RU2619908C2 - Гибкое квантование - Google Patents
Гибкое квантование Download PDFInfo
- Publication number
- RU2619908C2 RU2619908C2 RU2012156159A RU2012156159A RU2619908C2 RU 2619908 C2 RU2619908 C2 RU 2619908C2 RU 2012156159 A RU2012156159 A RU 2012156159A RU 2012156159 A RU2012156159 A RU 2012156159A RU 2619908 C2 RU2619908 C2 RU 2619908C2
- Authority
- RU
- Russia
- Prior art keywords
- quantization
- quantization parameter
- image data
- digital image
- coefficients
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
- H04N19/126—Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
- Color Television Systems (AREA)
Abstract
Изобретение относится к кодированию цифровых мультимедийных данных с преобразованием. Техническим результатом является обеспечение гибкого квантования по различным измерениям кодированных цифровых мультимедийных данных. Предложенный цифровой мультимедийный кодер/декодер использует метод гибкого квантования, который предоставляет возможность изменять квантование по различным измерениям закодированных цифровых мультимедийных данных, включающим пространственные каналы, каналы частотных поддиапазонов и цветовые каналы. Кодек эффективно использует схему сигнализации для сигнализации различных перестановок комбинаций гибкого квантования для исходных сценариев использования. Когда выбор квантователя доступен, кодек эффективно кодирует текущий квантователь, определяя подмножество квантователей, и индексирует текущий квантователь из набора. 5 н. и 9 з.п. ф-лы, 15 ил.
Description
Уровень техники изобретения
1. Блочное, основанное на преобразовании, кодирование
Кодирование с преобразованием - это способ сжатия, используемый во многих системах сжатия звука, изображений и видео. Несжатое цифровое изображение и видео типично представляется или захватывается в виде дискретных выборок элементов или цветов картинки на позициях в кадре изображения или видео, скомпонованном в двумерной (2D) сетке. Это указывается ссылкой как представление изображения или видео в пространственной области. Например, типичный формат для изображений состоит из потока 24-битных дискретных выборок элементов цветной картинки, скомпонованных в виде сетки. Каждая дискретная выборка, среди прочего, является числом, представляющим цветовые компоненты на позиции пикселя в сетке в пределах цветового пространства, такого как RGB или YIQ, помимо прочих. Различные системы изображения и видео могут использовать различные цветовые, пространственные и временные разрешения дискретизации. Аналогично, цифровое аудио типично представляется как выбираемый по времени поток звуковых сигналов. Например, типичный звуковой формат состоит из потока 16-битных амплитудных дискретных выборок звукового сигнала, взятых с постоянными временными интервалами.
Несжатые цифровые сигналы звука, изображения и видео могут расходовать значительную запоминающую и пропускную способность. Кодирование с преобразованием уменьшает размер цифрового звука, изображений и видео посредством преобразования представления сигнала в пространственной области в представление в частотной области (или другой аналогичной области преобразования), а затем, уменьшения разрешения определенных, в целом менее воспринимаемых частотных компонентов представления в области преобразования. Это, как правило, производит гораздо менее воспринимаемое ухудшение цифрового сигнала в сравнении с уменьшением цветового или пространственного разрешения изображений или видео в пространственной области, или звука - во временной области.
Более конкретно, типичный блочный основанный на преобразовании кодек 100, показанный на фиг.1, делит пиксели несжатого цифрового изображения на двумерные блоки фиксированного размера (X1,...,Xn), при этом каждый блок, возможно, перекрывается другими блоками. Линейное преобразование 120-121, которое производит анализ пространственных частот, применяется к каждому блоку, который конвертирует разнесенные дискретные выборки в пределах блока в набор коэффициентов частот (или преобразования), обычно представляющих мощность цифрового сигнала в соответствующих полосах частот по блочному интервалу. Для сжатия коэффициенты преобразования могут быть избирательно квантованы 130 (т.е. уменьшены в разрешении, например, отбрасыванием наименее значимых битов значений коэффициентов или, в ином случае, преобразованием значений в числовом множестве с более высоким разрешением в более низкое разрешение), а также закодированы 130 энтропийно или c переменной длиной в сжатый поток данных. При декодировании коэффициенты преобразования обратно преобразуются 170-171, чтобы приблизительно восстановить исходный выбираемый по цвету/пространству сигнал изображения/видео (восстановленные блоки ,... ).
Блочное преобразование 120-121 может быть задано как математическая операция над вектором x размерности N. Более часто операцией является линейное умножение, генерирующее выход y=Mx области преобразования, M является матрицей преобразования. Когда входные данные имеют произвольную длину, они сегментируются на N-мерные векторы, а блочное преобразование применяется к каждому сегменту. В целях сжатия данных выбраны обратимые блочные преобразования. Другими словами, матрица M является обратимой. В многочисленных измерениях (например, для изображения и видео) блочные преобразования типично реализованы как раздельные операции. Матричное умножение применяется раздельно вдоль каждого измерения данных (т.е. как строк, так и столбцов).
Для сжатия коэффициенты преобразования (компоненты вектора y) могут быть выборочно квантованы (т.е. уменьшены по разрешению, например, отбрасыванием наименее значимых битов значений коэффициентов или, в ином случае, отображением значений в числовом множестве с более высоким разрешением в более низкое разрешение), а также закодированы энтропийно или c переменной длиной в сжатый поток данных.
При декодировании в декодере 150, инверсия этих операций (деквантование/энтропийное декодирование 160 и обратное блочное преобразование 170-171) применяется на стороне декодера 150, как показано на фиг.1. При восстановлении данных, обратная матрица M-1 (обратное преобразование 170-171) применяется в качестве множителя к данным области преобразования. При применении к данным области преобразования, обратное преобразование приближенно восстанавливает исходные цифровые мультимедийные данные временной области или пространственной области.
Во многих приложениях кодирования на основе блочного преобразования преобразование желательно обратимое, чтобы поддерживать сжатие, как с потерями, так и без потерь, в зависимости от коэффициента квантования. При отсутствии квантования (обычно представляемого как коэффициент квантования 1), например, кодек, использующий обратимое преобразование, может точно воспроизводить входные данные при декодировании. Тем не менее, требование обратимости в этих приложениях ограничивает выбор преобразований, на основе которых может быть разработан кодек.
Многие системы сжатия изображений и видео, такие как MPEG и Windows Media, помимо прочих, используют преобразования на основе дискретного косинусного преобразования (DCT). DCT, как известно, имеет подходящие свойства энергетического сжатия, что приводит к практически оптимальному сжатию данных. В этих системах сжатия обратное DCT (IDCT) используется в циклах восстановления как в кодере, так и в декодере системы сжатия для восстановления отдельных блоков изображений.
2. Квантование
Согласно одному возможному определению, квантование – это термин, используемый для приближения функции необратимого преобразования, обычно используемой для сжатия с потерями, в котором существует конкретное множество возможных выходящих значений, и каждый член множества возможных выходящих значений имеет ассоциированный набор входящих значений, который приводит к выбору этого конкретного выходящего значения. Разработано множество методик квантования, которые включают в себя скалярное или векторное, однородное или неоднородное, с или без зоны нечувствительности, и адаптивное или неадаптивное квантование.
Операция квантования является главным образом смещенным делением с помощью параметра QP квантования, которое выполняется в кодере. Операция обратного квантования или умножения является умножением на QP, выполняемым в декодере. Эти процессы вместе представляют собой потери данных исходного коэффициента преобразования, который выявляется как ошибки сжатия или искажение декодированного изображения. В упрощенном кодеке, определенное фиксированное значение QP может использоваться для всех коэффициентов преобразования в кадре. Тогда как это может быть приемлемым решением в некоторых случаях, есть несколько недостатков.
Зрительная система человека не является в равной степени чувствительной ко всем частотам, или ко всем пространственным позициям в кадре, или ко всем каналам сигнала яркости и цветности. Использование различных значений QP для различных коэффициентов может предоставить визуально превосходное кодирование даже с тем же или меньшим числом сжатых битов. Аналогично и система показателей других ошибок может быть соответствующим образом оптимизирована.
Управление скоростью или возможность кодера формировать сжатый файл желаемого размера нелегко осуществить с помощью единственного QP по всему кадру.
Следовательно, желательно разрешить кодеру изменять QP по изображению произвольным образом. Однако это означает, что фактическое значение QP, используемое для каждого разбиения данных, должно сигнализироваться в битовом потоке. Это приводит к огромным потерям, чтобы передать сигнальную информацию QP, что делает это на практике неподходящим. То, что желательно, это гибкое и еще экономичное по битам средство сигнализации QP, особенно для общих встречающихся сценариев.
Таким образом, квантование является исходным алгоритмом для большинства кодеков изображения и видео для управления качеством сжатого изображения и коэффициентом сжатия. Способы квантования, поддерживаемые большинством популярных кодеков, предоставляют новые признаки или меньшую гибкость или принимают на себя значительные служебные сигналы дополнительных битов. Часто кадр изображения или видео обычно квантуется равномерно, или с ограниченной возможностью изменять квантование по пространственным позициям. Этот недостаток гибкости причиняет вред качеству сжатия и мешает точному управлению скоростью "на лету". С другой стороны, некоторые кодеки предоставляют почти неограниченную свободу в поддержании способов квантования. Кодирование для использования сигнала различных квантователей принимает дополнительные биты в кодированных мультимедийных данных и может само по себе неблагоприятно влиять на эффективность сжатия. Кроме того, процесс создания совместимого декодера требует большого числа контрольных передач, формируемых с помощью всех возможных комбинаций способов квантователя, что может быть затруднительно.
Сущность изобретения
Последующее подробное описание представляет собой изменения метода гибкого квантования, который предоставляет возможность изменять квантование по различным измерениям кодированных цифровых мультимедийных данных. Например, один представительный вариант осуществления метода гибкого квантования может изменять квантования по трем измерениям: по (i) пространственным позициям, (ii) частотным поддиапазонам и (iii) цветовым каналам. Подробное описание дополнительно представляет способы для эффективной сигнализации гибкого квантования в кодированные цифровые мультимедийные данные. Преимуществом этого подхода к квантованию является то, что служебные сигналы, вытекающие из квантования связанной служебной информации, минимизируются для исходных сценариев использования, наряду с тем, что предоставляется максимальная гибкость, если это необходимо кодеру.
Эта сущность изобретения предусмотрена, чтобы ввести выбор понятий в упрощенной форме, которые дополнительно описаны ниже в подробном описании. Этой сущностью изобретения не подразумевается определять ключевые признаки или необходимые признаки заявленного объекта, ни подразумевается использовать ее как помощь в определении объема заявленного объекта. Дополнительные признаки и преимущества станут более очевидными из последующего подробного описания вариантов осуществления, которое продолжается со ссылками на сопроводительные чертежи.
Краткое описание чертежей
Фиг.1 - структурная схема традиционного основанного на блочном преобразовании кодека в предшествующем уровне техники.
Фиг.2 является блок-схемой характерного кодера, включающего кодирование образца блока.
Фиг.3 является блок-схемой характерного декодера, включающего кодирование образца блока.
Фиг.4 является таблицей, содержащей определение псевдокода для сигнализации квантователю DC согласно способу гибкого квантования.
Фиг.5 является таблицей, содержащей определение псевдокода для сигнализации квантователю нижних частот согласно методу гибкого квантования.
Фиг.6 является таблицей, содержащей определение псевдокода для сигнализации квантователю фильтра верхних частот согласно методу гибкого квантования.
Фиг.7 является таблицей, содержащей определение псевдокода для сигнализации квантователям на уровне кадра согласно методу гибкого квантования.
Фиг.8 является таблицей, содержащей определение псевдокода для сигнализации квантователям на уровне фрагмента изображения в пространственном режиме согласно методу гибкого квантования.
Фиг.9 является таблицей, содержащей определение псевдокода для сигнализации квантователям на уровне поддиапазона на уровне фрагмента изображения в частотном режиме согласно методу гибкого квантования.
Фиг.10 является таблицей, содержащей определение псевдокода для сигнализации квантователям на уровне поддиапазона фильтра нижних частот на уровне фрагмента изображения в частотном режиме согласно методу гибкого квантования.
Фиг.11 является таблицей, содержащей определение псевдокода для сигнализации квантователям на уровне поддиапазона фильтра верхних частот на уровне фрагмента изображения в частотном режиме согласно методу гибкого квантования.
Фиг.12 является таблицей, содержащей определение псевдокода для сигнализации квантователям на уровне макроблока в пространственном режиме согласно методу гибкого квантования.
Фиг.13 является таблицей, содержащей определение псевдокода для сигнализации квантователям фильтра нижних частот на уровне макроблока в частотном режиме согласно методу гибкого квантования.
Фиг.14 является таблицей, содержащей определение псевдокода для сигнализации квантователям фильтра верхних частот на уровне макроблока в частотном режиме согласно методу гибкого квантования.
Фиг.15 является структурной схемой соответствующей вычислительной среды для реализации кодера/декодера мультимедийных данных с гибким квантованием.
Подробное описание
Последующее описание относится к методам кодирования и декодирования, которые предусматривают эффективное гибкое квантование, которое может изменять квантование, используемое с пространственными, частотными и цветовыми измерениями (упоминаемые в данном документе как "гибкое квантование"). Последующее описание описывает примерную реализацию метода в контексте системы или кодека сжатия цифровых мультимедийных данных. Система цифровых мультимедийных данных кодирует цифровые мультимедийные данные в сжатую форму для передачи или хранения и декодирует данные для воспроизведения или другой обработки. Для целей иллюстрации эта примерная система сжатия, включающая это гибкое квантование, является изображением или системой сжатия видео. Альтернативно, метод также может быть включен в системы сжатия или кодеки для других двумерных данных. Метод гибкого квантования не требует, чтобы система сжатия цифрового мультимедиа кодировала сжатые цифровые мультимедийные данные в конкретном формате кодирования.
1. Кодер/декодер
Фиг.2 и 3 являются обобщенной схемой процессов, используемых в представленном кодере 200 и декодере 300 двухмерных (2D) данных. Схемы представляют собой обобщенную или упрощенную иллюстрацию системы сжатия, включающую кодер и декодер двумерных данных, которые реализуют кодирование по образцу блоков. В альтернативных системах сжатия использование кодирования по образцу блоков, дополнительное или меньшее число процессов, чем проиллюстрировано в репрезентативном кодере и декодере, может быть использовано для сжатия двумерных данных. Например, некоторые кодеры/декодеры также могут включать в себя цветовое преобразование, цветовые форматирования, масштабируемое кодирование, кодирование без потерь, режимы макроблока и т.д. Система сжатия (кодер и декодер) может обеспечивать кодирование без потерь и/или с потерями двумерных данных в зависимости от квантования, которое может быть основано на параметре квантования, изменяющемся от «без потерь» до «с потерями».
Кодер 200 двумерных данных вырабатывает сжатый битовый поток 220, который является более компактным представлением (для типичного ввода) 2D-данных 210, представленных в качестве входных данных кодеру. Например, входным сигналом 2D-данных может быть изображение, кадр видеопоследовательности или другие данные, имеющие два измерения. Кодер 2D-данных разделяет кадр входящих данных на блоки (проиллюстрировано в общем на фиг.2 как разбиение 230), которые на проиллюстрированном варианте осуществления являются непересекающимися блоками пикселей 4×4, которые создают обычный образец по плоскости кадра. Эти блоки сгруппированы в кластеры, называемые макроблоки, которые являются пикселями размером 16×16 в этом представительном кодере. В свою очередь, макроблоки сгруппированы в обычные структуры, называемые фрагментами изображений. Эти фрагменты изображений также создают обычный образец по изображению из условия, что фрагменты изображений в горизонтальной строке являются одинаковыми по высоте и выровнены, и фрагменты изображений в вертикальном столбце являются одинаковой ширины и выровнены. В представительном кодере фрагменты изображений могут быть любого произвольного размера, который кратен 16 в горизонтальном и/или вертикальном направлении. Альтернативные варианты осуществления кодера могут разделять изображения на блок, макроблок, фрагменты изображений или другие единицы иного размера и структуры.
К каждой границе между блоками применяется оператор 240 «прямого перекрытия», после которого каждый блок 4×4 преобразуется с использованием блочного преобразования 250. Это блочное преобразование 250 может быть обратимым безразмерным 2D-преобразованием, описанным заявкой на выдачу патента США, под авторством Сринивасана, №11/015,707, «Reversible Transform For Lossy And Lossless 2-D Data Compression» («Обратимое преобразование для сжатия 2-D-данных с потерями и без потерь»), зарегистрированной 17 декабря 2004 г. Оператор 240 перекрытия может быть обратимым оператором перекрытия, описанным заявкой на выдачу патента США №11/015,148, под авторством Ту и других, озаглавленной «Reversible Overlap Operator For Efficient Lossless Data Compression» («Обратимый оператор перекрытия для эффективного сжатия данных без потерь»), зарегистрированной 17 декабря 2004 г.; и заявка на выдачу патента США №11/035,991, под авторством Ту и других, озаглавленной «Reversible 2-Dimensional Pre-/Post-Filtering For Lapped Biorthogonal Transform» («Обратимая двухмерная предварительная/последующая фильтрация для перекрывающегося биортогонального преобразования»), зарегистрированной 14 января 2005 г. В качестве альтернативы, могут быть использованы дискретное косинусное преобразование или другие блочные преобразования и операторы перекрытия. Вслед за преобразованием, DC-коэффициент 260 каждого блока 4×4 преобразования подвергается аналогичной цепочке обработки (разбиению, прямому перекрытию, сопровождаемому блочным преобразованием 4×4). Результирующие DC-коэффициенты преобразования и АС-коэффициенты преобразования квантуются 270, кодируются 280 по энтропии и пакетируются 290.
Декодер выполняет обратную обработку. На стороне декодера биты коэффициентов преобразования извлекаются 310 из их соответственных пакетов, из которых декодируются 320 и деквантуются 330 сами коэффициенты. DC-коэффициенты 340 регенерируются посредством применения обратного преобразования, и плоскость DC-коэффициентов «инверсно перекрывается» с использованием подходящего сглаживающего оператора, применяемого по границам DC-блоков. В дальнейшем все данные регенерируются посредством применения обратного преобразования 350 4×4 к коэффициентам постоянного тока, и коэффициенты 342 переменного тока декодируются из потока битов. В заключение, границы блока в плоскостях результирующего изображения фильтруются 360 с обратным перекрытием. Это вырабатывает выходной сигнал восстановленных 2D-данных.
В примерной реализации кодер 200 (фиг.2) сжимает входное изображение в сжатый поток 220 битов (к примеру, файл), а декодер 300 (фиг.3) восстанавливает исходный ввод или его приближение на основе того, какое кодирование (с потерями или без потерь) используется. Процесс кодирования включает в себя применение прямого перекрывающегося преобразования (LT), описанного ниже, которое реализовано с помощью обратимой двумерной предварительной/пост-фильтрации, также более подробно описанной ниже. Процесс декодирования влечет за собой применение обратного перекрывающегося преобразования (ILT) с использованием обратимой двумерной предварительной/пост-фильтрации.
Проиллюстрированные LT и ILT являются инверсиями друг друга, в точном смысле, и поэтому вместе могут быть указываемы ссылкой как обратимое перекрывающееся преобразование. В качестве обратимого преобразования, пара LT/ILT может быть использована для сжатия изображений без потерь.
Входными данными 210, сжатыми проиллюстрированным кодером 200/декодером 300, могут быть изображения различных форматов цветов (к примеру, форматы цветных изображений RGB/YUV4:4:4 или YUV4:2:0). Типично, входное изображение всегда имеет компонент яркости (Y). Если оно является изображением RGB/YUV4:4:4,YUV4:2:2 или YUV4:2:0, изображение также имеет компоненты цветности, такие как компонент U и компонент V. Отдельные цветовые плоскости или компоненты изображения могут иметь различные пространственные разрешения. В случае входного изображения, например, в формате цвета YUV 4:2:0, компоненты U и V имеют половину ширины и высоты компонента Y.
Как описано выше, кодер 200 разбивает входное изображение или рисунок на макроблоки. В примерной реализации кодер 200 разбивает входное изображение на области 16×16 пикселей (называемые "макроблоки") в канале Y (которыми могут быть области 16×16, 16×8 или 8×8 в каналах U и V, в зависимости от формата цвета). Цветовая плоскость каждого макроблока разбита на зоны пикселей или блоки 4×4. Поэтому макроблок составляется для различных форматов цвета следующим образом для этой примерной реализации кодера:
1. Для изображения в градациях серого каждый макроблок содержит 16 блоков яркости (Y) 4×4.
2. Для изображения формата цвета YUV4:2:0 каждый макроблок содержит 16 блоков Y 4×4 и по 4 блока цветности (U и V) 4×4.
3. Для изображения формата цвета YUV4:2:2 каждый макроблок содержит 16 блоков Y 4×4 и по 8 блоков цветности (U и V) 4×4.
4. Для цветного изображения RGB или YUV4:4:4 каждый макроблок содержит 16 блоков каждого из каналов Y, U и V.
Соответственно, после преобразования макроблок в этом репрезентативном кодере 200/декодере 300 имеет три частотных поддиапазона: DC-поддиапазон (DC-макроблок), поддиапазон фильтра нижних частот (макроблок фильтра нижних частот) и поддиапазон фильтра верхних частот (макроблок фильтра верхних частот). В репрезентативной системе поддиапазоны фильтра нижних и/или верхних частот являются дополнительными в битовом потоке – эти поддиапазоны могут быть полностью исключены.
Кроме того, сжатые данные могут быть упакованы в битовый поток в один или два расположения: в пространственном порядке и частотном порядке. Для пространственного порядка различные поддиапазоны того же самого макроблока в пределах фрагмента изображения сгруппированы вместе и результирующий битовый поток каждого фрагмента изображения записывается в один пакет. Для частотного порядка аналогичный поддиапазон из различных макроблоков в пределах фрагмента изображения, которые группируются вместе и таким образом, битовый поток фрагмента изображения записывается в трех пакетах: DC-пакет, пакет фрагмента изображения фильтра низких частот и пакет фрагмента изображения фильтра верхних частот. Кроме того, могут существовать другие уровни данных.
Таким образом, для репрезентативной системы изображения организуются в следующих "измерениях":
Пространственное измерение: | Кадр→Фрагмент изображения→Макроблок; |
Частотное измерение: | DC|фильтр низких частот|фильтр верхних частот; и |
Измерение канала: | Яркость|Цветность_0|Цветность_1... (например, как Y|U|V). |
Стрелки выше обозначают иерархию, в то время как вертикальные черты обозначают разбиение.
Хотя характерная система организует сжатые цифровые мультимедийные данные, частотные и канальные измерения, гибкий подход к квантованию, описанный в данном документе, может использоваться в альтернативных системах кодера/декодера, которые организуют свои данные с меньшими, дополнительными или другими измерениями. Например, подход гибкого квантования может использоваться для кодирования, используя большее число частотных диапазонов, другой формат цветовых каналов (например, YIQ, RGB и т.д.), дополнительные каналы изображений (например, для зрительного восприятия стерео или других многочисленных совокупностей камер).
2. Обзор гибкого квантования
В характерном кодере/декодере операция квантования является главным образом смещенным делением с помощью параметра QP квантования, который выполняется в кодере. Операция обратного квантования или умножения является умножением на QP, выполняемым в декодере. Однако альтернативные варианты осуществления гибкого квантования, описанного в данном документе, могут использовать другие формы квантования, включая одинаковые или неодинаковые, скалярные или векторные, с или без мертвой зоны и т.д. Эти процессы квантования/обратного квантования вместе представляют собой потери данных исходного коэффициента преобразования, который выявляется как ошибки сжатия или искажение декодированного изображения. В упрощенном кодеке, определенное фиксированное значение QP может использоваться для всех коэффициентов преобразования в кадре. Тогда как это может быть приемлемым решением в некоторых случаях, есть несколько недостатков.
Зрительная система человека не является в равной степени чувствительной ко всем частотам, или ко всем пространственным позициям в кадре, или ко всем каналам сигнала яркости и цветности. Использование различных значений QP для различных коэффициентов может предоставить визуально превосходное кодирование даже с тем же или меньшим числом сжатых битов. Аналогично и система показателей других ошибок может быть также соответствующим образом оптимизирована.
Управление скоростью или возможность кодера формировать сжатый файл желаемого размера нелегко осуществить с помощью единственного QP по всему кадру.
Следовательно, желательно разрешить кодеру изменять QP по изображению произвольным образом. Однако это означает, что фактическое значение QP, используемое для каждого разбиения данных (макроблок/фрагмент изображения/поддиапазон и т.д.), должно сигнализироваться в битовом потоке. Это приводит к огромным потерям, чтобы передать сигнальную информацию QP, что делает это на практике неподходящим. То, что желательно, это гибкое и еще экономичное по битам средство сигнализации QP, особенно для общих встречающихся сценариев.
Метод гибкого квантования, описанный в данном документе, предоставляет возможность изменять квантования с различными разбиениями или измерениями кодированных цифровых мультимедийных данных. Например, один вариант осуществления метода гибкого квантования в характерной системе кодера 200/декодера 300 может изменять квантование по трем измерениям: по (i) пространственным позициям, (ii) частотным поддиапазонам и (iii) цветовым каналам. Однако квантование может изменяться по меньшим, дополнительным или другим измерениям или разбиениям данных в других альтернативных вариантах осуществления метода гибкого квантования. Этот метод также включает в себя способы эффективно сигнализировать гибкое квантование в кодированные мультимедийные данные. Преимуществом этого подхода к квантованию является то, что служебные сигналы, вытекающие из квантования связанной служебной информации, минимизируются для исходных сценариев использования, наряду с тем, что предоставляется максимальная гибкость, если это необходимо кодеру.
Метод гибкого квантования предоставляет тонкое пространственное управление уровнем модульности квантования. В одном конкретном варианте осуществления гибкое квантование допускает управление по квантованию, используемому в кадре, фрагменте изображения или вниз, к макроблоку. Если кадр не квантован одинаково, тогда каждый фрагмент изображения может быть квантован одинаково; если фрагмент изображения не квантован одинаково, тогда каждый макроблок квантуется разным образом.
Гибкое квантование дополнительно допускает управление квантованием вместе с измерением частотного поддиапазона. В одном конкретном варианте осуществления гибкое квантование включает в себя режим поддиапазона для определения отношения квантования среди частотных поддиапазонов. Поддиапазоны могут квантоваться одинаково, или частично одинаково (поддиапазон фильтра нижних частот, используя квантователь DC-поддиапазона, и/или поддиапазон фильтра верхних частот, используя квантователь фильтра нижних частот), или независимо.
Гибкое квантование также допускает управление по квантованию, используемому вместе с измерением канала данных. В одном конкретном варианте осуществления гибкое квантование включает в себя режим канала для определения отношения квантования среди цветовых каналов. Каналы могут квантоваться одинаково, или частично одинаково (каналы сигнала цветности одинаково, но сигнала яркости независимо), или независимо.
Гибкое квантование, описанное в данном документе, также предоставляет методы для эффективной сигнализации в служебную информацию сжатых цифровых мультимедийных данных, комбинации вышеупомянутого управления квантованием по пространству, частотному поддиапазону и каналу, которые являются значимыми для исходных сценариев использования. Кроме того, методы гибкого квантования предусматривают способ для эффективного определения выбора квантователя с помощью индексирования из заданного подмножества возможных квантователей в цифровых мультимедийных данных.
3. Гибкое квантование в пространственном измерении
В пространственном измерении три варианта предоставляются с помощью метода гибкого квантования в характерном кодере/декодере:
- Целый кадр может быть кодирован, используя то же самое правило квантования.
- Кроме того, целый фрагмент изображения может быть кодирован, используя то же самое правило квантования, и различные фрагменты изображения в пределах кадра могут использовать различные правила квантования.
- Кроме того, каждый макроблок в пределах фрагмента изображения может быть кодирован, используя то же самое правило квантования, и различные макроблоки в пределах фрагмента изображения могут использовать различные правила квантования.
Одно средство сигнализации этих возможностей функционирует следующим образом: двоичный сигнал отсылается в битовый поток на уровне кадра, указывающего, является ли первая возможность истинной. Если нет, символ фиксированной длины отсылается в битовый поток в пределах каждого фрагмента изображения, указывая множество правил квантования, используемых для этого фрагмента изображения. Если фрагмент изображения использует более чем одно правило квантования, тогда символ переменной длины отсылается в пределах каждого макроблока в соответствующем фрагменте изображения, который указывает правило квантования, используемое макроблоком. Декодер интерпретирует битовый поток образом, согласующимся с кодером.
Характерный кодер 200/декодер 300 использует вариант вышеуказанной сигнализации. Двоичный сигнал, представленный исходным элементом синтаксиса, в данном документе отмеченный как "XXX_FRAME_UNIFORM", отсылается только на уровне кадра (где XXX является указателем места заполнения, определяющим конкретный частотный поддиапазон или измерение канала управления квантователя). На уровне фрагмента изображения множество отдельных правил квантователя отсылается в элементе синтаксиса уровня фрагмента изображения (XXX_QUANTIZERS) только, где элемент синтаксиса уровня кадра (XXX_FRAME_UNIFORM) является ложным. Если это множество равно единице, это означает, что существует только одно правило и, следовательно, все макроблоки во фрагменте изображения одинаково кодируются с помощью того же самого правила квантования (указывая вариант 2), и если нет, оно указывает вариант третьей возможности.
4. Гибкое квантование по частотным диапазонам
Для гибкого квантования по частотным диапазонам синтаксис битового потока характерного кодера 200/декодера 300 определяет два переключателя:
- Макроблок фильтра нижних частот использует то же самое правило квантования как DC-макроблок в той же самой пространственной позиции. Это соответствует элементу USE_DC__QUANTIZER синтаксиса.
- Макроблок фильтра верхних частот использует то же самое правило квантования как макроблок фильтра нижних частот в той же самой пространственной позиции. Это соответствует элементу USE_LP__QUANTIZER синтаксиса.
Эти переключатели дают возможность на уровне кадра, когда целый кадр использует то же самое правило квантования или, иначе, на уровне фрагмента изображения. Эти переключатели не дают возможность на уровне макроблока. Все макроблоки во фрагменте изображения, следовательно, подчиняются тем же самым правилам по частотным диапазонам. Двоичный символ отсылается для каждого из переключателей на соответствующем уровне (кадра или фрагмента изображения).
5. Гибкое квантование по каналам изображения
Для гибкого квантования по каналам синтаксис битового потока характерного кодера 200/декодера 300 допускает три варианта:
- Все каналы – яркость и цветность имеют то же самое правило квантования. Это указывается исходным элементом XXX_CH_MODE = CH_UNIFORM синтаксиса.
- Яркость следует за одним правилом квантования и все каналы сигнала цветности следуют за другим правилом квантования, указанным с помощью XXX_CH_MODE = CH_MIXED.
- Все каналы являются свободными для выбора различных правил квантования, указанных XXX_CH_MODE = CH_INDEPENDENT.
6. Комбинаторное гибкое квантование
Характерный кодер 200/декодер 300 использует синтаксис битового потока, заданного в таблицах кодов, показанных на фиг.4-14, которые могут эффективно кодировать конкретный выбор из гибких вариантов квантования по измерениям, рассмотренным выше. С помощью нескольких вариантов квантования, доступных по каждому из пространственных измерений, измерений частотных поддиапазонов и измерений канала, множество допущений доступных вариантов квантования является большим. В дополнение к сложности гибкое квантование по трем измерениям является тем обстоятельством, что битовый поток характерного кодера 200/декодера 300 может быть разбит в пространственном или частотном порядке. Тем не менее, это не изменяет доступные варианты квантования и только влияет на последовательное упорядочение сигналов. Синтаксис, определенный на фиг.4-14, предоставляет эффективное кодирование комбинаторных гибких правил квантования.
Некоторые явно выраженные признаки комбинаторных правил квантования как заданы в синтаксисе характерного кодера/декодера следующим образом.
DC квантование не допускает изменения на основе макроблоков. Это допускает различное кодирование квантованных DC-значений без необходимости выполнять операцию обратного масштабирования. Кодирование DC-диапазона фрагмента изображения с относительно небольшим квантователем даже, когда AC-диапазоны (фильтр нижних и верхних частот) кодируются с помощью изменяющегося квантования, значительно не влияет на скорость передачи битов.
С одного края шкалы все коэффициенты преобразования в кадре используют тот же самый параметр квантования. На другом краю шкалы правила квантования фильтра нижних и верхних частот для всех каналов допускаются для независимого изменения для каждого макроблока фрагмента изображения/кадра. Единственным ограничением является то, что каждое множество отдельных правил квантователя фильтра нижних и верхних частот (покрывая все каналы) ограничено до 16. Каждое подобное правило может определять независимые значения параметра квантования для каждого канала.
Между этими экстремальными значениями несколько комбинаций допускаются как задано таблицами синтаксиса, показанными на фиг.4-14.
7. Индексирование параметров квантователя
Конкретный параметр квантования (QP) в характерном кодере/декодере основан на гармонической шкале. 8-битовое значение индекса параметра квантователя (QPI) соответствует значению QP, которое может быть относительно большим. Второй уровень индексирования осуществляется так, чтобы QPI, изменяющиеся по макроблокам, могли быть кодированы эффективным образом.
Более конкретно кодер 200 может определять набор в битовом потоке, содержащийся между 1 и 16 "векторами" QPI. Каждый QPI-вектор состоит из одного или более QPI-значений, на основе которых выбирается XXX_CHANNEL_MODE. Такие наборы определяются для DC, поддиапазонов фильтра нижних и верхних частот, на основе переключателя частотного диапазона. Кроме того, набор DC имеет только один QPI-вектор, так как только один DC-квантователь допустим в канале фрагмента изображения. Кодирование этих наборов задается в таблицах, показанных на фиг.4-6.
Как показано в таблицах фиг.7-11, сигнализация множеств вектора QPI, частотных поддиапазонов фильтра нижних и верхних частот происходит следующим образом. На основе других режимов кодирования, количество элементов каждого множества (т.е. число QPI-векторов во множестве) указано для поддиапазонов фильтра нижних и верхних частот в начале следующего фрагмента изображения или кадра. Количество элементов DC-множества равно 1. В таблицах псевдокодов элемент синтаксиса, обозначающий количество элементов, отмечен как "XXX_QUANTIZERS". (В действительности XXX_QUANTIZERS – 1 отсылается в битовый поток.) Элементы синтаксиса, отмеченные "XXX_QUANTIZER" в таблицах, обозначают кодирование QPI-множвеств, что определяется в таблицах, показанных на фиг.4-6.
На уровне макроблока достаточно отослать только индекс QI желаемого QPI-вектора из QPI-множества. Таблицы на фиг.12-14 определяют синтаксис отправки QI на основе макроблов. Элемент синтаксиса, соответствующий QI, указан "XXX_QUANTIZER__INDEX". Код переменной длины используется для сигнализации QI. Сначала символ из одного бита отсылается, указывая, равно ли QI нулю или нет. Если нет, тогда код фиксированной длины, длины, заданной сотой (log2(XXX_QUANTIZERS - 1)) отсылается, указывая конкретное QI, отличное от нуля. Это разрешает эффективное кодирование правила квантования "по умолчанию" (QI=0) также небольшой длины с одним битом на макроблок. Когда XXX_QUANTIZERS равны 1, XXX_QUANTIZER_INDEX однозначно является нулевым и, следовательно, не нужно сигнализировать QI.
8. Расширения
Вышеуказанное описание гибкого квантования конкретно для его варианта осуществления в характерном кодере и декодере и синтаксисе. Тем не менее, принципы этого метода являются расширяемыми на другие системы мультимедийного цифрового сжатия и также форматов. Например, характерный кодер/декодер имеет только три частотных поддиапазона (DC, фильтр низких частот и фильтр верхних частот). Но в целом альтернативные варианты осуществления гибкого квантования могут быть расширены непосредственным образом на множество частотных поддиапазонов. Аналогично, альтернативные варианты осуществления гибкого квантования могут изменять квантователь на уровне более тонкой пространственной модульности, например, с помощью отправки информации индекса квантования (QI) на уровне подмакроблока (например, как блок). Многие расширения, лежащие в основе принципов метода гибкого квантования, возможны в той же самой структуре.
9. Вычислительная среда
Вышеописанные методы обработки для гибкого квантования могут быть реализованы любой из множества систем цифрового мультимедийного кодирования и/или декодирования, включая среди других примеров компьютеры (из различных конструктивов, включая сервер, настольный компьютер, портативный компьютер, карманное устройство и т.д.); цифровые мультимедийные устройства записи и проигрыватели; устройства захвата изображений и видео (например, камеры, сканеры и т.д.); коммуникационное оборудование (например, телефоны, мобильные телефоны, оборудование для организации и проведения конференций и т.д.); устройство отображения, печатающие или другие устройства для презентаций; и т.д. Методы гибкого квантования могут быть реализованы в аппаратной схеме, во встроенном программном обеспечении, управляющими цифровыми мультимедийными обрабатывающими аппаратными средствами, а также в коммуникационном программном обеспечении, выполняющемся в компьютере или другой вычислительной середе, например, как показано на фиг.15.
Фиг.15 иллюстрирует обобщенный пример пригодной вычислительной среды (1500), в которой описанные варианты осуществления могут быть реализованы. Вычислительная среда (1500) не предназначена, чтобы предлагать какое-либо ограничение на область использования или функциональность изобретения, поскольку настоящее изобретение может быть реализовано в различных вычислительных средах общего или специального назначения.
Со ссылкой на фиг.15, вычислительная среда (1500) включает в себя по меньшей мере один блок (1510) обработки и память (1520). На фиг.15 эта наиболее базовая конфигурация (1530) заключена в пределах пунктирной линии. Блок (1510) обработки исполняет машиноисполняемые инструкции и может быть реальным или виртуальным процессором. В многопроцессорной системе несколько блоков обработки исполняют машиноисполняемые инструкции, чтобы повысить возможности по обработке данных. Памятью (1520) может быть энергозависимая память (например, регистры, кэш, ОЗУ (оперативное запоминающее устройство, RAM), энергонезависимая память (например, ПЗУ (постоянное запоминающее устройство, ROM), ЭСППЗУ (электрически стираемое и программируемое ПЗУ, EEPROM), флэш-память и т.д.) или некоторое сочетание этих двух. Память (1520) сохраняет программное обеспечение (1580), реализующее описанное цифровое мультимедийное кодирование/декодироавание с методами гибкого преобразования.
Вычислительная среда может обладать дополнительными признаками. Например, вычислительная среда (1500) включает в себя хранилище (1540), одно или более устройств (1550) ввода, одно или более устройств (1560) вывода и одно или более соединений (1570) связи. Механизм взаимного соединения (не показан), такой как шина, контроллер или сеть, осуществляет взаимное соединение компонентов вычислительной среды (1500). Типично, программное обеспечение операционной системы (не показано) предоставляет рабочую среду для другого программного обеспечения, исполняемого в вычислительной среде (1500), и координирует деятельность компонентов вычислительной среды (1500).
Хранилище (1540) может быть съемным или несъемным и включает в себя магнитные диски, магнитные ленты или кассеты, CD-ROM (ПЗУ на компакт диске), CD-RW (перезаписываемый компакт диск), DVD (универсальный цифровой диск) или любой другой носитель, который может быть использован, чтобы сохранять информацию, и к которому можно осуществлять доступ в пределах вычислительной среды (1500). Хранилище (1540) сохраняет команды для программного обеспечения (1580), реализующего описанное цифровое мультимедийное кодирование/декодирование с методами гибкого квантования.
Устройством(ами) (1550) ввода может быть устройство сенсорного ввода, такое как клавиатура, мышь, перо или шаровой манипулятор, устройство голосового ввода, устройство сканирования или другое устройство, которое обеспечивает ввод в вычислительную среду (1500). Для звука устройством(ами) (1550) ввода может быть звуковая плата или аналогичное устройство, которое принимает звуковой входной сигнал в аналоговой или цифровой форме от микрофона или совокупности микрофонов, либо считыватель CD-ROM, который поставляет звуковые выборки в вычислительную среду. Устройством(ами) (1560) вывода может быть дисплей, принтер, динамик, устройство для записи CD-RW или другое устройство, которое обеспечивает вывод из вычислительной среды (1500).
Соединение(я) (1570) связи дает возможность связи через среду связи с другой вычислительной сущностью. Среда связи транспортирует информацию, такую как машиноисполняемые команды, сжатую звуковую и видеоинформацию или другие данные в модулированном информационном сигнале. Модулированным информационным сигналом является сигнал, который обладает одной или более характеристиками, установленными или изменяемыми таким образом, чтобы кодировать информацию в сигнале. В качестве примера, а не ограничения, среда связи включает в себя проводные или беспроводные технологии, реализованные с помощью электрической, оптической, радиочастотной (RF), инфракрасной, акустической или другой несущей.
Описанное цифровое мультимедийное кодирование/декодирование с методами гибкого квантования в материалах настоящей заявки могут быть описаны в общем контексте машиночитаемых носителей. Машиночитаемые носители - это любые имеющиеся в распоряжении носители, к которым может быть осуществлен доступ в вычислительной среде. В качестве примера, а не ограничения, касательно вычислительной среды (1500), машиночитаемые носители включают в себя память (1520), хранилище (1540), среду связи и сочетания любого из вышеприведенного.
Описанное цифровое мультимедийное кодирование/декодирование с методами гибкого квантования в материалах настоящей заявки могут быть описаны в общем контексте машиноисполняемых команд, таких как включенные в программные модули, являющиеся исполняемыми в вычислительной среде на целевом реальном или виртуальном процессоре. В целом, программные модули включают в себя подпрограммы, программы, библиотеки, объекты, классы, компоненты, структуры данных и т. д., которые выполняют конкретные задачи или реализуют конкретные абстрактные типы данных. Функциональные возможности программных модулей могут быть скомбинированы или разделены между программными модулями, как требуется в различных вариантах осуществления. Машиноисполняемые команды для программных модулей могут быть приведены в исполнение в локальной или распределенной вычислительной среде.
В целях представления подробное описание использует термины, наподобие «определять», «формировать», «настраивать» и «применять», чтобы описывать машинные операции в вычислительной среде. Эти термины являются высокоуровневыми абстракциями для операций, выполняемых компьютером, и не должны быть спутаны с действиями, выполняемыми человеком. Реальные машинные операции, соответствующие этим терминам, различаются в зависимости от реализации.
Ввиду множества возможных вариантов осуществления, к которым могут быть применены принципы нашего изобретения, мы заявляем в качестве изобретения все такие варианты осуществления, которые могут попадать в пределы объема и сущности последующей формулы изобретения и ее эквивалентов.
Claims (48)
1. Компьютерно-реализуемый способ декодирования цифрового мультимедиа, содержащий этапы, на которых:
принимают сжатые данные цифрового изображения, причем сжатые данные цифрового изображения разбиты вдоль более одного измерения;
определяют множественные наборы индексов параметров квантования из сигналов в сжатых данных цифрового изображения, при этом сжатые данные цифрового изображения квантованы по более одному измерению данных цифрового изображения, вдоль которого выполнено разбиение, причем эти сигналы указывают, изменяются ли индексы параметров квантования, используемые во время декодирования, по измерению, соответствующему диапазонам частот, и по измерению, соответствующему цветовым каналам, при этом индексы параметров квантования, доступные по измерению, соответствующему диапазонам частот, включают в себя, для заданного набора из упомянутых множественных наборов индексов параметров квантования, первый индекс параметра квантования для одного или более DC-компонентов, второй индекс параметра квантования для множества компонентов нижних частот и третий индекс параметра квантования для множества компонентов верхних частот;
для каждого из множества макроблоков сжатых данных цифрового изображения:
выбирают один из упомянутых множественных наборов индексов параметров квантования на основе значения, сообщаемого для этого макроблока, и
определяют один или более параметров квантования для выбранного набора индексов параметров квантования;
выполняют деквантование сжатых данных цифрового изображения в соответствии с упомянутыми определенными параметрами квантования;
применяют обратное блочное преобразование к блокам деквантованных данных цифрового изображения;
выводят несжатые данные цифрового изображения,
при этом: (а) упомянутое множество компонентов верхних частот представляют собой АС-коэффициенты из первых преобразований значений блоков макроблока, (b) упомянутое множество компонентов нижних частот представляют собой АС-коэффициенты из второго преобразования DC-коэффициентов из первых преобразований, и (с) упомянутые один или более DC-компонентов включают в себя DC-коэффициент из второго преобразования DC-коэффициентов из первых преобразований.
2. Способ по п. 1, в котором упомянутые сигналы дополнительно включают в себя (i) сигнал, указывающий, должны ли упомянутые компоненты нижних частот декодироваться с использованием первого индекса параметра квантования для DC-компонентов, и (ii) сигнал, указывающий, должны ли упомянутые компоненты верхних частот квантоваться с использованием второго индекса параметра квантования для компонентов нижних частот.
3. Способ по п. 1, в котором упомянутые сигналы дополнительно указывают, изменяются ли параметры квантования, используемые во время деквантования, по измерению, соответствующему цветовым каналам.
4. Способ по п. 1, в котором упомянутое определение параметров квантования дополнительно содержит определение того, следует ли задавать параметры DC квантования (а) одинаково для канала яркости и всех каналов цветности, (b) отдельно для (i) канала яркости и отдельно для (ii) всех каналов цветности или (с) независимо для канала яркости и каждого из каналов цветности.
5. Способ по п. 4, в котором упомянутое определение параметров квантования дополнительно содержит определение того, следует ли задавать параметры LP квантования, используя параметры DC квантования.
6. Компьютерное устройство, выполненное с возможностью обработки цифрового мультимедиа, содержащее:
по меньшей мере один процессор; и
один или более машиночитаемых носителей, на которых сохранены машиноисполняемые инструкции, которые при их исполнении по меньшей мере одним процессором предписывают компьютерному устройству:
принимать сжатые данные цифрового изображения, причем сжатые данные цифрового изображения разбиты вдоль более одного измерения;
определять множественные наборы индексов параметров квантования из сигналов в сжатых данных цифрового изображения, при этом сжатые данные цифрового изображения квантованы по более одному измерению данных цифрового изображения, вдоль которого выполнено разбиение, причем эти сигналы указывают, изменяются ли индексы параметров квантования, используемые во время декодирования, по измерению, соответствующему диапазонам частот, и по измерению, соответствующему цветовым каналам, при этом индексы параметров квантования, доступные по измерению, соответствующему диапазонам частот, включают в себя, для заданного набора из упомянутых множественных наборов индексов параметров квантования, первый индекс параметра квантования для одного или более DC-компонентов, второй индекс параметра квантования для множества компонентов нижних частот и третий индекс параметра квантования для множества компонентов верхних частот;
для каждого из множества макроблоков сжатых данных цифрового изображения:
выбирать один из упомянутых множественных наборов индексов параметров квантования на основе значения, сообщаемого для этого макроблока, и
определять один или более параметров квантования для выбранного набора индексов параметров квантования;
выполнять деквантование сжатых данных цифрового изображения в соответствии с упомянутыми определенными параметрами квантования;
применять обратное блочное преобразование к блокам деквантованных данных цифрового изображения;
выводить несжатые данные цифрового изображения, при этом: (а) упомянутое множество компонентов верхних частот представляют собой АС-коэффициенты из первых преобразований значений блоков макроблока, (b) упомянутое множество компонентов нижних частот представляют собой АС-коэффициенты из второго преобразования DC-коэффициентов из первых преобразований, и (с) упомянутые один или более DC-компонентов включают в себя DC-коэффициент из второго преобразования DC-коэффициентов из первых преобразований.
7. Машиночитаемый носитель, на котором сохранен программный код для предписания устройству обработки цифрового мультимедиа выполнять способ обработки данных цифрового мультимедиа в соответствии с кодеком, содержащий этапы, на которых:
выбирают комбинации доступных режимов квантования, которые должны быть применены к данным цифрового мультимедиа, при этом доступные режимы квантования включают в себя по меньшей мере первый режим квантования, в котором для коэффициентов нижних частот используется тот же квантователь, что и для DC-коэффициента, и второй режим квантования, в котором для коэффициентов верхних частот используется тот же квантователь, что и для коэффициентов нижних частот, при этом о первом режиме квантования сообщают посредством первого элемента синтаксиса, а о втором режиме квантования сообщают посредством второго элемента синтаксиса;
применяют двустадийное преобразование к блокам данных цифрового мультимедиа;
квантуют данные цифрового мультимедиа согласно выбранным комбинациям режимов квантования;
кодируют квантованные данные цифрового мультимедиа в сжатый поток данных;
сообщают о выбранных комбинациях режимов квантования в сжатом потоке данных, причем сжатый поток данных включает в себя упомянутые первый элемент синтаксиса и второй элемент синтаксиса,
при этом коэффициенты верхних частот представляют собой АС коэффициенты из первых преобразований значений блоков, а коэффициенты нижних частот представляют собой АС коэффициенты из второго преобразования DC-коэффициентов из первых преобразований.
8. Машиночитаемый носитель по п. 7, при этом доступные режимы квантования дополнительно содержат режим для одинакового квантования на каждый кадр данных цифрового мультимедиа, режим для одинакового квантования на каждый фрагмент данных цифрового мультимедиа и режим для независимого квантования каждого макроблока данных цифрового мультимедиа.
9. Машиночитаемый носитель по п. 7, при этом доступные режимы квантования дополнительно содержат режим для одинакового квантования по цветовым каналам данных цифрового мультимедиа, режим для частично одинакового квантования по цветовым каналам данных цифрового мультимедиа и режим для независимого квантования цветовых каналов данных цифрового мультимедиа.
10. Машиночитаемый носитель по п. 7, в котором способ дополнительно содержит этапы, на которых задают набор доступных квантователей и указывают текущий квантователь посредством индексации по отношению к этому набору.
11. Машиночитаемый носитель, на котором сохранен программный код для предписания устройству обработки цифрового мультимедиа выполнять способ декодирования цифрового мультимедиа по п. 1.
12. Машиночитаемый носитель, на котором сохранен программный код для предписания устройству обработки цифрового мультимедиа выполнять способ обработки данных цифрового мультимедиа в соответствии с кодеком, содержащий этапы, на которых:
принимают сжатые данные цифрового изображения;
определяют множественные наборы индексов параметров квантования из сигналов в сжатых данных цифрового изображения, причем эти сигналы указывают, изменяются ли индексы параметров квантования, используемые во время декодирования, по измерению, соответствующему диапазонам частот, и по измерению, соответствующему цветовым каналам, при этом индексы параметров квантования, доступные по измерению, соответствующему диапазонам частот, включают в себя, для заданного набора из упомянутых множественных наборов индексов параметров квантования, первый индекс параметра квантования для одного или более DC-компонентов, второй индекс параметра квантования для множества компонентов нижних частот и третий индекс параметра квантования для множества компонентов верхних частот;
для каждого из множества макроблоков сжатых данных цифрового изображения:
выбирают один из упомянутых множественных наборов индексов параметров квантования на основе значения, сообщаемого для этого макроблока, и
определяют один или более параметров квантования для выбранного набора индексов параметров квантования;
выполняют деквантование сжатых данных цифрового изображения в соответствии с упомянутыми определенными параметрами квантования;
применяют обратное блочное преобразование к блокам деквантованных данных цифрового изображения;
выводят несжатые данные цифрового изображения,
при этом: (а) упомянутое множество компонентов верхних частот представляют собой АС-коэффициенты из первых преобразований значений блоков макроблока, (b) упомянутое множество компонентов нижних частот представляют собой АС-коэффициенты из второго преобразования DC-коэффициентов из первых преобразований, и (с) упомянутые один или более DC-компонентов включают в себя DC-коэффициент из второго преобразования DC-коэффициентов из первых преобразований.
13. Машиночитаемый носитель по п. 12, при этом упомянутые сигналы дополнительно указывают, изменяются ли параметры квантования, используемые во время деквантования, по измерению, соответствующему цветовым каналам, при этом упомянутое определение параметров квантования содержит определение того, следует ли задавать параметры DC квантования (а) одинаково для канала яркости и всех каналов цветности, (b) отдельно для (i) канала яркости и отдельно для (ii) всех каналов цветности или (с) независимо для канала яркости и каждого из каналов цветности.
14. Машиночитаемый носитель по п. 13, при этом упомянутое определение параметров квантования дополнительно содержит определение того, следует ли задавать параметры LP квантования, используя параметры DC квантования.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/418,690 | 2006-05-05 | ||
US11/418,690 US8711925B2 (en) | 2006-05-05 | 2006-05-05 | Flexible quantization |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008143599/07A Division RU2476000C2 (ru) | 2006-05-05 | 2007-05-04 | Гибкое квантование |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012156159A RU2012156159A (ru) | 2014-06-27 |
RU2619908C2 true RU2619908C2 (ru) | 2017-05-19 |
Family
ID=38661156
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008143599/07A RU2476000C2 (ru) | 2006-05-05 | 2007-05-04 | Гибкое квантование |
RU2012156159A RU2619908C2 (ru) | 2006-05-05 | 2012-12-24 | Гибкое квантование |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008143599/07A RU2476000C2 (ru) | 2006-05-05 | 2007-05-04 | Гибкое квантование |
Country Status (13)
Country | Link |
---|---|
US (11) | US8711925B2 (ru) |
EP (1) | EP2016773B1 (ru) |
JP (4) | JP5385781B2 (ru) |
KR (1) | KR101477302B1 (ru) |
CN (5) | CN105915906A (ru) |
AU (1) | AU2007248524B2 (ru) |
BR (1) | BRPI0710704B1 (ru) |
CA (1) | CA2647332C (ru) |
HK (2) | HK1179084A1 (ru) |
IL (2) | IL194133A (ru) |
MX (1) | MX2008013647A (ru) |
RU (2) | RU2476000C2 (ru) |
WO (1) | WO2007130580A2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11962806B2 (en) | 2019-03-11 | 2024-04-16 | Canon Kabushiki Kaisha | Image decoding apparatus, image decoding method, and storage medium |
US12075049B2 (en) | 2019-03-11 | 2024-08-27 | Canon Kabushiki Kaisha | Image decoding apparatus, image decoding method, and storage medium |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8422546B2 (en) * | 2005-05-25 | 2013-04-16 | Microsoft Corporation | Adaptive video encoding using a perceptual model |
EP1995967A4 (en) | 2006-03-16 | 2009-11-11 | Huawei Tech Co Ltd | METHOD AND APPARATUS FOR ADAPTIVE QUANTIFICATION IN AN ENCODING PROCEDURE |
US7974340B2 (en) | 2006-04-07 | 2011-07-05 | Microsoft Corporation | Adaptive B-picture quantization control |
US8059721B2 (en) | 2006-04-07 | 2011-11-15 | Microsoft Corporation | Estimating sample-domain distortion in the transform domain with rounding compensation |
US8130828B2 (en) | 2006-04-07 | 2012-03-06 | Microsoft Corporation | Adjusting quantization to preserve non-zero AC coefficients |
US8503536B2 (en) | 2006-04-07 | 2013-08-06 | Microsoft Corporation | Quantization adjustments for DC shift artifacts |
US7995649B2 (en) | 2006-04-07 | 2011-08-09 | Microsoft Corporation | Quantization adjustment based on texture level |
US8711925B2 (en) | 2006-05-05 | 2014-04-29 | Microsoft Corporation | Flexible quantization |
US8238424B2 (en) | 2007-02-09 | 2012-08-07 | Microsoft Corporation | Complexity-based adaptive preprocessing for multiple-pass video compression |
US8498335B2 (en) | 2007-03-26 | 2013-07-30 | Microsoft Corporation | Adaptive deadzone size adjustment in quantization |
US8243797B2 (en) | 2007-03-30 | 2012-08-14 | Microsoft Corporation | Regions of interest for quality adjustments |
US8442337B2 (en) | 2007-04-18 | 2013-05-14 | Microsoft Corporation | Encoding adjustments for animation content |
US8331438B2 (en) | 2007-06-05 | 2012-12-11 | Microsoft Corporation | Adaptive selection of picture-level quantization parameters for predicted video pictures |
US8204327B2 (en) * | 2007-10-01 | 2012-06-19 | Cisco Technology, Inc. | Context adaptive hybrid variable length coding |
US8265162B2 (en) | 2007-10-01 | 2012-09-11 | Cisco Technology, Inc. | Context adaptive position and amplitude coding of coefficients for video compression |
US8527265B2 (en) * | 2007-10-22 | 2013-09-03 | Qualcomm Incorporated | Low-complexity encoding/decoding of quantized MDCT spectrum in scalable speech and audio codecs |
US8559499B2 (en) * | 2007-10-26 | 2013-10-15 | Zoran (France) S.A. | Frame buffer compression for video processing devices |
EP2229782A2 (en) * | 2008-01-14 | 2010-09-22 | Thomson Licensing | Methods and apparatus for de-artifact filtering using multi-lattice sparsity-based filtering |
KR101446771B1 (ko) * | 2008-01-30 | 2014-10-06 | 삼성전자주식회사 | 영상 부호화장치 및 영상 복호화장치 |
US8189933B2 (en) | 2008-03-31 | 2012-05-29 | Microsoft Corporation | Classifying and controlling encoding quality for textured, dark smooth and smooth video content |
US8897359B2 (en) | 2008-06-03 | 2014-11-25 | Microsoft Corporation | Adaptive quantization for enhancement layer video coding |
JP5136470B2 (ja) * | 2009-03-06 | 2013-02-06 | 富士通株式会社 | 動画像符号化装置及び動画像符号化方法 |
US8588295B2 (en) * | 2009-03-09 | 2013-11-19 | Mediatek Inc. | Methods and electronic devices for quantization and de-quantization |
CN105120265B (zh) * | 2009-08-12 | 2019-01-29 | 汤姆森特许公司 | 用于改进的帧内色度编码和解码的方法及装置 |
US20110298891A1 (en) * | 2010-06-04 | 2011-12-08 | Iowa State University Research Foundation, Inc. | Composite phase-shifting algorithm for 3-d shape compression |
JP2012169708A (ja) * | 2011-02-09 | 2012-09-06 | Sony Corp | 映像信号処理装置、映像信号処理方法およびプログラム |
US9363509B2 (en) * | 2011-03-03 | 2016-06-07 | Electronics And Telecommunications Research Institute | Method for determining color difference component quantization parameter and device using the method |
WO2012118359A2 (ko) | 2011-03-03 | 2012-09-07 | 한국전자통신연구원 | 색차 성분 양자화 매개 변수 결정 방법 및 이러한 방법을 사용하는 장치 |
JP5648123B2 (ja) * | 2011-04-20 | 2015-01-07 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | 音声音響符号化装置、音声音響復号装置、およびこれらの方法 |
US9854275B2 (en) | 2011-06-25 | 2017-12-26 | Qualcomm Incorporated | Quantization in video coding |
US20140280075A1 (en) * | 2011-08-26 | 2014-09-18 | Hewlett-Packard Development Company, L.P. | Multidimension clusters for data partitioning |
CN103096052B (zh) | 2011-11-04 | 2015-11-25 | 华为技术有限公司 | 一种图像编码、解码的方法和装置 |
EP2805492B1 (en) * | 2012-01-19 | 2018-11-14 | VID SCALE, Inc. | System and method of video coding quantization and dynamic range control |
EP3432583B1 (en) * | 2012-02-29 | 2020-04-01 | Sony Corporation | Image processing device and method |
GB2501552A (en) * | 2012-04-26 | 2013-10-30 | Sony Corp | Video Data Encoding / Decoding with Different Max Chrominance Quantisation Steps for 4:2:2 and 4:4:4 Format |
JP5950157B2 (ja) * | 2012-05-18 | 2016-07-13 | ソニー株式会社 | 画像処理装置および方法、並びに、プログラム |
CN103428523B (zh) * | 2012-05-22 | 2015-07-08 | 华为技术有限公司 | 评估视频质量的方法和装置 |
US8873892B2 (en) * | 2012-08-21 | 2014-10-28 | Cognex Corporation | Trainable handheld optical character recognition systems and methods |
US9445109B2 (en) * | 2012-10-16 | 2016-09-13 | Microsoft Technology Licensing, Llc | Color adaptation in video coding |
US9277214B2 (en) * | 2013-02-15 | 2016-03-01 | Cisco Technology, Inc. | Sub-picture hierarchical QP coding |
GB2512826B (en) * | 2013-04-05 | 2017-05-10 | Canon Kk | Method and device for determining the value of a quantization parameter |
WO2014205730A1 (zh) * | 2013-06-27 | 2014-12-31 | 北京大学深圳研究生院 | Avs视频压缩编码方法及编码器 |
US9794565B2 (en) * | 2013-08-26 | 2017-10-17 | Thomson Licensing | Bit allocation scheme for repetitive structure discovery based 3D model compression |
SE538512C2 (sv) * | 2014-11-26 | 2016-08-30 | Kelicomp Ab | Improved compression and encryption of a file |
US10298942B1 (en) * | 2015-04-06 | 2019-05-21 | Zpeg, Inc. | Method and apparatus to process video sequences in transform space |
US20160316220A1 (en) * | 2015-04-21 | 2016-10-27 | Microsoft Technology Licensing, Llc | Video encoder management strategies |
US10356408B2 (en) * | 2015-11-27 | 2019-07-16 | Canon Kabushiki Kaisha | Image encoding apparatus and method of controlling the same |
US10944976B2 (en) * | 2016-07-22 | 2021-03-09 | Sharp Kabushiki Kaisha | Systems and methods for coding video data using adaptive component scaling |
EP3349451A1 (en) * | 2017-01-11 | 2018-07-18 | Thomson Licensing | Method and apparatus for selecting a coding mode used for encoding/decoding a residual block |
JP6986868B2 (ja) * | 2017-06-19 | 2021-12-22 | キヤノン株式会社 | 画像符号化装置、画像復号装置、画像符号化方法、画像復号方法、プログラム |
EP3461133B1 (en) * | 2017-07-05 | 2023-11-22 | OneSubsea IP UK Limited | Data compression for communication in subsea oil and gas systems |
US10368071B2 (en) * | 2017-11-03 | 2019-07-30 | Arm Limited | Encoding data arrays |
CN112020860B (zh) * | 2018-02-26 | 2022-09-02 | 弗劳恩霍夫应用研究促进协会 | 用于选择性量化参数传输的编码器、解码器和其方法 |
US11670101B2 (en) * | 2018-03-16 | 2023-06-06 | Inveox Gmbh | Automated identification, orientation and sample detection of a sample container |
WO2019191218A1 (en) * | 2018-03-30 | 2019-10-03 | Interdigital Vc Holdings, Inc. | Chroma quantization parameter adjustment in video encoding and decoding |
GB2575121B (en) | 2018-06-29 | 2022-12-28 | Imagination Tech Ltd | Guaranteed data compression |
EP4346205A3 (en) * | 2019-04-26 | 2024-04-24 | Huawei Technologies Co., Ltd. | Method and apparatus for signaling of mapping function of chroma quantization parameter |
US11757814B2 (en) * | 2019-04-28 | 2023-09-12 | Isaac Ellsworth | Media sharing application |
GB2586517B (en) * | 2019-08-23 | 2022-06-15 | Imagination Tech Ltd | Methods and decompression units for decompressing a compressed block of image data |
US11626983B1 (en) * | 2019-09-10 | 2023-04-11 | Wells Fargo Bank, N.A. | Systems and methods for post-quantum cryptography optimization |
GB2599893A (en) * | 2020-10-06 | 2022-04-20 | Murata Manufacturing Co | Isolated DC-DC converter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2127962C1 (ru) * | 1994-01-12 | 1999-03-20 | Самсунг Электроникс Ко., Лтд. | Способ и устройство для кодирования изображения |
WO1999025121A1 (en) * | 1997-11-07 | 1999-05-20 | Pipe Dream, Inc. | Method for compressing and decompressing motion video |
US20020118748A1 (en) * | 2000-06-27 | 2002-08-29 | Hideki Inomata | Picture coding apparatus, and picture coding method |
US20050036699A1 (en) * | 2003-07-18 | 2005-02-17 | Microsoft Corporation | Adaptive multiple quantization |
WO2005076614A1 (en) * | 2004-01-30 | 2005-08-18 | Matsushita Electric Industrial Co., Ltd. | Moving picture coding method and moving picture decoding method |
Family Cites Families (473)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE17095E (en) | 1922-10-19 | 1928-10-02 | small | |
GB897363A (en) | 1958-08-13 | 1962-05-23 | Harries Television Res Ltd | Improvements in or relating to display devices |
GB1218015A (en) | 1967-03-13 | 1971-01-06 | Nat Res Dev | Improvements in or relating to systems for transmitting television signals |
US4460924A (en) | 1978-04-19 | 1984-07-17 | Quanticon Inc. | Dither quantized signalling for color television |
US4334244A (en) | 1980-07-28 | 1982-06-08 | Magnavox Government And Industrial Electronics Company | Adaptive image enhancement system |
FR2532138B1 (fr) * | 1982-08-20 | 1986-10-10 | Thomson Csf | Procede de compression de debit de donnees successivement transmises entre un emetteur et un recepteur de television et systeme mettant en oeuvre le procede |
FR2562364B1 (fr) | 1984-04-03 | 1987-06-19 | Thomson Csf | Procede et systeme de compression de debit de donnees numeriques transmises entre un emetteur et un recepteur de television |
CA1327074C (en) | 1985-02-28 | 1994-02-15 | Tokumichi Murakami | Interframe adaptive vector quantization encoding apparatus and video encoding transmission apparatus |
EP0250533B1 (en) | 1985-12-24 | 1993-01-27 | British Broadcasting Corporation | Method of coding a video signal for transmission in a restricted bandwidth |
US4760461A (en) | 1986-02-28 | 1988-07-26 | Kabushiki Kaisha Toshiba | Binary data compression and expansion processing apparatus |
DE3735349A1 (de) * | 1986-10-18 | 1988-04-28 | Toshiba Kawasaki Kk | Bildpresservorrichtung |
JP2783534B2 (ja) * | 1986-11-13 | 1998-08-06 | キヤノン株式会社 | 符号化装置 |
NL8700565A (nl) | 1987-03-10 | 1988-10-03 | Philips Nv | Televisiesysteem waarin aan een transformatiekodering onderworpen gedigitaliseerde beeldsignalen worden overgebracht van een kodeerstation naar een dekodeerstation. |
US4774574A (en) | 1987-06-02 | 1988-09-27 | Eastman Kodak Company | Adaptive block transform image coding method and apparatus |
US6563875B2 (en) * | 1987-12-30 | 2003-05-13 | Thomson Licensing S.A. | Adaptive method of encoding and decoding a series of pictures by transformation, and devices for implementing this method |
CA1333420C (en) | 1988-02-29 | 1994-12-06 | Tokumichi Murakami | Vector quantizer |
JPH0666948B2 (ja) | 1988-02-29 | 1994-08-24 | 三菱電機株式会社 | フレーム間ベクトル量子化符号化復号化装置 |
US4821119A (en) * | 1988-05-04 | 1989-04-11 | Bell Communications Research, Inc. | Method and apparatus for low bit-rate interframe video coding |
US4965830A (en) | 1989-01-17 | 1990-10-23 | Unisys Corp. | Apparatus for estimating distortion resulting from compressing digital data |
JPH0832047B2 (ja) | 1989-04-28 | 1996-03-27 | 日本ビクター株式会社 | 予測符号化装置 |
US5179442A (en) * | 1989-06-02 | 1993-01-12 | North American Philips Corporation | Method and apparatus for digitally processing a high definition television augmentation signal |
US5128758A (en) | 1989-06-02 | 1992-07-07 | North American Philips Corporation | Method and apparatus for digitally processing a high definition television augmentation signal |
US5241395A (en) | 1989-08-07 | 1993-08-31 | Bell Communications Research, Inc. | Adaptive transform coding using variable block size |
GB8918559D0 (en) | 1989-08-15 | 1989-09-27 | British Telecomm | Video filter |
JPH0828875B2 (ja) | 1989-08-21 | 1996-03-21 | 三菱電機株式会社 | 符号化装置および復号化装置 |
US5144426A (en) | 1989-10-13 | 1992-09-01 | Matsushita Electric Industrial Co., Ltd. | Motion compensated prediction interframe coding system |
US5210623A (en) | 1989-12-21 | 1993-05-11 | Eastman Kodak Company | Apparatus and method for quantizing and/or reconstructing multi-dimensional digital image signals |
JP2841765B2 (ja) | 1990-07-13 | 1998-12-24 | 日本電気株式会社 | 適応ビット割当て方法及び装置 |
JP3069363B2 (ja) * | 1990-07-20 | 2000-07-24 | 株式会社日立製作所 | 動画像符号化方法、動画像符号化装置、データ記録装置およびデータ通信装置 |
US5146324A (en) | 1990-07-31 | 1992-09-08 | Ampex Corporation | Data compression using a feedforward quantization estimator |
US5303058A (en) * | 1990-10-22 | 1994-04-12 | Fujitsu Limited | Data processing apparatus for compressing and reconstructing image data |
JPH0813138B2 (ja) | 1990-11-28 | 1996-02-07 | 松下電器産業株式会社 | 画像符号化装置 |
US5136377A (en) | 1990-12-11 | 1992-08-04 | At&T Bell Laboratories | Adaptive non-linear quantizer |
US5625714A (en) | 1991-01-10 | 1997-04-29 | Olympus Optical Co., Ltd. | Image signal decoding device capable of removing block distortion with simple structure |
JP3187852B2 (ja) | 1991-02-08 | 2001-07-16 | ソニー株式会社 | 高能率符号化方法 |
US5333212A (en) | 1991-03-04 | 1994-07-26 | Storm Technology | Image compression technique with regionally selective compression ratio |
US5317672A (en) | 1991-03-05 | 1994-05-31 | Picturetel Corporation | Variable bit rate speech encoder |
JP3278187B2 (ja) | 1991-03-14 | 2002-04-30 | 三菱電機株式会社 | 動き適応型輝度信号色信号分離フィルタ |
US5611038A (en) | 1991-04-17 | 1997-03-11 | Shaw; Venson M. | Audio/video transceiver provided with a device for reconfiguration of incompatibly received or transmitted video and audio information |
EP0514688A2 (en) | 1991-05-21 | 1992-11-25 | International Business Machines Corporation | Generalized shape autocorrelation for shape acquisition and recognition |
EP0514663A3 (en) * | 1991-05-24 | 1993-07-14 | International Business Machines Corporation | An apparatus and method for motion video encoding employing an adaptive quantizer |
DE69222766T2 (de) | 1991-06-04 | 1998-05-07 | Qualcomm, Inc., San Diego, Calif. | System zur adaptiven kompression der blockgrössen eines bildes |
JP3152765B2 (ja) | 1991-10-31 | 2001-04-03 | 株式会社東芝 | 画像符号化装置 |
TW241350B (ru) | 1991-11-07 | 1995-02-21 | Rca Thomson Licensing Corp | |
US5231484A (en) | 1991-11-08 | 1993-07-27 | International Business Machines Corporation | Motion video compression system with adaptive bit allocation and quantization |
US5253058A (en) | 1992-04-01 | 1993-10-12 | Bell Communications Research, Inc. | Efficient coding scheme for multilevel video transmission |
JP3245977B2 (ja) | 1992-06-30 | 2002-01-15 | ソニー株式会社 | ディジタル画像信号の伝送装置 |
KR0132895B1 (ko) | 1992-07-24 | 1998-10-01 | 강진구 | 적응 양자화 기능을 갖는 영상압축 및 신장방법과 그 장치 |
GB9216659D0 (en) | 1992-08-05 | 1992-09-16 | Gerzon Michael A | Subtractively dithered digital waveform coding system |
JPH0686264A (ja) | 1992-08-31 | 1994-03-25 | Hitachi Ltd | 可変速度画像符号化方式 |
JP3348310B2 (ja) | 1992-09-28 | 2002-11-20 | ソニー株式会社 | 動画像符号化方法および動画像符号化装置 |
US5663763A (en) | 1992-10-29 | 1997-09-02 | Sony Corp. | Picture signal encoding method and apparatus and picture signal decoding method and apparatus |
KR0166722B1 (ko) | 1992-11-30 | 1999-03-20 | 윤종용 | 부호화 및 복호화방법 및 그 장치 |
JP3406336B2 (ja) * | 1992-12-15 | 2003-05-12 | ソニー株式会社 | 画像符号化装置、画像符号化方法、画像復号化装置、および画像復号化方法 |
US5467134A (en) | 1992-12-22 | 1995-11-14 | Microsoft Corporation | Method and system for compressing video data |
US5544286A (en) | 1993-01-29 | 1996-08-06 | Microsoft Corporation | Digital video data compression technique |
TW224553B (en) * | 1993-03-01 | 1994-06-01 | Sony Co Ltd | Method and apparatus for inverse discrete consine transform and coding/decoding of moving picture |
US5412429A (en) | 1993-03-11 | 1995-05-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Picture data compression coder using subband/transform coding with a Lempel-Ziv-based coder |
US5510785A (en) * | 1993-03-19 | 1996-04-23 | Sony Corporation | Method of coding a digital signal, method of generating a coding table, coding apparatus and coding method |
US5861921A (en) | 1993-03-29 | 1999-01-19 | Canon Kabushiki Kaisha | Controlling quantization parameters based on code amount |
JPH06296275A (ja) | 1993-04-08 | 1994-10-21 | Sony Corp | 画像信号符号化方法及び画像信号符号化装置 |
KR960010196B1 (ko) | 1993-06-04 | 1996-07-26 | 배순훈 | 인간의 시각특성을 이용한 디씨(dc) 변환계수 양자화기 |
US5880775A (en) * | 1993-08-16 | 1999-03-09 | Videofaxx, Inc. | Method and apparatus for detecting changes in a video display |
GB2281465B (en) | 1993-08-27 | 1997-06-04 | Sony Uk Ltd | Image data compression |
US5509089A (en) | 1993-09-09 | 1996-04-16 | Intel Corporation | Method and system for encoding images using temporal filtering |
US5724097A (en) * | 1993-10-18 | 1998-03-03 | Mitsubishi Denki Kabushiki Kaisha | Adaptive quantization of video based on edge detection |
US6104751A (en) | 1993-10-29 | 2000-08-15 | Sgs-Thomson Microelectronics S.A. | Apparatus and method for decompressing high definition pictures |
BE1007807A3 (nl) * | 1993-11-30 | 1995-10-24 | Philips Electronics Nv | Inrichting voor het coderen van een videosignaal. |
US5828786A (en) | 1993-12-02 | 1998-10-27 | General Instrument Corporation | Analyzer and methods for detecting and processing video data types in a video data stream |
JP3224465B2 (ja) | 1993-12-22 | 2001-10-29 | シャープ株式会社 | 画像符号化装置 |
US5537440A (en) | 1994-01-07 | 1996-07-16 | Motorola, Inc. | Efficient transcoding device and method |
US5587708A (en) | 1994-01-19 | 1996-12-24 | Industrial Technology Research Institute | Division technique unified quantizer-dequantizer |
US5592226A (en) | 1994-01-26 | 1997-01-07 | Btg Usa Inc. | Method and apparatus for video data compression using temporally adaptive motion interpolation |
JP3197420B2 (ja) | 1994-01-31 | 2001-08-13 | 三菱電機株式会社 | 画像符号化装置 |
JPH07250327A (ja) | 1994-03-08 | 1995-09-26 | Matsushita Electric Ind Co Ltd | 画像符号化方法 |
US5654760A (en) | 1994-03-30 | 1997-08-05 | Sony Corporation | Selection of quantization step size in accordance with predicted quantization noise |
US5649083A (en) | 1994-04-15 | 1997-07-15 | Hewlett-Packard Company | System and method for dithering and quantizing image data to optimize visual quality of a color recovered image |
CN1127562A (zh) | 1994-04-22 | 1996-07-24 | 索尼公司 | 视频信号编码方法及设备和视频信号译码设备 |
KR0148154B1 (ko) | 1994-06-15 | 1998-09-15 | 김광호 | 움직임크기에 따른 동영상데이타의 부호화방법 및 장치 |
JP3954656B2 (ja) * | 1994-09-29 | 2007-08-08 | ソニー株式会社 | 画像符号化装置及び方法 |
US5604856A (en) | 1994-10-13 | 1997-02-18 | Microsoft Corporation | Motion compensated noise reduction method and system for computer generated images |
US5802213A (en) | 1994-10-18 | 1998-09-01 | Intel Corporation | Encoding video signals using local quantization levels |
US6026190A (en) | 1994-10-31 | 2000-02-15 | Intel Corporation | Image signal encoding with variable low-pass filter |
US5539469A (en) | 1994-12-30 | 1996-07-23 | Daewoo Electronics Co., Ltd. | Apparatus for determining motion vectors through the use of an adaptive median filtering technique |
JP2738325B2 (ja) | 1995-01-24 | 1998-04-08 | 日本電気株式会社 | 動き補償フレーム間予測装置 |
US5724456A (en) * | 1995-03-31 | 1998-03-03 | Polaroid Corporation | Brightness adjustment of images using digital scene analysis |
US5623424A (en) * | 1995-05-08 | 1997-04-22 | Kabushiki Kaisha Toshiba | Rate-controlled digital video editing method and system which controls bit allocation of a video encoder by varying quantization levels |
US5781788A (en) | 1995-05-08 | 1998-07-14 | Avc Technology, Inc. | Full duplex single clip video codec |
US5835149A (en) | 1995-06-06 | 1998-11-10 | Intel Corporation | Bit allocation in a coded video sequence |
JPH08336139A (ja) | 1995-06-08 | 1996-12-17 | Casio Comput Co Ltd | 画像データ処理装置および量子化方法 |
US5926209A (en) | 1995-07-14 | 1999-07-20 | Sensormatic Electronics Corporation | Video camera apparatus with compression system responsive to video camera adjustment |
US5793371A (en) * | 1995-08-04 | 1998-08-11 | Sun Microsystems, Inc. | Method and apparatus for geometric compression of three-dimensional graphics data |
KR100304660B1 (ko) * | 1995-09-22 | 2001-11-22 | 윤종용 | 누적에러처리를통한비디오신호부호화방법및부호화기 |
US5970173A (en) | 1995-10-05 | 1999-10-19 | Microsoft Corporation | Image compression and affine transformation for image motion compensation |
CA2187044C (en) | 1995-10-06 | 2003-07-01 | Vishal Markandey | Method to reduce perceptual contouring in display systems |
US5835495A (en) | 1995-10-11 | 1998-11-10 | Microsoft Corporation | System and method for scaleable streamed audio transmission over a network |
US5819035A (en) | 1995-10-20 | 1998-10-06 | Matsushita Electric Industrial Co., Ltd. | Post-filter for removing ringing artifacts of DCT coding |
US6160846A (en) | 1995-10-25 | 2000-12-12 | Sarnoff Corporation | Apparatus and method for optimizing the rate control in a coding system |
US6571019B1 (en) | 1995-10-26 | 2003-05-27 | Hyundai Curitel, Inc | Apparatus and method of encoding/decoding a coded block pattern |
US5926791A (en) | 1995-10-26 | 1999-07-20 | Sony Corporation | Recursively splitting the low-frequency band with successively fewer filter taps in methods and apparatuses for sub-band encoding, decoding, and encoding and decoding |
WO1997021302A1 (en) | 1995-12-08 | 1997-06-12 | Trustees Of Dartmouth College | Fast lossy internet image transmission apparatus and methods |
US5761088A (en) | 1995-12-18 | 1998-06-02 | Philips Electronics North America Corporation | Method and apparatus for channel identification using incomplete or noisy information |
US5878166A (en) * | 1995-12-26 | 1999-03-02 | C-Cube Microsystems | Field frame macroblock encoding decision |
JP3067628B2 (ja) | 1996-01-19 | 2000-07-17 | 日本電気株式会社 | 画像符号化装置 |
US5799113A (en) | 1996-01-19 | 1998-08-25 | Microsoft Corporation | Method for expanding contracted video images |
US5835145A (en) | 1996-01-19 | 1998-11-10 | Lsi Logic Corporation | Conversion system using programmable tables for compressing transform coefficients |
US5787203A (en) | 1996-01-19 | 1998-07-28 | Microsoft Corporation | Method and system for filtering compressed video images |
US5731837A (en) * | 1996-01-25 | 1998-03-24 | Thomson Multimedia, S.A. | Quantization circuitry as for video signal compression systems |
US6957350B1 (en) * | 1996-01-30 | 2005-10-18 | Dolby Laboratories Licensing Corporation | Encrypted and watermarked temporal and resolution layering in advanced television |
JP3521596B2 (ja) | 1996-01-30 | 2004-04-19 | ソニー株式会社 | 信号符号化方法 |
US5682152A (en) * | 1996-03-19 | 1997-10-28 | Johnson-Grace Company | Data compression using adaptive bit allocation and hybrid lossless entropy encoding |
US5786856A (en) | 1996-03-19 | 1998-07-28 | International Business Machines | Method for adaptive quantization by multiplication of luminance pixel blocks by a modified, frequency ordered hadamard matrix |
US5764814A (en) | 1996-03-22 | 1998-06-09 | Microsoft Corporation | Representation and encoding of general arbitrary shapes |
US5764803A (en) | 1996-04-03 | 1998-06-09 | Lucent Technologies Inc. | Motion-adaptive modelling of scene content for very low bit rate model-assisted coding of video sequences |
US5850482A (en) | 1996-04-17 | 1998-12-15 | Mcdonnell Douglas Corporation | Error resilient method and apparatus for entropy coding |
US5739861A (en) * | 1996-05-06 | 1998-04-14 | Music; John D. | Differential order video encoding system |
US5815097A (en) | 1996-05-23 | 1998-09-29 | Ricoh Co. Ltd. | Method and apparatus for spatially embedded coding |
CN1183769C (zh) | 1996-05-28 | 2005-01-05 | 松下电器产业株式会社 | 图像预测编码/解码装置和方法以及记录媒体 |
US5809178A (en) | 1996-06-11 | 1998-09-15 | Apple Computer, Inc. | Elimination of visible quantizing artifacts in a digital image utilizing a critical noise/quantizing factor |
US6865291B1 (en) * | 1996-06-24 | 2005-03-08 | Andrew Michael Zador | Method apparatus and system for compressing data that wavelet decomposes by color plane and then divides by magnitude range non-dc terms between a scalar quantizer and a vector quantizer |
CA2208950A1 (en) | 1996-07-03 | 1998-01-03 | Xuemin Chen | Rate control for stereoscopic digital video encoding |
KR100242637B1 (ko) * | 1996-07-06 | 2000-02-01 | 윤종용 | 동보상된 영상의 블록화효과 및 링잉노이즈 감소를 위한 루프필터링방법 |
WO1998009436A1 (en) * | 1996-08-30 | 1998-03-05 | Sony Corporation | Device, method, and medium for recording still picture and animation |
FR2753330B1 (fr) | 1996-09-06 | 1998-11-27 | Thomson Multimedia Sa | Procede de quantification pour codage video |
US6348945B1 (en) * | 1996-09-06 | 2002-02-19 | Sony Corporation | Method and device for encoding data |
KR100297830B1 (ko) | 1996-11-09 | 2001-08-07 | 윤종용 | 영상단위별 비트발생량 조절 장치 및 방법 |
US6233017B1 (en) * | 1996-09-16 | 2001-05-15 | Microsoft Corporation | Multimedia compression system with adaptive block sizes |
GB2317525B (en) * | 1996-09-20 | 2000-11-08 | Nokia Mobile Phones Ltd | A video coding system |
JPH10107644A (ja) * | 1996-09-26 | 1998-04-24 | Sony Corp | 量子化装置および方法、並びに、符号化装置および方法 |
JP3934712B2 (ja) | 1996-09-27 | 2007-06-20 | 日本ビクター株式会社 | 映像信号符号化方法及び装置 |
KR100303685B1 (ko) * | 1996-09-30 | 2001-09-24 | 송문섭 | 영상 예측부호화 장치 및 그 방법 |
GB2318472B (en) | 1996-10-09 | 2000-11-15 | Sony Uk Ltd | Processing encoded signals |
KR100198788B1 (ko) * | 1996-12-09 | 1999-06-15 | 정선종 | 차동 펄스 부호 변조기를 포함한 양자화/역양자화 회로 |
JP4032446B2 (ja) | 1996-12-12 | 2008-01-16 | ソニー株式会社 | 映像データ圧縮装置およびその方法 |
KR100355324B1 (ko) | 1996-12-12 | 2002-11-18 | 마쯔시다덴기산교 가부시키가이샤 | 화상부호화장치및화상복호화장치 |
JPH10174103A (ja) * | 1996-12-13 | 1998-06-26 | Matsushita Electric Ind Co Ltd | 画像符号化装置、符号化画像記録媒体、画像復号化装置、画像符号化方法、および符号化画像伝送方法 |
US6243497B1 (en) | 1997-02-12 | 2001-06-05 | Sarnoff Corporation | Apparatus and method for optimizing the rate control in a coding system |
US5969764A (en) | 1997-02-14 | 1999-10-19 | Mitsubishi Electric Information Technology Center America, Inc. | Adaptive video coding method |
US6347116B1 (en) * | 1997-02-14 | 2002-02-12 | At&T Corp. | Non-linear quantizer for video coding |
DE69838639T2 (de) | 1997-02-14 | 2008-08-28 | Nippon Telegraph And Telephone Corp. | Prädiktives kodierungs- und dekodierungsverfahren für dynamische bilder |
US6373894B1 (en) * | 1997-02-18 | 2002-04-16 | Sarnoff Corporation | Method and apparatus for recovering quantized coefficients |
US6118817A (en) | 1997-03-14 | 2000-09-12 | Microsoft Corporation | Digital video signal encoder and encoding method having adjustable quantization |
US6115420A (en) | 1997-03-14 | 2000-09-05 | Microsoft Corporation | Digital video signal encoder and encoding method |
US5844613A (en) | 1997-03-17 | 1998-12-01 | Microsoft Corporation | Global motion estimator for motion video signal encoding |
US6633611B2 (en) * | 1997-04-24 | 2003-10-14 | Mitsubishi Denki Kabushiki Kaisha | Method and apparatus for region-based moving image encoding and decoding |
US6058215A (en) | 1997-04-30 | 2000-05-02 | Ricoh Company, Ltd. | Reversible DCT for lossless-lossy compression |
US5959693A (en) | 1997-05-07 | 1999-09-28 | General Instrument Corporation | Pixel adaptive noise reduction filter for digital video |
US6088392A (en) | 1997-05-30 | 2000-07-11 | Lucent Technologies Inc. | Bit rate coder for differential quantization |
JP3617253B2 (ja) | 1997-06-03 | 2005-02-02 | 富士ゼロックス株式会社 | 画像符号化装置および方法 |
FI107496B (fi) | 1997-07-18 | 2001-08-15 | Nokia Mobile Phones Ltd | Kuvan kompressointi |
JPH1141610A (ja) | 1997-07-24 | 1999-02-12 | Nippon Telegr & Teleph Corp <Ntt> | 可変速度符号化制御方法及び装置 |
US6281942B1 (en) | 1997-08-11 | 2001-08-28 | Microsoft Corporation | Spatial and temporal filtering mechanism for digital motion video signals |
KR100244290B1 (ko) | 1997-09-09 | 2000-02-01 | 구자홍 | 저속 전송에서의 동영상을 위한 디블록킹 필터링 방법 |
US6091777A (en) | 1997-09-18 | 2000-07-18 | Cubic Video Technologies, Inc. | Continuously adaptive digital video compression system and method for a web streamer |
AU1062999A (en) * | 1997-09-29 | 1999-04-23 | Rockwell Semiconductor Systems, Inc. | System and method for compressing images using multi-threshold wavelet coding |
US6295379B1 (en) | 1997-09-29 | 2001-09-25 | Intel Corporation | DPCM image compression with plural quantization table levels |
KR100511693B1 (ko) * | 1997-10-23 | 2005-09-02 | 미쓰비시덴키 가부시키가이샤 | 화상 복호화 장치 |
US6493385B1 (en) | 1997-10-23 | 2002-12-10 | Mitsubishi Denki Kabushiki Kaisha | Image encoding method, image encoder, image decoding method, and image decoder |
JP4531871B2 (ja) | 1997-10-30 | 2010-08-25 | 富士通セミコンダクター株式会社 | 画像情報処理装置及び符号装置 |
US6731811B1 (en) | 1997-12-19 | 2004-05-04 | Voicecraft, Inc. | Scalable predictive coding method and apparatus |
US6873368B1 (en) | 1997-12-23 | 2005-03-29 | Thomson Licensing Sa. | Low noise encoding and decoding method |
KR100243430B1 (ko) | 1997-12-31 | 2000-02-01 | 구자홍 | 적응형 양자화 제어방법 |
US6275527B1 (en) * | 1998-01-14 | 2001-08-14 | Conexant Systems, Inc. | Pre-quantization in motion compensated video coding |
US6654417B1 (en) | 1998-01-26 | 2003-11-25 | Stmicroelectronics Asia Pacific Pte. Ltd. | One-pass variable bit rate moving pictures encoding |
CA2260578C (en) | 1998-01-27 | 2003-01-14 | At&T Corp. | Method and apparatus for encoding video shape and texture information |
JP3462066B2 (ja) | 1998-01-29 | 2003-11-05 | 株式会社東芝 | Adpcm圧縮装置、adpcm伸長装置及びadpcm圧縮伸長装置 |
US6360017B1 (en) * | 1998-03-05 | 2002-03-19 | Lucent Technologies Inc. | Perceptual-based spatio-temporal segmentation for motion estimation |
US6249614B1 (en) | 1998-03-06 | 2001-06-19 | Alaris, Inc. | Video compression and decompression using dynamic quantization and/or encoding |
KR100281463B1 (ko) | 1998-03-14 | 2001-02-01 | 전주범 | 물체 기반 부호화 시스템의 보조 정보 부호화 장치 |
TW501022B (en) | 1998-03-16 | 2002-09-01 | Mitsubishi Electric Corp | Moving picture coding system |
US6278735B1 (en) | 1998-03-19 | 2001-08-21 | International Business Machines Corporation | Real-time single pass variable bit rate control strategy and encoder |
US6125147A (en) | 1998-05-07 | 2000-09-26 | Motorola, Inc. | Method and apparatus for reducing breathing artifacts in compressed video |
US6115689A (en) | 1998-05-27 | 2000-09-05 | Microsoft Corporation | Scalable audio coder and decoder |
US6285774B1 (en) | 1998-06-08 | 2001-09-04 | Digital Video Express, L.P. | System and methodology for tracing to a source of unauthorized copying of prerecorded proprietary material, such as movies |
US7313318B2 (en) * | 1998-06-17 | 2007-12-25 | Victor Company Of Japan, Limited | Video signal encoding and recording apparatus with variable transmission rate |
US6212232B1 (en) * | 1998-06-18 | 2001-04-03 | Compaq Computer Corporation | Rate control and bit allocation for low bit rate video communication applications |
JP2000013794A (ja) | 1998-06-23 | 2000-01-14 | Mitsubishi Electric Corp | 動画像符号化装置、動画像符号化方法、動画像復号装置、および動画像復号方法 |
US6411651B1 (en) | 1998-06-26 | 2002-06-25 | Compaq Information Technologies Group, L.P. | Method and system for distributed video compression in personal computer architecture |
US6275614B1 (en) | 1998-06-26 | 2001-08-14 | Sarnoff Corporation | Method and apparatus for block classification and adaptive bit allocation |
US20020001412A1 (en) | 1998-07-21 | 2002-01-03 | Hewlett-Packard Company | System for variable quantization in jpeg for compound documents |
AU717480B2 (en) | 1998-08-01 | 2000-03-30 | Korea Advanced Institute Of Science And Technology | Loop-filtering method for image data and apparatus therefor |
US6389171B1 (en) | 1998-08-14 | 2002-05-14 | Apple Computer, Inc. | Method and apparatus for a digital video cassette (DVC) decode system |
US6219838B1 (en) | 1998-08-24 | 2001-04-17 | Sharewave, Inc. | Dithering logic for the display of video information |
KR100281967B1 (ko) | 1998-08-31 | 2001-02-15 | 전주범 | 공간 상관성을 이용한 영상 부호화 장치 및 그 방법 |
US6380985B1 (en) | 1998-09-14 | 2002-04-30 | Webtv Networks, Inc. | Resizing and anti-flicker filtering in reduced-size video images |
US6256423B1 (en) | 1998-09-18 | 2001-07-03 | Sarnoff Corporation | Intra-frame quantizer selection for video compression |
US6546049B1 (en) * | 1998-10-05 | 2003-04-08 | Sarnoff Corporation | Parameterized quantization matrix adaptation for video encoding |
US6256422B1 (en) | 1998-11-04 | 2001-07-03 | International Business Machines Corporation | Transform-domain correction of real-domain errors |
US6393155B1 (en) | 1998-11-04 | 2002-05-21 | International Business Machines Corporation | Error reduction in transformed digital data |
AU743246B2 (en) | 1998-11-04 | 2002-01-24 | Mitsubishi Denki Kabushiki Kaisha | Image decoder and image encoder |
US6584154B1 (en) | 1998-11-26 | 2003-06-24 | Oki Electric Industry Co., Ltd. | Moving-picture coding and decoding method and apparatus with reduced computational cost |
US6418166B1 (en) | 1998-11-30 | 2002-07-09 | Microsoft Corporation | Motion estimation and block matching pattern |
US6983018B1 (en) * | 1998-11-30 | 2006-01-03 | Microsoft Corporation | Efficient motion vector coding for video compression |
US6223162B1 (en) * | 1998-12-14 | 2001-04-24 | Microsoft Corporation | Multi-level run length coding for frequency-domain audio coding |
US6473534B1 (en) | 1999-01-06 | 2002-10-29 | Hewlett-Packard Company | Multiplier-free implementation of DCT used in image and video processing and compression |
US6760482B1 (en) | 1999-02-19 | 2004-07-06 | Unisearch Limited | Method for visual optimisation of embedded block codes to exploit visual masking phenomena |
US6473409B1 (en) | 1999-02-26 | 2002-10-29 | Microsoft Corp. | Adaptive filtering system and method for adaptively canceling echoes and reducing noise in digital signals |
CA2280662A1 (en) | 1999-05-21 | 2000-11-21 | Joe Toth | Media server with multi-dimensional scalable data compression |
US6370502B1 (en) * | 1999-05-27 | 2002-04-09 | America Online, Inc. | Method and system for reduction of quantization-induced block-discontinuities and general purpose audio codec |
FR2794563B1 (fr) | 1999-06-04 | 2002-08-16 | Thomson Multimedia Sa | Procede d'adressage de panneau d'affichage au plasma |
US6625215B1 (en) | 1999-06-07 | 2003-09-23 | Lucent Technologies Inc. | Methods and apparatus for context-based inter/intra coding mode selection |
FI111764B (fi) | 1999-06-10 | 2003-09-15 | Nokia Corp | Menetelmä ja järjestely kuvatiedon käsittelemiseksi |
JP2001008215A (ja) | 1999-06-24 | 2001-01-12 | Victor Co Of Japan Ltd | 動画像符号化装置及びその方法 |
US6490319B1 (en) | 1999-06-22 | 2002-12-03 | Intel Corporation | Region of interest video coding |
JP2001016594A (ja) | 1999-06-29 | 2001-01-19 | Hitachi Ltd | 動画像の動き補償方法 |
US6263022B1 (en) | 1999-07-06 | 2001-07-17 | Philips Electronics North America Corp. | System and method for fine granular scalable video with selective quality enhancement |
WO2001006794A1 (en) * | 1999-07-20 | 2001-01-25 | Koninklijke Philips Electronics N.V. | Encoding method for the compression of a video sequence |
US6408026B1 (en) | 1999-08-06 | 2002-06-18 | Sony Corporation | Deadzone quantization method and apparatus for image compression |
FI107495B (fi) * | 1999-08-13 | 2001-08-15 | Nokia Multimedia Network Termi | Menetelmä ja järjestely koodatun digitaalisen kuvabittivirran volyymin tai tahdin pienentämiseksi |
JP2001136535A (ja) | 1999-08-25 | 2001-05-18 | Fuji Xerox Co Ltd | 画像符号化装置および量子化特性決定装置 |
US6788740B1 (en) | 1999-10-01 | 2004-09-07 | Koninklijke Philips Electronics N.V. | System and method for encoding and decoding enhancement layer data using base layer quantization data |
JP4562051B2 (ja) | 1999-11-30 | 2010-10-13 | 独立行政法人産業技術総合研究所 | 損耗センサ付き切削工具の信号処理装置および信号処理方法 |
US6693645B2 (en) * | 1999-12-01 | 2004-02-17 | Ivast, Inc. | Optimized BIFS encoder |
US6765962B1 (en) | 1999-12-02 | 2004-07-20 | Sarnoff Corporation | Adaptive selection of quantization scales for video encoding |
US6456744B1 (en) | 1999-12-30 | 2002-09-24 | Quikcat.Com, Inc. | Method and apparatus for video compression using sequential frame cellular automata transforms |
US6963609B2 (en) | 2000-01-12 | 2005-11-08 | Koninklijke Philips Electronics N.V. | Image data compression |
US6738423B1 (en) | 2000-01-21 | 2004-05-18 | Nokia Mobile Phones Ltd. | Method for encoding and decoding video information, a motion compensated video encoder and a corresponding decoder |
FI116819B (fi) | 2000-01-21 | 2006-02-28 | Nokia Corp | Menetelmä kuvien lähettämiseksi ja kuvakooderi |
US6600836B1 (en) | 2000-01-28 | 2003-07-29 | Qualcomm, Incorporated | Quality based image compression |
JP2001245303A (ja) | 2000-02-29 | 2001-09-07 | Toshiba Corp | 動画像符号化装置および動画像符号化方法 |
US7035473B1 (en) | 2000-03-01 | 2006-04-25 | Sharp Laboratories Of America, Inc. | Distortion-adaptive visual frequency weighting |
JP4254017B2 (ja) * | 2000-03-10 | 2009-04-15 | ソニー株式会社 | 画像符号化装置及び方法 |
CN1366778A (zh) | 2000-04-27 | 2002-08-28 | 皇家菲利浦电子有限公司 | 视频压缩 |
US7289154B2 (en) | 2000-05-10 | 2007-10-30 | Eastman Kodak Company | Digital image processing method and apparatus for brightness adjustment of digital images |
US6876703B2 (en) * | 2000-05-11 | 2005-04-05 | Ub Video Inc. | Method and apparatus for video coding |
US6747660B1 (en) | 2000-05-12 | 2004-06-08 | Microsoft Corporation | Method and system for accelerating noise |
US6873654B1 (en) * | 2000-05-16 | 2005-03-29 | Redrock Semiconductor, Inc | Method and system for predictive control for live streaming video/audio media |
JP2001358948A (ja) | 2000-06-15 | 2001-12-26 | Canon Inc | 画像処理方法及び装置 |
US7023922B1 (en) | 2000-06-21 | 2006-04-04 | Microsoft Corporation | Video coding system and method using 3-D discrete wavelet transform and entropy coding with motion information |
US6593925B1 (en) | 2000-06-22 | 2003-07-15 | Microsoft Corporation | Parameterized animation compression methods and arrangements |
US20020021756A1 (en) * | 2000-07-11 | 2002-02-21 | Mediaflow, Llc. | Video compression using adaptive selection of groups of frames, adaptive bit allocation, and adaptive replenishment |
AU2001273510A1 (en) | 2000-07-17 | 2002-01-30 | Trustees Of Boston University | Generalized lapped biorthogonal transform embedded inverse discrete cosine transform and low bit rate video sequence coding artifact removal |
JP4256574B2 (ja) | 2000-08-04 | 2009-04-22 | 富士通株式会社 | 画像信号符号化方法および画像信号符号化装置 |
JP3825615B2 (ja) | 2000-08-11 | 2006-09-27 | 株式会社東芝 | 動画像符号化装置および動画像符号化方法およびプログラムを記録した媒体 |
JP3561485B2 (ja) | 2000-08-18 | 2004-09-02 | 株式会社メディアグルー | 符号化信号分離・合成装置、差分符号化信号生成装置、符号化信号分離・合成方法、差分符号化信号生成方法、符号化信号分離・合成プログラムを記録した媒体および差分符号化信号生成プログラムを記録した媒体 |
US6678422B1 (en) * | 2000-08-30 | 2004-01-13 | National Semiconductor Corporation | Method and apparatus for image data compression with low memory requirement |
US6834080B1 (en) * | 2000-09-05 | 2004-12-21 | Kabushiki Kaisha Toshiba | Video encoding method and video encoding apparatus |
US6748020B1 (en) | 2000-10-25 | 2004-06-08 | General Instrument Corporation | Transcoder-multiplexer (transmux) software architecture |
KR100355829B1 (ko) | 2000-12-13 | 2002-10-19 | 엘지전자 주식회사 | 영상의 공간적 유사성을 이용한 dpcm 영상 부호화 장치 |
US7058127B2 (en) | 2000-12-27 | 2006-06-06 | International Business Machines Corporation | Method and system for video transcoding |
WO2002054777A1 (en) | 2000-12-28 | 2002-07-11 | Koninklijke Philips Electronics N.V. | Mpeg-2 down-sampled video generation |
US7072525B1 (en) | 2001-02-16 | 2006-07-04 | Yesvideo, Inc. | Adaptive filtering of visual image using auxiliary image information |
US6757429B2 (en) * | 2001-02-21 | 2004-06-29 | Boly Media Communications Inc. | Method of compressing digital images |
US8374237B2 (en) | 2001-03-02 | 2013-02-12 | Dolby Laboratories Licensing Corporation | High precision encoding and decoding of video images |
FR2822284B1 (fr) | 2001-03-13 | 2004-01-02 | Thomson Multimedia Sa | Procede d'affichage d'images video sur panneau d'affichage a plasma et panneaux d'affichage a plasma correspondant |
US6832005B2 (en) * | 2001-03-23 | 2004-12-14 | Microsoft Corporation | Adaptive encoding and decoding of bi-level images |
US6831947B2 (en) | 2001-03-23 | 2004-12-14 | Sharp Laboratories Of America, Inc. | Adaptive quantization based on bit rate prediction and prediction error energy |
WO2002080575A1 (en) | 2001-03-29 | 2002-10-10 | Sony Corporation | Image processing apparatus, image processing method, image processing program, and recording medium |
US6687294B2 (en) * | 2001-04-27 | 2004-02-03 | Koninklijke Philips Electronics N.V. | Distortion quantizer model for video encoding |
US7206453B2 (en) | 2001-05-03 | 2007-04-17 | Microsoft Corporation | Dynamic filtering for lossy compression |
US6882753B2 (en) * | 2001-06-04 | 2005-04-19 | Silicon Integrated Systems Corp. | Adaptive quantization using code length in image compression |
US6909745B1 (en) | 2001-06-05 | 2005-06-21 | At&T Corp. | Content adaptive video encoder |
US6704718B2 (en) * | 2001-06-05 | 2004-03-09 | Microsoft Corporation | System and method for trainable nonlinear prediction of transform coefficients in data compression |
US20030189980A1 (en) | 2001-07-02 | 2003-10-09 | Moonlight Cordless Ltd. | Method and apparatus for motion estimation between video frames |
KR100452317B1 (ko) * | 2001-07-11 | 2004-10-12 | 삼성전자주식회사 | 포토리소그래피 공정시스템 및 그 방법 |
US6975680B2 (en) | 2001-07-12 | 2005-12-13 | Dolby Laboratories, Inc. | Macroblock mode decision biasing for video compression systems |
US20030112863A1 (en) * | 2001-07-12 | 2003-06-19 | Demos Gary A. | Method and system for improving compressed image chroma information |
US7042941B1 (en) | 2001-07-17 | 2006-05-09 | Vixs, Inc. | Method and apparatus for controlling amount of quantization processing in an encoder |
US7079692B2 (en) * | 2001-07-24 | 2006-07-18 | Koninklijke Philips Electronics N.V. | Reduced complexity video decoding by reducing the IDCT computation in B-frames |
US7801215B2 (en) | 2001-07-24 | 2010-09-21 | Sasken Communication Technologies Limited | Motion estimation technique for digital video encoding applications |
US6987889B1 (en) * | 2001-08-10 | 2006-01-17 | Polycom, Inc. | System and method for dynamic perceptual coding of macroblocks in a video frame |
US7110455B2 (en) | 2001-08-14 | 2006-09-19 | General Instrument Corporation | Noise reduction pre-processor for digital video using previously generated motion vectors and adaptive spatial filtering |
JP4392782B2 (ja) | 2001-08-21 | 2010-01-06 | Kddi株式会社 | 低レート映像符号化における量子化制御方法 |
US6891889B2 (en) | 2001-09-05 | 2005-05-10 | Intel Corporation | Signal to noise ratio optimization for video compression bit-rate control |
US7440504B2 (en) | 2001-09-24 | 2008-10-21 | Broadcom Corporation | Method and apparatus for performing deblocking filtering with interlace capability |
US6977659B2 (en) | 2001-10-11 | 2005-12-20 | At & T Corp. | Texture replacement in video sequences and images |
US6992725B2 (en) | 2001-10-22 | 2006-01-31 | Nec Electronics America, Inc. | Video data de-interlacing using perceptually-tuned interpolation scheme |
US7107584B2 (en) | 2001-10-23 | 2006-09-12 | Microsoft Corporation | Data alignment between native and non-native shared data structures |
US6810083B2 (en) | 2001-11-16 | 2004-10-26 | Koninklijke Philips Electronics N.V. | Method and system for estimating objective quality of compressed video data |
KR100643453B1 (ko) | 2001-11-17 | 2006-11-10 | 엘지전자 주식회사 | 오브젝트 기반 비트율 제어방법 |
US6993200B2 (en) | 2001-11-20 | 2006-01-31 | Sony Corporation | System and method for effectively rendering high dynamic range images |
CA2435757C (en) * | 2001-11-29 | 2013-03-19 | Matsushita Electric Industrial Co., Ltd. | Video coding distortion removal method and apparatus using a filter |
US7295609B2 (en) * | 2001-11-30 | 2007-11-13 | Sony Corporation | Method and apparatus for coding image information, method and apparatus for decoding image information, method and apparatus for coding and decoding image information, and system of coding and transmitting image information |
JP4254147B2 (ja) | 2001-11-30 | 2009-04-15 | ソニー株式会社 | 画像情報符号化方法及び装置、並びにプログラム及び記録媒体 |
CN101448162B (zh) | 2001-12-17 | 2013-01-02 | 微软公司 | 处理视频图像的方法 |
WO2003053066A1 (en) | 2001-12-17 | 2003-06-26 | Microsoft Corporation | Skip macroblock coding |
US6763068B2 (en) | 2001-12-28 | 2004-07-13 | Nokia Corporation | Method and apparatus for selecting macroblock quantization parameters in a video encoder |
WO2003056839A1 (en) | 2001-12-31 | 2003-07-10 | Stmicroelectronics Asia Pacific Pte Ltd | Video encoding |
US6985529B1 (en) * | 2002-01-07 | 2006-01-10 | Apple Computer, Inc. | Generation and use of masks in MPEG video encoding to indicate non-zero entries in transformed macroblocks |
US20030128754A1 (en) | 2002-01-09 | 2003-07-10 | Hiroshi Akimoto | Motion estimation method for control on the basis of scene analysis in video compression systems |
US6647152B2 (en) | 2002-01-25 | 2003-11-11 | Thomson Licensing S.A. | Method and system for contouring reduction |
US20050105889A1 (en) | 2002-03-22 | 2005-05-19 | Conklin Gregory J. | Video picture compression artifacts reduction via filtering and dithering |
US7430303B2 (en) | 2002-03-29 | 2008-09-30 | Lockheed Martin Corporation | Target detection method and system |
US7116831B2 (en) | 2002-04-10 | 2006-10-03 | Microsoft Corporation | Chrominance motion vector rounding |
RU2322770C2 (ru) * | 2002-04-23 | 2008-04-20 | Нокиа Корпорейшн | Способ и устройство для указания параметров квантователя в системе видеокодирования |
WO2003091850A2 (en) | 2002-04-26 | 2003-11-06 | The Trustees Of Columbia University In The City Of New York | Method and system for optimal video transcoding based on utility function descriptors |
US7242713B2 (en) | 2002-05-02 | 2007-07-10 | Microsoft Corporation | 2-D transforms for image and video coding |
US7609767B2 (en) | 2002-05-03 | 2009-10-27 | Microsoft Corporation | Signaling for fading compensation |
US20030215011A1 (en) | 2002-05-17 | 2003-11-20 | General Instrument Corporation | Method and apparatus for transcoding compressed video bitstreams |
US7145948B2 (en) | 2002-05-29 | 2006-12-05 | Koninklijke Philips Electronics N.V. | Entropy constrained scalar quantizer for a Laplace-Markov source |
JP2004023288A (ja) | 2002-06-13 | 2004-01-22 | Kddi R & D Laboratories Inc | 動画像符号化のための前処理方式 |
US6961376B2 (en) | 2002-06-25 | 2005-11-01 | General Instrument Corporation | Methods and apparatus for rate control during dual pass encoding |
US7280700B2 (en) | 2002-07-05 | 2007-10-09 | Microsoft Corporation | Optimization techniques for data compression |
US7599579B2 (en) * | 2002-07-11 | 2009-10-06 | Ge Medical Systems Global Technology Company, Llc | Interpolated image filtering method and apparatus |
JP2004056249A (ja) * | 2002-07-17 | 2004-02-19 | Sony Corp | 符号化装置および方法、復号装置および方法、記録媒体、並びにプログラム |
US6947045B1 (en) | 2002-07-19 | 2005-09-20 | At&T Corporation | Coding of animated 3-D wireframe models for internet streaming applications: methods, systems and program products |
US6975773B1 (en) | 2002-07-30 | 2005-12-13 | Qualcomm, Incorporated | Parameter selection in data compression and decompression |
US6891548B2 (en) * | 2002-08-23 | 2005-05-10 | Hewlett-Packard Development Company, L.P. | System and method for calculating a texture-mapping gradient |
US20060256867A1 (en) | 2002-09-06 | 2006-11-16 | Turaga Deepak S | Content-adaptive multiple description motion compensation for improved efficiency and error resilience |
US6795584B2 (en) | 2002-10-03 | 2004-09-21 | Nokia Corporation | Context-based adaptive variable length coding for adaptive block transforms |
US6807317B2 (en) | 2002-10-25 | 2004-10-19 | Motorola, Inc. | Method and decoder system for reducing quantization effects of a decoded image |
US7139437B2 (en) | 2002-11-12 | 2006-11-21 | Eastman Kodak Company | Method and system for removing artifacts in compressed images |
GB0228556D0 (en) * | 2002-12-06 | 2003-01-15 | British Telecomm | Video quality measurement |
US7099389B1 (en) | 2002-12-10 | 2006-08-29 | Tut Systems, Inc. | Rate control with picture-based lookahead window |
US8054880B2 (en) | 2004-12-10 | 2011-11-08 | Tut Systems, Inc. | Parallel rate control for digital video encoder with multi-processor architecture and picture-based look-ahead window |
JP4214771B2 (ja) | 2002-12-12 | 2009-01-28 | ソニー株式会社 | 画像処理装置およびその方法と符号化装置 |
KR20040058929A (ko) | 2002-12-27 | 2004-07-05 | 삼성전자주식회사 | Dtc 기반의 개선된 동영상 부호화 방법 및 그 장치 |
KR100584552B1 (ko) | 2003-01-14 | 2006-05-30 | 삼성전자주식회사 | 동영상 부호화 및 복호화 방법과 그 장치 |
US7212571B2 (en) | 2003-01-31 | 2007-05-01 | Seiko Epson Corporation | Method and apparatus for DCT domain filtering for block based encoding |
EP1445958A1 (en) | 2003-02-05 | 2004-08-11 | STMicroelectronics S.r.l. | Quantization method and system, for instance for video MPEG applications, and computer program product therefor |
KR100539923B1 (ko) | 2003-02-10 | 2005-12-28 | 삼성전자주식회사 | 화상통화시 화자의 영상을 구분하여 차등적 부호화할 수있는 비디오 엔코더 및 이를 이용한 비디오신호의 압축방법 |
JP3984178B2 (ja) | 2003-02-13 | 2007-10-03 | 日本電信電話株式会社 | 映像符号化方法、映像符号化装置、映像符号化プログラム及びそのプログラムを記録した記録媒体 |
US7227587B2 (en) | 2003-03-05 | 2007-06-05 | Broadcom Corporation | System and method for three dimensional comb filtering |
KR100977713B1 (ko) | 2003-03-15 | 2010-08-24 | 삼성전자주식회사 | 영상신호의 글자 인식을 위한 전처리 장치 및 방법 |
SG140441A1 (en) | 2003-03-17 | 2008-03-28 | St Microelectronics Asia | Decoder and method of decoding using pseudo two pass decoding and one pass encoding |
KR20060105409A (ko) | 2005-04-01 | 2006-10-11 | 엘지전자 주식회사 | 영상 신호의 스케일러블 인코딩 및 디코딩 방법 |
EP1465349A1 (en) | 2003-03-31 | 2004-10-06 | Interuniversitair Microelektronica Centrum Vzw | Embedded multiple description scalar quantizers for progressive image transmission |
CN1784904A (zh) | 2003-05-06 | 2006-06-07 | 皇家飞利浦电子股份有限公司 | 使用基于块的自适应扫描顺序编码视频信息 |
GB2401502B (en) | 2003-05-07 | 2007-02-14 | British Broadcasting Corp | Data processing |
WO2005004335A2 (en) * | 2003-06-25 | 2005-01-13 | Georgia Tech Research Corporation | Cauchy-distribution based coding system and method |
US7512180B2 (en) | 2003-06-25 | 2009-03-31 | Microsoft Corporation | Hierarchical data compression system and method for coding video data |
US7200277B2 (en) * | 2003-07-01 | 2007-04-03 | Eastman Kodak Company | Method for transcoding a JPEG2000 compressed image |
US7194031B2 (en) * | 2003-07-09 | 2007-03-20 | Silicon Integrated Systems Corp. | Rate control method with region of interesting support |
US7426308B2 (en) * | 2003-07-18 | 2008-09-16 | Microsoft Corporation | Intraframe and interframe interlace coding and decoding |
US7738554B2 (en) * | 2003-07-18 | 2010-06-15 | Microsoft Corporation | DC coefficient signaling at small quantization step sizes |
US7343291B2 (en) * | 2003-07-18 | 2008-03-11 | Microsoft Corporation | Multi-pass variable bitrate media encoding |
US7602851B2 (en) * | 2003-07-18 | 2009-10-13 | Microsoft Corporation | Intelligent differential quantization of video coding |
US7609763B2 (en) * | 2003-07-18 | 2009-10-27 | Microsoft Corporation | Advanced bi-directional predictive coding of video frames |
JP4388771B2 (ja) * | 2003-07-18 | 2009-12-24 | 三菱電機株式会社 | 動画像復号装置、および動画像復号方法 |
US8218624B2 (en) | 2003-07-18 | 2012-07-10 | Microsoft Corporation | Fractional quantization step sizes for high bit rates |
US7383180B2 (en) * | 2003-07-18 | 2008-06-03 | Microsoft Corporation | Constant bitrate media encoding techniques |
US20050013498A1 (en) * | 2003-07-18 | 2005-01-20 | Microsoft Corporation | Coding of motion vector information |
KR100520298B1 (ko) | 2003-07-26 | 2005-10-13 | 삼성전자주식회사 | 디더링 방법 및 디더링 장치 |
US20050024487A1 (en) | 2003-07-31 | 2005-02-03 | William Chen | Video codec system with real-time complexity adaptation and region-of-interest coding |
US7158668B2 (en) | 2003-08-01 | 2007-01-02 | Microsoft Corporation | Image processing using linear light values and other image processing improvements |
KR100505699B1 (ko) * | 2003-08-12 | 2005-08-03 | 삼성전자주식회사 | 실시간 가변 비트율 제어로 화질을 개선시키는 비디오인코더의 인코딩율 제어기, 이를 구비한 비디오 데이터전송 시스템 및 그 방법 |
TWI232681B (en) | 2003-08-27 | 2005-05-11 | Mediatek Inc | Method of transforming one video output format into another video output format without degrading display quality |
US7609762B2 (en) | 2003-09-07 | 2009-10-27 | Microsoft Corporation | Signaling for entry point frames with predicted first field |
US7724827B2 (en) * | 2003-09-07 | 2010-05-25 | Microsoft Corporation | Multi-layer run level encoding and decoding |
US7924921B2 (en) | 2003-09-07 | 2011-04-12 | Microsoft Corporation | Signaling coding and display options in entry point headers |
JP5280003B2 (ja) * | 2003-09-07 | 2013-09-04 | マイクロソフト コーポレーション | 映像コーデックにおけるスライス層 |
WO2005036886A1 (en) | 2003-10-13 | 2005-04-21 | Koninklijke Philips Electronics N.V. | Two-pass video encoding |
US20050084013A1 (en) * | 2003-10-15 | 2005-04-21 | Limin Wang | Frequency coefficient scanning paths |
US8223844B2 (en) | 2003-11-14 | 2012-07-17 | Intel Corporation | High frequency emphasis in decoding of encoded signals |
US20050105612A1 (en) | 2003-11-14 | 2005-05-19 | Sung Chih-Ta S. | Digital video stream decoding method and apparatus |
JP4063205B2 (ja) | 2003-11-20 | 2008-03-19 | セイコーエプソン株式会社 | 画像データ圧縮装置及びエンコーダ |
EP1536647A1 (en) | 2003-11-26 | 2005-06-01 | STMicroelectronics Limited | A video decoding device |
CN100342728C (zh) | 2003-11-28 | 2007-10-10 | 联发科技股份有限公司 | 控制视频信号编码比特流的量化程度的方法与相关装置 |
EP1692872A1 (en) | 2003-12-03 | 2006-08-23 | Koninklijke Philips Electronics N.V. | System and method for improved scalability support in mpeg-2 systems |
KR20050061762A (ko) | 2003-12-18 | 2005-06-23 | 학교법인 대양학원 | 부호화 모드 결정방법, 움직임 추정방법 및 부호화 장치 |
US7391809B2 (en) | 2003-12-30 | 2008-06-24 | Microsoft Corporation | Scalable video transcoding |
US7471845B2 (en) | 2004-01-06 | 2008-12-30 | Sharp Laboratories Of America, Inc. | De-ringing filter |
WO2005065030A2 (en) | 2004-01-08 | 2005-07-21 | Videocodes, Inc. | Video compression device and a method for compressing video |
KR100556340B1 (ko) | 2004-01-13 | 2006-03-03 | (주)씨앤에스 테크놀로지 | 영상 부호화 장치 |
EP1665133A4 (en) | 2004-01-20 | 2009-05-13 | Panasonic Corp | IMAGE ENCODING METHOD, IMAGE DECODING METHOD, IMAGE ENCODING APPARATUS, IMAGE DECODING APPARATUS, AND CORRESPONDING PROGRAM |
US20050190836A1 (en) * | 2004-01-30 | 2005-09-01 | Jiuhuai Lu | Process for maximizing the effectiveness of quantization matrices in video codec systems |
US7492820B2 (en) | 2004-02-06 | 2009-02-17 | Apple Inc. | Rate control for video coder employing adaptive linear regression bits modeling |
EP1564997A1 (en) | 2004-02-12 | 2005-08-17 | Matsushita Electric Industrial Co., Ltd. | Encoding and decoding of video images based on a quantization with an adaptive dead-zone size |
EP1718080A4 (en) | 2004-02-20 | 2011-01-12 | Nec Corp | BILDCODE PROCESS, DEVICE AND CONTROL PROGRAM THEREFOR |
JP4273996B2 (ja) | 2004-02-23 | 2009-06-03 | ソニー株式会社 | 画像符号化装置及び方法、並びに画像復号装置及び方法 |
JP2005260467A (ja) | 2004-03-10 | 2005-09-22 | Konica Minolta Opto Inc | 画像処理装置 |
US8503542B2 (en) | 2004-03-18 | 2013-08-06 | Sony Corporation | Methods and apparatus to reduce blocking noise and contouring effect in motion compensated compressed video |
US7689051B2 (en) | 2004-04-15 | 2010-03-30 | Microsoft Corporation | Predictive lossless coding of images and video |
JP4476104B2 (ja) | 2004-04-22 | 2010-06-09 | 三洋電機株式会社 | 符号化回路 |
US7801383B2 (en) | 2004-05-15 | 2010-09-21 | Microsoft Corporation | Embedded scalar quantizers with arbitrary dead-zone ratios |
US20050259729A1 (en) | 2004-05-21 | 2005-11-24 | Shijun Sun | Video coding with quality scalability |
US20050276493A1 (en) | 2004-06-01 | 2005-12-15 | Jun Xin | Selecting macroblock coding modes for video encoding |
US20060018522A1 (en) * | 2004-06-14 | 2006-01-26 | Fujifilm Software(California), Inc. | System and method applying image-based face recognition for online profile browsing |
US20070230565A1 (en) | 2004-06-18 | 2007-10-04 | Tourapis Alexandros M | Method and Apparatus for Video Encoding Optimization |
CN102595131B (zh) | 2004-06-18 | 2015-02-04 | 汤姆逊许可公司 | 用于对图像块的视频信号数据进行编码的编码器 |
CN100588257C (zh) | 2004-06-23 | 2010-02-03 | 新加坡科技研究局 | 采用栅格运动估计和补偿的可扩展视频编码 |
JP4594688B2 (ja) * | 2004-06-29 | 2010-12-08 | オリンパス株式会社 | 画像符号化処理方法、画像復号化処理方法、動画圧縮処理方法、動画伸張処理方法、画像符号化処理プログラム、画像符号化装置、画像復号化装置、画像符号化/復号化システム、拡張画像圧縮伸張処理システム |
FR2872973A1 (fr) * | 2004-07-06 | 2006-01-13 | Thomson Licensing Sa | Procede ou dispositif de codage d'une sequence d'images sources |
US7606427B2 (en) | 2004-07-08 | 2009-10-20 | Qualcomm Incorporated | Efficient rate control techniques for video encoding |
KR100678949B1 (ko) * | 2004-07-15 | 2007-02-06 | 삼성전자주식회사 | 비디오 코딩 및 디코딩 방법, 비디오 인코더 및 디코더 |
RU2377737C2 (ru) | 2004-07-20 | 2009-12-27 | Квэлкомм Инкорпорейтед | Способ и устройство для преобразования с повышением частоты кадров с помощью кодера (ea-fruc) для сжатия видеоизображения |
US7474316B2 (en) * | 2004-08-17 | 2009-01-06 | Sharp Laboratories Of America, Inc. | Bit-depth extension of digital displays via the use of models of the impulse response of the visual system |
US20060056508A1 (en) * | 2004-09-03 | 2006-03-16 | Phillippe Lafon | Video coding rate control |
WO2006031737A2 (en) * | 2004-09-14 | 2006-03-23 | Gary Demos | High quality wide-range multi-layer compression coding system |
DE102004059993B4 (de) * | 2004-10-15 | 2006-08-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zum Erzeugen einer codierten Videosequenz unter Verwendung einer Zwischen-Schicht-Bewegungsdaten-Prädiktion sowie Computerprogramm und computerlesbares Medium |
KR100679022B1 (ko) | 2004-10-18 | 2007-02-05 | 삼성전자주식회사 | 계층간 필터링을 이용한 비디오 코딩 및 디코딩방법과,비디오 인코더 및 디코더 |
US20060098733A1 (en) | 2004-11-08 | 2006-05-11 | Kabushiki Kaisha Toshiba | Variable-length coding device and method of the same |
JP2006140758A (ja) | 2004-11-12 | 2006-06-01 | Toshiba Corp | 動画像符号化方法、動画像符号化装置および動画像符号化プログラム |
US20060104350A1 (en) | 2004-11-12 | 2006-05-18 | Sam Liu | Multimedia encoder |
CN101069432B (zh) | 2004-12-02 | 2015-10-21 | 汤姆逊许可公司 | 用于视频编码器速率控制的量化参数的确定方法和设备 |
US7620103B2 (en) | 2004-12-10 | 2009-11-17 | Lsi Corporation | Programmable quantization dead zone and threshold for standard-based H.264 and/or VC1 video encoding |
US8031768B2 (en) | 2004-12-15 | 2011-10-04 | Maxim Integrated Products, Inc. | System and method for performing optimized quantization via quantization re-scaling |
US7136536B2 (en) | 2004-12-22 | 2006-11-14 | Telefonaktiebolaget L M Ericsson (Publ) | Adaptive filter |
EP1675402A1 (en) | 2004-12-22 | 2006-06-28 | Thomson Licensing | Optimisation of a quantisation matrix for image and video coding |
US7653129B2 (en) | 2004-12-28 | 2010-01-26 | General Instrument Corporation | Method and apparatus for providing intra coding frame bit budget |
US8325799B2 (en) | 2004-12-28 | 2012-12-04 | Nec Corporation | Moving picture encoding method, device using the same, and computer program |
US20080187042A1 (en) | 2005-01-07 | 2008-08-07 | Koninklijke Philips Electronics, N.V. | Method of Processing a Video Signal Using Quantization Step Sizes Dynamically Based on Normal Flow |
EP1839265A4 (en) | 2005-01-14 | 2012-10-17 | Iucf Hyu | PROCESS FOR CODING AND DECODING TEXTURE COORDINATES IN THREE-DIMENSIONAL GRID INFORMATION FOR EFFECTIVE TEXTURE MAPPING |
CN101111864A (zh) | 2005-01-31 | 2008-01-23 | 皇家飞利浦电子股份有限公司 | 用于多分辨率图像滤波的金字塔式分解 |
US20060188014A1 (en) | 2005-02-23 | 2006-08-24 | Civanlar M R | Video coding and adaptation by semantics-driven resolution control for transport and storage |
US7724972B2 (en) | 2005-03-01 | 2010-05-25 | Qualcomm Incorporated | Quality metric-biased region-of-interest coding for video telephony |
KR100763178B1 (ko) | 2005-03-04 | 2007-10-04 | 삼성전자주식회사 | 색 공간 스케일러블 비디오 코딩 및 디코딩 방법, 이를위한 장치 |
KR100728222B1 (ko) | 2005-03-25 | 2007-06-13 | 한국전자통신연구원 | 공간영역에서의 완전한 스케일러빌리티를 위한 계층적 부호화/복호화 방법 및 장치 |
EP1878247A4 (en) | 2005-04-01 | 2012-11-21 | Lg Electronics Inc | METHOD FOR SCALABLE CODING AND DECODING OF VIDEO SIGNAL |
US8325797B2 (en) | 2005-04-11 | 2012-12-04 | Maxim Integrated Products, Inc. | System and method of reduced-temporal-resolution update for video coding and quality control |
US7876833B2 (en) | 2005-04-11 | 2011-01-25 | Sharp Laboratories Of America, Inc. | Method and apparatus for adaptive up-scaling for spatially scalable coding |
CN101120593A (zh) | 2005-04-13 | 2008-02-06 | 诺基亚公司 | 可扩展性信息的编码、存储和信号发送 |
KR100763181B1 (ko) | 2005-04-19 | 2007-10-05 | 삼성전자주식회사 | 기초계층과 향상계층의 데이터를 바탕으로 예측 정보를코딩하여 코딩율을 향상시키는 방법 및 장치 |
KR100746007B1 (ko) | 2005-04-19 | 2007-08-06 | 삼성전자주식회사 | 엔트로피 코딩의 컨텍스트 모델을 적응적으로 선택하는방법 및 비디오 디코더 |
US7620252B2 (en) | 2005-04-22 | 2009-11-17 | Hewlett-Packard Development Company, L.P. | System and method for compressing an image |
US7657098B2 (en) | 2005-05-02 | 2010-02-02 | Samsung Electronics Co., Ltd. | Method and apparatus for reducing mosquito noise in decoded video sequence |
US7684632B2 (en) | 2005-05-16 | 2010-03-23 | Hewlett-Packard Development Company, L.P. | Estimating image compression quantization parameter values |
US8422546B2 (en) | 2005-05-25 | 2013-04-16 | Microsoft Corporation | Adaptive video encoding using a perceptual model |
DE102005025629A1 (de) | 2005-06-03 | 2007-03-22 | Micronas Gmbh | Bildverarbeitungsverfahren zur Reduzierung von Blocking-Artefakten |
JP5404038B2 (ja) * | 2005-07-01 | 2014-01-29 | ソニック ソリューションズ リミテッド ライアビリティー カンパニー | マルチメディア信号エンコーディングに使用される方法、装置およびシステム |
KR100667806B1 (ko) * | 2005-07-07 | 2007-01-12 | 삼성전자주식회사 | 영상 부호화 및 복호화 방법 및 장치 |
US20070009042A1 (en) * | 2005-07-08 | 2007-01-11 | Robert Craig | Video game system using pre-encoded macro-blocks in an I-frame |
WO2007008286A1 (en) | 2005-07-11 | 2007-01-18 | Thomson Licensing | Method and apparatus for macroblock adaptive inter-layer intra texture prediction |
MX2008000906A (es) | 2005-07-21 | 2008-03-18 | Thomson Licensing | Metodo y aparato para la prediccion ponderada para la codificacion escalable de video. |
US20070147497A1 (en) | 2005-07-21 | 2007-06-28 | Nokia Corporation | System and method for progressive quantization for scalable image and video coding |
EP1746839A1 (en) | 2005-07-22 | 2007-01-24 | Thomson Licensing | Method and apparatus for encoding video data |
US20070025441A1 (en) | 2005-07-28 | 2007-02-01 | Nokia Corporation | Method, module, device and system for rate control provision for video encoders capable of variable bit rate encoding |
US8069466B2 (en) | 2005-08-04 | 2011-11-29 | Nds Limited | Advanced digital TV system |
US20070053603A1 (en) * | 2005-09-08 | 2007-03-08 | Monro Donald M | Low complexity bases matching pursuits data coding and decoding |
US8879635B2 (en) | 2005-09-27 | 2014-11-04 | Qualcomm Incorporated | Methods and device for data alignment with time domain boundary |
WO2007044556A2 (en) | 2005-10-07 | 2007-04-19 | Innovation Management Sciences, L.L.C. | Method and apparatus for scalable video decoder using an enhancement stream |
EP1775958A1 (en) | 2005-10-14 | 2007-04-18 | Thomson Licensing | Method and apparatus for reconstructing the texture of a spatial enhancement-layer video picture |
US7778476B2 (en) | 2005-10-21 | 2010-08-17 | Maxim Integrated Products, Inc. | System and method for transform coding randomization |
US8023569B2 (en) | 2005-12-15 | 2011-09-20 | Sharp Laboratories Of America, Inc. | Methods and systems for block-based residual upsampling |
US7889790B2 (en) * | 2005-12-20 | 2011-02-15 | Sharp Laboratories Of America, Inc. | Method and apparatus for dynamically adjusting quantization offset values |
KR100867995B1 (ko) | 2006-01-07 | 2008-11-10 | 한국전자통신연구원 | 동영상 데이터 인코딩/디코딩 방법 및 그 장치 |
SI2192783T1 (sl) * | 2006-01-09 | 2015-09-30 | Matthias Narroschke | Adaptivno kodiranje napake predikcije pri hibridnem video kodiranju |
JP4795223B2 (ja) | 2006-01-31 | 2011-10-19 | キヤノン株式会社 | 画像処理装置 |
WO2007094100A1 (ja) | 2006-02-13 | 2007-08-23 | Kabushiki Kaisha Toshiba | 動画像符号化/復号化方法及び装置並びにプログラム |
JP4529919B2 (ja) | 2006-02-28 | 2010-08-25 | 日本ビクター株式会社 | 適応量子化装置及び適応量子化プログラム |
US8428136B2 (en) | 2006-03-09 | 2013-04-23 | Nec Corporation | Dynamic image encoding method and device and program using the same |
EP1995967A4 (en) | 2006-03-16 | 2009-11-11 | Huawei Tech Co Ltd | METHOD AND APPARATUS FOR ADAPTIVE QUANTIFICATION IN AN ENCODING PROCEDURE |
US8848789B2 (en) | 2006-03-27 | 2014-09-30 | Qualcomm Incorporated | Method and system for coding and decoding information associated with video compression |
US7995649B2 (en) | 2006-04-07 | 2011-08-09 | Microsoft Corporation | Quantization adjustment based on texture level |
US20070237237A1 (en) | 2006-04-07 | 2007-10-11 | Microsoft Corporation | Gradient slope detection for video compression |
JP2007281949A (ja) | 2006-04-07 | 2007-10-25 | Matsushita Electric Ind Co Ltd | 画像符号化装置、画像符号化復号システム、画像符号化方法、および画像符号化復号方法 |
US8503536B2 (en) | 2006-04-07 | 2013-08-06 | Microsoft Corporation | Quantization adjustments for DC shift artifacts |
US7974340B2 (en) | 2006-04-07 | 2011-07-05 | Microsoft Corporation | Adaptive B-picture quantization control |
US8059721B2 (en) | 2006-04-07 | 2011-11-15 | Microsoft Corporation | Estimating sample-domain distortion in the transform domain with rounding compensation |
US8130828B2 (en) | 2006-04-07 | 2012-03-06 | Microsoft Corporation | Adjusting quantization to preserve non-zero AC coefficients |
JP4062711B2 (ja) | 2006-04-17 | 2008-03-19 | 俊宏 南 | 動画像符号化装置 |
US8711925B2 (en) | 2006-05-05 | 2014-04-29 | Microsoft Corporation | Flexible quantization |
US20070268964A1 (en) | 2006-05-22 | 2007-11-22 | Microsoft Corporation | Unit co-location-based motion estimation |
EP1871113A1 (en) | 2006-06-20 | 2007-12-26 | THOMSON Licensing | Method and apparatus for encoding video enhancement layer with multiresolution color scalability |
JP4908943B2 (ja) | 2006-06-23 | 2012-04-04 | キヤノン株式会社 | 画像符号化装置及び画像符号化方法 |
US7885471B2 (en) * | 2006-07-10 | 2011-02-08 | Sharp Laboratories Of America, Inc. | Methods and systems for maintenance and use of coded block pattern information |
US7840078B2 (en) * | 2006-07-10 | 2010-11-23 | Sharp Laboratories Of America, Inc. | Methods and systems for image processing control based on adjacent block characteristics |
US8120660B2 (en) | 2006-07-10 | 2012-02-21 | Freescale Semiconductor, Inc. | Image data up sampling |
US8253752B2 (en) | 2006-07-20 | 2012-08-28 | Qualcomm Incorporated | Method and apparatus for encoder assisted pre-processing |
US8773494B2 (en) * | 2006-08-29 | 2014-07-08 | Microsoft Corporation | Techniques for managing visual compositions for a multimedia conference call |
JP2008099045A (ja) | 2006-10-13 | 2008-04-24 | Nippon Telegr & Teleph Corp <Ntt> | スケーラブル符号化方法,復号方法,これらの装置,およびこれらのプログラム並びにその記録媒体 |
US9014280B2 (en) | 2006-10-13 | 2015-04-21 | Qualcomm Incorporated | Video coding with adaptive filtering for motion compensated prediction |
US20080095235A1 (en) | 2006-10-20 | 2008-04-24 | Motorola, Inc. | Method and apparatus for intra-frame spatial scalable video coding |
JP4575344B2 (ja) | 2006-10-24 | 2010-11-04 | アップル インコーポレイテッド | 縮小サイズまたはフルサイズでの再生を動的に選択的に行うための複数の独立した符号化チェーンを備えるビデオ符号化システム |
US7885476B2 (en) | 2006-12-14 | 2011-02-08 | Sony Corporation | System and method for effectively performing an adaptive encoding procedure |
US8199812B2 (en) | 2007-01-09 | 2012-06-12 | Qualcomm Incorporated | Adaptive upsampling for scalable video coding |
US8238424B2 (en) | 2007-02-09 | 2012-08-07 | Microsoft Corporation | Complexity-based adaptive preprocessing for multiple-pass video compression |
US8498335B2 (en) | 2007-03-26 | 2013-07-30 | Microsoft Corporation | Adaptive deadzone size adjustment in quantization |
US20080240257A1 (en) | 2007-03-26 | 2008-10-02 | Microsoft Corporation | Using quantization bias that accounts for relations between transform bins and quantization bins |
US8243797B2 (en) | 2007-03-30 | 2012-08-14 | Microsoft Corporation | Regions of interest for quality adjustments |
US8442337B2 (en) | 2007-04-18 | 2013-05-14 | Microsoft Corporation | Encoding adjustments for animation content |
TW200845723A (en) | 2007-04-23 | 2008-11-16 | Thomson Licensing | Method and apparatus for encoding video data, method and apparatus for decoding encoded video data and encoded video signal |
US8331438B2 (en) | 2007-06-05 | 2012-12-11 | Microsoft Corporation | Adaptive selection of picture-level quantization parameters for predicted video pictures |
US7983496B2 (en) | 2007-06-26 | 2011-07-19 | Mitsubishi Electric Research Laboratories, Inc. | Inverse tone mapping for bit-depth scalable image coding adapted to variable block sizes |
US20090161756A1 (en) | 2007-12-19 | 2009-06-25 | Micron Technology, Inc. | Method and apparatus for motion adaptive pre-filtering |
US8160132B2 (en) | 2008-02-15 | 2012-04-17 | Microsoft Corporation | Reducing key picture popping effects in video |
US8542730B2 (en) | 2008-02-22 | 2013-09-24 | Qualcomm, Incorporated | Fast macroblock delta QP decision |
US8953673B2 (en) | 2008-02-29 | 2015-02-10 | Microsoft Corporation | Scalable video coding and decoding with sample bit depth and chroma high-pass residual layers |
US8189933B2 (en) | 2008-03-31 | 2012-05-29 | Microsoft Corporation | Classifying and controlling encoding quality for textured, dark smooth and smooth video content |
US9338475B2 (en) | 2008-04-16 | 2016-05-10 | Intel Corporation | Tone mapping for bit-depth scalable video codec |
US8897359B2 (en) | 2008-06-03 | 2014-11-25 | Microsoft Corporation | Adaptive quantization for enhancement layer video coding |
CA2807959C (en) * | 2011-07-29 | 2018-06-12 | Panasonic Corporation | Video encoding method, video decoding method, video encoding apparatus, video decoding apparatus, and video encoding/decoding apparatus |
US10218976B2 (en) * | 2016-03-02 | 2019-02-26 | MatrixView, Inc. | Quantization matrices for compression of video |
-
2006
- 2006-05-05 US US11/418,690 patent/US8711925B2/en active Active
-
2007
- 2007-02-16 US US11/676,263 patent/US8184694B2/en active Active
- 2007-05-04 AU AU2007248524A patent/AU2007248524B2/en active Active
- 2007-05-04 MX MX2008013647A patent/MX2008013647A/es active IP Right Grant
- 2007-05-04 JP JP2009509744A patent/JP5385781B2/ja active Active
- 2007-05-04 CN CN201610301862.7A patent/CN105915906A/zh active Pending
- 2007-05-04 WO PCT/US2007/010848 patent/WO2007130580A2/en active Application Filing
- 2007-05-04 RU RU2008143599/07A patent/RU2476000C2/ru active
- 2007-05-04 CA CA2647332A patent/CA2647332C/en active Active
- 2007-05-04 CN CN201210297902.7A patent/CN102833545B/zh active Active
- 2007-05-04 CN CN2007800158719A patent/CN101438591B/zh active Active
- 2007-05-04 CN CN201610301837.9A patent/CN105847826B/zh active Active
- 2007-05-04 EP EP07794559.0A patent/EP2016773B1/en active Active
- 2007-05-04 BR BRPI0710704-8A patent/BRPI0710704B1/pt active IP Right Grant
- 2007-05-04 CN CN201610301806.3A patent/CN105812815B/zh active Active
-
2008
- 2008-09-16 IL IL194133A patent/IL194133A/en active IP Right Grant
- 2008-10-29 KR KR1020087026543A patent/KR101477302B1/ko active IP Right Grant
-
2009
- 2009-11-19 HK HK13106016.2A patent/HK1179084A1/zh unknown
- 2009-11-19 HK HK09110830.4A patent/HK1133144A1/xx unknown
-
2012
- 2012-05-10 US US13/468,643 patent/US8588298B2/en active Active
- 2012-12-24 RU RU2012156159A patent/RU2619908C2/ru active
-
2013
- 2013-03-10 IL IL225132A patent/IL225132A/en active IP Right Grant
- 2013-04-02 JP JP2013077198A patent/JP5580447B2/ja active Active
-
2014
- 2014-04-28 US US14/263,584 patent/US9967561B2/en active Active
- 2014-07-10 JP JP2014142106A patent/JP6054920B2/ja active Active
-
2016
- 2016-11-30 JP JP2016232784A patent/JP2017063486A/ja active Pending
-
2018
- 2018-05-07 US US15/973,264 patent/US10602146B2/en active Active
-
2020
- 2020-03-20 US US16/825,239 patent/US10958907B2/en active Active
-
2021
- 2021-03-01 US US17/188,977 patent/US11343503B2/en active Active
-
2022
- 2022-04-25 US US17/727,955 patent/US11778186B2/en active Active
- 2022-04-25 US US17/727,994 patent/US11778187B2/en active Active
- 2022-04-25 US US17/728,020 patent/US11863749B2/en active Active
- 2022-04-25 US US17/728,070 patent/US11843775B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2127962C1 (ru) * | 1994-01-12 | 1999-03-20 | Самсунг Электроникс Ко., Лтд. | Способ и устройство для кодирования изображения |
WO1999025121A1 (en) * | 1997-11-07 | 1999-05-20 | Pipe Dream, Inc. | Method for compressing and decompressing motion video |
US20020118748A1 (en) * | 2000-06-27 | 2002-08-29 | Hideki Inomata | Picture coding apparatus, and picture coding method |
US20050036699A1 (en) * | 2003-07-18 | 2005-02-17 | Microsoft Corporation | Adaptive multiple quantization |
WO2005076614A1 (en) * | 2004-01-30 | 2005-08-18 | Matsushita Electric Industrial Co., Ltd. | Moving picture coding method and moving picture decoding method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11962806B2 (en) | 2019-03-11 | 2024-04-16 | Canon Kabushiki Kaisha | Image decoding apparatus, image decoding method, and storage medium |
US12075049B2 (en) | 2019-03-11 | 2024-08-27 | Canon Kabushiki Kaisha | Image decoding apparatus, image decoding method, and storage medium |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2619908C2 (ru) | Гибкое квантование | |
CA2618564C (en) | Adaptive coding and decoding of wide-range coefficients | |
US8184710B2 (en) | Adaptive truncation of transform coefficient data in a transform-based digital media codec | |
US20070036222A1 (en) | Non-zero coefficient block pattern coding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HZ9A | Changing address for correspondence with an applicant |