RU2662816C2 - Кристаллический аллисартана изопроксил, способ его получения и фармацевтическая композиция - Google Patents

Кристаллический аллисартана изопроксил, способ его получения и фармацевтическая композиция Download PDF

Info

Publication number
RU2662816C2
RU2662816C2 RU2017101600A RU2017101600A RU2662816C2 RU 2662816 C2 RU2662816 C2 RU 2662816C2 RU 2017101600 A RU2017101600 A RU 2017101600A RU 2017101600 A RU2017101600 A RU 2017101600A RU 2662816 C2 RU2662816 C2 RU 2662816C2
Authority
RU
Russia
Prior art keywords
allisartan
crystalline form
crystalline
solvent
isoproxil
Prior art date
Application number
RU2017101600A
Other languages
English (en)
Other versions
RU2017101600A (ru
RU2017101600A3 (ru
Inventor
Дуаньмин ТАНЬ
Цзюнь ОУ
Original Assignee
Шэньчжэнь Салубрис Фармасьютикалз Ко., Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шэньчжэнь Салубрис Фармасьютикалз Ко., Лтд filed Critical Шэньчжэнь Салубрис Фармасьютикалз Ко., Лтд
Publication of RU2017101600A publication Critical patent/RU2017101600A/ru
Publication of RU2017101600A3 publication Critical patent/RU2017101600A3/ru
Application granted granted Critical
Publication of RU2662816C2 publication Critical patent/RU2662816C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Steroid Compounds (AREA)

Abstract

Изобретение относится к кристаллической форме аллисартана изопроксила, которая имеет дифракционные пики при углах дифракции (2θ±0,2°) 6,9, 8,0, 13,8, 20,1, 21,1, 22,2, 24.0 и 27,7 на спектрах пРСА. Изобретение также относится к фармацевтической композиции аллисартана изопроксила для лечения гипертензивных заболеваний. Технический результат: получена новая кристаллическая форма аллисартана изопроксила, обладающая хорошей подвижностью и высокой стабильностью. 2 н. и 9 з.п. ф-лы, 7 ил., 8 пр.

Description

Область техники
Настоящее изобретение относится к области фармацевтической химии, в частности, оно относится к кристаллическому аллисартана изопроксилу, к способу его получения и к фармацевтической композиции.
УРОВЕНЬ ТЕХНИКИ
Аллисартана изопроксил (CAS: 947331-05-7), с химическим наименованием: 1-[(изопропокси)-карбонилокси]-метиловый эфир 2-бутил-4-хлор-1-[2'-(1H-тетразол-5-ил)-1,1'-бифенил-метил]-имидазол-5-карбоновой кислоты и торговым наименованием Ксинлитан, представляет собой антагонист рецепторов знгиотензина II нового типа. В патенте КНР CN 200610023991.0 впервые раскрыта его химическая структура его применение в получении антигипертензивных лекарственных средств. По сравнению с другими гипотензивными лекарственными средствами (например, лозартаном) того же типа, аллисартана изопроксил демонстрирует такие преимущества, как низкая токсичность и превосходный антигипертензивный эффект.
Figure 00000001
Исследование полиморфизма лекарственных средств с целью получения наилучшей кристаллической формы является важной частью в процессе исследования лекарственных средств, а также одним из важных технологических шагов по контролю качества лекарственных средств. Согласно статистическим данным, подавляющее большинство лекарственных средств обладают полиморфизмом, который непосредственно влияет на физико-химические свойства (например, температуру плавления, растворимость, характеристики растворения и стабильность) и клиническую эффективность. Поскольку получение конкретной кристаллической формы является очень непредсказуемым, трудно предсказать физико-химические свойства для различных полиморфных модификаций одного и того же лекарственного средства.
В патенте КНР CN 200710094131.0 раскрыт кристаллический аллисартана изопроксил и способ его получения. Указанный кристаллический аллисартана изопроксил характеризуется высокой стабильностью, но с электростатическим эффектом и плохой подвижностью, становящейся еще хуже после измельчения, легко приводит к образованию пыли в процессе производства, что вызывает загрязнение, а также влияет на подачу и смешивание в последующем производственном процессе.
В патентах КНР CN 200710094021.4 и CN 201110289695.6 по отдельности раскрыты различные способы получения аллисартана изопроксила, автор изобретения неоднократно обнаруживал, что кристаллическая форма аллисартана изопроксила соответствует описанной в патенте КНР CN 200710094131.0.
В целях устранения недостатков существующих технологий, изобретатель в первую очередь пытался найти способ получения кристаллического аллисартана изопроксила с отсутствием электростатического эффекта, хорошей подвижностью и высокой стабильностью. При дальнейших исследованиях полученных кристаллов изобретатель с удивлением обнаружил, что полученный кристаллический аллисартана изопроксил представляет собой кристаллическую форму, неизвестную ранее, обладает высокой стабильностью, и отвечает дальнейшим производственным требованиям. Новый кристалл обеспечивает более широкий выбор исходных веществ для получения аллисартана изопроксила.
Краткое описание изобретения
Первая задача настоящего изобретения заключается в устранении недостатков существующих технологий, обеспечении кристаллического аллисартана изопроксила с отсутствием электростатического эффекта, хорошей подвижностью, высокой стабильностью и т.д.
Кристаллический аллисартана изопроксил согласно настоящему изобретению имеет дифракционные пики при углах дифракции (2θ±0,2°) 6,9, 8,0, 13,8, 20,1, 21,1, 22,2, 24,0 и 27,7 на спектрах рентгеновской порошковой дифракции (спектры пРСА). Относительная интенсивность всех указанных пиков стабильно имеет высокое значение (5% и выше), и указанные пики, которые могут появиться при повторных испытаниях, относятся к характеристическим пикам нового кристалла согласно настоящему изобретению.
Кристаллический аллисартана изопроксил согласно настоящему изобретению имеет дифракционные пики при углах дифракций (2θ±0,2°) 17,4, 18,9, 19,3, 19,6, 21,5, 22,6, 32,1 и 34,8 на спектрах рентгеновской порошковой дифракции (спектры пРСА). Относительная интенсивность всех указанных пиков стабильно имеет более высокое значение (от 1,5% до 5%), может зависеть от образца, прибора, условий исследования и т.д., колебаться, и ее воспроизводимость ниже, чем для указанных выше характеристических пиков.
Кристаллический аллисартана изопроксил согласно настоящему изобретению имеет дифракционные пики при углах дифракции (2θ±0,2°) 9,6, 10,0, 13,2, 14,4, 15,9, 18,2, 24,5, 25,0, 28,9, 29,9, 30,3 и 35,1 на спектрах рентгеновской порошковой дифракции (спектры пРСА). Относительная интенсивность указанных пиков стабильно имеет более низкое значение (ниже 1,5%), может зависеть от образца, прибора, условий исследования и т.д., очевидно, может колебаться, поэтому они имеют самую низкую повторяемость.
Посредством повторных испытаний образца и сравнения спектров пРСА образцов, было обнаружено, что все повторные испытания демонстрируют следующие дифракционные пики, и погрешность 2θ и
Figure 00000002
составляет ±0,2:
Figure 00000003
Спектр ДСК указанного кристаллического аллисартана изопроксила показан на фиг. 3. В частности, спектр демонстрирует эндотермический пик при 159±3°C.
Спектр ТГ указанного кристаллического аллисартана изопроксила показан на фиг. 4. Как можно видеть, указанный кристаллический аллисартана изопроксил не содержит растворитель для кристаллизации, поэтому он является несольватированным.
Другая задача настоящего изобретения заключается в обеспечении способа получения кристаллического аллисартана изопроксила способом смешивания растворителей; более конкретно, указанный способ получения состоит из следующих этапов:
1) Растворяют аллисартана изопроксил в смешанном растворителе, состоящем из растворителя А и растворителя В при нагревании.
2) Кристалл осаждают путем снижения температуры.
3) Медленно охлаждают систему растворителей до 0~15°C с дальнейшей кристаллизацией.
4) Получают кристаллический аллисартана изопроксил путем разделения и сушки.
На указанной стадии 1) следует использовать количество растворителя, обеспечивающее растворения до осветления; растворитель А выбран из группы, состоящей из C3-C4 спиртов или их соответствующих ацетатов, предпочтительно 2-бутанола, изопропилового спирта, изопропилацетата; растворитель В выбран из группы, состоящей из C5-C7-алканов, предпочтительно н-гептана; объемное соотношение указанных растворителя А и растворителя В составляет 0,5:1~1,5:1.
По сравнению с кристаллической формой аллисартана изопроксила, полученной с помощью раскрытых существующих технологий, кристалл согласно настоящему изобретению имеет лучшую мобильность, отсутствие электростатического эффекта, делает взвешивание и перенос продукта более удобным, а также эффективно сокращает время смешивания с вспомогательными веществами.
В ходе исследования стабильности мы с удовлетворением обнаружили, что указанный кристалл обладает высокими характеристиками стабильности; в частности, указанный кристалл может оставаться стабильным при высокой температуре, высокой влажности и в условиях освещения при изучении влияющих факторов, при этом не произошло никакой очевидной деградации, что может соответствовать требованиям хранения и последующего производства.
Другая задача настоящего изобретения заключается в обеспечении фармацевтической композиции, содержащей указанный кристаллический аллисартана изопроксил; кроме того, указанная фармацевтическая композиция содержит от 0,01% до 99% (масс. %) указанного кристаллического аллисартана изопроксила.
Предложенный согласно настоящему изобретению кристаллический аллисартана изопроксил обладает хорошей подвижностью, высокой стабильностью и т.д., поэтому он лучше подходит для дальнейшего получения фармацевтической композиции, которая во многих аспектах, например однородность и стабильность лекарственного средства, превосходит раскрытые при существующих технологиях. В частности, указанные фармацевтические композиции включают, но не ограничиваются ими, таблетки, капсулы, гранулы, порошки, суппозитории и т.д.; предпочтительно фармацевтическая композиция таблеток содержит кристаллический аллисартана изопроксил, разрыхлитель, связующее вещество, наполнитель и смазывающий агент. Разрыхлитель, связующее вещество, наполнитель и смазывающий агент представляют собой широко используемые в указанной области фармацевтические вспомогательные вещества. В частности, разрыхлитель может быть выбран из одного из кроскармеллозы натрия, сухого крахмала, сшитого повидона, карбоксиметилкрахмала натрия, гидроксипропилцеллюлозы с низкой степенью замещения, микрокристаллической целлюлозы, предварительно желатинированного крахмала и т.д., или смеси двух или более; количество разрыхлителя может быть тем же, что и известное в практике области фармацевтики для достижения эффекта разрыхления. Связующее вещество может быть выбрано из одного из гидроксипропилметилцеллюлозы, гидроксипропилцеллюлозы, карбоксиметилцеллюлозы натрия, повидона, крахмальной пасты, желатина и т.д., или смеси двух или более. При добавлении связующего вещества его количество должно быть тем же, что и известное в данной Области техники для достижения эффекта связывания. Наполнитель может быть выбран из одного из лактозы, маннита, декстрина, крахмала, предварительно желатинированного крахмала, микрокристаллической целлюлозы, сульфата кальция, фосфата кальция, гидрофосфата кальция и т.д. или смеси двух или более из них. Количество наполнителя должно быть тем же, что и известное в области фармацевтики для достижения эффекта наполнителя.
Указанный смазывающий агент выбран из одного из стеарата магния, коллоидного диоксида кремния, порошка талька, ПЭГ и т.д., или смеси из двух или более. Количество смазывающего вещества может быть тем же, что и известное в области фармацевтики для достижения эффекта смазывания.
Указанные фармацевтические композиции получают согласно общепринятому в области фармацевтики способу. В частности, способы получения включают, но не ограничиваются ими, сухое гранулирование, влажное гранулирование, прямое прессование, наполнение порошком, сушка распылением, способ высушивания распылением, гранулирование с псевдоожиженным слоем и т.д.
Композицию аллисартана изопроксила можно применять против артериальной гипертензии и ее осложнений. Как было указано ранее, композиция согласно настоящему изобретению превосходит раскрытые композиции в существующих технологиях, поэтому она может достичь лучшего клинического лечебного эффекта, но с более низким риском. Предпочтительно указанную композицию аллисартана изопроксила можно применять для лечения легкой и умеренной гипертензии. Осложнения гипертензии относятся к заболеваниям, вызванным гипертензией, включая сердечно-сосудистые осложнения, такие как гипертрофия левого желудочка, стенокардия, инфаркт миокарда, сердечная недостаточность; инсульт, такой как геморрагический инсульт, ишемический инсульт, гипертоническая энцефалопатия; гипертоническое повреждение почек, такое как медленное прогрессирование артериолонефросклероза, злокачественный артериолонефросклероз, хроническая почечная недостаточность; офтальмологические заболевания, такие как артериосклероз сетчатки глаза, изменение глазного дна.
По сравнению с имеющимися технологиями, настоящее изобретение обладает следующими преимуществами и положительными эффектами:
1. Предложен новый кристаллический аллисартана изопроксил, который является новой кристаллической формой с отсутствием электростатического эффекта, хорошей подвижностью, высокой стабильностью, и обеспечивает еще один вариант выбора для лекарственного средства на основе аллисартана изопроксила.
2. Предложен новый способ промышленного получения кристаллического аллисартана изопроксила, который позволяет получать указанный кристаллический аллисартана изопроксил стабильно и эффективно.
3. Предложена композиция аллисартана изопроксила, применяемая при гипертензии и ее осложнениях, которая содержит кристаллический аллисартана изопроксил согласно настоящему изобретению с высокой стабильностью и повышает безопасность в клинической практике.
Краткое описание чертежей
Фиг. 1 Спектр пРСА кристаллической формы аллисартана изопроксила, полученной в примере 1.
Фиг. 2 Частично увеличенный спектр пРСА кристаллической формы аллисартана изопроксила, полученной в примере 1.
Фиг. 3 Спектр ДСК кристаллической формы аллисартана изопроксила, полученной в примере 1.
Фиг. 4 Спектр ТГ кристаллической формы аллисартана изопроксила, полученной в примере.
Фиг. 5 Спектр пРСА кристаллической формы аллисартана изопроксила, полученной в примере 2.
Фиг. 6 Спектр пРСА кристаллической формы аллисартана изопроксила, полученной в примере 3.
Фиг. 7 Спектр пРСА кристаллической формы аллисартана изопроксила, полученной в примере 4.
Подробное описание примеров
Настоящее изобретение далее подробно описано в сочетании с прилагаемыми чертежами и примерами, но подробное описание примеров не ограничивается этим.
При получении спектра пРСА применяли следующее оборудование и условия анализа:
Оборудование для анализа: Рентгеновский дифрактометр Rigaku MiniFlex 600
Условия анализа: медная мишень, напряжение 40 кВ, сила тока 15 мА, шаг сканирования 0,02°, скорость сканирования 5 шагов в минуту, диапазон углов: 3°~60°, Щель: Soller (вход.) 2,5 град., высота щели 10,0 мм, щель расходимости 0,625 град., противорассеивающая щель 13,0 мм, Soller (запис.) 2,5 град., приемная щель 13,0 мм
При получении спектра ДСК применяли следующее оборудование и условия анализа:
Оборудование для анализа: Дифференциальный сканирующий калориметр DSC 204F1, изготовленный NETZSCH, Германия
Условия анализа: Атмосфера N2 (чистота ≥99,99%, 20 мл/мин); программа сканирования: комнатная температура ~180°C; скорость нагрева: 10°C/мин
При получении спектра ТГ применяли следующее оборудование и условия анализа:
Оборудование для анализа: Термогравиметрический анализатор G209, изготовленный NETZSCH, Германия
Условия анализа: воздушная атмосфера, 20 мл/мин; программа сканирования: комнатная температура ~700°C; скорость нагрева: 10°C/мин
Исходный материал, 1-[(изопропокси)-карбонилокси]-метиловый сложный эфир 2-бутил-4-хлор-1-[2'-(1-трифенилметил-1H-тетразол-5-ил)-1,1'-бифенил-метил]-имидазол-5-карбоновой кислоты, в примерах 1~4 получен в соответствии со способом, описанным в примере 12, в патенте КНР CN 200680000397.8.
Пример 1
Помещают навеску массой 25 г 1-[(изопропокси)-карбонилокси]-метилового сложного эфира 2-бутил-4-хлор-1-[2'-(1-трифенилметил-1H-тетразол-5-ил)-1,1'-бифенил-метил]-имидазол-5-карбоновой кислоты в трехгорлую колбу объемом 500 мл, добавляют 200 мл метанола. Нагревают с обратным холодильником в течение 9 часов, удаляют метанол путем перегонки при пониженном давлении с получением неочищенного аллисартана изопроксила.
Figure 00000004
Добавляют 33 мл изопропанола и 66 мл н-гептана в остаток (неочищенный аллисартана изопроксил), нагревают до 76°C и перемешивают в течение 2 часов, затем охлаждают до 60°C и перемешивают в течение 1 ч. Медленно охлаждают систему до 0°C, продолжают перемешивать в течение 3 часов. Фильтруют и промывают остаток на фильтре н-гептаном. После вакуумной сушки в течение 8 ч при 40°C, получают 15,3 г аллисартана изопроксила (чистота: 99,3%), спектр пРСА которого показан на фиг. 1. Значения главных дифракционных пиков приведены в следующей таблице. Спектр пРСА показан на фиг. 2. По сравнению с опубликованным кристаллом, указанный кристалл не обладает очевидным электростатическим эффектом.
Figure 00000005
Figure 00000006
Пример 2
Помещают навеску массой 25 г 1-[(изопропокси)-карбонилокси]-метилового сложного эфира 2-бутил-4-хлор-1-[2'-(1-трифенилметил-1H-тетразол-5-ил)-1,1'-бифенил-метил]-имидазол-5-карбоновой кислоты в трехгорлую колбу объемом 500 мл, добавляют 200 мл метанола, затем нагревают с обратным холодильником в течение 9 часов. Удаляют метанол путем перегонки при пониженном давлении с получением неочищенного аллисартана изопроксила.
Добавляют 60 мл изопропанола к остатку (неочищенный аллисартана изопроксил), нагревают с обратным холодильником до осветления раствора и добавляют 50 мл н-гептана; после повторного осветления раствора охлаждают до 40°C при перемешивании с началом выделения кристалла; продолжают перемешивать в течение 1 ч, медленно охлаждают систему до 10°C и затем перемешивают в течение 1 ч. Фильтруют и промывают остаток на фильтре н-гептаном. После вакуумной сушки в течение 8 ч при 40°C, получают 14,3 г аллисартана изопроксила (чистота: 98,6%), спектр пРСА которого показан на фиг. 5. Значения главных дифракционных пиков приведены в следующей таблице. Спектр пРСА является почти таким же, что и показанный в примере 1.
Figure 00000007
Figure 00000008
Пример 3
Помещают навеску массой 25 г 1-[(изопропокси)-карбонилокси]-метилового сложного эфира 2-бутил-4-хлор-1-[2'-(1-трифенилметил-1H-тетразол-5-ил)-1,1'-бифенил-метил]-имидазол-5-карбоновой кислоты в трехгорлую колбу объемом 500 мл, затем добавляют 200 мл метанола. Нагревают с обратным холодильником в течение 9 часов, удаляют метанол путем перегонки при пониженном давлении с получением неочищенного аллисартана изопроксила.
Добавляют 100 мл изопропилового эфира уксусной кислоты к остатку (неочищенный аллисартана изопроксил), нагревают с обратным холодильником до осветления раствора, затем добавляют 100 мл н-гептана. После повторного осветления раствора охлаждают до 60°C при перемешивании с началом выделения кристалла; продолжают перемешивать в течение 3 ч, медленно охлаждают систему до 10°C и затем перемешивают в течение 12 ч. Фильтруют и промывают остаток на фильтре н-гептаном. После вакуумной сушки в течение 8 ч при 40°C, получают 14,2 г аллисартана изопроксила (чистота: 98,5%), спектр пРСА которого показан на фиг. 6. Значения главных дифракционных пиков приведены в следующей таблице. Спектр пРСА является почти таким же, что и показанный в примере 1.
Figure 00000009
Figure 00000010
Пример 4
Помещают навеску массой 25 г 1-[(изопропокси)-карбонилокси]-метилового сложного эфира 2-бутил-4-хлор-1-[2'-(1-аллисартан изопроксил-1H-тетразол-5-ил)-1,1'-бифенил-метил]-имидазол-5-карбоновой кислоты в трехгорлую колбу объемом 500 мл, затем добавляют 200 мл метанола. Нагревают с обратным холодильником в течение 9 часов, удаляют метанол путем перегонки при пониженном давлении с получением неочищенного аллисартана изопроксила.
Добавляют 52 мл 2-бутанола к остатку (неочищенный аллисартана изопроксил), нагревают с обратным холодильником до осветления раствора и добавляют 40 мл н-гептана; После повторного осветления раствора охлаждают до 55°C при перемешивании с началом выделения кристалла; продолжают перемешивать в течение 1 ч, медленно охлаждают систему до 10°C и затем перемешивают в течение 12 ч. Фильтруют и промывают остаток на фильтре н-гептаном. После вакуумной сушки в течение 12 ч при 45°C, получают 14,6 г аллисартана изопроксила (чистота 97,8%), спектр пРСА которого показан на фиг. 7. Значения главных дифракционных пиков приведены в следующей таблице. Спектр пРСА является почти таким же, что и показанный в примере 1.
Figure 00000011
Figure 00000012
Пример 5
Данные примеров 1~4 были обобщены и проанализированы.
В данной области техники хорошо известно, что при рентгеноструктурном исследовании кристаллов высокая стабильность выраженного дифракционного пика в меньшей степени зависит от приборов и условий анализа, большая часть таких пиков является характеристическими пиками; в случае дифракционного пика с низкой интенсивностью, чем больше влияние оказывают образцы, приборы и условия анализа, тем меньше вероятность их повторного появления в соответствующем спектре.
В частности, путем статистического анализа было обнаружено, что кристаллический аллисартана изопроксил согласно настоящему изобретению имеет дифракционные пики при углах дифракции (2θ±0,2°) 6,9, 8,0, 13,8, 20,1, 21,1, 22,2, 24,0 и 27,7 на спектрах пРСА. Указанные пики стабильно имеют высокое значение (5% и выше 5%), и эти пики, которые могут появиться при повторных испытаниях, относятся к характеристическим пикам нового кристалла согласно настоящему изобретению.
Кристаллический аллисартана изопроксил согласно настоящему изобретению имеет дифракционные пики при углах дифракции (2θ±0,2°) 17,4, 18,9, 19,3, 19,6, 21,5, 22,6, 32,1 и 34,8 на спектрах пРСА. Относительная интенсивность всех указанных пиков стабильно имеет более высокое значение (от 1,5% до 5%), может зависеть от образца, прибора, условий исследования и т.д., колебаться, и ее воспроизводимость ниже, чем для указанных выше характеристических пиков.
Кристаллический аллисартана изопроксил согласно настоящему изобретению имеет дифракционные пики при углах дифракции (2θ±0,2°) 9,6, 10,0, 13,2, 14,4, 15,9, 18,2, 24,5, 25,0, 28,9, 29,9, 30,3 и 35,1 на спектрах пРСА. Относительная интенсивность всех указанных пиков стабильно имеет более низкое значение (ниже 1,5%), может зависеть от образца, прибора, условий исследования и т.д., очевидно, может колебаться, поэтому они имеют самую низкую повторяемость.
В частности, путем сравнения спектров пРСА образцов, полученных в примерах 1~4, было обнаружено, что все повторные испытания демонстрируют следующие дифракционные пики, и погрешность 2θ и
Figure 00000013
составляет ±0,2:
Figure 00000014
Пример 6
Угол естественного откоса мелкого сыпучего порошка аллисартана изопроксила, полученного в соответствии со способом согласно патенту КНР CN 200710094131.0 (называемого литературным кристаллом), измеряли способом фиксированной воронки. Определяли насыпную плотность способом ударов цилиндра, и полученные результаты приведены в следующей таблице:
Figure 00000015
Figure 00000016
Как видно из приведенных выше данных, кристаллический аллисартана изопроксил, полученный согласно настоящему изобретению, обладает лучшей подвижностью, чем раскрытый в патенте CN 200710094131.0, что отражается тем, что угол естественного откоса новой кристаллической формы меньше, чем у кристалла согласно патенту уровня техники, а его насыпная плотность выше, чем у кристалла согласно патенту уровня техники.
Пример 7
Исследование стабильности указанного кристалле в примере 1 проводят в условиях высокой температуры, высокой влажности и освещенности для изучения влияющих факторов. Результаты показаны в следующей таблице:
Результаты испытаний при высокой температуре (60°C)
Figure 00000017
Результаты испытаний при высокой влажности (25°C, относительная влажность 92,5%, насыщенный раствор нитрата калия)
Figure 00000018
Результаты испытания на фотостабильность (4500 люкс±500 люкс)
Figure 00000019
Figure 00000020
В соответствии с вышеуказанными исследованиями фотостабильности, исследованиями при высокой влажности и высокой температуре, сделаны следующие выводы:
Кристаллический аллисартана изопроксил, полученный в примере 1, остается стабильным при различных условиях влияющих факторов, и в чистоте продукта не происходит существенных изменений, что соответствует требованиям хранения и последующего производства.
Аналогичным образом, кристаллические формы аллисартана изопроксила, полученные в примере 2, примере 3 и примере 4, имеют тот же результат, что и пример 1, в исследовании фотостабильности, исследовании при высокой влажности и высокой температуре.
Пример 8
Получение таблеток, содержащих кристаллический аллисартана изопроксила по способу из примера 1.
Figure 00000021
Полностью смешивают АФИ с сшитым повидоном, микрокристаллической целлюлозой и гидроксипропилметилцеллюлозой и затем осуществляют влажную грануляцию. Сушат с получением внутригранулярных гранул, смешивают внутригранулярные гранулы с микрокристаллической целлюлозой и стеаратом магния с получением фармацевтической композиции и затем получают таблетки аллисартана изопроксила путем сжатия.
Приведенный выше пример представляет собой предпочтительный пример настоящего изобретения, но его подробное описание не ограничивается приведенными примерами; другие изменения, модификации, замены, комбинации, упрощения, не отступающие от сущности и принципа настоящего изобретения, рассматриваются как эквивалентные замены, и должны быть включены в объем охраны настоящего изобретения.

Claims (17)

1. Кристаллическая форма аллисартана изопроксила, характеризующаяся тем, что указанная кристаллическая форма согласно настоящему изобретению имеет дифракционные пики при углах дифракции (2θ±0,2°) 6,9, 8,0, 13,8, 20,1, 21,1, 22,2, 24.0 и 27,7 на спектрах пРСА.
2. Кристаллическая форма аллисартана изопроксила по п. 1, отличающаяся тем, что указанная кристаллическая форма согласно настоящему изобретению имеет дифракционные пики при углах дифракции (2θ±0,2°) 17,4, 18,9, 19,3, 19,6, 21,5, 22,6, 32.1 и 34,8 на спектрах пРСА.
3. Кристаллический аллисартана изопроксил по п. 1 или 2, отличающийся тем, что указанная кристаллическая форма согласно настоящему изобретению имеет дифракционные пики при углах дифракции (2θ±0,2°) 9.6, 10.0, 13,2, 14,4, 15,9, 18,2, 24,5, 25,0, 28,9, 29,9, 30,3 и 35,1 на спектрах пРСА.
4. Кристаллический аллисартана изопроксил по любому из пп. 1-3, отличающийся тем, что указанная кристаллическая форма согласно настоящему изобретению имеет следующие дифракционные пики, и погрешность 2θ и
Figure 00000022
составляет ±0,2:
Figure 00000023
Figure 00000024
5. Кристаллическая форма аллисартана изопроксила по любому из пп. 1-4, отличающаяся тем, что спектр пРСА указанной кристаллической формы показан на фиг. 1, фиг. 5, фиг. 6 или фиг. 7.
6. Кристаллическая форма аллисартана изопроксила по любому из пп. 1-5, отличающаяся тем, что спектр ДСК указанной кристаллической формы демонстрирует эндотермический пик при 159±3°С.
7. Кристаллическая форма аллисартана изопроксила по любому из пп. 1-6, отличающаяся тем, что указанная кристаллическая форма согласно настоящему изобретению является несольватированной.
8. Кристаллическая форма аллисартана изопроксила по любому из пп. 1-7, отличающаяся тем, что спектр ДСК указанной кристаллической формы показан на фиг. 3.
9. Кристаллическая форма аллисартана изопроксила по любому из пп. 1-8, отличающаяся тем, что указанная кристаллическая форма аллисартана изопроксила получена согласно способу, включающему следующие этапы:
1) растворяют аллисартана изопроксил в растворителе А и растворителе В при нагревании;
2) кристалл осаждают путем снижения температуры;
3) медленно охлаждают систему растворителей, состоящую из растворителя А и растворителя В, до 0~15°C с дальнейшей кристаллизацией;
4) получают кристаллический аллисартана изопроксил путем разделения и сушки; на указанной стадии 1) растворитель А выбран из группы, состоящей из С34 спиртов или их соответствующих ацетатов; растворитель В выбран из группы, состоящей из С57-алканов.
10. Кристаллическая форма аллисартана изопроксила по п. 9, отличающаяся тем, что указанный растворитель А должен представлять собой один из 2-бутанола, изопропилового спирта или изопропилацетата, указанный растворитель В представляет собой н-гептан, объемное отношение указанных растворителя А и растворителя В составляет 0,5:1~1,5:1.
11. Фармацевтическая композиция аллисартана изопроксила для лечения гипертензивных заболеваний, содержащая кристаллический аллисартана изопроксил по любому из пп. 1-8.
RU2017101600A 2014-06-20 2015-06-05 Кристаллический аллисартана изопроксил, способ его получения и фармацевтическая композиция RU2662816C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410281060.5 2014-06-20
CN201410281060 2014-06-20
PCT/CN2015/080914 WO2015192722A1 (zh) 2014-06-20 2015-06-05 一种阿利沙坦酯结晶及其制备方法及含有该结晶的药物组合物

Publications (3)

Publication Number Publication Date
RU2017101600A RU2017101600A (ru) 2018-07-23
RU2017101600A3 RU2017101600A3 (ru) 2018-07-23
RU2662816C2 true RU2662816C2 (ru) 2018-07-31

Family

ID=54934855

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017101600A RU2662816C2 (ru) 2014-06-20 2015-06-05 Кристаллический аллисартана изопроксил, способ его получения и фармацевтическая композиция

Country Status (10)

Country Link
US (1) US10100039B2 (ru)
EP (1) EP3159336B1 (ru)
JP (1) JP6307634B2 (ru)
KR (1) KR20170040794A (ru)
CN (1) CN106188012B (ru)
CA (1) CA2949155C (ru)
MX (1) MX368783B (ru)
RU (1) RU2662816C2 (ru)
TW (1) TWI532734B (ru)
WO (1) WO2015192722A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974848B (zh) * 2017-10-24 2024-04-02 深圳信立泰药业股份有限公司 阿利沙坦酯钙盐晶型及含有所述钙盐晶型的药物组合物
CN118546100B (zh) * 2024-07-26 2024-09-27 山东信立泰药业有限公司 回收阿利沙坦酯废渣中三苯基甲醚合成四氮唑的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2017733C1 (ru) * 1988-01-07 1994-08-15 Е.И.Дюпон Де Немур Энд Компани Производные имидазола
EP1988090A1 (en) * 2006-02-20 2008-11-05 Shanghai Allist Pharmaceutical., Inc. Imidazol-5-carboxylic acid derivatives, preparation methods and use therrof
EP2103610A1 (en) * 2006-12-06 2009-09-23 Shanghai Allist Pharmaceutical., Inc. The salts of imidazol-5-carboxylic acid derivatives, preparation methods and use therrof
EP2157089A1 (en) * 2007-06-07 2010-02-24 Shanghai Allist Pharmaceutical., Inc. The therapeutic uses of imidazol-5-carboxylic acid derivatives
EP2213669A1 (en) * 2007-10-11 2010-08-04 Shanghai Allist Pharmaceuticals, Inc. Crystalline imidazol-5-carboxylic acid derivate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707012B2 (ja) * 1991-12-06 1998-01-28 キッセイ薬品工業株式会社 N−tert−ブチル−1−メチル−3,3−ジフェニルプロピルアミン塩酸塩の結晶多形およびその製造方法
JP2004175788A (ja) * 2002-09-13 2004-06-24 Mitsubishi Pharma Corp 2−アミノ−6−(4−メトキシフェニルチオ)−9−[2−(ホスホノメトキシ)エチル]プリンビス(2,2,2−トリフルオロエチル)エステルの結晶
WO2006001266A1 (ja) * 2004-06-23 2006-01-05 Banyu Pharmaceutical Co., Ltd. 2-アリールプリン誘導体の製造方法
US20070167480A1 (en) * 2005-12-19 2007-07-19 Sicor Inc. Pure and stable tiotropium bromide
CN101195615B (zh) * 2006-12-06 2013-03-27 深圳市信立泰资产管理有限公司 咪唑-5-羧酸衍生物的盐、制备方法及其药物组合物
CN101596189A (zh) * 2008-06-05 2009-12-09 上海艾力斯生物医药有限公司 含有咪唑-5-羧酸类衍生物的药用组合物
JP2010077070A (ja) * 2008-09-26 2010-04-08 Tokuyama Corp イミダゾール誘導体の精製方法
JP2011105685A (ja) * 2009-11-20 2011-06-02 Astellas Pharma Inc フェネチルアミン化合物の結晶
JP5643844B2 (ja) * 2010-02-05 2014-12-17 サイノファーム タイワン リミテッド トピラマート(topiramate)の製造方法
CN103012377A (zh) * 2011-09-27 2013-04-03 江苏艾力斯生物医药有限公司 一种咪唑-5-羧酸酯的重结晶方法
CN103930419B (zh) * 2011-09-30 2016-06-01 广东东阳光药业有限公司 阿齐沙坦的晶型及其制备方法
CN103193626B (zh) * 2012-01-10 2016-05-11 上海天伟生物制药有限公司 一种前列腺素类似物的晶型及其制备方法和用途
CN103965171A (zh) 2014-04-30 2014-08-06 上海艾力斯医药科技有限公司 一种阿利沙坦酯的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2017733C1 (ru) * 1988-01-07 1994-08-15 Е.И.Дюпон Де Немур Энд Компани Производные имидазола
EP1988090A1 (en) * 2006-02-20 2008-11-05 Shanghai Allist Pharmaceutical., Inc. Imidazol-5-carboxylic acid derivatives, preparation methods and use therrof
EP2103610A1 (en) * 2006-12-06 2009-09-23 Shanghai Allist Pharmaceutical., Inc. The salts of imidazol-5-carboxylic acid derivatives, preparation methods and use therrof
EP2157089A1 (en) * 2007-06-07 2010-02-24 Shanghai Allist Pharmaceutical., Inc. The therapeutic uses of imidazol-5-carboxylic acid derivatives
EP2213669A1 (en) * 2007-10-11 2010-08-04 Shanghai Allist Pharmaceuticals, Inc. Crystalline imidazol-5-carboxylic acid derivate

Also Published As

Publication number Publication date
TW201600518A (zh) 2016-01-01
EP3159336A1 (en) 2017-04-26
RU2017101600A (ru) 2018-07-23
EP3159336A4 (en) 2017-11-15
TWI532734B (zh) 2016-05-11
RU2017101600A3 (ru) 2018-07-23
JP2017518351A (ja) 2017-07-06
EP3159336B1 (en) 2019-08-07
MX2016017141A (es) 2017-08-07
WO2015192722A1 (zh) 2015-12-23
CA2949155A1 (en) 2015-12-23
CN106188012B (zh) 2018-11-30
US20170152243A1 (en) 2017-06-01
CA2949155C (en) 2022-05-31
KR20170040794A (ko) 2017-04-13
JP6307634B2 (ja) 2018-04-04
CN106188012A (zh) 2016-12-07
US10100039B2 (en) 2018-10-16
MX368783B (es) 2019-10-15

Similar Documents

Publication Publication Date Title
JP2019137699A (ja) 2−ヒドロキシ−6−((2−(1−イソプロピル−1h−ピラゾール−5−イル)ピリジン−3−イル)メトキシ)ベンズアルデヒドの遊離塩基の結晶多形
DK3045175T3 (en) POLYMORPHE FORMS OF 3- (4-AMINO-1-OXO-1,3-DIHYDROISOINDOL-2-YL) -PIPERIDIN-2,6-DION
JP2020183408A (ja) {[5−(3−クロロフェニル)−3−ヒドロキシピリジン−2−カルボニル]アミノ}酢酸の固体形態、組成物、及びその使用
KR20160121544A (ko) N-{4-[(6,7-다이메톡시퀴놀린-4-일)옥시]페닐}-n''-(4-플루오로페닐) 사이클로프로판-1,1-다이카복스아마이드의 결정질 고체 형태, 제조 방법 및 사용 방법
KR20220008273A (ko) 암 치료를 위한 raf 억제제로서의 n-(3-(2-(2-하이드록시에톡시)-6-모르폴리노피리딘-4-일)-4-메틸페닐)-2 (트리플루오로메틸)이소니코틴아미드의 새로운 결정질 형태
WO2016118858A1 (en) Solid forms of 2-(5-(3-fluorophenyl)-3-hydroxypicolinamido)acetic acid, compositions, and uses thereof
RU2704795C2 (ru) Кристаллическая форма бисульфата ингибитора jak и способ ее получения
JP2020500925A (ja) {[5−(3−クロロフェニル)−3−ヒドロキシピリジン−2−カルボニル]アミノ}酢酸の新規結晶形及びその製造方法
EP4374925A2 (en) Polymorphic forms of rad1901-2hcl
JP2023503833A (ja) タファミジスの結晶形及びその調製方法及びその使用
RU2662816C2 (ru) Кристаллический аллисартана изопроксил, способ его получения и фармацевтическая композиция
WO2013126394A1 (en) Solid forms of 3-(4-nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione
JP2023542816A (ja) 化合物x7塩酸塩の結晶及びその調製方法と用途
JP5847567B2 (ja) 活性医薬成分の結晶形態
TWI336695B (en) Stable polymorph of bifeprunox mesilate (7-[4-([1,1'-biphenyl]-3-ylmethyl)-1-piperazinyl]-2(3h)-benzoxazolone monomethanesulfonate)
EP4370513A1 (en) Mandelate form of 1-(4-(((6-amino-5-(4-phenoxyphenyl)pyrimidin-4-yl)amino)methyl)piperidin-1-yl)prop-2-en-1-one
JP2021532133A (ja) 4,5−ジヒドロキシ−2−(4−メチルベンジル)イソフタロニトリル溶媒和物およびその結晶形
JP2022553706A (ja) 低酸素誘導因子-プロリルヒドロキシラーゼ阻害剤の結晶形
EP1996575A2 (en) Crystal form of besipirdine chlorhydrate, process preparation and use thereof
TW201636346A (zh) 二-匹多莫德苄乙二胺及其固體型
WO2013078973A1 (zh) 一种大粒径达沙替尼及其制备和应用
SK562010A3 (sk) Alpha crystalline form of Imatinib mesylate with new habit and method for its preparation and use