RU2646655C2 - ПОКРЫТЫЙ СПЛАВОМ НА ОСНОВЕ Al СТАЛЬНОЙ МАТЕРИАЛ С ОТЛИЧНОЙ КОРРОЗИОННОЙ СТОЙКОСТЬЮ ПОСЛЕ НАНЕСЕНИЯ ПОКРЫТИЙ - Google Patents

ПОКРЫТЫЙ СПЛАВОМ НА ОСНОВЕ Al СТАЛЬНОЙ МАТЕРИАЛ С ОТЛИЧНОЙ КОРРОЗИОННОЙ СТОЙКОСТЬЮ ПОСЛЕ НАНЕСЕНИЯ ПОКРЫТИЙ Download PDF

Info

Publication number
RU2646655C2
RU2646655C2 RU2015144335A RU2015144335A RU2646655C2 RU 2646655 C2 RU2646655 C2 RU 2646655C2 RU 2015144335 A RU2015144335 A RU 2015144335A RU 2015144335 A RU2015144335 A RU 2015144335A RU 2646655 C2 RU2646655 C2 RU 2646655C2
Authority
RU
Russia
Prior art keywords
layer
based alloy
coating layer
steel material
coating
Prior art date
Application number
RU2015144335A
Other languages
English (en)
Other versions
RU2015144335A (ru
Inventor
Синтаро ЯМАНАКА
Дзун МАКИ
Масао КУРОСАКИ
Original Assignee
Ниппон Стил Энд Сумитомо Метал Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ниппон Стил Энд Сумитомо Метал Корпорейшн filed Critical Ниппон Стил Энд Сумитомо Метал Корпорейшн
Publication of RU2015144335A publication Critical patent/RU2015144335A/ru
Application granted granted Critical
Publication of RU2646655C2 publication Critical patent/RU2646655C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к области металлургии, а именно к покрытому сплавом на основе алюминия стальному материалу, используемому в различных областях в качестве коррозионностойкого материала. Коррозионностойкое покрытие сформировано на поверхности стального материала и включает слой покрытия из сплава на основе Al, слой ZnAl2O4 толщиной 0,05-2 мкм, сформированный непосредственно на слое покрытия из сплава на основе Al, и внешний слой, содержащий ZnO и сформированный непосредственно на слое ZnAl2O4. Слой покрытия из сплава на основе Al содержит в мас.%: 10-50 Fe и 3-15 Si. Достигается повышение коррозионной стойкости после нанесения покрытия. 2 н. и 3 з.п. ф-лы, 2 табл.

Description

ОБЛАСТЬ ТЕХНИКИ
[0001] Изобретение относится к покрытому сплавом на основе Al стальному материалу с отличной коррозионной стойкостью после нанесения покрытия.
УРОВЕНЬ ТЕХНИКИ
[0002] В различных областях применяются различные виды коррозионностойких материалов для уменьшения нагрузки от воздействия факторов окружающей среды, снижения стоимости с учетом периода эксплуатации и обеспечения дополнительной безопасности. Примеры их применения включают небольшие компоненты, такие как электронные компоненты, бытовые электроприборы, автомобили, строительные и конструкционные материалы и, кроме того, крупные конструкции, такие как инфраструктурные объекты.
[0003] Стальной материал с покрытием относится к коррозионностойким материалам; особенно часто применяют оцинкованный стальной материал, т.е. с покрытием из Zn. Основные причины того, почему часто применяют оцинкованный стальной материал, заключаются в его относительно низкой цене и протекторном противокоррозийном действии на железную основу, а также в низкой скорости коррозии самого Zn в атмосферных условиях. Помимо оцинкованного стального материала, примеры стального материала с покрытием включают стальной материал с покрытием из Al. Однако стальному материалу с покрытием из Al присущи проблемы, заключающиеся в том, что он не обладает протекторным противокоррозионном действием на железную основу из-за пленки оксидного покрытия, существующей на поверхности слоя его алюминиевого покрытия, а также в том, что он обладает низкой коррозионной стойкостью после нанесения покрытия, поскольку его обрабатываемость химической конверсией недостаточна из-за пленки оксидного покрытия, существующей на поверхности слоя покрытия из Al. С другой стороны, поскольку Al сам по себе обладает более низкой скоростью коррозии, чем Zn, считается, что диапазон применения расширяется, если протекторную коррозионную стойкость и коррозионную стойкость после нанесения покрытия можно обеспечить при помощи слоя покрытия из Al.
[0004] Таким образом, были предложены способы улучшения коррозионной стойкости слоя покрытия из Al. Например, в выложенной заявке на патент Японии № 2003-34845 (патентный документ 1) указано, что при выполнении Al-го покрытия, содержащего 0,5–10% Mg, формируется достаточное количество получаемой при химической конверсии пленки покрытия, так что коррозионная стойкость после нанесения покрытия улучшается. Однако добавление такого активного элемента, как Mg, к Al-му покрытию повышает активность самого слоя Al-го покрытия, так что коррозионная стойкость обнаженной поверхности (коррозионная стойкость в состоянии без покрытия), напротив, снижается.
[0005] Далее, в выложенной заявке на патент Японии № 2007-302982 (патентный документ 2) указано, что нанесение Zn, соединения Zn и т.д. на поверхность слоя Al-го покрытия приводит к улучшению коррозионной стойкости после нанесения покрытия. Однако эффект улучшения коррозионной стойкости после нанесения покрытия все еще недостаточен, поскольку недостаточна адгезия Zn или соединения Zn к покрытию.
СПИСОК ЛИТЕРАТУРЫ
[0006] ПАТЕНТНАЯ ЛИТЕРАТУРА
Патентный документ 1: Выложенная публикация заявки на патент Японии № 2003-34845.
Патентный документ 2: Выложенная публикация заявки на патент Японии № 2007-302982.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
ТЕХНИЧЕСКАЯ ПРОБЛЕМА
[0007] С учетом вышеуказанных проблем задача настоящего изобретения заключается в том, чтобы предложить покрытый сплавом на основе Al стальной материал с протекторной коррозионной стойкостью и улучшенной коррозионной стойкостью после нанесения покрытия, чем у традиционных стальных материалов с покрытием из Al.
РЕШЕНИЕ ПРОБЛЕМЫ
[0008] В результате подробных исследований, направленных на преодоление вышеуказанных проблем, авторы настоящего изобретения обнаружили, что можно получить покрытый сплавом на основе Al стальной материал с протекторным противокоррозионным действием и улучшенной коррозионной стойкостью после нанесения покрытия, чем у традиционных стальных материалов с покрытием на основе Al, путем обеспечения слоя, содержащего ZnO, на поверхности слоя покрытия из сплава на основе Al, выполнения слоя покрытия из сплава на основе Al содержащим Fe и Si, с последующим формированием слоя смешанного оксида, содержащего Zn и Al, между слоем, содержащим ZnO, и слоем покрытия из сплава на основе Al. Сущность настоящего изобретения состоит в следующем.
[0009] (1) Покрытый сплавом на основе Al стальной материал с отличной коррозионной стойкостью после нанесения покрытия, содержащий: стальной материал и слой покрытия, сформированный на поверхности стального материала, причем слой покрытия содержит в мас.%, не менее 10%, но не более 50% Fe, и не менее 3%, но не более 15% Si и
включает:
слой покрытия из сплава на основе Al, сформированный на поверхности стального материала;
слой, содержащий ZnO и сформированный поверх поверхности слоя покрытия из сплава Al; и
слой ZnAl2O4 с толщиной не менее 0,05 мкм, но не более 2 мкм, сформированный между слоем покрытия из сплава Al, и слоем, содержащим ZnO.
(2) Покрытый сплавом на основе Al стальной материал с отличной коррозионной стойкостью после нанесения покрытия по п. 1, причем шероховатость Ra поверхности слоя покрытия находится в диапазоне не менее 1 мкм, но не более 5 мкм.
ПОЛЕЗНЫЕ РЕЗУЛЬТАТЫ ИЗОБРЕТЕНИЯ
[0010] Как описано выше, покрытый сплавом на основе Al стальной материал согласно настоящему изобретению обладает протекторной коррозионной стойкостью, и его коррозионная стойкость после нанесения покрытия может быть гораздо выше, чем у традиционных стальных материалов с Al-м покрытием. Соответственно он применим в бытовых электроприборах, автомобилях, строительных и конструкционных материалах, а также крупных конструкциях, таких как инфраструктурные объекты; таким образом, его промышленный вклад очень велик.
ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
[0011] Далее подробно описан вариант осуществления настоящего изобретения. Покрытый сплавом на основе Al стальной материал в этом варианте осуществления включает стальной материал и слой покрытия, сформированный на поверхности стального материала. Слой покрытия включает: слой покрытия из сплава на основе Al, сформированный на поверхности стального материала; слой, содержащий ZnO и сформированный поверх поверхности слоя покрытия из сплава на основе Al; и слой ZnAl2O4, сформированный между слоем покрытия из сплава на основе Al и слоем, содержащим ZnO. В описании варианта осуществления и в примерах слой, содержащий ZnO, обозначен как "ZnO-содержащий слой".
[0012] Слой покрытия из сплава на основе Al должен содержать Fe. Fe обладает эффектом придания протекторной коррозионной стойкости самому слою покрытия из сплава на основе Al и эффектом повышения шероховатости поверхности слоя покрытия из сплава на основе Al для проявления эффекта зацепления, в результате чего улучшается коррозионная стойкость после нанесения покрытия. Содержание Fe в слое покрытия из сплава на основе Al должно быть не менее 10%, но не более 50% по массе. Когда содержание Fe составляет менее 10%, эффект придания протекторной коррозионной стойкости и эффект повышения шероховатости поверхности слоя покрытия из сплава на основе Al слабы, что нежелательно. Кроме того, когда содержание Fe превышает 50%, сам слой покрытия из сплава на основе Al становится хрупким и проявляет плохую адгезию, что нежелательно.
[0013] Далее, ввиду дополнительного улучшения адгезии покрытия, слой покрытия из сплава на основе Al должен помимо Fe содержать Si в интервале не менее чем 3% но не более чем 15% по массе. При выполнении слоя покрытия из сплава на основе Al содержащим Si можно подавить рост слоя сплава Fe-Al, чтобы улучшить адгезию покрытия. В этой связи, когда содержание Si составляет менее 3%, этот эффект становится слабым, а когда его содержание превышает 15%, адгезия покрытия, напротив, ухудшается.
[0014] Далее, шероховатость Ra поверхности слоя покрытия из сплава на основе Al предпочтительно составляет не менее 1 мкм, но не более 5 мкм. Шероховатость Ra поверхности – это параметр формы поверхности, определяемый стандартом JIS B 0601. Когда шероховатость Ra поверхности меньше 1 мкм, коррозионная стойкость после нанесения покрытия становится низкой из-за недостаточного эффекта зацепления. Когда шероховатость Ra поверхности превышает 5 мкм, неровности становятся слишком большими, что вызывает перепады в толщине пленки, приводя, напротив, к ухудшению коррозионной стойкости. Кстати, в покрытом сплавом на основе Al стальном материале в настоящем варианте осуществления изобретения шероховатость Ra поверхности слоя покрытия из сплава на основе Al отражается на шероховатости поверхности слоя покрытия. Поэтому шероховатость Ra поверхности слоя покрытия из сплава на основе Al находится в пределах диапазона не менее 1 мкм, но не более 5 мкм.
[0015] Кроме того, слой покрытия должен иметь слой ZnAl2O4 непосредственно на слое покрытия из сплава на основе Al, т.е. между ZnO-содержащим слоем и слоем покрытия из сплава на основе Al. Слой ZnAl2O4 обладает эффектом усиления адгезии слоя покрытия из сплава на основе Al и стального материала к ZnO-содержащему слою для улучшения коррозионной стойкости после нанесения покрытия. Слой ZnAl2O4 должен обладать толщиной не менее 0,05 мкм, но не более 2 мкм. Когда его толщина составляет менее 0,05 мкм, ослабевает эффект повышения адгезии для улучшения коррозионной стойкости после нанесения покрытия. Кроме того, когда его толщина превышает 2 мкм, сам слой ZnAl2O4 становится хрупким и легко отслаивается. Отметим, что толщину слоя ZnAl2O4 можно измерить следующим образом: после вырезания произвольного сечения слоя покрытия из сплава на основе Al в этом варианте осуществления его погружают в смолу, полируют и получают изображение этого произвольного сечения при помощи сканирующего электронного микроскопа.
[0016] Покрытый сплавом на основе Al стальной материал должен иметь на своей внешней поверхности ZnO-содержащий слой. ZnO-содержащий слой обладает эффектом придания обрабатываемости химической конверсией, а также служит источником подачи Zn для формирования слоя ZnAl2O4, который необходим для повышения коррозионной стойкости покрытого сплавом на основе Al стального материала в данном варианте осуществления. Количество ZnO-содержащего слоя конкретно не предписано, но когда количество Zn в ZnO-содержащем слое составляет менее 0,4 г/м2, становится трудно сформировать достаточное количество слоя ZnAl2O4. С другой стороны, когда количество Zn превышает 5 г/м2, ухудшается адгезия слоя ZnAl2O4 к слою покрытия из сплава на основе Al или же склонна снижаться свариваемость. Поэтому количество ZnO-содержащего слоя предпочтительно таково, чтобы количество Zn было не меньше 0,4 г/м2, но не более 5 г/м2.
[0017] Компонент, форма и т. д. стального материала, являющегося материалом-основой покрытого сплавом на основе Al стального материала, никак не ограничены. Компонент может быть материалом из мягкой стали или же может быть стальным материалом, содержащим упрочняющий элемент, такой как Si или Mn. Кроме того, форма может представлять собой тонкий лист, толстый лист, стальную трубу, сортовую сталь (стальной профиль) или отливку.
[0018] Далее будет описан способ изготовления покрытого сплавом на основе Al стального материала с отличной коррозионной стойкостью после нанесения покрытия согласно данному варианту осуществления.
Способ изготовления покрытого сплавом на основе Al стального материала согласно данному варианту осуществления включает: стадию формирования слоя покрытия из сплава на основе Al на стальном материале; стадию формирования ZnO-содержащего слоя на поверхности слоя покрытия из сплава на основе Al (непосредственно на нем); и стадию формирования слоя ZnAl2O4 между слоем покрытия из сплава на основе Al и ZnO-содержащим слоем. Далее будут описаны эти стадии.
(Стадия формирования слоя покрытия из сплава на основе Al)
[0019] Обычно в качестве способа формирования слоя покрытия из сплава на основе Al применяют погружение в расплав (горячий метод) или аналогичный. При этом тип погружения в расплав может быть любым из процесса с окислительно-восстановительным балансом, процесса полного окисления, процесса внутреннего окисления, процесса в потоке, процесса с нанесением предварительного покрытия и т. п. Для введения Fe в слой покрытия из сплава на основе Al железо может быть заранее подмешано в содержащую Si ванну для нанесения сплава на основе Al, или же после нанесения покрытия из содержащего Si сплава на основе Al содержащееся в стальном материале железо (Fe) может диффундировать в слой покрытия из сплава на основе Al при нагревании стального материала. Осаждаемое количество слоя покрытия из сплава на основе Al предпочтительно составляет не менее 30 г/м2, но не более 200 г/м2 поверхности. Когда осаждаемое количество составляет менее 30 г/м2, коррозионная стойкость становится довольно плохой, а когда оно превышает 200 г/м2, возникает опасность отслаивания покрытия.
[0020] Для того чтобы шероховатость Ra поверхности слоя покрытия из сплава на основе Al была не менее 1 мкм, но не более 5 мкм, стальной материал, на котором сформирован слой покрытия из сплава на основе Al, нагревают до температуры не менее 850°С, но не более 1000°С в диапазоне не ниже 600°С, но не выше 1000°С при скорости нагрева 1°С/секунду или более и менее 50°С/секунду. В альтернативном варианте, для того чтобы шероховатость Ra поверхности слоя покрытия из сплава на основе Al была не менее 1 мкм, но не более 5 мкм, можно управлять поверхностной шероховатостью Ra поверхности стального материала, на котором еще не сформирован слой покрытия из сплава на основе Al. Однако данный способ управления поверхностной шероховатостью Ra поверхности стального материала подразумевает возможность того, что шероховатость Ra поверхности слоя покрытия из сплава на основе Al изменится в зависимости от количества осаждаемого покрытия. Таким образом, предпочтителен способ управления шероховатостью Ra поверхности слоя покрытия из сплава на основе Al нагревом. Как описано ранее, шероховатость Ra поверхности – это параметр формы поверхности, определяемый стандартом JIS B 0601. Кроме того, способ измерения и оценки шероховатости Ra поверхности конкретно не предписан, и можно использовать любой традиционный и общепринятый способ, например, можно применять способ, предусмотренный стандартом JIS B 0633.
Далее, в процессе нагрева, при контроле шероховатости Ra поверхности можно одновременно осуществлять диффузию Fe в слой покрытия из сплава на основе Al.
(Стадия формирования ZnO-содержащего слоя)
[0021] Пример способа формирования ZnO-содержащего слоя – это способ, в котором жидкость для нанесения покрытия готовят путем примешивания заданного органического связующего в суспензию, содержащую ZnO, и эту жидкость для получения покрытия наносят на поверхность слоя покрытия из сплава на основе Al. В качестве содержащей ZnO суспензии предпочтительно применяют суспензию, в которой порошок ZnO диспергирован в дисперсионной среде, такой как вода. Далее, примерами заданного органического связующего являются смола на основе полиуретана, смола на основе сложного полиэфира, акриловая смола и кремнийорганический аппрет. Кроме того, в состав органических связующих компонентов может быть включен оксид кремния. Эти органические связующие предпочтительно растворимы в воде, так что их можно смешивать с суспензией ZnO. Полученную таким образом жидкость для нанесения покрытия наносят на поверхность слоя покрытия из сплава на основе Al и высушивают.
[0022] В качестве еще одного способа можно использовать способ, в котором порошок ZnO или порошок, содержащий твердую фазу, такую как заданное органическое связующее, наносят при помощи способа нанесения порошка.
[0023] Общее содержание вышеуказанных органических связующих компонентов желательно составляет примерно 5–30% по массовому отношению к ZnO. Когда содержание связующих компонентов составляет не менее 5% по массовому отношению, эффект связующего не проявляется в полной мере, и, соответственно, нанесенная пленка может отслаиваться. Для стабильного обеспечения эффекта связующего содержание связующих компонентов предпочтительнее составляет 10% и более по массовому отношению. С другой стороны, когда содержание связующих компонентов превышает 30% по массовому отношению, во время нагрева появляется заметный запах, что нежелательно.
(Стадия формирования слоя ZnAl2O4)
[0024] Для формирования слоя ZnAl2O4 между ZnO-содержащим слоем и слоем покрытия из сплава на основе Al сначала формируют ZnO-содержащий слой на поверхности слоя покрытия из сплава на основе Al. Затем полученный продукт нагревают в диапазоне 600°С или ниже при скорости нагрева более 25°С/секунду и 100°С/секунду или менее в атмосфере воздуха, нагревают в диапазоне от 600°С до 1000°С или ниже при скорости нагрева 1°С/секунду или более и менее 50°С/секунду и подвергают нагреванию, конечная температура которого лежит в интервале не менее 850°С, но не более 1000°С. То есть, на рубеже 600°С меняется скорость нагрева. После этого осуществляют стадию охлаждения на воздухе или стадию охлаждения со скоростью, равной или большей скорости охлаждения на воздухе.
[0025] Таким образом, на рубеже 600°С скорость нагрева в температурном диапазоне 600°С или ниже и скорость нагрева в температурном диапазоне свыше 600°С меняют. Во время данной стадии ZnO реагирует с Al в слое покрытия из сплава на основе Al, так что между Al в слое покрытия из сплава на основе Al и ZnO-содержащим слоем образуется слой ZnAl2O4. Кроме того, при такой стадии возможно, чтобы образовавшийся слой ZnAl2O4 имел намеченную толщину не менее 0,05 мкм, но не более 2 мкм. Кстати, причина того, почему на этой стадии формируется слой ZnAl2O4 с заданной толщиной, неясна, но далее приведена возможная причина. А именно, в диапазоне 600°С или ниже, когда скорость нагрева составляет менее 25°С/секунду, заметно окисляется сам слой покрытия из сплава на основе Al, а когда скорость нагрева составляет более 100°С/секунду, органическое связующее сгорает недостаточно, оставаясь на поверхности слоя покрытия из сплава на основе Al. Следовательно, реакция с ZnO при последующем нагревании становится недостаточной, так что слой ZnAl2O4 формируется в недостаточной степени. С другой стороны, в диапазоне свыше 600°С, когда скорость нагрева составляет менее 1°С/секунду, слой ZnAl2O4 формируется в избыточной степени и, соответственно, становится хрупким, легко отслаиваясь, а когда скорость нагрева составляет 50°С/секунду или более, слой ZnAl2O4 формируется в недостаточной степени, что приводит к низкой коррозионной стойкости. Считается, что причина, по которой именно 600°С – это точка смены скорости нагрева, связана с тем, что на формирование слоя ZnAl2O4 влияет состояние поверхности слоя покрытия из сплава на основе Al вплоть до 600°С, а формирование слоя ZnAl2O4 в основном протекает при температуре, превышающей 600°С. Другая возможная причина заключается в том, что при смене скорости нагрева при 600°С образуются мелкие трещины на поверхности умеренно сформированного слоя покрытия из сплава на основе Al, что стимулирует формирование ZnAl2O4. Кстати, в этом варианте осуществления скорости нагрева как для диапазона 600°С и ниже, так и для диапазона свыше 600°С и до 1000°С включают диапазон более 25°С/секунду и менее 50°С/секунду. Однако даже в случае, когда нагрев осуществляют при скорости нагрева в этом перекрывающемся диапазоне, скорость нагрева для диапазона 600°С и ниже и скорость нагрева для диапазона свыше 600°С и до 1000°С делают различными. В этом случае скорость нагрева в диапазоне свыше 600°С и до 1000°С предпочтительно меньше, чем скорость нагрева в диапазоне 600°С и ниже. Кроме того, данный процесс нагрева также может служить процессом нагрева для управления шероховатостью Ra поверхности слоя покрытия из сплава на основе Al и процессом нагрева для диффузии Fe в слой покрытия из сплава на основе Al.
[0026] Кроме того, слой покрытия из сплава на основе Al предпочтительно окисляют нагревом в атмосфере до формирования ZnO-содержащего слоя. Например, в качестве такого процесса нагрева можно использовать процесс нагрева слоя покрытия из сплава на основе Al при 300-600°С в течение интервала времени от 30 секунд до 10 минут в атмосфере воздуха. При осуществлении такого процесса нагрева формируется достаточное количество покровной пленки Al2O3 на поверхности слоя покрытия из сплава на основе Al, так что легче протекает реакция: слой Al2O3 + ZnO-содержащий слой → ZnAl2O4. Данный процесс нагрева также может служить процессом нагрева для управления шероховатостью Ra поверхности слоя покрытия из сплава на основе Al и процессом нагрева для диффузии Fe в слой покрытия из сплава на основе Al.
[0027] Как описано выше, в соответствии с данным вариантом осуществления покрытого сплавом на основе Al стального материала, его коррозионная стойкость после нанесения покрытия может быть улучшена гораздо больше, чем у традиционных стальных материалов с Al-м покрытием, благодаря протекторному противокоррозионному действию Zn. Кроме того, благодаря присутствию слоя ZnAl2O4 может улучшаться обрабатываемость.
ПРИМЕРЫ
[0028] Далее будут подробно описаны примеры настоящего изобретения.
Сначала формировали слои покрытия из сплава на основе Al на материалах из холоднокатаной стали с толщиной листа 1,2 мм, содержащей компоненты, указанные в Таблице 1, горячим методом погружения в расплав. В Таблице 1 представлены прочие компоненты, помимо Fe, материалов из холоднокатаной стали. Погружение в расплав осуществляли на линии типа печь безокислительного нагрева – восстановительная печь. Затем, после нанесения покрытия, количество осажденного покрытия доводили до 40 г/м2 поверхности методом струйной регулировки. После этого полученные продукты охлаждали и подвергали обработке с нулевым узором кристаллизации («без блесток»). Состав ванны для нанесения покрытия задавали таким: Al-10% Si; а температуру ванны для нанесения покрытия задавали равной 660°С.
[0029]
Таблица 1
(мас.%)
C Si Mn P S Ti B Al
0,22 0,12 1,25 0,01 0,005 0,2 0,003 0,04
[0030] Жидкость для нанесения покрытия, в которой были смешаны суспензия ZnO и связующее, содержавшее уретановую смолу, наносили на поверхности изготовленных таким образом слоев покрытия из сплава на основе Al при помощи устройства для нанесения покрытий валиком, а полученные продукты нагревали до примерно 80°С для сушки. Отметим, что массовое отношение уретановой смолы к ZnO задавали равным 20%. Наносимое количество жидкости для нанесения покрытия задавали таким, чтобы количество Zn составляло 1,0 г/м2. Затем их нагревали при условиях, указанных в Таблице 2, и охлаждали на воздухе, при этом железо (Fe) диффундировало в слои покрытия из сплава на основе Al, а также формировались слои ZnAl2O4 между ZnO-содержащими слоями и слоями покрытия из сплава на основе Al. После этого оценивали коррозионную стойкость после нанесения покрытия и обрабатываемость в качестве примеров характеристик покрытых сплавом на основе Al стальных материалов при помощи следующих способов.
(Коррозионная стойкость после нанесения покрытия)
[0031] Каждый из полученных покрытых сплавом на основе Al стальных материалов разрезали до размеров 70×150 мм, посредством чего изготовили образцы. Затем, после щелочного обезжиривания изготовленных образцов их подвергали химической конверсии при помощи PALBOND S×35 (производства Nihon Parkerizing Co., Ltd.) согласно инструкции производителя, а затем наносили катионную краску электроосаждения (POWERNICS 110: изготовлено NIPPON PAINT Co., Ltd.) толщиной 15 мкм, после чего получали поперечный разрез. Затем эти образцы подвергали 300-цикловому испытанию методом M610, установленным Японской организацией стандартизации автомобилей (JASO). Коррозионную стойкость после нанесения покрытия оценивали на основании следующих критериев: 1 означает отбраковку, а 2 и 3 означают приемку.
[0032] (Разбухание пленки покрытия)
1: более 0,5 мм
2: 0,2–0,5 мм
3: менее 0,2 мм
(Обрабатываемость)
[0033] Каждый из полученных покрытых сплавом на основе Al стальных материалов разрезали на образцы размерами 30×70 мм и подвергали испытанию на изгиб под 90 градусов с радиусом кривизны 1 мм. После этого их изгибали обратно, на изогнутые участки приклеивали клейкую ленту и измеряли ширину отслаивающегося покрытия после удаления клейкой ленты. Обрабатываемость оценивали на основе следующих критериев: 1 означает отбраковку, а 2 и 3 означают приемку.
[0034] (Ширина отслаивания покрытия или пленки покрытия)
1: более 5,0 мм
2: 2,0–5,0 мм
3: менее 2,0 мм
[0035] Результаты приведены в табл. 2. Результаты показали, что примеры, попадающие в интервалы по настоящему изобретению, были хорошими как по обрабатываемости, так и по коррозионной стойкости после нанесения покрытия, но сравнительные примеры, выходящие за интервалы по настоящему изобретению, были плохими по обрабатываемости или по коррозионной стойкости после нанесения покрытия.
[0036]
Таблица 2
Слой покрытия из сплава на основе Al Условия нагрева после нанесения покрытия Толщина ZnAl2O4 (мкм) Характеристики Примечание
Концентрация Fe в покрытии
(%)
Концентрация Si в покрытии
(%)
Температура ванны
(°C)
Удельное количество нанесенного покрытия
(г/м2)
Ra
(мкм)
Скорость нагрева (600°C или менее)
(°C/с)
Скорость нагрева (свыше 600°C и 1000°C или ниже)
(°C/с)
Температура нагрева
(°C)
Обрабатываемость Коррозионная стойкость после нанесения покрытия
1 8 10 660 42 3,1 70 30 900 0,5 3 1 Сравн. пример
2 40 1 660 42 3,2 65 30 900 0,6 1 2 Сравн. пример
3 8 1 660 41 2,5 60 28 900 0,5 1 1 Сравн. пример
4 15 10 660 43 2,4 65 29 900 0,7 3 2 Пример
5 28 10 660 44 2,5 68 30 900 0,6 3 2 Пример
6 39 10 660 42 3,1 71 28 900 0,5 3 3 Пример
7 48 10 660 41 2,9 70 27 900 0,8 2 3 Пример
8 55 10 660 42 2,2 75 30 900 0,5 1 3 Сравн. пример
9 40 25 660 43 2,8 77 28 900 0,6 1 2 Сравн. пример
10 55 25 660 42 2,2 75 30 900 0,5 1 3 Сравн. пример
11 39 10 660 42 0,6 75 33 950 0,7 3 2 Пример
12 40 11 660 40 1,2 78 34 900 0,7 3 2 Пример
13 41 9 660 41 2,3 75 34 900 0,8 3 3 Пример
14 42 10 660 42 3,4 50 13 900 1,2 3 3 Пример
15 40 9 660 40 4,8 75 30 850 0,7 3 2 Пример
16 41 10 660 40 5,8 35 10 800 1,1 3 2 Пример
17 41 11 660 42 5 120 38 650 0,02 3 1 Сравн. пример
18 42 10 660 43 3,1 90 35 900 0,1 3 2 Пример
19 45 10 660 42 3,1 85 34 900 0,5 3 3 Пример
20 43 11 660 43 3,1 55 34 900 1,1 3 3 Пример
21 42 10 660 44 3,3 26 35 950 1,8 2 3 Пример
22 41 9 660 42 3,4 20 5 1200 2,6 1 3 Сравн. пример
23 43 10 660 15 0,2 65 25 950 0,8 3 2 Пример
24 43 10 660 35 1,2 60 25 950 0,9 3 3 Пример
25 39 11 660 60 3,2 58 24 950 0,7 3 3 Пример
26 42 10 660 190 3,8 61 25 950 0,8 3 3 Пример
27 41 9 660 250 4,5 62 23 950 0,8 2 3 Пример
28 43 10 660 41 3,2 10 25 950 0,01 3 1 Сравн. пример
29 45 10 660 42 3,1 120 25 950 0,02 3 1 Сравн. пример
30 44 10 660 42 3,2 58 0,8 950 3,1 1 3 Сравн. пример
31 45 10 660 42 3,1 61 55 950 0,04 3 1 Сравн. пример
32 43 9 660 43 3,3 40 40 950 0,04 2 1 Сравн. пример
[0037] Как видно из сравнительных примеров №№ 30, 31, когда скорость нагрева выше 600°С и до 1000°С не попадает в интервал 1°С/секунду или более и менее 50°С/секунду, коррозионная стойкость после нанесения покрытия низкая. Далее, как видно из сравнительных примеров №№ 28, 29, когда скорость нагрева в диапазоне до 600°С не попадает в интервал более 25°С/секунду и менее 100°С/секунду, коррозионная стойкость после нанесения покрытия низкая. Далее, № 32 – это результат, когда нагрев осуществляли без изменения скорости нагрева, и у него плохая коррозионная стойкость после нанесения покрытия. Возможная причина этого заключается в том, что между ZnO-содержащим слоем и слоем покрытия из сплава на основе Al не сформировался слой ZnAl2O4 с толщиной не менее 0,05 мкм, но не более 2 мкм, поскольку условия нагрева после нанесения покрытия выходят за интервалы по настоящему изобретению.
[0038] До сих пор были описаны предпочтительный вариант осуществления и примеры настоящего изобретения, но настоящее изобретение не ограничено этими вариантами осуществления изобретения, и в них можно внести различные модификации и изменения, не выходя за его объем.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
[0039] Как описано выше, в случае покрытого сплавом на основе Al стального материала согласно настоящему изобретению его коррозионная стойкость после нанесения покрытия может быть гораздо лучше, чем у традиционных стальных материалов с Al-м покрытием, и поэтому он применим в бытовых электроприборах, автомобилях, строительных и конструкционных материалах и, кроме того, в крупных конструкциях, таких как инфраструктурные объекты, и его промышленный вклад очень велик.

Claims (12)

1. Коррозионностойкое покрытие, сформированное на поверхности стального материала, характеризующееся тем, что оно включает:
слой покрытия из сплава на основе Al;
слой ZnAl2O4 толщиной 0,05-2 мкм, сформированный непосредственно на слое покрытия из сплава на основе Al; и
внешний слой, содержащий ZnO и сформированный непосредственно на слое ZnAl2O4,
при этом слой покрытия из сплава на основе Al содержит в мас.%: 10-50 Fe и 3-15 Si.
2. Покрытие по п. 1, в котором шероховатость Ra поверхности слоя покрытия из сплава на основе Al составляет 1-5 мкм.
3. Покрытие по п. 1, в котором количество Zn в содержащем ZnO слое составляет 0,4-5 г/м2.
4. Покрытие по п. 1, в котором осажденное количество слоя покрытия из сплава на основе Al составляет 30-200 г/м2 поверхности.
5. Способ получения коррозионностойкого покрытия по любому из пп. 1-4, характеризующийся тем, что он включает следующие этапы:
формирование на поверхности стального материала слоя покрытия из сплава на основе Al;
формирование внешнего слоя, содержащего ZnO;
формирование слоя ZnAl2O4 между слоем покрытия из сплава на основе Al и содержащим ZnO слоем путем нагрева в диапазоне температур 600°С или ниже со скоростью нагрева более 25°С/секунду и 100°С/секунду или менее, нагрева в диапазоне температур выше 600°С и 1000°С или ниже со скоростью нагрева 1°С/секунду или более и менее 50°С/секунду при конечной температуре нагрева в диапазоне температур 850-1000°С и последующего охлаждения.
RU2015144335A 2013-05-07 2014-04-17 ПОКРЫТЫЙ СПЛАВОМ НА ОСНОВЕ Al СТАЛЬНОЙ МАТЕРИАЛ С ОТЛИЧНОЙ КОРРОЗИОННОЙ СТОЙКОСТЬЮ ПОСЛЕ НАНЕСЕНИЯ ПОКРЫТИЙ RU2646655C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013-097550 2013-05-07
JP2013097550 2013-05-07
PCT/JP2014/060910 WO2014181653A1 (ja) 2013-05-07 2014-04-17 塗装後耐食性に優れるAl系合金めっき鋼材

Publications (2)

Publication Number Publication Date
RU2015144335A RU2015144335A (ru) 2017-06-13
RU2646655C2 true RU2646655C2 (ru) 2018-03-06

Family

ID=51867135

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015144335A RU2646655C2 (ru) 2013-05-07 2014-04-17 ПОКРЫТЫЙ СПЛАВОМ НА ОСНОВЕ Al СТАЛЬНОЙ МАТЕРИАЛ С ОТЛИЧНОЙ КОРРОЗИОННОЙ СТОЙКОСТЬЮ ПОСЛЕ НАНЕСЕНИЯ ПОКРЫТИЙ

Country Status (14)

Country Link
US (1) US10174413B2 (ru)
EP (1) EP3000916B1 (ru)
JP (1) JP6044711B2 (ru)
KR (1) KR101734745B1 (ru)
CN (1) CN105189818B (ru)
BR (1) BR112015026525B1 (ru)
CA (1) CA2909300C (ru)
ES (1) ES2768627T3 (ru)
MX (1) MX2015014709A (ru)
MY (1) MY174906A (ru)
PL (1) PL3000916T3 (ru)
RU (1) RU2646655C2 (ru)
TW (1) TWI519410B (ru)
WO (1) WO2014181653A1 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200232077A1 (en) * 2017-03-27 2020-07-23 Nippon Steel Corporation Al-based plated steel plate
CN110291226A (zh) * 2017-03-27 2019-09-27 日本制铁株式会社 Al系镀覆钢板
TWI664301B (zh) * 2017-06-02 2019-07-01 Nippon Steel & Sumitomo Metal Corporation 熱壓印構件
CN107739809B (zh) * 2017-10-24 2019-03-08 浙江博星工贸有限公司 一种奥氏体不锈钢钢带的固溶处理方法
KR102193650B1 (ko) * 2019-06-11 2020-12-21 충남대학교산학협력단 아연 알루미네이트 박막의 소수성 표면개질 방법
KR102311502B1 (ko) * 2019-12-20 2021-10-13 주식회사 포스코 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법
JP7288228B2 (ja) * 2020-05-18 2023-06-07 日本製鉄株式会社 ホットスタンプ成形体及びその製造方法並びにAlめっき鋼板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641364A (en) * 1979-09-10 1981-04-18 Mazda Motor Corp Forming method for alumina coating having exfoliation resistance
JP2011149084A (ja) * 2010-01-25 2011-08-04 Nippon Steel Corp 昇温特性に優れた熱間プレス用Alめっき鋼板及びその製造方法
RU2466210C2 (ru) * 2008-04-22 2012-11-10 Ниппон Стил Корпорейшн Стальной лист с металлическим покрытием и способ горячей штамповки стального листа с металлическим покрытием

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2648679B2 (ja) * 1992-10-20 1997-09-03 新日本製鐵株式会社 耐食性と加工性に優れた塗装アルミメッキ鋼板の製造法
JPH06330346A (ja) * 1993-05-24 1994-11-29 Nippon Steel Corp アルミメッキ鋼板
JP4023710B2 (ja) 2001-06-25 2007-12-19 新日本製鐵株式会社 耐食性,耐熱性に優れたホットプレス用アルミ系めっき鋼板およびそれを使用した自動車用部材
KR20070087240A (ko) 2001-06-15 2007-08-27 신닛뽄세이테쯔 카부시키카이샤 고강도 알루미늄계 합금 도금 강판의 열간 프레스 방법
JP5005254B2 (ja) 2006-05-15 2012-08-22 新日本製鐵株式会社 昇温特性、加工性、および塗装後耐食性に優れたホットプレス用Alめっき鋼材
JP5476676B2 (ja) 2008-04-22 2014-04-23 新日鐵住金株式会社 ホットプレス部材及びその製造方法
EP2312005B1 (en) 2008-07-11 2020-01-15 Nippon Steel Corporation Aluminum plated steel sheet for rapid heating hot-stamping, production method of the same and rapid heating hot-stamping method by using this steel sheet
US9037279B2 (en) * 2009-09-09 2015-05-19 Taiwan Semiconductor Manufacturing Company, Ltd. Clustering for prediction models in process control and for optimal dispatching
JP5263258B2 (ja) 2010-10-25 2013-08-14 新日鐵住金株式会社 高強度自動車部品の製造方法および高強度部品
WO2012137687A1 (ja) * 2011-04-01 2012-10-11 新日本製鐵株式会社 塗装後耐食性に優れたホットスタンプ成形された高強度部品およびその製造方法
JP5692152B2 (ja) * 2012-04-25 2015-04-01 新日鐵住金株式会社 熱間プレス用Al系めっき鋼板とその熱間プレス方法及び高強度自動車部品
JP5692148B2 (ja) 2012-04-18 2015-04-01 新日鐵住金株式会社 熱間プレス用Al系めっき鋼板及びその熱間プレス方法
CA2867655C (en) 2012-04-18 2018-03-06 Nippon Steel & Sumitomo Metal Corporation Al-plated steel sheet, method for hot-pressing al-plated steel sheet, and automotive part

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641364A (en) * 1979-09-10 1981-04-18 Mazda Motor Corp Forming method for alumina coating having exfoliation resistance
RU2466210C2 (ru) * 2008-04-22 2012-11-10 Ниппон Стил Корпорейшн Стальной лист с металлическим покрытием и способ горячей штамповки стального листа с металлическим покрытием
JP2011149084A (ja) * 2010-01-25 2011-08-04 Nippon Steel Corp 昇温特性に優れた熱間プレス用Alめっき鋼板及びその製造方法

Also Published As

Publication number Publication date
PL3000916T3 (pl) 2020-06-01
EP3000916A4 (en) 2017-02-22
CN105189818B (zh) 2017-09-12
ES2768627T3 (es) 2020-06-23
BR112015026525B1 (pt) 2021-08-31
RU2015144335A (ru) 2017-06-13
JP6044711B2 (ja) 2016-12-14
KR101734745B1 (ko) 2017-05-11
TWI519410B (zh) 2016-02-01
TW201511933A (zh) 2015-04-01
US10174413B2 (en) 2019-01-08
EP3000916A1 (en) 2016-03-30
BR112015026525A2 (pt) 2017-07-25
EP3000916B1 (en) 2019-12-11
CA2909300A1 (en) 2014-11-13
KR20150133851A (ko) 2015-11-30
JPWO2014181653A1 (ja) 2017-02-23
MY174906A (en) 2020-05-21
WO2014181653A1 (ja) 2014-11-13
MX2015014709A (es) 2016-03-07
CA2909300C (en) 2018-07-31
US20160068942A1 (en) 2016-03-10
CN105189818A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
RU2646655C2 (ru) ПОКРЫТЫЙ СПЛАВОМ НА ОСНОВЕ Al СТАЛЬНОЙ МАТЕРИАЛ С ОТЛИЧНОЙ КОРРОЗИОННОЙ СТОЙКОСТЬЮ ПОСЛЕ НАНЕСЕНИЯ ПОКРЫТИЙ
CN103732780B (zh) 熔融Zn-Al合金镀覆钢板及其制造方法
CA2911442C (en) Galvannealed steel sheet and manufacturing method thereof
JP5655981B1 (ja) 耐黒変性と耐食性に優れた亜鉛めっき鋼板及びその製造方法
US20140054518A1 (en) Dry-in-place corrosion-resistant coating for zinc or zinc-alloy coated substrates
CN116685706A (zh) 镀覆钢材
JPH04235265A (ja) プレス成形性および耐パウダリング性の優れた合金化溶融亜鉛めっき鋼板の製造方法
JPH06128713A (ja) 耐食性と加工性に優れた塗装アルミメッキ鋼板の製造法
JP5533730B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
EP2785469B1 (en) Dry-in-place corrosion-resistant coating for zinc or zinc-alloy coated substrates
JPH07316763A (ja) 塗装鋼板素材用めっき鋼板
JP2004176131A (ja) 鮮映性の優れた高耐食性塗装鋼板
JPH03243755A (ja) プレス成形性に優れた有機複合合金化溶融亜鉛めっき鋼板
JP5119833B2 (ja) 表面処理鋼板
JP3845445B2 (ja) 高耐食表面処理鋼板およびその製造方法
JPH04360A (ja) 加工性に優れた合金化溶融亜鉛めっき鋼板
JP3275686B2 (ja) プレス成形性に優れた合金化溶融亜鉛めっき鋼板
JP2959434B2 (ja) 電着塗装性に優れた合金化溶融亜鉛めっき鋼板
JP2000119864A (ja) クロメート処理溶融めっき鋼板の製造方法
JPH11140613A (ja) 耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板
JPH10317160A (ja) クロメート処理鋼板の製造方法
JPH0543780B2 (ru)
JPH04359A (ja) 耐食性に優れた合金化溶融亜鉛めっき鋼板
JP2004060051A (ja) 加熱後耐食性、環境適合性に優れためっき鋼材用表面処理組成物およびめっき鋼材の製造方法ならびにめっき鋼材
JPH04276053A (ja) プレス成形性および耐パウダリング性の優れた合金化溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner