RU2573558C2 - Покрытие для металлических материалов элементов ячейки электролитической ячейки - Google Patents

Покрытие для металлических материалов элементов ячейки электролитической ячейки Download PDF

Info

Publication number
RU2573558C2
RU2573558C2 RU2013134646/04A RU2013134646A RU2573558C2 RU 2573558 C2 RU2573558 C2 RU 2573558C2 RU 2013134646/04 A RU2013134646/04 A RU 2013134646/04A RU 2013134646 A RU2013134646 A RU 2013134646A RU 2573558 C2 RU2573558 C2 RU 2573558C2
Authority
RU
Russia
Prior art keywords
cathode
layer
cell
silver
metal
Prior art date
Application number
RU2013134646/04A
Other languages
English (en)
Other versions
RU2013134646A (ru
Inventor
Петер ВОЛЬТЕРИНГ
Рандольф КИФЕР
Райнер ВЕБЕР
Андреас БУЛАН
Original Assignee
Уденора С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Уденора С.П.А. filed Critical Уденора С.П.А.
Publication of RU2013134646A publication Critical patent/RU2013134646A/ru
Application granted granted Critical
Publication of RU2573558C2 publication Critical patent/RU2573558C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Изобретение относится к катодной полуоболочке электролитической ячейки, содержащей металлические компоненты элемента ячейки, включающей: металлическую опорную структуру, приваренную к задней стенке катодной полуоболочки, и по меньшей мере один металлический эластичный элемент, расположенный плоскопараллельно на ней, деполяризованный кислородом катод, который расположен напротив по меньшей мере одного металлического эластичного элемента, при этом указанный деполяризованный кислородом катод содержит перфорированную металлическую сетку и ленту из катализатора, изготовленную из PTFE и оксида серебра, механически впрессованную в нее, причем оксид серебра восстанавливают до серебра во время работы электролитической установки и таким образом образует однородное соединение/связь между компонентами деполяризованного кислородом катода и по меньшей мере одним эластичным элементом, при этом указанное соединение/связь отличается высокой проводимостью, где по меньшей мере один из металлических компонентов снабжен электропроводящим покрытием, содержащим по меньшей мере два слоя, где первый слой, наносимый непосредственно на материалы элемента ячейки, выбран из группы, которая содержит Au, B-легированный никель, сульфиды Ni и их смеси, при этом первый слой имеет толщину слоя от 0,005 до 0,2 мкм; и второй слой, наносимый на первый слой, изготовлен из серебра, при этом второй слой имеет толщину слоя от 0,1 до 30 мкм. Также изобретение относится к применению электролитической ячейки для хлорщелочного электролиза. Предлагаемое покрытие имеет увеличенную адгезионную прочность покрытия на поверхностях компонентов элементов ячейки, так чтобы могли формироваться непроводящие оксидные слои. 2 н. и 2 з.п. ф-лы, 11 ил.

Description

[0001] Настоящее изобретение относится к катодной полуоболочке, отличающейся тем, что металлические компоненты обладают специальным электропроводящим покрытием, как определяется в ограничительной части пункта 1 формулы изобретения.
[0002] В электрохимических процессах химические реакции управляются внешним электрическим током. В электрохимических ячейках, чтобы передавать электроны, требуется проводящий, стабильный, недорогой проводник. В этом случае никель показал себя идеальным материалом для электродов. Однако недостатком является образование плохо проводящих или непроводящих никелевых поверхностей, когда электроды работают в диапазонах напряжений, в которых образуются ионы оксида никеля или гидроксида никеля. Из-за этих низкоуровневых напряжений образование оксида или гидроксида происходит во многих процессах.
[0003] Омические потери на поверхности из никеля ухудшают эффективность всей системы, как, например, воздушно-цинковых и никель-металлических гидридных батарей, кислородных катодов в хлорщелочном электролизе или кислородных электродов в щелочных топливных элементах.
[0004] Эти плохо проводящие или непроводящие слои оксида или гидроксида являются помехой, например, когда в качестве выделяющего кислород электрода в электролизе используется чистый никель. Но даже в системах, в которых никель, в виде проводящей сетки, растянутого металла или листа, входит в контакт с каталитически активным материалом, таким как углерод, платинированный углерод, и т.п., изолирующий слой оказывает отрицательное влияние. Например, слои оксида или гидроксида препятствуют оптимальному электрическому току даже с деполяризованными кислородом электродами, и поэтому требуются этапы для улучшения или поддержания проводимости в промышленном электролизе.
[0005] В литературе множество диаграмм, относящихся к электрохимической стабильности, представлено в «Атласе электрохимического равновесия в водных растворах» Марселя Пурбе (1974). Результаты Пурбе говорят о том, что в условиях pH 13-15 и катодных напряжений выше примерно 0,4-0,6 В, измеренных относительно NHE, которые существуют во время хлорщелочного электролиза с деполяризованными кислородом катодами под электрической нагрузкой, подобное образование оксида никеля происходит в форме пассивации.
[0006] Дополнительный недостаток является следствием запуска и выключения хлорщелочных электролизных ячеек, в силу которых растворимые гидроксиды могут образовываться, когда пропускаются напряжения среднего диапазона около 0,6 В, измеренные относительно NHE. Поскольку диаграмма Пурбе не позволяет делать утверждения о кинетике, невозможно предсказать фактическое образование этих гидроксидов вследствие реакций декомпозиции, т.е. коррозии. Следовательно, для подтверждения поведения никеля в окисляющих условиях, например в случае хлорщелочного электролиза с деполяризованными кислородом катодами, требуются практические электролизные эксперименты.
[0007] Различные патентные описания, например ЕР 1033419 В1 или ЕР 1092789 А1, описывают электролитические ячейки для хлорщелочного электролиза с деполяризованными кислородом катодами, в которых в качестве материала для металлических компонентов на катодной стороне используется никель. Однако о коррозионной стойкости никеля в отношении образования непроводящих оксидных или гидроксидных соединений ничего не говорится.
[0008] В документе ЕР 1041176 А1 описывается способ для электролитической ячейки с газодиффузионным электродом для минимизации омических потерь при подаче тока на деполяризованные кислородом катоды (здесь называемые газодиффузионными электродами) посредством металлических компонентов для распределения тока. Он уже включает описание покрытия с превосходной проводимостью, которое является по своей природе металлическим. Никаких дополнительных подробностей, особенно относительно его коррозионной устойчивости, не предоставляется.
[0009] В документе DE 102004034886 А1 описывается процесс производства электропроводящих поверхностей из оксида никеля. Здесь плохая проводимость поверхностей из оксида никеля существенно улучшается посредством последующего химического легирования оксидами щелочных металлов при низкой температуре в присутствии перекиси водорода. Эта заявка, таким образом, является особенно подходящей для рабочих условий в топливных элементах, аккумуляторных батареях и хлорщелочном электролизе.
[0010] Процесс, описанный в документе DE 102004034886 А1, впервые был успешно использован для работы лабораторных хлорщелочных электролитических ячеек с кислородной деполяризацией. Для этого использовались деполяризованные кислородом катоды, производство которых описано, например, в ЕР 1402587 В1 или DE 3710168 А1. Эти электроды состоят из электропроводящей сетки, как правило, сетки из никелевой проволоки, на которую была намотана лента из катализатора, сделанная из смеси серебра и PTFE или оксида серебра и PTFE. Сетка газодиффузионного электрода находится в электрическом контакте с никелевым токопроводом, проводимость которого была улучшена согласно процессу, описанному в документе DE 102004034886 А1. Во время работы этих лабораторных ячеек не было обнаружено никакого увеличения напряжения или признаков коррозии в форме декомпозиции никеля, несмотря на то, что ячейки часто выключались, и поэтому можно допустить, что документ DE 102004034886 А1 описывает эффективный процесс для защиты никеля от коррозии.
[0011] Документ ЕР 1601817 А1 описывает электролитическую ячейку, которая коммерчески применяется и используется для обычного хлорщелочного электролиза. Документ US 7670472 B2 описывает электролитическую ячейку, которая представляет конструктивную конфигурацию в катодном пространстве, которая позволяет электролитической ячейке для хлорщелочного электролиза работать с деполяризованными кислородом катодами.
[0012] Конструкция электролитической ячейки, описанная в документе ЕР 1601817 А1, была изменена на основании технических признаков документа US 7670472 B2, чтобы позволить получающейся в результате электролитической ячейке для хлорщелочного электролиза работать с кислородной деполяризацией. Для этого в качестве деполяризованного кислородом катода был использован электрод, состоящий из никелевой сетки, на которую была намотана лента из катализатора, выполненная из оксида серебра и PTFE, согласно принципу, описанному в документе DE 3710168 А1. Источник тока для деполяризованного кислородом катода, расположенного в катодном пространстве, был реализован таким образом, что была вставлена опорная структура типа пластинки, расположенная параллельно задней стенке катода, при этом указанная структура является электрически соединенной с задней стенкой через вертикально расположенные решетки посредством сварных соединений. Эластичный элемент прикреплен к этой опорной структуре так, что, когда катодная полуоболочка и анодная полуоболочка ячейки свинчены вместе, создана тугая посадка с проволочной сеткой деполяризованного кислородом катода, которая обеспечивает электрический контакт и равномерное распределение тока. Такие эластичные элементы уже описаны в различных патентных описаниях, например в документе ЕР 1446515 А2 и особенно в документе ЕР 1451389 А2, и состоят из различных сжимаемых слоев, выполненных из металлических проволок, которые, когда сжаты вместе наподобие сэндвич-структуры, обеспечивают эластичность.
[0013] Способ обработки поверхностей из оксида никеля, описанный в документе DE 102004034886 А1, был использован на никелевых компонентах, чтобы обеспечить проводимость поверхностей из оксида никеля, получаемых в результате пассивации во время работы.
[0014] В серии испытаний 1 две такие переконструированные электролитические ячейки, содержащие активную электролитическую поверхность 2,7 м2 с мембранами Flemion F8020, работали при плотности тока 4 кА/м2, рабочей температуре 88°C, концентрации анолита NaCl 210 г/л, концентрации разрядов католита NaOH 32% вес./вес. и с насыщенным влажным кислородом в стехиометрическом избытке 20%. Фиг.1 представляет собой изображение кривой напряжения двух электролитических ячеек в течение первых 65 дней работы. Для каждой из электролитических ячеек используются разные символы (затемненные ромбы и незатемненные треугольники).
[0015] В первые 30 дней работы электролитические ячейки показывали стабильное напряжение ячейки. На 30 день работы ток к двум электролитическим ячейкам был отключен. После того как он был снова включен и была достигнута плотность тока 4 кА/м2, обе ячейки показали увеличенное омическое сопротивление в виде увеличения напряжения вплоть до 100 мВ. После других 4 дней работы электролитические ячейки были выключены снова. После того как они были включены обратно и была достигнута плотность тока 4 кА/м2, омическое сопротивление возросло еще больше, приводя к дополнительному увеличению напряжения примерно еще на 200 мВ. После примерно еще 30 дней работы две электролитические ячейки были выключены, а компоненты проверены. Это показало, что проводимость компонентов, изготовленных из никеля (опорной структуры и эластичного элемента), существенно упала. Использованные деполяризованные кислородом катоды были проверены в лабораторных ячейках и сравнены с эталонными образцами. Во время работы в лаборатории этот компонент также демонстрировал увеличенное напряжение по сравнению с эталонными образцами, что, по меньшей мере, частично можно объяснить уменьшенной проводимостью сетки из никелевой проволоки вследствие окисления. Защитный эффект способа, описанного в документе DE 102004034886 А1, таким образом, был неэффективным при определенном напряжении и рабочих условиях, которые явно возникают при выключении электролитических ячеек.
[0016] На основании реакций термодинамического равновесия для благородных металлов, таких как серебро и золото, описанных в «Атласе электрохимического равновесия в водных растворах» (1974), диаграммы электрохимической устойчивости для рабочих условий хлорщелочного электролиза при 85°C были пересчитаны, чтобы получить подробное описание электрохимических условий.
[0017] Для никеля результат для 10-6 моль/кг при 85°C относительно NHE (нормальный водородный электрод) в упрощенной форме представляет собой диаграмму устойчивости, показанную на фиг.2. Здесь среда A характеризуется пассивацией, среды B и C - коррозией, а среда D - невосприимчивостью. В соответствии с этим при 85°C коррозионная среда для образования гидроксида всегда является проходимой в среде запуска (увеличение нагрузки и напряжения) и в среде выключения (уменьшение нагрузки и напряжения) и они, следовательно, представляют собой критические рабочие условия.
[0018] Для золота результат для 10-6 моль/кг при 85°C относительно NHE (нормальный водородный электрод) в упрощенной форме представляет собой диаграмму устойчивости, показанную на фиг.3. Здесь среда A характеризуется пассивацией, среда B - коррозией, а среда D - невосприимчивостью.
[0019] Подобно никелю на фиг.2 диаграмма показывает возможную коррозионную среду при средних напряжениях, когда могут формироваться гидроксидные соединения. Однако эксперименты, в которых применяют золото в сильнощелочном растворе каустической соды, почти не показывают каких-либо признаков декомпозиции. Таким образом, можно прийти к выводу, что присутствует кинетическое препятствие, и золото можно считать стабильным металлом для хлорщелочного электролиза в окислительных условиях.
[0020] Для серебра результат для 10-6 моль/кг при 85°C относительно NHE (нормальный водородный электрод) в упрощенной форме представляет собой диаграмму устойчивости, показанную на фиг.4. Здесь среда A характеризуется пассивацией, среда B - коррозией, а среда D - невосприимчивостью.
[0021] Из фиг.4 понятно, что серебро также имеет узкую коррозионную среду, хотя и в диапазоне кислого pH. В щелочи и, в частности, при окислительных условиях серебро склонно к пассивации через образование окислительных ионов. Таким образом, была бы обеспечена коррозионная стойкость, вопрос проводимости при условиях хлорщелочного электролиза с деполяризованными кислородом катодами нужно было бы исследовать.
[0022] Документ WO 01/57290 А1 "Electrolysis cell provided with gas diffusion electrodes" описывает электролитическую ячейку с газодиффузионными электродами, где внимание акцентировано на защитной функции серебряных покрытий в окисляющих условиях. В частности, описывается металлический проводник тока с отверстиями, указанный проводник изготовлен из серебра, нержавеющей стали или никеля, хотя никель предпочтительно должен быть покрыт серебром.
[0023] Поскольку литература и опыт различных специалистов подтверждают стабильность серебра на никеле, никелевые компоненты электролитических ячеек были гальванизированы серебром. Для этого на никель было нанесено покрытие толщиной примерно 10 мкм.
[0024] В серии испытаний 2 две электролитические ячейки были испытаны в непрерывной работе способом, подобным серии экспериментов 1. Обе ячейки содержат активную электролитическую поверхность 2,7 м2 и оснащены мембранами Flemion F8020. Плотность постоянного тока составляла 4 кА/м2, рабочая температура составляла 88°C, концентрация анолита NaCl составляла 210 г/л, концентрация разрядов католита NaOH 32% вес./вес. и стехиометрический избыток насыщенного влажного кислорода снова составлял 20%. Фиг.5 представляет собой изображение кривой напряжения в течение 80 дней работы. Для каждой из электролитических ячеек используются разные символы (затемненные ромбы и незатемненные треугольники).
[0025] Результаты серии испытаний 2 в соответствии с фиг.5 снова демонстрируют увеличение напряжения. На этот раз оно было непрерывным. Процедуры запуска и выключения, которые регулярно возникали в период работы, не оказали ощутимого воздействия на напряжение ячейки, в отличие от наблюдений, произведенных для серии испытаний 1 на основании фиг.1.
[0026] Элементы ячейки были проверены после 80 дней работы и проанализировано состояние металлической опорной структуры и металлического эластичного элемента. В качестве примера поперечные микроснимки посеребренных никелевых моноволокон эластичного элемента представлены на фиг.6 в масштабе 100:1. Микроснимок четко показывает скалывание серебра в образце волокна снизу, тогда как образец сверху демонстрирует разрушенное серебряное покрытие и уменьшение толщины покрытия примерно на 50%.
[0027] Сравнения материалов между образцами с верхней и нижней частей элементов ячейки также показывают перемещение отслоенного серебра, которое растворяется сверху вследствие коррозии и снова откладывается в нижней части ячейки (данные не представлены). Таким образом, можно увидеть, что простого гальванопокрытия никеля слоем серебра в условиях окислительного электролиза ни при каких условиях недостаточно для образования электрохимически стабильного соединения.
[0028] Эти испытания показывают, что имеется дополнительная потребность в предоставлении покрытий, которые приводят к электрохимически стабильным соединениям в форме стабильных проводимостей металлических компонентов катодной полуоболочки без возникновения вышеуказанных недостатков.
[0029] Цель настоящего изобретения, таким образом, состоит в том, чтобы:
- предоставить альтернативное антикоррозионное покрытие для металлических компонентов элементов ячейки катодной полуоблочки электролитической ячейки;
- гарантировать увеличенную адгезионную прочность покрытия на поверхностях компонентов элементов ячейки, так чтобы могли формироваться непроводящие оксидные слои;
- обеспечить стабильную работу электролитической ячейки, что касается того, чтобы напряжение ячейки было максимально постоянным в течение более длительного периода времени при данной токовой нагрузке, несмотря на произвольное число запусков и выключений, и таким образом более длительный срок эксплуатации;
- минимизировать омические потери, а значит и потери проводимости, во время проведения тока от металлических компонентов к металлической сетке деполяризованного кислородом катода.
[0030] Цель достигается катодной полуоболочкой электролитической ячейки, содержащей металлические компоненты элемента ячейки, содержащей:
- металлическую опорную структуру, приваренную к задней стенке катодной полуоболочки, и по меньшей мере один металлический эластичный элемент, расположенный плоскопараллельно на ней,
- деполяризованный кислородом катод, который расположен напротив по меньшей мере одного эластичного металлического элемента, при этом указанный деполяризованный кислородом катод содержит перфорированную металлическую сетку и ленту из катализатора, изготовленную из PTFE и оксида серебра, механически впрессованную в нее, причем оксид серебра восстановлен до серебра во время работы электролитической установки и таким образом создает однородное соединение/связь между компонентами деполяризованного кислородом катода и по меньшей мере одним эластичным элементом, при этом указанное соединение/связь отличается высокой проводимостью,
причем по меньшей мере один из металлических компонентов снабжен электропроводящим покрытием, содержащим по меньшей мере два слоя, где:
- первый слой, наносимый непосредственно на материалы элемента ячейки, выбран из группы, которая содержит Au, B-легированный никель, сульфиды Ni и их смеси, при этом этот первый слой имеет толщину слоя от 0,005 до 0,2 мкм; и
- второй слой, наносимый на первый слой, изготовлен из серебра, при этом этот второй слой имеет толщину слоя от 0,1 до 30 мкм.
[0031] В настоящем изобретении также заявлено, что все компоненты элемента ячейки, которые содержатся в катодной полуоболочке и проводят электрический ток, содержат покрытие. Здесь предпочтительно те компоненты элементов ячейки катодной полуоболочки электролитической ячейки, которые находятся в контакте с раствором каустической соды, содержат покрытие согласно изобретению.
[0032] Также заявлено применение катодной полуоболочки электролитической ячейки согласно изобретению в хлорщелочном электролизе.
[0033] Следующие графические материалы используются для более подробного описания изобретения.
Фиг.1 представляет напряжение электролитической ячейки для серии испытаний 1: показана кривая напряжения за первые 65 дней работы электролитической ячейки, использующей электрод, описанный в документе DE 102004034886 А1.
Фиг.2 представляет собой упрощенную диаграмму устойчивости для Ni-H2O при 85°C относительно NHE.
Фиг.3 представляет собой упрощенную диаграмму устойчивости для Au-H2O при 85°C относительно NHE.
Фиг.4 представляет собой упрощенную диаграмму устойчивости для Ag-H2O при 85°C относительно NHE.
Фиг.5 представляет напряжение электролитической ячейки для серии испытаний 2: показана кривая напряжения за 80 дней работы электролитической ячейки, использующей металлические компоненты элемента ячейки, которые содержат слой серебра толщиной 10 мкм.
Фиг.6 представляет собой поперечный микроснимок посеребренной никелевой проволоки из серии испытаний 2 в масштабе 100:1.
Фиг.7 представляет напряжение электролитической ячейки для серии испытаний 3: показана кривая напряжения за 240 дней работы электролитической ячейки, использующей металлические компоненты элемента ячейки, которые покрыты слоем золота толщиной 0,15 мкм и слоем серебра толщиной 25 мкм.
Фиг.8 представляет собой поперечный микроснимок посеребренной никелевой проволоки с промежуточным слоем золота из серии испытаний 3 в масштабе 25:1.
Фиг.9 представляет собой поперечный микроснимок посеребренной никелевой проволоки с промежуточным слоем золота из серии испытаний 3 в масштабе 500:1.
Фиг.10 представляет собой РЭМ-изображение слоя связующего вещества Ni-Ag с тонким слоем золота.
Фиг.11 представляет собой изображение простейшей конфигурации металлических компонентов элемента ячейки в катодной полуоболочке, которые снабжены покрытием согласно изобретению.
[0034] Из материаловедения известно, что никель и серебро не вступают в связь. Даже выше точки плавления эти металлы не смешиваются, они просто образуют монотектическую систему. Поскольку это поведение не присуще смесям никель/золото и золото/серебро, были инициированы испытания покрытий 3-слойных систем. В результате никелевые компоненты были сначала покрыты тонким 0,15 мкм слоем золота, после чего 25 мкм слоем серебра. Никелевые компоненты, подготовленные таким образом, были установлены в недавно изготовленные ячейки хлорщелочного электролиза с деполяризованными кислородом катодами и подвержены непрерывному испытанию под нагрузкой в серии испытаний 3.
[0035] В серии испытаний 3 две электролитических ячейки были испытаны в непрерывной работе способом, подобным серии испытаний 2. Обе ячейки содержат активную электролитическую поверхность 2,7 м2 и оснащены мембранами Flemion F8020. Плотность постоянного тока составляла 4 кА/м2, рабочая температура 88°C, концентрация анолита NaCl 210 г/л, концентрация разрядов католита NaOH 32% вес./вес. и стехиометрический избыток насыщенного влажного кислорода снова составлял 20%. Фиг.7 представляет собой изображение кривой напряжения для серии испытаний 3 за 240 дней работы. Для каждой из электролитических ячеек используются разные символы (затемненные ромбы и незатемненные треугольники).
[0036] Результаты серии испытаний 3 в соответствии с фиг.7 показывают небольшое увеличение напряжения в начале, которое можно объяснить характеристиками используемого деполяризованного кислородом катода. После этого следует стабильная фаза в течение более чем 200 дней работы. Ряд запусков и выключений не оказывает существенного влияния на напряжение ячейки.
[0037] После завершения испытания 3 металлических компонента - опорная структура, эластичный элемент и деполяризованный кислородом катод, включая проволочную сетку, - были проверены, и состояние подтверждено микроснимками. Это показано на фиг.8 и 9. Существенное ослабление слоев или откалывание не наблюдалось. Никелевая опорная структура равномерно гальванизирована серебром, поверхности немного огрубелые.
[0038] Неожиданно во время проверки также была обнаружена физически однородная связь между деполяризованным кислородом катодом и эластичным элементом, расположенным плоскопараллельно под ним. Оксид серебра, смотанный в ленту из катализатора деполяризованного кислородом катода, восстанавливается до серебра во время первого запуска электролитической ячейки. В процессе физически чрезвычайно однородная связь возникает благодаря образуемой ленте серебра, металлической сетке деполяризованного кислородом катода и по меньшей мере одному эластичному элементу, который содержит покрытие согласно изобретению, при этом указанную связь очень трудно разорвать во время разборки, поскольку слои серебра компонентов обладают по меньшей мере частично образованной химической связью. Этот тип связи приводит к низким омическим потерям во время передачи тока через электролитическую ячейку, и таким образом достигается низкое и стабильное напряжение ячейки при долговременной работе, на которое не влияют запуски и выключения.
[0039] Фиг.10 представляет собой изображение состояния промежуточного слоя золота, который образует связывающий слой между никелем и серебром. Здесь также нет заметной коррозии.
[0040] Наконец, фиг.11 представляет собой изображение простейшей конфигурации металлических компонентов элементов ячейки, снабженных покрытием согласно изобретению. Основанием является катодная полуоболочка (1). Металлические сетки (2), которые приварены и к задней стенке, и к компоненту токопровода (3), установлены параллельно узкой боковой стенке. Компонент эластичного элемента (4) впрессован между токопроводом (3) и деполяризованным кислородом катодом. Деполяризованный кислородом катод, расположенный плоскопараллельно к нему, состоит из перфорированной металлической сетки или скорее проволочной сетки (5), на которую намотана лента (6) из катализатора, которая во время работы электролитической ячейки с необходимой целью образует соединение/связь с металлической сеткой (5) и эластичным элементом (4), при этом указанное соединение/связь отличается высокой проводимостью, а значит низким омическим сопротивлением.

Claims (4)

1. Катодная полуоболочка электролитической ячейки, содержащей металлические компоненты элемента ячейки, содержащая:
- металлическую опорную структуру, приваренную к задней стенке катодной полуоболочки, и по меньшей мере один металлический эластичный элемент, расположенный плоскопараллельно на ней,
- деполяризованный кислородом катод, который расположен напротив по меньшей мере одного металлического эластичного элемента, при этом указанный деполяризованный кислородом катод содержит перфорированную металлическую сетку и ленту из катализатора, изготовленную из PTFE и оксида серебра, механически впрессованную в нее, причем оксид серебра восстанавливают до серебра во время работы электролитической установки и таким образом образует однородное соединение/связь между компонентами деполяризованного кислородом катода и по меньшей мере одним эластичным элементом, при этом указанное соединение/связь отличается высокой проводимостью,
где по меньшей мере один из металлических компонентов снабжен электропроводящим покрытием, содержащим по меньшей мере два слоя, где:
- первый слой, наносимый непосредственно на материалы элемента ячейки, выбран из группы, которая содержит Au, B-легированный никель, сульфиды Ni и их смеси, при этом первый слой имеет толщину слоя от 0,005 до 0,2 мкм; и
- второй слой, наносимый на первый слой, изготовлен из серебра, при этом второй слой имеет толщину слоя от 0,1 до 30 мкм.
2. Катодная полуоболочка электролитической ячейки по п.1, отличающаяся тем, что все компоненты элемента ячейки электрической ячейки, которые проводят электрический ток, содержат покрытие.
3. Катодная полуоболочка электролитической ячейки по п.1 или 2, отличающаяся тем, что все компоненты элемента ячейки электролитической ячейки, которые находятся в контакте с каустической содой, содержат покрытие.
4. Применение катодной полуоболочки электролитической ячейки по любому из предыдущих пунктов, отличающееся тем, что электролитическую ячейку применяют для хлорщелочного электролиза.
RU2013134646/04A 2011-01-10 2011-11-29 Покрытие для металлических материалов элементов ячейки электролитической ячейки RU2573558C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011008163A DE102011008163A1 (de) 2011-01-10 2011-01-10 Beschichtung für metallische Zellelement-Werkstoffe einer Elektrolysezelle
DE102011008163.1 2011-01-10
PCT/EP2011/005965 WO2012095126A1 (de) 2011-01-10 2011-11-29 Beschichtung für metallische zellelement-werkstoffe einer elektrolysezelle

Publications (2)

Publication Number Publication Date
RU2013134646A RU2013134646A (ru) 2015-02-20
RU2573558C2 true RU2573558C2 (ru) 2016-01-20

Family

ID=45217479

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013134646/04A RU2573558C2 (ru) 2011-01-10 2011-11-29 Покрытие для металлических материалов элементов ячейки электролитической ячейки

Country Status (8)

Country Link
EP (1) EP2663669B1 (ru)
JP (1) JP2014505793A (ru)
KR (1) KR20140034138A (ru)
CN (1) CN103492616A (ru)
CA (1) CA2824173A1 (ru)
DE (1) DE102011008163A1 (ru)
RU (1) RU2573558C2 (ru)
WO (1) WO2012095126A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981533A (zh) * 2014-05-30 2014-08-13 李欣 一种电解臭氧发生器的阴极紧固弹簧压板结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2092615C1 (ru) * 1989-04-19 1997-10-10 Де Нора С.п.А. Электрод для электрохимических процессов, электрическая ячейка, способ получения хлора и щелочи и многокамерный электролизер
WO2001048852A1 (en) * 1999-12-23 2001-07-05 The Regents Of The University Of California Flow channel device for electrochemical cells
EP1882758A1 (en) * 2005-05-17 2008-01-30 Toagosei Co., Ltd. Ion exchange membrane electrolytic cell

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2973571A (en) * 1953-09-15 1961-03-07 Philips Corp Current conductor
US4340452A (en) * 1979-08-03 1982-07-20 Oronzio deNora Elettrochimici S.p.A. Novel electrolysis cell
DE3710168A1 (de) 1987-03-27 1988-10-13 Varta Batterie Verfahren zur herstellung einer kunststoffgebundenen gasdiffusionselektrode mit metallischen elektrokatalysatoren
JPH08283979A (ja) * 1995-04-10 1996-10-29 Permelec Electrode Ltd ガス拡散電極とそれを使用する電解方法
CN1226289A (zh) * 1996-08-21 1999-08-18 陶氏化学公司 耐久的电极涂料
WO2000011242A1 (fr) * 1998-08-25 2000-03-02 Toagosei Co., Ltd. Cellule d'electrolyse a la soude, dotee d'une electrode de diffusion de gaz
CN1163635C (zh) 1998-10-13 2004-08-25 东亚合成株式会社 气体扩散电极的引电方法及引电结构
US6383349B1 (en) 1999-03-31 2002-05-07 Toagosei Co., Ltd. Electrolytic cell using gas diffusion electrode and power distribution method for the electrolytic cell
IT1317753B1 (it) 2000-02-02 2003-07-15 Nora S P A Ora De Nora Impiant Cella di elettrolisi con elettrodo a diffusione di gas.
JP3707985B2 (ja) * 2000-03-22 2005-10-19 株式会社トクヤマ アルカリ金属塩電解槽
EP1337690B1 (en) * 2000-11-13 2011-04-06 Akzo Nobel N.V. Gas diffusion electrode
DE10130441B4 (de) 2001-06-23 2005-01-05 Uhde Gmbh Verfahren zum Herstellen von Gasdiffusionselektroden
ITMI20012379A1 (it) 2001-11-12 2003-05-12 Uhdenora Technologies Srl Cella di elettrolisi con elettrodi a diffusione di gas
ITMI20012538A1 (it) 2001-12-03 2003-06-03 Uhdenora Technologies Srl Collettore di corrente elastico
DE10249508A1 (de) 2002-10-23 2004-05-06 Uhde Gmbh Elektrolysezelle mit Innenrinne
JP4290454B2 (ja) * 2003-03-28 2009-07-08 三井化学株式会社 ガス拡散電極の製造方法、電解槽及び電解方法
DE102004034886A1 (de) 2004-07-19 2006-02-16 Uhde Gmbh Verfahren zur Herstellung von Nickeloxidoberflächen mit erhöhter Leitfähigkeit
DE102005023615A1 (de) * 2005-05-21 2006-11-23 Bayer Materialscience Ag Verfahren zur Herstellung von Gasdiffusionselektroden
JP2008127660A (ja) * 2006-11-22 2008-06-05 Univ Of Yamanashi 電気伝導性の優れたガス拡散電極
JP5338029B2 (ja) * 2007-01-26 2013-11-13 日亜化学工業株式会社 半導体レーザ素子、半導体レーザ装置及びその製造方法
US7870472B2 (en) 2007-01-31 2011-01-11 Sandisk 3D Llc Methods and apparatus for employing redundant arrays to configure non-volatile memory
US20090092887A1 (en) * 2007-10-05 2009-04-09 Quantumsphere, Inc. Nanoparticle coated electrode and method of manufacture
JP2009120882A (ja) * 2007-11-13 2009-06-04 Tosoh Corp 電解槽構成部材及びそれを用いた電解槽
JP5151438B2 (ja) * 2007-12-10 2013-02-27 大日本印刷株式会社 半導体装置およびその製造方法、ならびに半導体装置用基板およびその製造方法
CN101640327B (zh) * 2008-08-01 2011-05-04 和硕联合科技股份有限公司 电连接器
KR20100103015A (ko) * 2009-03-12 2010-09-27 엘지이노텍 주식회사 리드 프레임 및 그 제조방법
US20120125782A1 (en) * 2009-05-26 2012-05-24 Chlorine Engineers Corp., Ltd. Gas diffusion electrode equipped ion exchange membrane electrolyzer
CN101710509B (zh) * 2009-12-25 2011-06-15 彩虹集团公司 一种厚膜电阻器用无铅化镍电极浆料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2092615C1 (ru) * 1989-04-19 1997-10-10 Де Нора С.п.А. Электрод для электрохимических процессов, электрическая ячейка, способ получения хлора и щелочи и многокамерный электролизер
WO2001048852A1 (en) * 1999-12-23 2001-07-05 The Regents Of The University Of California Flow channel device for electrochemical cells
EP1882758A1 (en) * 2005-05-17 2008-01-30 Toagosei Co., Ltd. Ion exchange membrane electrolytic cell

Also Published As

Publication number Publication date
DE102011008163A1 (de) 2012-07-12
EP2663669B1 (de) 2015-04-29
EP2663669A1 (de) 2013-11-20
JP2014505793A (ja) 2014-03-06
CN103492616A (zh) 2014-01-01
KR20140034138A (ko) 2014-03-19
CA2824173A1 (en) 2012-07-19
RU2013134646A (ru) 2015-02-20
WO2012095126A1 (de) 2012-07-19

Similar Documents

Publication Publication Date Title
EP3064614B1 (en) Anode for alkaline water electrolysis
CA3009732C (en) Method for electrolyzing alkaline water
Millet et al. Characterization of membrane-electrode assemblies for solid polymer electrolyte water electrolysis
NO802634L (no) Forbedrede karbon-vev-baserte elektrokatalytiske gassdiffusjonselektroder, aggregat og elektrokjemiske celler inneholdende disse
NO150532B (no) Anordning ved nivaamaaler
NO152393B (no) Tynn elektrokatalytisk gassdiffusjonselektrode og fremgangsmaate til fremstilling derav
CN111433391A (zh) 碱性水电解用膜-电极-垫片复合体
Chade et al. Deactivation mechanisms of atmospheric plasma spraying Raney nickel electrodes
Lipp et al. Peroxide formation in a zero-gap chlor-alkali cell with an oxygen-depolarized cathode
EP2436804A1 (en) Gas diffusion electrode-equipped ion-exchange membrane electrolytic cell
KR102126183B1 (ko) 고분자 전해질 막 물 전기분해장치의 확산층 및 산소 전극 복합층 및 그 제조 방법, 이를 이용한 고분자 전해질 막 물 전기 분해 장치
RU2573558C2 (ru) Покрытие для металлических материалов элементов ячейки электролитической ячейки
US8057713B2 (en) Method for the production of nickel oxide surfaces having increase conductivity
JPWO2011040464A1 (ja) 水素発生用電極及び電解方法
Tamašauskaitė-Tamašiūnaitė et al. Zinc-cobalt alloy deposited on the titanium surface as electrocatalysts for borohydride oxidation
JP7468888B2 (ja) 中性pH水電解方法及びそのシステム
Rupisan Ionomer-coated & tungsten-based nanoarray materials for proton exchange membrane electrolysis
KR20230033169A (ko) 수전해 장치
JP2022145670A (ja) 多孔金属ガス拡散層、及びこれを備えた固体高分子形燃料電池、水電解装置
KR100704438B1 (ko) 막전극접합체의 제조방법
KR100704439B1 (ko) 막전극접합체의 제조방법
JP2021025105A (ja) 電気化学素子
KR20190140029A (ko) 전기 화학적으로 게르만을 제조하는 방법
FU et al. Hydrogen Evolution Reaction Activtity of Ni-Ru-Ir Oxide Cathode Coating
Stefanova et al. CYCLIC VOLTAMMETRY INVESTIGATIONS OF HYDROGEN PEROXIDE ON Ag/Ni FOAM ELECTRODES

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161130