дальнего конца каждого из внутренних зубьев, сдвигаются друг от друга на предварительно определенный угол. Таким образом, эти прямые линии размещаются в скошенной позиции.
Сущность изобретения
При использовании конфигурации, описанной в JP 2007-185012 А, когда площадь и форма каждой внешней щели 116 задаются таким образом, что они являются идентичными площади и форме каждой внутренней щели 117, катушка 115 наматывается в нормальной обмотке. Как результат, коэффициент заполнения улучшается, так что уменьшаются потери в обмотке.
Тем не менее, при использовании конфигурации, описанной в JP 2007-185012 А, длина каждого из внешних зубьев в периферийном направлении значительно больше длины каждого из внутренних зубьев в периферийном направлении. Таким образом, из числа трехфазных катушек, которые размещаются во внешних щелях, разнесение между любыми смежными двумя фазами увеличивается. По этой причине, момент от зубцовых гармонических помех в электромоторе легко увеличивается.
Кроме того, сумма длин дальних торцевых поверхностей внешних зубьев в периферийном направлении, которая является длиной внешней периферии статора, превышает сумму длин дальних торцевых поверхностей внутренних зубьев в периферийном направлении, которая является длиной внутренней периферии статора. Таким образом, поверхность формирования крутящего момента на радиально внешней стороне статора больше поверхности формирования крутящего момента на радиально внутренней стороне статора, так что крутящий момент и флуктуации крутящего момента легко увеличиваются. По этой причине, момент от зубцовых гармонических помех в электромоторе увеличивается еще проще. Также легко увеличивается пульсация крутящего момента.
С другой стороны, при использовании конфигурации, описанной в JP 2008-113480 А, на основе взаимосвязи между моментом от зубцовых гармонических помех внешнего ротора и углом внешнего ротора относительно статора и взаимосвязи между моментом от зубцовых гармонических помех внутреннего ротора и углом внутреннего ротора относительно статора, определяется предварительно определенный угол, при котором уменьшается сумма внешнего момента от зубцовых гармонических помех и внутреннего момента от зубцовых гармонических помех. Тем не менее, также в случае этой конфигурации, разнесение между любыми смежными двухфазными катушками является большим в трехфазных катушках, которые размещаются в соответствующих внешних щелях статора. Поскольку поверхность формирования крутящего момента на радиально внешней стороне статора больше поверхности формирования крутящего момента на радиально внутренней стороне статора, увеличивается крутящий момент. Таким образом, момент от зубцовых гармонических помех и пульсация крутящего момента легко увеличивается.
Изобретение предоставляет вращающуюся электрическую машину, которая включает в себя ротор, предоставленный на радиально внутренней стороне статора, и ротор, предоставленный на радиально внешней стороне статора, и которая уменьшает момент от зубцовых гармонических помех и пульсацию крутящего момента.
Аспект изобретения предоставляет вращающуюся электрическую машину. Вращающаяся электрическая машина включает в себя кольцевой статор, внутренний ротор, внешний ротор и тороидальную катушку. Кольцевой статор включает в себя множество внутренних зубьев и множество внешних зубьев. Множество внутренних зубьев выступают радиально внутрь. Множество внешних зубьев выступают радиально наружу. Внутренний ротор обращен к радиально внутренней стороне кольцевого статора. Внешний ротор обращен к радиально внешней стороне кольцевого статора. Тороидальная катушка размещается в каждой внутренней щели между любыми смежными двумя из внутренних зубьев и соответствующей одной внешней щели между смежными двумя из внешних зубьев. Общее число множества внешних щелей превышает общее число множества внутренних щелей. Число катушек, размещаемых во всех внешних щелях, превышает или равно числу катушек, размещаемых во всех внутренних щелях.
При использовании вращающейся электрической машины согласно аспекту изобретения, как момент от зубцовых гармонических помех, так и пульсация крутящего момента уменьшаются во вращающейся электрической машине, включающей в себя ротор, предоставленный на радиально внутренней стороне кольцевого статора, и ротор, предоставленный на радиально внешней стороне кольцевого статора.
Во вращающейся электрической машине, отношение общего числа множества внешних щелей к общему числу множества внутренних щелей может составлять два к одному. Число катушек, размещаемых во всех внешних щелях, может быть равно числу катушек, размещаемых во всех внутренних щелях.
Во вращающейся электрической машине, множество внешних щелей могут иметь такую конфигурацию, в которой первая внешняя щель и вторая внешняя щель попеременно размещаются в периферийном направлении. Отношение общего числа множества внешних щелей к общему числу множества внутренних щелей может составлять два к одному. Тороидальная катушка размещается в каждой из внутренних щелей и первых внешних щелей. Распределенная катушка может размещаться в каждой из вторых внешних щелей. Число катушек, размещаемых во всех внешних щелях, может превышать число катушек, размещаемых во всех внутренних щелях.
Во вращающейся электрической машине, каждая первая внешняя щель может размещаться в позиции в периферийном направлении, идентичной позиции в периферийном направлении соответствующей одной из внутренних щелей. Каждая вторая внешняя щель может размещаться в различной позиции в периферийном направлении относительно соответствующей одной из внутренних щелей.
Во вращающейся электрической машине, плоская проводная катушка, имеющая прямоугольное поперечное сечение, может размещаться в каждой первой внешней щели в качестве катушки. Круглая проводная катушка, имеющая круглое поперечное сечение, размещается в каждой второй внешней щели в качестве катушки.
Во вращающейся электрической машине, первые внешние щели и вторые внешние щели могут иметь такую конфигурацию, в которой две из первых внешних щелей и две из вторых внешних щелей попеременно размещаются в периферийном направлении на радиально внешней стороне кольцевого статора.
Во вращающейся электрической машине, распределенная катушка, размещаемая в каждой второй внешней щели, может наматываться вокруг множества внешних зубьев между второй внешней щелью и другой одной из вторых внешних щелей.
Краткое описание чертежей
Ниже описываются признаки, преимущества и техническая и промышленная значимость примерных вариантов осуществления изобретения со ссылкой на прилагаемые чертежи, на которых аналогичные номера обозначают аналогичные элементы, и на которых:
Фиг. 1 является видом части вращающейся электрической машины в периферийном направлении согласно варианту осуществления при просмотре из одной стороны в осевом направлении;
Фиг. 2 является графиком, который показывает взаимосвязь между моментом от зубцовых гармонических помех и электрическим углом, который является углом вращения каждого из внешнего и внутреннего роторов относительно статора во вращающейся электрической машине согласно варианту осуществления;
Фиг. 3 является видом части вращающейся электрической машины в периферийном направлении согласно первому сравнительному варианту осуществления при просмотре из одной стороны в осевом направлении;
Фиг. 4 является графиком, который показывает взаимосвязь между моментом от зубцовых гармонических помех и электрическим углом, который является углом вращения каждого из внешнего и внутреннего роторов относительно статора во вращающейся электрической машине согласно первому сравнительному варианту осуществления;
Фиг. 5 является видом, который является графиком, на котором результирующий момент от зубцовых гармонических помех во вращающейся электрической машине согласно варианту осуществления сравнивается с результирующим моментом от зубцовых гармонических помех во вращающейся электрической машине согласно первому сравнительному варианту осуществления;
Фиг. 6 является графиком, на котором результирующий момент от зубцовых гармонических помех во вращающейся электрической машине согласно первому сравнительному варианту осуществления сравнивается с результирующим моментом от зубцовых гармонических помех во вращающейся электрической машине согласно второму сравнительному варианту осуществления;
Фиг. 7 является видом части вращающейся электрической машины в периферийном направлении согласно альтернативному варианту осуществления по отношению к варианту осуществления при просмотре из одной стороны в осевом направлении.
Фиг. 8 является видом части вращающейся электрической машины в периферийном направлении согласно альтернативному варианту осуществления по отношению к варианту осуществления при просмотре из одной стороны в осевом направлении.
Фиг. 9 является видом для иллюстрации того, что концы катушки увеличиваются в конфигурации, показанной на фиг. 7, и является видом, который показывает более длинную часть вращающейся электрической машины в периферийном направлении, чем часть вращающейся электрической машины, показанная на фиг. 7;
Фиг. 10 является видом части вращающейся электрической машины в периферийном направлении согласно альтернативному варианту осуществления по отношению к варианту осуществления при просмотре из одной стороны в осевом направлении; и
Фиг. 11 является видом части существующей вращающейся электрической машины в периферийном направлении при просмотре из одной стороны в осевом направлении.
Подробное описание вариантов осуществления изобретения
В дальнейшем в этом документе описывается вариант осуществления изобретения со ссылкой на прилагаемые чертежи. В нижеприведенном описании, аналогичные ссылки с номерами обозначают эквивалентные компоненты на всех чертежах.
Фиг. 1 является видом части вращающейся электрической машины в периферийном направлении согласно варианту осуществления при просмотре из одной стороны в осевом направлении. Базовая конфигурация вращающейся электрической машины согласно варианту осуществления является практически идентичной существующему электромотору, показанному на фиг. 11. В частности, вращающаяся электрическая машина включает в себя кольцевой статор 10, внутренний ротор 20 и внешний ротор 30.
Вращающаяся электрическая машина представляет собой синхронный электромотор с постоянными магнитами, который приводится в действие посредством трехфазного переменного тока. Вращающаяся электрическая машина используется в качестве электромотора, который приводит в действие электротранспортное средство или гибридное транспортное средство, либо используется в качестве генератора, либо используется в качестве электромотора-генератора, имеющего обе функции.
Кольцевой статор 10 включает в себя ярмо 14 статора, множество внешних зубьев 12 и множество внутренних зубьев 13. Множество внешних зубьев 12 выступают в радиальном направлении из внешней периферии ярма 14 статора. Множество внутренних зубьев 13 выступают в радиальном направлении из внутренней периферии ярма 14 статора. Три катушки 15u, 15v, 15w U-фазы, V-фазы и W-фазы наматываются вокруг ярма 14 статора. Катушки 15u, 15v, 15w представляют собой тороидальные катушки и соединяются в соединении "звездой" или соединении "треугольником". В нижеприведенном описании, радиальное направление означает направление излучения, которое представляют собой радиальное направление кольцевого статора 10, и периферийное направление означает направление вдоль круглой формы вокруг центральной оси кольцевого статора 10. Осевое направление означает направление вдоль центральной оси кольцевого статора 10. В нижеприведенном описании, кольцевой статор 10 упоминается как статор 10. Катушки 15u, 15v, 15w могут упоминаться как катушки 15.
Внутренний ротор 20 поддерживается с возможностью вращения в статоре 10. Внутренний ротор 20 включает в себя внутреннее ярмо 21 и внутренний постоянный магнит 22. С другой стороны, внешний ротор 30 поддерживается с возможностью вращения за пределами статора 10. Внешний ротор 30 включает в себя внешнее ярмо 31 и внешний постоянный магнит 32. Внутренний ротор 20 и внешний ротор 30 вращаются под влиянием магнитных полей, которые формируются в статоре 10 посредством тока, протекающего через катушки 15. Внутренний постоянный магнит 22 размещается на поверхности (внешней периферии) внутреннего ярма 21, и внешний постоянный магнит 32 размещается на поверхности (внутренней периферии) внешнего ярма 31. На фиг. 1, внутренний постоянный магнит 22 и внешний постоянный магнит 32 показаны в форме рамки с круглой дугой; тем не менее, фактически, множество постоянных магнитов, имеющих различные полярности, попеременно размещаются в каждом из постоянных магнитов 22, 32 в периферийном направлении. Любые смежные постоянные магниты в периферийном направлении намагничены в противоположных направлениях в радиальном направлении. Таким образом, N-полюс и S-полюс попеременно размещаются во внешней периферии внутреннего постоянного магнита 22 в периферийном направлении. Аналогично, N-полюс и S-полюс попеременно размещаются во внутренней периферии внешнего постоянного магнита 32 в периферийном направлении.
Во множестве внешних зубьев 12, которые выступают радиально наружу из ярма 14 статора, внешняя щель 16 предоставляется между любыми смежными двумя из внешних зубьев 12. Во внутренних зубьях 13, которые выступают радиально внутрь из ярма 14 статора и которые составляют половину внешних зубьев 12 по числу, внутренняя щель 17 предоставляется между любыми смежными двумя из внутренних зубьев 13.
Тороидальная катушка 15 размещается в каждой внешней щели 16 и соответствующей одной из внутренних щелей 17 и наматывается вокруг ярма 14 статора. На фиг. 1, катушки 15 схематично показаны посредством штриховки. На фиг. 1, прямые линии, которые, соответственно, соединяют внешние щели 16 с соответствующими внутренними щелями 17, схематично представляют то, что множество катушек 15 во внешних щелях 16 и множество катушек 15 в соответствующих внутренних щелях 17 соединяются на концах катушки.
Помимо этого, отношение общего числа внешних щелей 16 к общему числу внутренних щелей 17 составляет два к одному, и общее число внешних щелей 16 в два раза больше общего числа внутренних щелей 17. Катушки 15, которые служат в качестве основных компонентов для формирования крутящего момента, размещаются во внешних щелях 16. В форме поперечного сечения статора 10, вдоль плоскости, перпендикулярной к осевому направлению, прямоугольник, который является формой, полученной посредством соединения всех внешних щелей 16 в периферийном направлении, и прямоугольник, который является формой, полученной посредством соединения всех внутренних щелей 17 в периферийном направлении, имеют идентичную форму и площадь.
Таким образом, общее число множества внешних щелей 16 превышает общее число множества внутренних щелей 17. Число катушек 15, размещаемых во всех внешних щелях 16, превышает или равно числу катушек 15, размещаемых во всех внутренних щелях 17. Более конкретно, из катушек 15 U-, V-, W-фазы, катушка 15, размещаемая в одной из внутренних щелей 17, соединяется с катушками 15, соответственно, предоставленными в соответствующих двух внешних щелях 16, так она является распределенной между двумя внешними щелями 16, сдвинутыми к обеим сторонам в периферийном направлении. Число катушек 15, размещаемых во всех внешних щелях 16, равно числу катушек 15, размещаемых во всех внутренних щелях 17. Число катушек 15 означает число катушек 15, размещаемых в соответствующей внешней щели 16 или внутренней щели 17 в поперечном сечении статора 10, вдоль плоскости, перпендикулярной к осевому направлению.
Плоская проводная катушка, имеющая прямоугольное поперечное сечение, предпочтительно используется в качестве катушки 15. При использовании этой требуемой конфигурации, дополнительно улучшается коэффициент заполнения катушки 15 в каждой из щелей 16, 17. Круглая проводная катушка, имеющая круглое поперечное сечение, также может использоваться в качестве катушки 15.
При использовании вышеописанной вращающейся электрической машины, общее число множества внешних щелей 16 превышает общее число множества внутренних щелей 17, и число катушек 15, размещаемых во всех внешних щелях 16, превышает или равно числу катушек 15, размещаемых во всех внутренних щелях 17. Таким образом, что касается катушек 15, размещаемых во внешних щелях 16, разнесение в периферийном направлении между любыми смежными двумя различными фазными катушками 15 уменьшается, так что гармонический магнитный поток уменьшается. Как результат, момент от зубцовых гармонических помех в стороне внешнего ротора 30 уменьшается. Таким образом, момент от зубцовых гармонических помех во вращающейся электрической машине уменьшается в целом. Помимо этого, пульсация крутящего момента во вращающейся электрической машине уменьшается вследствие аналогичной причины.
Кроме того, форма, полученная посредством соединения всех внутренних щелей 17 в периферийном направлении, и форма, полученная посредством соединения всех внешних щелей 16 в периферийном направлении, имеют идентичную форму и площадь. Таким образом, когда тороидальная катушка 15 размещается в каждой из внешних щелей 16 и соответствующей одной из внутренних щелей 17, коэффициент заполнения катушки 15 в каждой из щелей 16, 17 улучшается. Таким образом, потери в обмотке уменьшаются, так что повышается эффективность вращающейся электрической машины. Когда плоская проводная катушка используется в качестве катушки 15, коэффициент заполнения дополнительно улучшается.
Фиг. 2 является видом, который показывает взаимосвязь между моментом от зубцовых гармонических помех и электрическим углом, который является углом вращения каждого внешнего ротора 30 и внутреннего ротора 20 относительно статора 10 во вращающейся электрической машине согласно варианту осуществления. На фиг. 2, непрерывная линия a1 представляет взаимосвязь между моментом от зубцовых гармонических помех внешнего ротора 30 и электрическим углом внешнего ротора 30 относительно статора 10. Пунктирная линия b1 представляет взаимосвязь между моментом от зубцовых гармонических помех внутреннего ротора 20 и электрическим углом внутреннего ротора 20 относительно статора 10. Фиг. 2 является графиком на основе результата анализа магнитных полей.
Как показано на фиг. 2, момент от зубцовых гармонических помех внешнего ротора 30 на радиально внешней стороне превышает момент от зубцовых гармонических помех внутреннего ротора 20 на радиально внутренней стороне; тем не менее, разность уменьшается, и оба момента от зубцовых гармонических помех уменьшаются. Таким образом, момент от зубцовых гармонических помех во вращающейся электрической машине уменьшается. На фиг. 2, момент от зубцовых гармонических помех на радиально внешней стороне и момент от зубцовых гармонических помех на радиально внутренней стороне указываются в качестве соотношения относительных величин.
С другой стороны, фиг. 3 является видом части вращающейся электрической машины в периферийном направлении согласно первому сравнительному варианту осуществления при просмотре из одной стороны в осевом направлении. В первом сравнительном варианте осуществления, показанном на фиг. 3, отличающемся от варианта осуществления, показанного на фиг. 1 и фиг. 2, общее число множества внешних щелей 16a в статоре 10a равно общему числу множества внутренних щелей 17a в статоре 10a. Помимо этого, число катушек 15, размещаемых во всех внешних щелях 16a, равно числу катушек 15, размещаемых во всех внутренних щелях 17a. Кроме того, форма и площадь каждой внутренней щели 17a, соответственно, являются идентичными форме и площади каждой внешней щели 16a. Остальная конфигурация является аналогичной конфигурации варианта осуществления, показанного на фиг. 1.
В вышеуказанном первом сравнительном варианте осуществления, как показано на фиг. 3, в катушках 15, размещаемых во внешних щелях 16a, разнесение в периферийном направлении между любыми смежными двумя различными фазными катушками 15 увеличивается по сравнению с вариантом осуществления, показанным на фиг. 1, так что момент от зубцовых гармонических помех на радиально внешней стороне легко увеличивается. Таким образом, момент от зубцовых гармонических помех во вращающейся электрической машине легко увеличивается в целом. Помимо этого, пульсация крутящего момента во вращающейся электрической машине также легко увеличивается вследствие аналогичной причины.
Фиг. 4 является графиком, который показывает взаимосвязь между моментом от зубцовых гармонических помех и электрическим углом, который является углом вращения каждого внешнего ротора 30 и внутреннего ротора 20 относительно статора 10a во вращающейся электрической машине согласно первому сравнительному варианту осуществления. На фиг. 4, смысловые значения непрерывной линии a2 и пунктирной линии b2 являются идентичными смысловым значениям непрерывной линии a1 и пунктирной линии b1 на фиг. 2. Фиг. 4 является графиком на основе результата анализа магнитных полей.
Фиг. 5 является графиком, на котором результирующий момент от зубцовых гармонических помех во вращающейся электрической машине согласно варианту осуществления сравнивается с результирующим моментом от зубцовых гармонических помех во вращающейся электрической машине согласно первому сравнительному варианту осуществления. Результирующий момент от зубцовых гармонических помех соответствует сумме момента от зубцовых гармонических помех на радиально внутренней стороне и момента от зубцовых гармонических помех на радиально внешней стороне. На фиг. 5, непрерывная линия c1 представляет результирующий момент от зубцовых гармонических помех вращающейся электрической машины согласно варианту осуществления, и пунктирная линия c2 представляет результирующий момент от зубцовых гармонических помех вращающейся электрической машины согласно первому сравнительному варианту осуществления. Как показано на фиг. 5, результирующий момент от зубцовых гармонических помех согласно варианту осуществления уменьшается по сравнению с результирующим моментом от зубцовых гармонических помех согласно сравнительному варианту осуществления.
Фиг. 6 является графиком, на котором результирующий момент от зубцовых гармонических помех во вращающейся электрической машине согласно первому сравнительному варианту осуществления сравнивается с результирующим моментом от зубцовых гармонических помех во вращающейся электрической машине согласно второму сравнительному варианту осуществления. Вращающаяся электрическая машина согласно второму сравнительному варианту осуществления имеет конфигурацию, аналогичную конфигурации, описанной в JP 2008-113480 А. В частности, во вращающейся электрической машине согласно второму сравнительному варианту осуществления, в случае если вращающаяся электрическая машина согласно первому сравнительному варианту осуществления, показанному на фиг. 3, просматривается с одной стороны в осевом направлении, вторая прямая линия, заданная для вращающейся электрической машины и внутренних зубьев, является наклонной относительно первой прямой линии, заданной для внешних зубьев и внутренних зубьев. Первая прямая линия является прямой линией, которая соединяет центральную точку дальнего конца каждого из внешних зубьев 12 с центральной точкой дальнего конца соответствующих одного из внутренних зубьев 13. Вторая прямая линия является прямой линией, которая соединяет центральную точку вращающейся электрической машины с центральной точкой дальнего конца каждого из внутренних зубьев 13. Взаимосвязь компоновки между внешними зубьями 12 и внутренними зубьями 13 регулируется таким образом, что вторая прямая линия сдвигается от первой прямой линии с наклоном в предварительно определенный угол θ1, т.е. вторая прямая линия и первая прямая линия размещаются в скошенной позиции. Остальная конфигурация является аналогичной конфигурации первого сравнительного варианта осуществления, показанного на фиг. 3.
На фиг. 6, непрерывная линия c3 представляет результирующий момент от зубцовых гармонических помех вращающейся электрической машины согласно первому сравнительному варианту осуществления, и пунктирная линия c4 представляет результирующий момент от зубцовых гармонических помех вращающейся электрической машины согласно второму сравнительному варианту осуществления. Непрерывная линия c3 на фиг. 6 является идентичной пунктирной линии c2 на фиг. 5. Как показано на фиг. 6, результирующий момент от зубцовых гармонических помех (пунктирная линия c4) второго сравнительного варианта осуществления дополнительно увеличивается по сравнению с результирующим моментом от зубцовых гармонических помех (непрерывная линия c3) первого сравнительного варианта осуществления.
Фиг. 7 является видом части вращающейся электрической машины в периферийном направлении согласно альтернативному варианту осуществления по отношению к варианту осуществления при просмотре из одной стороны в осевом направлении. В конфигурации согласно альтернативному варианту осуществления, показанному на фиг. 7, отличающемуся от варианта осуществления, показанного на фиг. 1, множество внешних щелей 40, предоставленных на радиально внешней стороне статора 10b, формируются таким образом, что первая внешняя щель 41 и вторая внешняя щель 42 попеременно размещаются в периферийном направлении. Множество внутренних щелей 17b предоставляются на радиально внутренней стороне статора 10b.
Отношение общего числа множества внешних щелей 40 к общему числу множества внутренних щелей 17b составляет два к одному. Каждая первая внешняя щель 41, каждая вторая внешняя щель 42 и каждая внутренняя щель 17b имеют практически идентичную прямоугольную форму при просмотре из одной стороны в осевом направлении. Площадь формы каждой первой внешней щели 41, площадь формы каждой второй внешней щели 42 и площадь формы каждой внутренней щели 17b являются практически идентичными при просмотре из одной стороны в осевом направлении. Каждая первая внешняя щель 41, каждая вторая внешняя щель 42 и каждая внутренняя щель 17b имеют практически идентичную форму в поперечном сечении, вдоль плоскости, перпендикулярной осевому направлению по всей длине в осевом направлении. По этой причине, в форме поперечного сечения вращающейся электрической машины, вдоль плоскости, перпендикулярной в осевое направление, сумма площадей множества внешних щелей 40 превышает сумму площадей множества внутренних щелей 17b.
Три тороидальных катушки 15u, 15v, 15w U-, V-, W-фазы, соответственно, размещаются в первых внешних щелях 41 и соответствующих внутренних щелях 17b. С другой стороны, три распределенных катушки 50u, 50v, 50w U-, V-, W-фазы, соответственно, размещаются во вторых внешних щелях 42. В дальнейшем в этом документе, катушки 50u, 50v, 50w могут упоминаться как катушки 50. На фиг. 7, тороидальные катушки 15 и распределенные катушки 50, соответственно, указываются посредством различных наклонных линий. Таким образом, число катушек 15, 50, размещаемых во всех внешних щелях 41, 42, превышает число катушек 15, размещаемых во всех внутренних щелях 17b.
Распределенная катушка 50 каждой фазы, размещаемая в каждой второй внешней щели 42, идет из отверстий второй внешней щели 42 с обоих концов в осевом направлении к обеим сторонам в периферийном направлении и наматывается вокруг множества внешних зубьев 12 между второй внешней щелью 42 и другими двумя из вторых внешних щелей 42. На фиг. 7, в каждой распределенной катушке 50, участки, которые размещаются на концах катушки и которые идут в периферийном направлении, указываются посредством пунктирных линий. Каждая распределенная катушка 50 предпочтительно формируется из круглой проводной катушки. При этой конфигурации, распределенные катушки 50 легко наматываются в сложных направлениях посредством использования скручивающихся круглых проводов.
Каждая распределенная катушка 50 не размещается интенсивно в одной щели, а размещается распределенно во множестве щелей, и распределенные катушки 50 соединяются между собой через концы катушки в распределенной обмотке. Распределенная катушка 50 в каждой второй внешней щели 42 наматывается в предварительно определенной ориентации таким образом, что ток в идентичном направлении с током, протекающим через смежную тороидальную катушку 15 идентичной фазы на одной стороне (на правой стороне на фиг. 7) в периферийном направлении, протекает одновременно с тороидальной катушкой 15 идентичной фазы.
Например, направление тока, протекающего через каждую распределенную катушку 50 и каждую тороидальную катушку 15, подробно описывается со ссылкой на фиг. 7. Предполагается, что ток в тороидальной катушке 15 одной фазы в первой внешней щели 41 протекает от ближней стороны листа чертежа к дальней стороне листа чертежа, и ток в тороидальной катушке 15 идентичной фазы во внутренней щели 17b протекает от дальней стороны листа чертежа к ближней стороне листа чертежа. В это время, ток в распределенной катушке 50 с фазой, идентичной вышеописанной одной фазой, и расположенной рядом с другой стороной (левой стороной на фиг. 7) тороидальной катушки 15 в периферийном направлении, проводится в направлении от ближней стороны листа чертежа к дальней стороне листа чертежа.
Если первая внешняя щель 41 и вторая внешняя щель 42, которые расположены рядом друг с другом в периферийном направлении, и в которых размещаются катушки 15, 50, через которые протекает ток идентичной фазы, предполагаются в качестве одного набора, множество наборов размещаются в периферийном направлении на радиально внешней стороне статора 10b. В это время, центральная позиция между внешними щелями 41, 42 в периферийном направлении в каждом наборе и центральная позиция внутренней щели 17b в периферийном направлении, в котором размещается другой участок катушки 15, которая вставляется в первую внешнюю щель 41 этого набора, совпадают друг с другом в периферийном направлении.
При вышеуказанной конфигурации, сумма площадей множества внешних щелей 40 превышает сумму площадей множества внутренних щелей 17b. Таким образом, число катушек 15, 50, размещаемых во всех внешних щелях 40, превышает число катушек 15, размещаемых во всех внутренних щелях 17b. Тороидальная катушка 15 размещается в каждой из первых внешних щелей 41, и распределенная катушка 50 размещается в каждой из вторых внешних щелей 42. Таким образом, величина магнитного потока, который формируется во внешнем пути магнитной силовой линии, который формируется между статором 10b и внешним ротором 30, превышает величину магнитного потока, который формируется во внутреннем пути магнитной силовой линии, который формируется между статором 10b и внутренним ротором 20. Как результат, магнитное насыщение во внутренних зубьях 13, имеющих меньшую окружность, в целом главным образом исключается, так что разность магнитного насыщения между радиально внутренней стороной и радиально внешней стороной статора 10b уменьшается. Кроме того, плотность магнитного потока во внешних зубьях 12, имеющих более длинную окружность в целом, повышается. По этим причинам, крутящий момент вращающейся электрической машины увеличивается.
Как и в случае варианта осуществления, показанного на фиг. 1 и фиг. 2, разнесение в периферийном направлении между катушками 15, 50 различных фаз, соответственно, размещаемых во внешних щелях 40, уменьшается. Таким образом, разнесение в периферийном направлении между любыми смежными двумя наборами внешних щелей 41, 42 уменьшается. Таким образом, гармонический магнитный поток уменьшается, так что момент от зубцовых гармонических помех и пульсация крутящего момента в стороне внешнего ротора 30 уменьшаются, так что в итоге в целом уменьшаются момент от зубцовых гармонических помех и пульсация крутящего момента во вращающейся электрической машине. Остальная конфигурация и работа являются аналогичными конфигурации и работе варианта осуществления, показанного на фиг. 1 и фиг. 2.
Фиг. 8 является видом части вращающейся электрической машины в периферийном направлении согласно альтернативному варианту осуществления по отношению к варианту осуществления при просмотре из одной стороны в осевом направлении. В конфигурации согласно альтернативному варианту осуществления, показанному на фиг. 8, отличающейся от конфигурации, показанной на фиг. 7, каждая первая внешняя щель 41 статора 10c размещается в позиции в периферийном направлении, идентичной позиции в периферийном направлении соответствующей одной из внутренних щелей 17b. С другой стороны, каждая вторая внешняя щель 42 размещается в различной позиции в периферийном направлении относительно соответствующей одной из внутренних щелей 17b. Таким образом, центральная позиция (позиция, указываемая посредством L1) каждого набора внешних щелей 41, 42 сдвигается в периферийном направлении от центральной позиции (позиции, указываемой посредством L2) соответствующей одной из внутренних щелей 17b в периферийном направлении, в котором размещается другой участок катушки 15, вставленной в первую внешнюю щель 41 этого набора. Поскольку каждая первая внешняя щель 41 размещается в позиции в периферийном направлении, идентичной позиции в периферийном направлении соответствующей одной из внутренних щелей 17b, тороидальная катушка 15 просто должна наматываться практически в радиальном направлении статора 10c таким образом, что она размещается в первой внешней щели 41 и внутренней щели 17b. Таким образом, катушку 15 становится легко наматывать.
Предпочтительно, каждая тороидальная катушка 15 формируется из плоской проводной катушки. При использовании этой требуемой конфигурации, тороидальная катушка 15 просто совмещается, и коэффициент заполнения катушки 15 в каждой из первых внешних щелей 41 и соответствующей одной из внутренних щелей 17b улучшается. Когда каждая первая внешняя щель 41 и соответствующая одна из внутренних щелей 17b размещаются в идентичной позиции в периферийном направлении, как и в случае конфигурации, показанной на фиг. 8, весьма эффективно, если катушка 15 легко наматывается в случае, если плоская проводная катушка 15 размещается в каждой из первых внешних щелей 41 и соответствующей одной из внутренних щелей 17b. В это время, поскольку тороидальной катушке 15 разрешается наматываться таким образом, что она находится еще ближе к статору 10c, концы катушки уменьшаются. Помимо этого, центральная позиция (позиция, указываемая посредством L1) между внешними щелями 41, 42 каждого набора в периферийном направлении сдвигается в периферийном направлении от центральной позиции (позиции, указываемой посредством L2) соответствующей одной из внутренних щелей 17b в периферийном направлении, в котором размещается другой участок катушки 15, которая вставляется в первую внешнюю щель 41 этого набора. На фиг. 8, линия с попеременными длинным и коротким тире, которая идет в радиальном направлении и которая представляет L1, сдвигается от линии с попеременными длинным и коротким тире, которая идет в радиальном направлении и которая представляет L2 с наклоном в предварительно определенный угол θ1. Здесь, момент от зубцовых гармонических помех, который является крутящим моментом, который формируется из магнитного взаимодействия между внутренним ротором 20 и радиально внутренней стороной статора 10c, задается как момент от зубцовых гармонических помех на радиально внутренней стороне. Момент от зубцовых гармонических помех, который является крутящим моментом, который формируется из магнитного взаимодействия между внешним ротором 30 и радиально внешней стороной статора 10c, задается как момент от зубцовых гармонических помех на радиально внешней стороне. В этом случае, посредством соответствующего выбора предварительно определенного угла θ1, получается конфигурация, в которой момент от зубцовых гармонических помех на радиально внутренней стороне и момент от зубцовых гармонических помех на радиально внешней стороне уравновешивают друг друга. Например, чтобы выбирать предварительно определенный угол θ1 в то время, когда θ1 изменяется, взаимосвязь между частотой вращения каждого из внутреннего и внешнего роторов 20, 30 и моментами от зубцовых гармонических помех на радиально внутренней стороне и радиально внешней стороне получается посредством выполнения моделирования. Таким образом, получается θ1, который обеспечивает небольшой момент от зубцовых гармонических помех во вращающейся электрической машине в целом. По этой причине, момент от зубцовых гармонических помех вращающейся электрической машины уменьшается. По аналогичной причине, пульсация крутящего момента вращающейся электрической машины также уменьшается. Остальная конфигурация и работа являются аналогичными конфигурации и работе конфигурации, показанной на фиг. 7.
Фиг. 9 является видом для иллюстрации того, что концы катушки увеличиваются конфигурации, показанной на фиг. 7, и является видом, в котором длина части вращающейся электрической машины, показанной на фиг. 7 в периферийном направлении, увеличивается. В конфигурации, показанной на фиг. 7 и фиг. 9, как описано выше, распределенная катушка 50, размещаемая в каждой второй внешней щели 42, идет из отверстий с обоих концов второй внешней щели 42 в осевом направлении к обеим сторонам в периферийном направлении и наматывается вокруг множества внешних зубьев 12 между второй внешней щелью 42 и другими двумя вторыми внешними щелями 42.
В такой конфигурации, показанной на фиг. 7 и фиг. 9, как указано посредством участков, обведенных посредством эллипсов α1, α2,..., α6 с пунктирной линией на фиг. 9, три пунктирных линии, которые представляют распределенные катушки 50, перекрывают первую внешнюю щель 41, в которой размещается тороидальная катушка 15. Это означает то, что, в каждом участке, указываемом посредством эллипса с пунктирной линией, распределенные катушки 50 трех различных фаз размещаются за пределами концов катушки тороидальной катушки 15. Следовательно, при использовании конфигурации, показанной на фиг. 7 и фиг. 9, концы катушки имеют тенденцию увеличиваться. Эта ситуация также применяется к конфигурации, показанной на фиг. 8. Далее задается конфигурация согласно альтернативному варианту осуществления, который описывается со ссылкой на фиг. 10, чтобы уменьшать концы катушки при такой ситуации.
Фиг. 10 является видом части вращающейся электрической машины в периферийном направлении согласно альтернативному варианту осуществления по отношению к варианту осуществления при просмотре из одной стороны в осевом направлении. В конфигурации согласно альтернативному варианту осуществления, показанному на фиг. 10, отличающейся от случая конфигурации, показанной на фиг. 7 и фиг. 9, смежные две из первых внешних щелей 41 и смежные две из вторых внешних щелей 42 попеременно размещаются в периферийном направлении на радиально внешней стороне статора 10d. Таким образом, конфигурация, показанная на фиг. 10, отличается от конфигурации, показанной на фиг. 9, порядком, в котором множество первых внешних щелей 41 и множество вторых внешних щелей 42 размещаются в периферийном направлении статора 10d.
Помимо этого, распределенная катушка 50, размещаемая в каждой второй внешней щели 42, идет из отверстий с обоих концов второй внешней щели 42 в осевом направлении только к одной стороне или другой стороне в периферийном направлении и наматывается вокруг множества внешних зубьев 12 между второй внешней щелью 42 и другой одной из вторых внешних щелей 42. Таким образом, распределенная катушка 50, размещаемая в каждой второй внешней щели 42, наматывается вокруг множества внешних зубьев 12 между второй внешней щелью 42 и только другой одной из вторых внешних щелей 42.
При вышеуказанной конфигурации, автоматически возобновляемое магнитное поле, которое формируется в статоре 10d, является идентичным автоматически возобновляемому магнитному полю конфигурации, показанной на фиг. 9. С другой стороны, при использовании конфигурации, показанной на фиг. 10, поскольку две первых внешних щели 41 и две вторых внешних щели 42 попеременно размещаются в периферийном направлении, меньшее число распределенных катушек 50 перекрывается за пределами каждой первой внешней щели 41 в осевом направлении. Таким образом, в каждом конце катушки, меньшее число распределенных катушек 50 перекрывается за пределами тороидальной катушки 15, размещаемой в каждой первой внешней щели 41.
Распределенная катушка 50, размещаемая в каждой второй внешней щели 42, наматывается вокруг множества внешних зубьев 12 между второй внешней щелью 42 и только другой одной из вторых внешних щелей 42. Таким образом, в каждом конце катушки, еще меньшее число распределенных катушек 50 перекрывается за пределами тороидальной катушки 15, размещаемой в каждой первой внешней щели 41. По этой причине, при использовании конфигурации согласно этому варианту осуществления, концы катушки уменьшаются. На фиг. 10, только распределенная катушка 50 одной фазы перекрывает внутренний участок каждой из первых внешних щелей 41, обведенных посредством эллипсов β1, β2 с пунктирной линией. Это означает то, что только распределенная катушка 50 одной фазы перекрывается за пределами тороидальной катушки 15, размещаемой в каждой первой внешней щели 41. Это также применяется к катушке 15, размещаемой в каждой первой внешней щели 41. Следовательно, при использовании конфигурации, показанной на фиг. 10, число распределенных катушек 50, которые перекрывают каждую тороидальную катушку 15 в каждом конце катушки, уменьшается с трех фаз до одной фазы по сравнению с конфигурацией, показанной на фиг. 9, так что концы катушки уменьшаются. Остальная конфигурация и работа являются аналогичными конфигурации и работе конфигурации, показанной на фиг. 8 и фиг. 9.
Выше описываются варианты осуществления изобретения; тем не менее, изобретение не ограничено вышеописанными вариантами осуществления. Различные модификации являются применимыми.

Claims (20)

1. Вращающаяся электрическая машина, содержащая:
кольцевой статор, включающий в себя множество внутренних зубьев и множество внешних зубьев, причем множество внутренних зубьев выступают радиально внутрь, а множество внешних зубьев выступают радиально наружу;
внутренний ротор, обращенный к радиально внутренней стороне кольцевого статора;
внешний ротор, обращенный к радиально внешней стороне кольцевого статора; и
тороидальную катушку, размещенную в каждой внутренней щели между любыми смежными двумя из внутренних зубьев и соответствующей одной внешней щели между смежными двумя из внешних зубьев, при этом:
общее число множества внешних щелей превышает общее число множества внутренних щелей,
число катушек, размещенных во всех внешних щелях, превышает или равно числу катушек, размещенных во всех внутренних щелях,
множество внешних щелей имеют такую конфигурацию, в которой первая внешняя щель и вторая внешняя щель попеременно размещены в периферийном направлении,
отношение общего числа множества внешних щелей к общему числу множества внутренних щелей составляет два к одному,
тороидальная катушка размещена в каждой из внутренних щелей и первых внешних щелей,
в каждой из вторых внешних щелей размещена распределенная катушка, и
число катушек, размещенных во всех внешних щелях, превышает число катушек, размещенных во всех внутренних щелях.
2. Вращающаяся электрическая машина по п. 1, в которой:
каждая первая внешняя щель размещена в позиции в периферийном направлении, идентичной позиции в периферийном направлении соответствующей одной из внутренних щелей, и
каждая вторая внешняя щель размещена в различной позиции в периферийном направлении относительно соответствующей одной из внутренних щелей.
3. Вращающаяся электрическая машина по п. 2, в которой:
в каждой первой внешней щели в качестве катушки размещена плоская проводная катушка, имеющая прямоугольное поперечное сечение, и
в каждой второй внешней щели в качестве катушки размещена круглая проводная катушка, имеющая круглое поперечное сечение.
4. Вращающаяся электрическая машина по п. 1, в которой первые внешние щели и вторые внешние щели имеют такую конфигурацию, в которой две из первых внешних щелей и две из вторых внешних щелей попеременно размещаются в периферийном направлении на радиально внешней стороне кольцевого статора.
5. Вращающаяся электрическая машина по п. 4, в которой распределенная катушка, размещаемая в каждой второй внешней щели, наматывается вокруг множества внешних зубьев между второй внешней щелью и другой одной из вторых внешних щелей.
RU2018103065A 2017-01-27 2018-01-26 Вращающаяся электрическая машина RU2685699C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017013145A JP6605517B2 (ja) 2017-01-27 2017-01-27 回転電機
JP2017-013145 2017-01-27

Publications (1)

Publication Number Publication Date
RU2685699C1 true RU2685699C1 (ru) 2019-04-23

Family

ID=61024687

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018103065A RU2685699C1 (ru) 2017-01-27 2018-01-26 Вращающаяся электрическая машина

Country Status (6)

Country Link
US (1) US10873226B2 (ru)
EP (1) EP3355446B1 (ru)
JP (1) JP6605517B2 (ru)
KR (1) KR101998508B1 (ru)
CN (1) CN108365717B (ru)
RU (1) RU2685699C1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102016250B1 (ko) * 2018-02-08 2019-08-29 엘지전자 주식회사 스테이터 구조를 개선한 듀얼 로터 타입 모터
CN109660047A (zh) * 2019-02-21 2019-04-19 郑州大学 一种可变相双三相永磁电机定子环形绕组及其变相方法
CN111490656A (zh) * 2020-04-20 2020-08-04 中国北方车辆研究所 一种新型电机结构
DE102020116423A1 (de) 2020-06-22 2021-12-23 Bayerische Motoren Werke Aktiengesellschaft Rotor und elektromechanischer Energiewandler mit toroidaler Erregerspule und Kraftfahrzeug
US11923733B2 (en) * 2020-08-28 2024-03-05 Quantentech Limited High efficiency high density motor and generator with multiple airgaps
US11728715B2 (en) 2021-04-06 2023-08-15 Hamilton Sundstrand Corporation Electric motor with simplified winding and dual rotor
KR20220160779A (ko) * 2021-05-28 2022-12-06 주식회사 씨앤엠 분할형 코어를 구비하는 토로이달 모터용 고정자 어셈블리와 이의 제조방법
CN117118110B (zh) * 2023-10-25 2024-05-14 中国科学院宁波材料技术与工程研究所 一种大电感无齿槽推进电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945965A2 (en) * 1998-03-25 1999-09-29 Nissan Motor Co., Ltd. Motor/generator
RU2005138343A (ru) * 2005-04-04 2007-06-20 Эл Джи Электроникс Инк. (Kr) Электродвигатель
JP2013229958A (ja) * 2012-04-24 2013-11-07 Okuma Corp 同期電動機
US20140091662A1 (en) * 2011-06-08 2014-04-03 Amotech Co., Ltd. Driving apparatus for direct-drive type washing machine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101589A (ja) * 2000-09-22 2002-04-05 Denso Corp 回転電機
JP4368546B2 (ja) * 2001-09-03 2009-11-18 三菱電機株式会社 車両用薄型扁平多相誘導式回転機
JP4849071B2 (ja) * 2005-10-13 2011-12-28 パナソニック株式会社 2つのロータを有するモータ
JP4983022B2 (ja) * 2006-01-05 2012-07-25 パナソニック株式会社 モータ
JP2008113480A (ja) 2006-10-30 2008-05-15 Matsushita Electric Ind Co Ltd モータ
US7830062B2 (en) * 2006-12-12 2010-11-09 Nidec Corporation Motor having round and angular coils
JP5556000B2 (ja) * 2008-10-15 2014-07-23 パナソニック株式会社 デュアルロータモータ
US8847522B2 (en) * 2008-11-14 2014-09-30 Denso Corporation Reluctance motor with improved stator structure
JP4715934B2 (ja) * 2009-02-20 2011-07-06 株式会社デンソー 5相モータ
JP2011167066A (ja) * 2011-04-25 2011-08-25 Denso Corp モータ
JP2013059182A (ja) * 2011-09-07 2013-03-28 Yaskawa Electric Corp モータの製造方法およびモータ
CN104364994B (zh) * 2012-06-08 2017-06-30 株式会社安川电机 旋转电机及旋转电机的制造方法
US8994244B2 (en) * 2012-08-01 2015-03-31 Nidec Motor Corporation Motor stator with reduced coil configuration
JP2016208745A (ja) * 2015-04-24 2016-12-08 株式会社安川電機 回転電機、回転電機の製造方法、固定子コイル、コイル樹脂構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945965A2 (en) * 1998-03-25 1999-09-29 Nissan Motor Co., Ltd. Motor/generator
RU2005138343A (ru) * 2005-04-04 2007-06-20 Эл Джи Электроникс Инк. (Kr) Электродвигатель
US20140091662A1 (en) * 2011-06-08 2014-04-03 Amotech Co., Ltd. Driving apparatus for direct-drive type washing machine
JP2013229958A (ja) * 2012-04-24 2013-11-07 Okuma Corp 同期電動機

Also Published As

Publication number Publication date
JP2018121498A (ja) 2018-08-02
EP3355446B1 (en) 2020-08-19
KR101998508B1 (ko) 2019-07-09
EP3355446A1 (en) 2018-08-01
CN108365717A (zh) 2018-08-03
US20180219439A1 (en) 2018-08-02
US10873226B2 (en) 2020-12-22
JP6605517B2 (ja) 2019-11-13
CN108365717B (zh) 2020-06-30
KR20180130426A (ko) 2018-12-07

Similar Documents

Publication Publication Date Title
RU2685699C1 (ru) Вращающаяся электрическая машина
US8796897B2 (en) Consequent pole permanent magnet motor
JP5575337B1 (ja) 回転電機
JP2010531130A (ja) 12個のステータ歯と10個のロータ極とを有する同期モータ
JP4016341B2 (ja) 三相シンクロナスリラクタンスモータ
JP2007507192A (ja) 誘導回転子を有する回転電機
JP2003307436A (ja) 回転角度検出装置およびそれを用いた回転電機
JP2018182963A (ja) 回転電機のステータ
JP2003088078A (ja) ブラシレスdcモータ
US20220263356A1 (en) Motor
JP3564252B2 (ja) 電機子巻線
US6236133B1 (en) Three-phase brushless motor
EP3068020A1 (en) Multi-pole, three-phase rotary electric machine
JP6798260B2 (ja) 回転電機ステータ
JP3545998B2 (ja) 回転電機の電機子および電機子の巻線方法
JP6154637B2 (ja) 磁石式発電機
JP5668181B1 (ja) 磁石式発電機
JP6926893B2 (ja) 回転電機
JP2013128378A (ja) 永久磁石式回転電機
JP2010081670A (ja) 交流発電機
JP5611094B2 (ja) 回転電機
JP2012016127A (ja) モータ
JP7228963B2 (ja) 回転電動機
JP2010154648A (ja) モータ
JP2024010828A (ja) バーニアモータ