RU2558646C2 - Система для магнитного экранирования - Google Patents

Система для магнитного экранирования Download PDF

Info

Publication number
RU2558646C2
RU2558646C2 RU2013142077/28A RU2013142077A RU2558646C2 RU 2558646 C2 RU2558646 C2 RU 2558646C2 RU 2013142077/28 A RU2013142077/28 A RU 2013142077/28A RU 2013142077 A RU2013142077 A RU 2013142077A RU 2558646 C2 RU2558646 C2 RU 2558646C2
Authority
RU
Russia
Prior art keywords
chamber
coils
magnetic field
lithography apparatus
walls
Prior art date
Application number
RU2013142077/28A
Other languages
English (en)
Other versions
RU2013142077A (ru
Inventor
Алон РОСЕНТАЛЬ
Original Assignee
МЭППЕР ЛИТОГРАФИ АйПи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by МЭППЕР ЛИТОГРАФИ АйПи Б.В. filed Critical МЭППЕР ЛИТОГРАФИ АйПи Б.В.
Publication of RU2013142077A publication Critical patent/RU2013142077A/ru
Application granted granted Critical
Publication of RU2558646C2 publication Critical patent/RU2558646C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/52Screens for shielding; Guides for influencing the discharge; Masks interposed in the electron stream
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1475Scanning means magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67213Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one ion or electron beam chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/026Shields
    • H01J2237/0264Shields magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31752Lithography using particular beams or near-field effects, e.g. STM-like techniques
    • H01J2237/31754Lithography using particular beams or near-field effects, e.g. STM-like techniques using electron beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31774Multi-beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31793Problems associated with lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers

Abstract

Изобретение относится к измерительной технике и представляет собой систему магнитного экранирования аппарата литографии пучками заряженных частиц. Система содержит первую камеру, вторую камеру и набор из двух катушек. Стенки первой и второй камер содержат магнитный экранирующий материал. Вторая камера заключает в себе первую камеру, набор из двух катушек, имеющих общую ось и расположенных на противоположных сторонах от первой камеры, подвижную опору для подложкодержателя, как минимум один датчик магнитного поля в пределах второй камеры, систему управления токами в катушках на основании данных датчика. Первая камера по меньшей мере частично заключает в себе аппарат литографии и имеет отверстие на стороне, обращённой к подложкодержателю.3 н. и 26 з.п. ф-лы, 9 ил.

Description

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
1. Область техники
Изобретение относится к системе для магнитного экранирования аппарата литографии пучками заряженных частиц.
2. Описание уровня техники
В полупроводниковой промышленности имеется возрастающая потребность в изготовлении все меньших структур с большой точностью и надежностью. Литография пучками заряженных частиц представляет собой перспективную технологию для удовлетворения этих высоких требований. При литографии этого типа заряженными частицами манипулируют для их переноса на поверхность мишени на подложке, обычно кремниевой пластине. Поскольку манипуляция заряженными частицами выполняется с использованием управляемого электромагнитного манипулирования, точность литографии пучками заряженных частиц может снижаться, если установка литографии подвергается воздействию внешних электромагнитных полей.
По этой причине были разработаны различные методы магнитного экранирования для защиты установок литографии пучками заряженных частиц от внешних магнитных полей. Например, установка литографии пучками заряженных частиц может быть заключена в один или более слоев материала, который имеет высокую магнитную проницаемость. Однако, такое экранирование может оказаться недостаточным для удовлетворительного ослабления внешних полей. Кроме того, экранирование не позволяет компенсировать случайно изменяющиеся магнитные поля.
Другой пример защиты установок с пучками заряженных частиц от внешних магнитных полей заключается в использовании одной или более пар катушек, пригодных для создания полей в заданном направлении так, что внешние магнитные поля могут быть уравновешены полями, создаваемыми катушками. Использование одной или более пар катушек может вполне хорошо действовать на управление магнитным полем, воздействию которого подвергается отдельная установка с пучками заряженных частиц. Однако можно предвидеть, что в полупроводниковой промышленности будущего множественные установки литографии пучками заряженных частиц будут работать вблизи друг друга. В результате, созданием компенсационного поля можно скомпенсировать отрицательное влияние внешнего поля для одной установки литографии пучками заряженных частиц, хотя создаваемое компенсационное поле действует как возмущающее внешнее поле для смежной установки с пучками заряженных частиц.
КРАТКАЯ СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение предоставляет систему для магнитного экранирования аппарата литографии пучками заряженных частиц с улучшенными рабочими характеристиками. С этой целью, система содержит первую камеру, имеющую стенки, содержащие магнитный экранирующий материал, заключающую в себе, по меньшей мере частично, аппарат литографии пучками заряженных частиц; вторую камеру, имеющую стенки, содержащие магнитный экранирующий материал, заключающую в себе первую камеру; и набор из двух катушек, расположенных во второй камере на противоположных сторонах от первой камеры, причем эти две катушки имеют общую ось. Использование двух катушек во второй камере позволяет компенсировать магнитное поле в пределах первой камеры, тогда как влияние компенсационного магнитного поля вне системы сохраняется минимальным вследствие экранирующего действия второй камеры. Предпочтительно, система включает в себя 3 набора катушек с тем, чтобы образовывался ортогональный комплект из наборов катушек. В таком случае, вторая камера будет заключать в себе первый набор из двух катушек, расположенных на противоположных сторонах от первой камеры, причем две катушки первого набора имеют общую ось в первом направлении; второй набор катушек, расположенных на противоположных сторонах от первой камеры, причем две катушки второго набора имеют общую ось во втором направлении, практически перпендикулярном первому направлению; третий набор катушек, расположенных на противоположных сторонах от первой камеры, причем две катушки третьего набора имеют общую ось в третьем направлении, практически перпендикулярном первому направлению и второму направлению. Такая ортогональная компоновка наборов катушек позволяет осуществлять коррекцию магнитного поля во всех направлениях.
В некоторых вариантах реализации расстояние между катушкой и ближайшей стенкой второй камеры, измеренное вдоль направления, практически параллельного общей оси, меньше, чем такое расстояние между упомянутой катушкой и ближайшей стенкой первой камеры. Если катушки несколько отдалены от первой камеры, компенсационное поле более однородно в направлении, практически параллельном общей оси соответственного набора катушек. Если расстояние между катушкой и ближайшей стенкой первой камеры по меньшей мере вдвое больше расстояния между катушкой и ближайшей стенкой второй камеры, возможности магнитного экранирования камер относительно внешних магнитных полей значительно увеличиваются. Оптимальная однородность получается в системе, в которой катушки расположены в непосредственной близости от стенок второй камеры.
В некоторых вариантах реализации стенки первой камеры расположены ближе к аппарату литографии пучками заряженных частиц, чем к по меньшей мере одной стенке второй камеры. Такое расстояние между двумя экранирующими стенками улучшает общие возможности магнитного экранирования в направлении упомянутой по меньшей мере одной стенки. Оптимальные результаты относительно общих возможностей магнитного экранирования системы во всех направлениях для внешних магнитных полей могут быть получены в том случае, если стенки первой камеры располагаются ближе к аппарату литографии пучками заряженных частиц, чем к какой-либо стенке второй камеры.
В некоторых вариантах реализации магнитный экранирующий материал включает в себя материал с большей относительной магнитной проницаемостью, чем примерно 300000. Подходящий материал - мю-металл.
В некоторых вариантах реализации первая камера снабжена размагничивающим приспособлением. Размагничивающее приспособление позволяет устранить остаточное поле в пределах первой камеры. Дополнительно или альтернативно, размагничивающим приспособлением может быть снабжена вторая камера. Размагничивающее приспособление во второй камере может быть использовано для устранения имеющегося в ней остаточного магнитного поля. Размагничивающее приспособление может содержать одну или более размагничивающих катушек. Такие катушки относительно просты в реализации, поскольку они не занимают много места, и требуются лишь незначительные адаптации системы для обеспечения возможности их применения.
В некоторых вариантах реализации система дополнительно содержит по меньшей мере один датчик магнитного поля для измерения магнитного поля в пределах первой камеры. Использование датчика может позволить контролировать работу упомянутых одного или более наборов катушек и/или размагничивающего(их) приспособления(й) в системе. Система может дополнительно включать в себя систему управления для управления током через катушки на основании информации, предоставляемой упомянутым по меньшей мере одним датчиком магнитного поля. Следовательно, небольшие вариации внешнего магнитного поля могут быть скомпенсированы. Такие вариации могут быть вызваны подвижным устройством, таким как координатный стол с коротким ходом, в аппарате литографии. Такое подвижное устройство обычно имеет собственное экранирование, которое перемещается и вытягивается вдоль поля и вокруг него, что приводит к вариациям магнитного поля.
Установка литографии пучками заряженных частиц может содержать источник заряженных частиц для создания одного или более пучков заряженных частиц; подвижное устройство для поддержания мишени; и устройство формирования рисунка для обеспечения возможности переноса упомянутых одного или более пучков на поверхность мишени в соответствии с рисунком. В некоторых вариантах реализации первая камера заключает в себе источник заряженных частиц и устройство формирования рисунка, и первая камера снабжена отверстием на стороне, обращенной к подвижному устройству, находящемуся вне первой камеры.
В некоторых вариантах реализации по меньшей мере одна из первой камеры и второй камеры снабжена съемным образом прикрепляемой дверцей, причем дверца прикрепляется посредством одной или более соединительных шин. Использование съемным образом прикрепляемой дверцы позволяет пользователю легко открыть соответствующую камеру. Предпочтительно, упомянутые одна или более соединительных шин являются полыми. Полые шины имеют уменьшенный вес. Упомянутые одна или более соединительных шин могут включать в себя по меньшей мере одну внутреннюю шину для прикрепления к дверце на внутренней стороне соответствующей камеры и по меньшей мере одну внешнюю шину для прикрепления к дверце на внешней стороне соответствующей камеры, при этом упомянутая по меньшей мере одна внутренняя шина и упомянутая по меньшей мере одна внешняя шина снабжены множеством взаимно совмещенных дырок на противоположных их сторонах, причем число взаимно совмещенных дырок во внутренней шине больше, чем число взаимно совмещенных дырок во внешней шине, и при этом упомянутая по меньшей мере одна внутренняя шина и упомянутая по меньшей мере одна внешняя шина соединены друг с другом посредством присоединения упомянутой по меньшей мере одной внешней шины к упомянутой по меньшей мере одной внутренней шине с использованием соединительного элемента, проходящего через две взаимно совмещенных дырки во внешней шине и через соответствующие взаимно совмещенные дырки во внутренней шине. Такое выполнение позволяет осуществлять относительно быстрое закрепление и открепление дверцы, в сочетании с распределением давления по большой площади. Соединительный элемент может быть болтом, и соединение может быть зафиксировано с использованием гайки. Между соединительным элементом и дверцей могут быть предусмотрены один или более пружинных элементов.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Различные объекты изобретения дополнительно объясняются в связи с показанными на чертежах вариантами реализации, причем:
Фиг.1 схематично показывает установку безмасочной литографии, которая может быть использована в вариантах реализации изобретения;
Фиг.2a, 2b схематично показывают систему для магнитного экранирования аппарата литографии пучками заряженных частиц в соответствии с вариантом реализации изобретения;
Фиг.3 - вид в сечении варианта реализации системы для магнитного экранирования аппарата литографии пучками заряженных частиц, содержащего сенсорное приспособление;
Фиг.4 схематично показывает вариант реализации устройства позиционирования датчика;
Фиг.5 - вид в сечении другого варианта реализации системы для магнитного экранирования аппарата литографии пучками заряженных частиц, содержащего сенсорное приспособление;
Фиг.6a схематично показывает вариант реализации размагничивающей катушки для использования в сочетании с кубической экранирующей камерой;
Фиг.6b схематично показывает вариант реализации размагничивающей катушки для использования в сочетании с цилиндрической экранирующей камерой;
Фиг.7a, 7b схематично показывают соответственно вид спереди и вид сверху экранированной вакуумной камеры, содержащей дверцу;
Фиг.8a, 8b показывают варианты реализации шин для присоединения боковой стенки и дверцы экранированной вакуумной камеры по Фиг.7a, 7b; и
Фиг.9 показывает вариант соединения шин по Фиг.8a, 8b друг с другом.
ОПИСАНИЕ ИЛЛЮСТРАТИВНЫХ ВАРИАНТОВ РЕАЛИЗАЦИИ
Ниже приводится описание различных вариантов реализации изобретения, приведенных лишь в качестве примера и со ссылкой на фигуры. Фигуры приводятся не в масштабе и предназначены исключительно для целей иллюстрации.
На Фиг.1 показан упрощенный схематический чертеж варианта реализации установки 1 многолучевой литографии заряженными частицами. Такая установка литографии описана, например, в патентах США №№ 6897458 и 6958804 и 7084414 и 7129502, которые переуступлены заявителю данной заявки и которые настоящим целиком включены сюда посредством ссылки.
Такая установка 1 литографии обычно содержит генератор составляющих (элементарных) лучей, создающий множество составляющих лучей, модулятор составляющих лучей, структурирующий по рисунку составляющие лучи для формирования модулированных составляющих лучей, и проектор составляющих лучей для проецирования модулированных составляющих лучей на поверхность мишени.
Генератор составляющих лучей обычно содержит источник и по меньшей мере один делитель луча. Источник на Фиг.1 представляет собой источник 3 электронов, выполненный с возможностью получения практически однородного, расширяющегося электронного луча 4. Энергия электронного луча 4 предпочтительно поддерживается относительно низкой, в диапазоне примерно 1-10 кэВ. Для достижения этого ускоряющее напряжение предпочтительно является низким, а источник 3 электронов может поддерживаться при напряжении примерно от -1 до -10 кВ относительно мишени с потенциалом земли, хотя также могут быть использованы другие уставки.
На Фиг.1 электронный луч 4 от источника 3 электронов проходит коллимирующую линзу 5 для коллимации электронного луча 4. Коллимирующая линза 5 может быть коллимирующей оптической системой любого типа. Перед коллимацией электронный луч 4 может проходить двойной октуполь (не показан).
Затем, электронный луч 4 падает на делитель луча, в варианте реализации по Фиг.1 - апертурную решетку 6. Апертурная решетка 6 предпочтительно содержит пластину со сквозными отверстиями. Апертурная решетка 6 выполнена с возможностью блокировки части луча 4. Кроме того, решетка 6 позволяет проходить через нее множеству составляющих лучей 7, так что получается множество параллельных составляющих электронных лучей 7.
Установка 1 литографии по Фиг.1 создает большое число составляющих лучей 7, предпочтительно примерно 10000-1000000 составляющих лучей, хотя конечно же возможно, чтобы создавалось больше или меньше составляющих лучей. Следует отметить, что также могут быть использованы другие известные способы для создания сколлимированных составляющих лучей. В установку может быть введена вторая апертурная решетка с тем, чтобы создать сублучи из электронного луча 4, а из сублучей создать составляющие электронные лучи 7. Это позволяет манипулировать сублучами далее по ходу, что оказывается полезным для работы установки, особенно когда число составляющих лучей в системе составляет 5000 или более.
Модулятор составляющих лучей, обозначенный на Фиг.1 как система 8 модуляции, обычно содержит ограничивающую составляющие лучи решетку 9, содержащую приспособление из множества ограничителей, и тормозящую составляющие лучи решетку 10. Ограничители способны отклонять один или более из составляющих электронных лучей 7. В вариантах реализации изобретения ограничители, более конкретно, представляют собой электростатические дефлекторы, снабженные первым электродом, вторым электродом и апертурой. В таком случае электроды располагаются на противоположных сторонах от апертуры для создания электрического поля на апертуре. Обычно, второй электрод представляет собой электрод заземления, то есть электрод, подключенный к потенциалу земли.
Для фокусировки электронных составляющих лучей 7 в плоскости ограничивающей решетки 9, установка литографии может дополнительно содержать матрицу конденсорных линз (не показано).
В варианте реализации по Фиг.1 тормозящая составляющие лучи решетка 10 содержит апертурную решетку для предоставления составляющим лучам возможности проходить сквозь нее. Тормозящая составляющие лучи решетка 10, в своей базовой форме, содержит подложку, снабженную сквозными отверстиями, обычно круглыми отверстиями, хотя также могут быть использованы и другие формы. В некоторых вариантах реализации подложка тормозящей составляющие лучи решетки 10 выполнена из кремниевой пластины с регулярно разнесенной матрицей сквозных отверстий и может быть покрыта поверхностным слоем металла для предотвращения зарядки поверхности. В некоторых дополнительных вариантах реализации металл относится к тому типу, который не образует естественного оксидного слоя, такому как CrMo.
Ограничивающая составляющие лучи решетка 9 и тормозящая составляющие лучи решетка 10 работают совместно для блокировки или пропускания составляющих лучей 7. В некоторых вариантах реализации апертуры тормозящей составляющие лучи решетки 10 совмещены с апертурами электростатических дефлекторов в ограничивающей составляющие лучи решетке 9. Если ограничивающая составляющие лучи решетка 9 отклоняет составляющий луч, то он не будет проходить через соответствующую апертуру в тормозящей составляющие лучи решетке 10. Вместо этого, составляющий луч будет блокирован подложкой блокирующей составляющие лучи решетки 10. Если ограничивающая составляющие лучи решетка 9 не отклоняет составляющий луч, то составляющий луч пройдет через соответствующую апертуру в тормозящей составляющие лучи решетке 10. В некоторых альтернативных вариантах реализации совместное действие ограничивающей составляющие лучи решетки 9 и тормозящей составляющие лучи решетки 10 таково, что отклонение составляющего луча дефлектором в ограничивающей решетке 9 приводит к пропусканию составляющего луча через соответствующую апертуру в тормозящей составляющие лучи решетке 10, тогда как неотклонение приводит к блокировке подложкой тормозящей составляющие лучи решетки 10.
Система 8 модуляции выполнена с возможностью придания рисунка составляющим лучам 7 на основе входного сигнала, подаваемого блоком 60 управления. Блок 60 управления может содержать блок 61 хранения данных, блок 62 считывания и преобразователь 63 данных. Блок 60 управления может быть расположен удаленно от остальной части системы, например, вне внутренней части чистой комнаты. Используя оптические волокна 64, модулированные световые лучи 14, переносящие данные о рисунке, можно передавать на проектор 65, который проецирует свет от концов волокон в пределах волоконной матрицы (схематично изображенной как панель 15) в электронную оптическую часть установки 1 литографии, схематично обозначенную контуром со штриховой линией и ссылочным номером 18.
В варианте реализации по Фиг.1 модулированные световые лучи проецируются на ограничивающую составляющие лучи решетку 9. Более конкретно, модулированные световые лучи 14 от концов оптических волокон проецируются на соответствующие светочувствительные элементы, расположенные на ограничивающей составляющие лучи решетке 9. Светочувствительные элементы могут быть выполнены с возможностью преобразования светового сигнала в сигнал другого типа, например, электрический сигнал. Модулированный световой луч 14 несет часть данных о рисунке для управления одним или более ограничителями, которые связаны с соответствующим светочувствительным элементом. Соответственно, для того чтобы спроецировать световые лучи 14 на соответствующие светочувствительные элементы, могут быть использованы оптические элементы, такие как проектор 65. Кроме того, чтобы обеспечить возможность проецирования световых лучей 14 под подходящим углом падения, может быть введено зеркало, например, размещенное подходящим образом между проектором 65 и ограничивающей составляющие лучи решеткой 9.
Проектор 65 может быть соответственно совмещен с панелью 15 позиционирующим проектор устройством 17 под управлением блока 60 управления. В результате, расстояние между проектором 65 и светочувствительными элементами в ограничивающей составляющие лучи решетке 9 также может варьироваться.
В некоторых вариантах реализации световые лучи могут, по меньшей мере частично, быть перенесены от панели к светочувствительным элементам посредством оптического волновода. Оптический волновод может подводить свет к положению, очень близкому к светочувствительным элементам, подходящим образом - на расстояние менее сантиметра, предпочтительно, порядка одного миллиметра от них. Короткое расстояние между оптическим волноводом и соответствующими светочувствительными элементами снижает световые потери. С другой стороны, использование панели 15 и проектора 65, расположенных далеко от пространства, которое может быть занято составляющими лучами заряженных частиц, имеет преимущество в том, что минимизируется возмущение составляющих лучей, и конструкция ограничивающей составляющие лучи решетки 9 оказывается менее сложной.
Модулированные составляющие лучи, выходящие из модулятора составляющих лучей, проецируются проектором составляющих лучей в виде пятна на целевую поверхность 13 мишени 24. Проектор составляющих лучей обычно содержит сканирующий дефлектор для сканирования модулированных составляющих лучей по поверхности 13 мишени и систему проекционных линз для фокусировки модулированных составляющих лучей на поверхность 13 мишени. Эти компоненты могут присутствовать внутри отдельного концевого модуля.
Такой концевой модуль предпочтительно конструируется как вставной, заменяемый блок. Концевой модуль может, таким образом, содержать дефлекторную решетку 11 и приспособление 12 из проекционных линз. Вставной, заменяемый блок может также включать в себя тормозящую составляющие лучи решетку 10, как рассмотрено выше в связи с модулятором составляющих лучей. После выхода из концевого модуля составляющие лучи 7 попадают на поверхность 13 мишени, расположенную в плоскости мишени. При литографических применениях мишень обычно содержит кремниевую пластину, снабженную чувствительным к заряженным частицам слоем или слоем резиста.
Дефлекторная решетка 11 может принимать вид решетки сканирующих дефлекторов, выполненной с возможностью отклонения каждого составляющего луча 7, который прошел тормозящую составляющие лучи решетку 10. Дефлекторная решетка 11 может содержать множество электростатических дефлекторов, допускающих приложение относительно малых управляющих напряжений. Хотя дефлекторная решетка 11 простирается перед приспособлением 12 из проекционных линз, дефлекторная решетка 11 также может быть установлена между приспособлением 12 из проекционных линз и поверхностью 13 мишени.
Приспособление 12 из проекционных линз выполнено с возможностью фокусировки составляющих лучей 7, до или после отклонения дефлекторной решеткой 11. Предпочтительно, фокусировка приводит к геометрическому размеру пятна примерно 10-30 нанометров в диаметре. В таком предпочтительном варианте реализации приспособление 12 из проекционных линз предпочтительно выполнено с возможностью обеспечения уменьшения примерно в 100-500 раз, наиболее предпочтительно как можно большего, например, в диапазоне 300-500 раз. В этом предпочтительном варианте реализации приспособление 12 из проекционных линз может быть преимущественно расположено близко к поверхности 13 мишени.
В некоторых вариантах реализации между поверхностью 13 мишени и приспособлением 12 из проекционных линз может быть расположен протектор луча (не показан). Протектор луча может быть фольгой или пластиной, снабженной множеством соответственно расположенных апертур. Протектор луча выполнен с возможностью поглощения высвобождаемых частиц резиста прежде, чем они смогут достигнуть какого-либо из чувствительных элементов в установке 1 литографии.
Приспособление 12 из проекционных линз может, таким образом, гарантировать, что размер пятна одиночного пикселя на поверхности 13 мишени правилен, тогда как дефлекторная решетка 11 может гарантировать при соответствующих операциях сканирования, что положение пикселя на поверхности 13 мишени правильно в микромасштабе. В частности, работа дефлекторной решетки 11 такова, что пиксель вписывается в сетку пикселей, которая в конечном счете составляет рисунок на поверхности 13 мишени. Будет понятно, что макромасштабное позиционирование пикселя на поверхности 13 мишени подходящим образом обеспечивается системой позиционирования полупроводниковой пластины, имеющейся под мишенью 24.
Обычно, поверхность 13 мишени содержит пленку резиста поверх подложки. Участки пленки резиста будут химически модифицироваться при попадании составляющих лучей заряженных частиц, то есть электронов. В результате этого, облученный участок пленки будет больше или меньше растворяться в проявителе, приводя к рисунку резиста на полупроводниковой пластине. Рисунок резиста на полупроводниковой пластине может затем быть перенесен в нижележащий слой, например, с помощью имплементации, травления и/или этапов осаждения, как известно в области полупроводникового производства. Очевидно, что если облучение не однородно, резист может не проявиться однородным образом, приводя к ошибкам в рисунке. Поэтому для получения установки литографии, которая обеспечивает воспроизводимый результат, необходимо высококачественное проецирование. Из-за этапов отклонения не должно происходить никакого различия в облучении.
На Фиг. 2a, 2b схематично показана система 100 для магнитного экранирования аппарата литографии пучками заряженных частиц согласно варианту реализации изобретения. Каждая из Фиг.2a и Фиг.2b показывает различные признаки в пределах системы 100 для ясности. Система 100 содержит первую камеру 101, заключающую в себе аппарат литографии пучками заряженных частиц, отображенный в виде цилиндра 110. Система 100 дополнительно включает в себя вторую камеру 102, заключающую в себе первую камеру 101. Первая камера 101 и вторая камера 102 представляют собой вакуумные камеры или их части. Первая камера 101 и вторая камера 102 имеют стенки, содержащие магнитный экранирующий материал, т.е. материал с высокой магнитной проницаемостью, то есть магнитной проницаемостью, большей, чем примерно 20000. Предпочтительно, магнитный экранирующий материал имеет большую магнитную проницаемость, чем примерно 300000. Предпочтительно, магнитный экранирующий материал также имеет низкую остаточную намагниченность. Примеры магнитных экранирующих материалов включают в себя, но без ограничения, некую разновидность мю-металла и Nanovate™-EM.
Как схематично показано на Фиг.2b, система 100 дополнительно содержит набор катушек 120a, 120b, расположенных во второй камере 102 на противоположных сторонах от первой камеры 101. Эти две катушки 120a, 120b имеют общую ось. Две катушки 120a, 120b могут быть использованы для получения магнитного поля. Для обеспечения возможности компенсации в 3 измерениях, система 100 предпочтительно содержит три набора из двух катушек. Помимо первого набора из двух катушек 120a, 120b, имеющих общую ось в первом направлении, например, направлении X, система 100 дополнительно содержит второй набор из двух катушек 121a, 121b и третий набор из двух катушек 122a, 122b. Две катушки второго и третьего наборов, каждая, имеют общую ось и размещены на противоположных сторонах от первой камеры 101 в пределах второй камеры 102. Общая ось второго набора из двух катушек 121a, 121b ориентирована во втором направлении, практически перпендикулярном первому направлению, например, направлении Y. Общая ось третьего набора катушек 122a, 122b направлена в третьем направлении, например, Z-направлении, являющемся практически перпендикулярным первому направлению и второму направлению.
Магнитное поле, которое может быть получено при использовании катушек, становится более однородным в области, в которой расположен аппарат 110 литографии пучками заряженных частиц, когда катушки из набора катушек 120, 121, 122 разнесены дальше друг от друга. По этой причине расстояние между катушкой и ближайшей стенкой второй камеры 102, измеренное вдоль направления, практически параллельного соответствующей общей оси, предпочтительно меньше, чем такое расстояние между той же самой катушкой и ближайшей стенкой первой камеры 101. Предпочтительно, расстояние между некой катушкой набора катушек и ближайшей стенкой первой камеры 101 по меньшей мере вдвое больше расстояния между этой катушкой и ближайшей стенкой второй камеры 102. Наиболее предпочтительно, катушки расположены в непосредственной близости от стенок второй камеры 102. Кроме того, более однородное магнитное поле может быть создано в случае, когда каждая катушка набора катушек охватывает бóльшую площадь.
Одна или более пар катушек 120, 121, 122 могут быть парами так называемых катушек Гельмгольца. Катушки в паре катушек Гельмгольца представляют собой практически идентичные круговые магнитные катушки, которые помещаются симметрично вдоль общей оси и разделены расстоянием, равным радиусу катушек. Установка разделяющего катушки расстояния равным радиусу катушек минимизирует неоднородность магнитного поля, которое создается в центре катушек.
Использование одного или более наборов компенсационных катушек в пределах экранируемой среды, то есть второй камеры 102, позволяет осуществить компактную и гибкую конструкцию экранирования. Кроме того, заключение катушек во вторую камеру 102 приводит к снижению напряженности компенсационных полей вне второй камеры 102. Иначе говоря, большая часть, если не все поля, создаваемые в пределах второй камеры 102 одним или более наборами катушек, остаются в пределах второй камеры 102. Следовательно, если множественные установки литографии работают вблизи друг от друга, компенсационные поля, создаваемые для оптимизации рабочих характеристик одного аппарата 110 литографии пучками заряженных частиц, совсем не влияют негативно, или влияют негативно только в очень ограниченной степени, на рабочие характеристики соседнего аппарата 110 литографии.
Было установлено, что использование малой экранирующей камеры 101 внутри второй камеры 102 значительно улучшает экранирование. В частности, в случае, когда стенки первой камеры 101 расположены ближе к аппарату литографии пучками заряженных частиц, чем к какой-либо стенке второй камеры 102, величина эффекта экранирования двух камер фактически соответствует перемножению величин эффекта экранирования первой камеры 101 и второй камеры 102 по отдельности. Если стенки первой камеры 101 располагаются близко к стенкам второй камеры 102, например, как это используется в двухслойной экранирующей камере, величина эффекта экранирования всего узла просто соответствует сумме отдельных величин эффекта экранирования.
Работа упомянутых одного или более наборов из двух катушек 120, 121, 122 может быть основана на нескольких входных сигналах. В некоторых приложениях компенсация применяется только для получения стабильного внешнего магнитного поля, такого как среднее магнитное поле Земли. В некоторых других случаях активация одной или более пар катушек основана на измерениях, выполняемых сенсорным приспособлением. Размещение сенсорного приспособления вне экранируемой среды относительно просто осуществить, но такое измерение может оказаться не достаточно точным. Экранирование камеры может не экранировать внешнее магнитное поле полностью однородным образом. В результате, активация катушек на основании внешних измерений может не привести к удовлетворительной компенсации внешних магнитных полей, действующих в месте расположения аппарата литографии.
Ввиду желаемой точности в литографических применениях, в настоящее время и еще в большей степени в ближайшем будущем такая недостаточная точность является нежелательной.
На Фиг.3 показан вид в сечении варианта реализации системы для магнитного экранирования аппарата литографии пучками заряженных частиц, содержащей сенсорное приспособление. Система включает в себя две экранирующих камеры 101, 102, имеющих стенки, содержащие магнитный экранирующий материал. Аппарат 110 литографии пучками заряженных частиц предусмотрен в пределах первой камеры 101. Система дополнительно включает в себя набор катушек 122a, 122b. Сечения катушки обозначают возможный путь направления тока. Сечения, снабженные крестиками, обозначают ток, текущий в плоскость чертежа, тогда как сечения, снабженные центральной точкой, обозначают ток, вытекающий из плоскости чертежа. Все элементы системы предусмотрены в пределах вакуумной камеры 150.
Система дополнительно содержит сенсорное приспособление, содержащее один или более датчиков магнитного поля. В показанном варианте реализации сенсорное приспособление содержит два датчика 160a, 160b магнитного поля. Датчики 160a, 160b выполнены с возможностью измерения магнитного поля в непосредственной близости от местоположения аппарата 110 литографии. Предпочтительно, датчики 160a, 160b представляют собой трехосные датчики магнитного поля, то есть датчики могут измерять магнитное поле в трех измерениях одновременно. На основании измерений, выполненных датчиками 160a, 160b, блок 170 управления может управлять током в упомянутых одной или более парах 120, 121, 122 катушек для компенсации.
Примером датчика магнитного поля, который может быть использован в вариантах реализации изобретения, является трехосный датчик магнитного поля FL3-100, изготовленный фирмой Stefan Mayer Instruments, расположенной в г. Динслакен, Германия.
Положение магнитного датчика в пределах системы может быть регулируемым. На Фиг.4 схематично показан вариант реализации устройства позиционирования датчика, которое позволяет осуществлять регулировку положения магнитного датчика 160. В частности, после операций обслуживания, регулировка положения упомянутых одного или более датчиков 160 позволяет оптимизировать измерение и, поэтому, улучшить компенсацию возмущающего магнитного поля. Следует отметить, что на Фиг.4 экранирующая камера 101 не показана для большей ясности.
Датчики 160a, 160b магнитного поля могут быть помещены внутри экранирующей камеры 101, как схематично изображено на Фиг.3. Однако, в некоторых приложениях может оказаться достаточным поместить сенсорное приспособление, или его по меньшей мере один датчик магнитного поля, вне экранирующей камеры 101, но внутри камеры 102.
На Фиг.5 показан вид в сечении другого варианта реализации системы для магнитного экранирования аппарата литографии пучками заряженных частиц, содержащей сенсорное приспособление. В этой компоновке сенсорное приспособление содержит датчик 161 магнитного поля вне камеры 101. Датчик 161 предпочтительно помещается между опорным элементом 175 и отверстием 111 в камере 101, чтобы позволить проходить лучу излучения или составляющим лучам, выходящим из аппарата 110 литографии. Датчик 161 магнитного поля предпочтительно располагается в непосредственной близости от отверстия 111. Это положение позволяет датчику 161 магнитного поля иметь адекватную индикацию поля, оказываемого излучением, проецируемым через отверстие 161 во время использования литографической установки 110 в камере 101. Опорный элемент 175 выполнен с возможностью поддержания подложкодержателя и помещаемой на него подложки, например, мишени 24 с поверхностью 13 на Фиг.1. Опорный элемент 175 может вызвать вариации магнитных полей в пределах камеры 102. Опорный элемент 175 может принимать вид так называемого координатного стола с коротким ходом.
Примерный вариант использования датчика 161 в способе компенсации магнитного поля в пределах камеры, содержащей аппарат литографии, содержит помещение подложкодержателя в центральное положение под отверстием 162 и измерение магнитного поля датчиком 161 магнитного поля.
Магнитное поле может быть затем скомпенсировано посредством катушек, таких как катушки 122a, 122b в пределах камеры 102, пока измеренное датчиком 161 магнитное поле не станет практически равным нулю во всех направлениях. В частности, в случае, когда используется датчик, измеряющий в трех ортогональных направлениях, желаемое магнитное поле (B-) (Bx, By, Bz), измеряемое датчиком в то время, пока происходит компенсация с использованием набора катушек 122a, 122b, имеющих общую ось в одном направлении, и аналогичных наборов катушек, имеющих общую ось, практически перпендикулярную общей оси катушек 122a, 122b, равно (0,0,0).
Тогда проходящие через катушки компенсационные токи могут поддерживаться во время последующего движения опорного элемента 175 в течение экспозиции подложки, помещенной на подложкодержателе. Хотя этот способ компенсации будет достаточен во многих приложениях, иногда может быть необходима дополнительная компенсация во время движения опорного элемента 175.
Показанная на Фиг.2a, 2b система эффективно экранирует аппарат литографии пучками заряженных частиц внутри. Однако, аппарат литографии будет все же подвергаться воздействию внешних магнитных полей в том случае, если камеры 101, 102 открыты, например, для замены обрабатываемой подложки, такой как полупроводниковые пластины. Кратковременное воздействие внешних магнитных полей приведет к тому, что в стенках камер 101, 102 будет наведено малое остаточное магнитное поле. Остаточное поле в стенках второй камеры 102 не окажет выраженного влияния на рабочие характеристики аппарата литографии, поскольку это поле обычно слабо по своей природе, а расстояние относительно велико. Однако, остаточное поле в стенках первой камеры может оказывать отрицательное влияние на рабочие характеристики аппарата литографии.
Поэтому первая камера 101 может быть снабжена размагничивающим приспособлением. На Фиг.6a схематично показан вариант реализации размагничивающей катушки 180 для использования в сочетании с кубической экранирующей камерой 101, тогда как на Фиг.6b показан вариант реализации размагничивающей катушки 180 для использования в сочетании с цилиндрической экранирующей камерой 101. Размагничивающее приспособление позволяет устранить остаточное поле в пределах экранирующей камеры 101.
Размагничивающая катушка 180 следует по пути ввода в камеру 101 через отверстие 181a, затем следует вдоль трех кантов на внутренней стороне стенок камеры, выходя из камеры 101 через отверстие 181b и, наконец, возвращаясь по подобному маршруту вдоль стенок камеры на внешней стороне камеры 101. На Фиг.6a, 6b показано размагничивающее приспособление только с одной размагничивающей катушкой 180 для большей ясности. На практике, экранирующие камеры 101 могут быть снабжены более чем одной размагничивающей катушкой 180, чтобы обеспечить устранение остаточного поля во всех стенках первой камеры 101. Например, хорошие результаты были получены с четырьмя размагничивающими катушками 180 для кубической экранирующей камеры 101.
На Фиг.7a схематично показан вид спереди экранируемой вакуумной камеры 200, содержащей дверцу 201. На Фиг.7b схематично показан вид сверху камеры 200 на Фиг.7a вдоль линии VIIb-VIIb'. Дверца 201 съемным образом прикрепляется к боковой стенке 202 вакуумной камеры 200, например, с использованием одной или более соединительных шин 205. Соединительные шины 205 могут включать в себя внутренние шины 205a и внешние шины 205b. Использование таких соединительных шин 205a, 205b обеспечивает механизм закрывания дверцы, который обеспечивает и поддерживает магнитную непрерывность. Кроме того, шины 205a, 205b легко применимы.
Предпочтительно, шины 205a, 205b являются полыми и образуют втулки или каналы. Использование полых шин снижает вес системы и может увеличить конструктивную целостность системы. Шины 205a, 205b выполнены из немагнитного материала, такого как алюминий.
На Фиг.8a, 8b показаны варианты реализации шин 205a, 205b соответственно. Шины 205a, 205b являются полыми. Шина 205a снабжена множеством дырок 210 на противоположных сторонах. Дырки 210 совмещены относительно друг друга так, что дырка 210 на одной боковой поверхности соответствует дырке 210 на противоположной боковой поверхности шины 205a. Аналогично, шина 205b снабжена множеством взаимно совмещенных дырок 211 на противоположных сторонах. Число дырок 210 в шине 205a больше, чем число дырок 211 в шине 205b.
Полая шина 205a подлежит соединению с боковой стенкой 202 на внутренней стороне дверцы 201. Соединение между боковой стенкой 202 и шиной 205a может быть осуществлено с использованием болтов 220, пропущенных через дырки 210 и затянутых с использованием гаек 230. На Фиг.9 показана такая компоновка без наличия боковой стенки 202. Большое число точек соединения позволяет осуществить соединение, которое способно быстро распределить давление по большой площади.
Шина 205b подлежит соединению с дверцей 201 на внешней стороне. Соединение между шиной 205b и дверцей 201 выполняют посредством присоединения шины 205b к шине 205a, используя большой болт 221, который проходит через две взаимно совмещенных дырки 211 в шине 205b и через соответствующие взаимно совмещенные дырки 210 в шине 205a. Соединение может быть зафиксировано с использованием подходящей гайки 231. Поскольку шина 205b имеет ограниченное число дырок, то нужно удалить или поместить лишь несколько соединительных элементов, чтобы получить возможность соответственно открывания или закрывания дверцы 201. Соединение с шиной 205a делает возможным распределение давления по большой площади дверцы так, чтобы достигалось хорошее магнитное смыкание. Между шинами 205a и 205b и дверцей 201 и боковой стенкой 202 могут быть предусмотрены один или более пружинных элементов. За счет наличия пружинных элементов давление может быть распределено более равномерно, что дополнительно улучшает магнитное смыкание.
Следует понимать, что дверца 201 и боковая стенка 202, соединяемая с шинами 205a, 205b, должны быть снабжены подходящими отверстиями для облегчения соединения, как описано выше и продемонстрировано на Фиг.9 (без наличия боковой стенки 202 и дверцы 201 для большей ясности).
Изобретение было описано в связи с некоторыми рассмотренными выше вариантами реализации. Должно быть ясно, что эти варианты реализации поддаются различным модификациям и альтернативным формам, известным специалистам в данной области техники, без отступления от существа и объема изобретения. Соответственно, хотя были описаны конкретные варианты реализации, они являются только примерами и не ограничивают объем изобретения, который определяется в сопровождающей формуле изобретения.

Claims (29)

1. Система для магнитного экранирования аппарата литографии пучками заряженных частиц, содержащая:
первую камеру, имеющую стенки, содержащие магнитный экранирующий материал, заключающую в себе, по меньшей мере частично, аппарат литографии пучками заряженных частиц;
вторую камеру, образующую часть вакуумной камеры и имеющую стенки, содержащие магнитный экранирующий материал, причем вторая камера заключает в себе первую камеру;
подвижный опорный элемент, выполненный с возможностью поддержания подложкодержателя и расположенный снаружи первой камеры и внутри второй камеры;
набор из двух катушек, расположенных во второй камере снаружи первой камеры и на противоположных сторонах от первой камеры и подвижного опорного элемента, причем эти две катушки имеют общую ось, и
по меньшей мере один датчик магнитного поля, расположенный снаружи первой камеры и внутри второй камеры, для измерения магнитного поля в пределах второй камеры,
при этом первая камера снабжена отверстием на стороне, обращенной к подвижному опорному элементу, для обеспечения возможности выходящему из аппарата литографии излучению заряженных частиц воздействовать на подложку, предусмотренную на подложкодержателе, и при этом упомянутый по меньшей мере один датчик магнитного поля расположен между упомянутыми отверстием и подвижным опорным элементом,
при этом система дополнительно содержит систему управления, предназначенную для управления токами через катушки на основании информации, предоставляемой упомянутым по меньшей мере одним датчиком магнитного поля, так, чтобы свести к нулю магнитное поле, измеряемое между упомянутыми отверстием и подвижным опорным элементом во время работы,
при этом расстояние между катушкой и ближайшей стенкой второй камеры, измеренное вдоль направления, практически параллельного общей оси, меньше, чем такое расстояние между упомянутой катушкой и ближайшей стенкой первой камеры.
2. Система по п.1, при этом вторая камера заключает в себе:
первый набор из двух катушек, расположенных на противоположных сторонах от первой камеры, причем две катушки первого набора имеют общую ось в первом направлении;
второй набор катушек, расположенных на противоположных сторонах от первой камеры, причем две катушки второго набора имеют общую ось во втором направлении, практически перпендикулярном первому направлению;
третий набор катушек, расположенных на противоположных сторонах от первой камеры, причем две катушки третьего набора имеют общую ось в третьем направлении, практически перпендикулярном первому направлению и второму направлению.
3. Система по п.1, при этом расстояние между катушкой и ближайшей стенкой первой камеры по меньшей мере вдвое больше расстояния между упомянутой катушкой и ближайшей стенкой второй камеры.
4. Система по п.1, при этом катушки расположены в непосредственной близости от стенок второй камеры.
5. Система по п.1, при этом все стенки первой камеры расположены ближе к аппарату литографии пучками заряженных частиц, чем к по меньшей мере одной стенке второй камеры.
6. Система по п.5, при этом все стенки первой камеры расположены ближе к аппарату литографии пучками заряженных частиц, чем к какой-либо стенке второй камеры.
7. Система по п.1, при этом магнитный экранирующий материал включает материал с большей относительной магнитной проницаемостью, чем 300000.
8. Система по п.7, при этом материал представляет собой мю-металл.
9. Система по п.1, при этом первая камера снабжена размагничивающим приспособлением.
10. Система по п.9, при этом размагничивающее приспособление содержит одну или более размагничивающих катушек.
11. Система по п.1, при этом вторая камера снабжена размагничивающим приспособлением.
12. Система по п.11, при этом размагничивающее приспособление содержит одну или более размагничивающих катушек.
13. Система по п.1, при этом первая камера имеет кубическую, цилиндрическую или коробчатую форму.
14. Система по п.1, дополнительно содержащая по меньшей мере один датчик магнитного поля для измерения магнитного поля в пределах первой камеры.
15. Система по п.14, дополнительно содержащая систему управления для управления токами через катушки на основании информации, предоставляемой упомянутым по меньшей мере одним датчиком магнитного поля.
16. Система по п.1, при этом установка литографии пучками заряженных частиц содержит:
источник заряженных частиц для создания одного или более пучков заряженных частиц;
подвижное устройство для поддержания мишени; и
устройство формирования рисунка для обеспечения возможности переноса упомянутых одного или более пучков на поверхность мишени в соответствии с рисунком.
17. Система по п.16, при этом первая камера заключает в себе источник заряженных частиц и устройство формирования рисунка, при этом подвижное устройство расположено вне первой камеры, и при этом первая камера снабжена упомянутым отверстием на стороне, обращенной к подвижному устройству.
18. Система по п.1, при этом по меньшей мере одна из первой камеры и второй камеры снабжена съемным образом прикрепляемой дверцей, причем эта дверца прикрепляется посредством одной или более соединительных шин.
19. Система по п.18, при этом упомянутые одна или более соединительные шины являются полыми.
20. Система по п.18, при этом упомянутые одна или более соединительные шины включают в себя по меньшей мере одну внутреннюю шину для прикрепления к дверце на внутренней стороне соответствующей камеры и по меньшей мере одну внешнюю шину для прикрепления к дверце на внешней стороне соответствующей камеры, при этом упомянутая по меньшей мере одна внутренняя шина и упомянутая по меньшей мере одна внешняя шина снабжены множеством взаимно совмещенных дырок на их противоположных сторонах, и при этом упомянутая по меньшей мере одна внутренняя шина и упомянутая по меньшей мере одна внешняя шина соединены друг с другом посредством соединения упомянутой по меньшей мере одной внешней шины с упомянутой по меньшей мере одной внутренней шиной с использованием соединительного элемента, проходящего через две взаимно совмещенные дырки во внешней шине и через соответствующие взаимно совмещенные дырки во внутренней шине.
21. Система по п.20, при этом число взаимно совмещенных дырок во внутренней шине больше, чем число взаимно совмещенных дырок во внешней шине.
22. Система по п.20, при этом соединительный элемент представляет собой болт, и соединение фиксируется с использованием гайки.
23. Система по п.18, при этом между шинами и дверцей предусмотрены один или более пружинных элементов.
24. Способ магнитного экранирования в аппарате литографии пучками заряженных частиц, содержащий:
обеспечение аппарата литографии пучками заряженных частиц, заключенного в первую камеру системы для магнитного экранирования аппарата литографии пучками заряженных частиц по п.1;
обеспечение подложки на подложкодержателе на подвижном опорном элементе, расположенном во второй камере системы;
воздействие на подложку выходящим из аппарата литографии излучением заряженных частиц через отверстие в первой камере, и
измерение магнитного поля в пределах второй камеры по меньшей мере одним датчиком магнитного поля, расположенным снаружи первой камеры и внутри второй камеры, между упомянутыми отверстием и подвижным опорным элементом.
25. Способ по п.24, при этом этап воздействия на подложку, предусмотренную на подложкодержателе, содержит помещение подложкодержателя в положение под упомянутым отверстием в первой камере.
26. Способ по п.24, при этом этап измерения магнитного поля в пределах второй камеры содержит:
регулировку компенсационных токов в катушках до тех пор, пока магнитное поле, измеренное упомянутым по меньшей мере одним датчиком магнитного поля, не станет практически равным нулю, и
поддержание компенсационных токов в катушках в течение экспозиции мишени аппаратом литографии пучками заряженных частиц.
27. Способ по п.26, при этом этап поддержания компенсационных токов в катушках в течение экспозиции мишени содержит измерение и компенсацию магнитного поля в течение последующего движения опорного элемента, поддерживающего мишень.
28. Система для магнитного экранирования аппарата литографии пучками заряженных частиц, содержащая:
первую камеру, имеющую стенки, содержащие магнитный экранирующий материал, заключающую в себе, по меньшей мере частично, аппарат литографии пучками заряженных частиц;
вторую камеру, образующую часть вакуумной камеры и имеющую стенки, содержащие магнитный экранирующий материал, причем вторая камера заключает в себе первую камеру;
подвижный опорный элемент, выполненный с возможностью поддержания подложкодержателя и расположенный снаружи первой камеры и внутри второй камеры;
при этом первая камера снабжена отверстием на стороне, обращенной к подвижному опорному элементу, для обеспечения возможности выходящему из аппарата литографии излучению заряженных частиц воздействовать на подложку, предусмотренную на подложкодержателе,
при этом первая камера имеет кубическую или коробчатую форму, и при этом первая камера снабжена размагничивающим приспособлением, содержащим по меньшей мере одну размагничивающую катушку, которая образует путь вдоль трех последовательных кантов на внутренней стороне стенок первой камеры и обратно вдоль трех последовательных кантов на внешней стороне стенок первой камеры, и
при этом расстояние между размагничивающей катушкой и ближайшей стенкой первой камеры, измеренное вдоль направления, практически перпендикулярного упомянутому пути, меньше, чем такое расстояние между упомянутой размагничивающей катушкой и ближайшей стенкой второй камеры.
29. Система по п.28, при этом вторая камера имеет кубическую или коробчатую форму, и при этом вторая камера снабжена дополнительным размагничивающим приспособлением, содержащим по меньшей мере одну дополнительную размагничивающую катушку, которая следует по другому пути вдоль трех последовательных кантов на внутренней стороне стенок второй камеры и возвращается вдоль трех последовательных кантов на внешней стороне стенок второй камеры, и
при этом расстояние между дополнительной размагничивающей катушкой и ближайшей стенкой второй камеры, измеренное вдоль направления, практически перпендикулярного упомянутому другому пути, меньше, чем такое расстояние между упомянутой дополнительной размагничивающей катушкой и ближайшей стенкой первой камеры.
RU2013142077/28A 2011-02-16 2012-02-13 Система для магнитного экранирования RU2558646C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161443475P 2011-02-16 2011-02-16
US61/443,475 2011-02-16
US201161561288P 2011-11-18 2011-11-18
US61/561,288 2011-11-18
PCT/EP2012/052431 WO2012110465A2 (en) 2011-02-16 2012-02-13 System for magnetic shielding

Publications (2)

Publication Number Publication Date
RU2013142077A RU2013142077A (ru) 2015-03-27
RU2558646C2 true RU2558646C2 (ru) 2015-08-10

Family

ID=45768189

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013142077/28A RU2558646C2 (ru) 2011-02-16 2012-02-13 Система для магнитного экранирования

Country Status (8)

Country Link
US (1) US8884253B2 (ru)
EP (1) EP2676168B1 (ru)
JP (1) JP5902201B2 (ru)
KR (1) KR101586202B1 (ru)
CN (1) CN103477285A (ru)
RU (1) RU2558646C2 (ru)
TW (1) TW201246261A (ru)
WO (1) WO2012110465A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU221966U1 (ru) * 2023-04-18 2023-12-01 Общество с ограниченной ответственностью "АкваГелиос" Устройство для обеспечения заданного уровня модуля вектора индукции гипогеомагнитного поля в экранирующей цилиндрической камере

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8604411B2 (en) * 2010-11-13 2013-12-10 Mapper Lithography Ip B.V. Charged particle beam modulator
JP2014209521A (ja) * 2013-04-16 2014-11-06 キヤノン株式会社 ステージ装置、描画装置および物品の製造方法
JP2015033162A (ja) * 2013-07-31 2015-02-16 キヤノン株式会社 駆動装置、荷電粒子線照射装置、リソグラフィ装置
TWI674620B (zh) * 2013-12-13 2019-10-11 日商荏原製作所股份有限公司 真空磁性遮蔽容器的構造
CN104298299B (zh) * 2014-09-29 2015-10-07 江汉大学 磁场精密补偿、调节系统及其构建方法
US9952255B2 (en) 2015-10-30 2018-04-24 Texas Instruments Incorporated Magnetically shielded probe card
CN106937475A (zh) * 2015-12-31 2017-07-07 中微半导体设备(上海)有限公司 等离子体处理装置
TWI670502B (zh) * 2018-10-25 2019-09-01 廣達電腦股份有限公司 訊號測試系統及其電波暗室
CN110970191B (zh) * 2019-12-25 2021-09-07 哈尔滨工业大学 一种多层屏蔽装置的退磁方法
CN110993252B (zh) 2019-12-25 2020-10-30 哈尔滨工业大学 分布式退磁线圈系统、屏蔽装置及退磁方法
CN110958830B (zh) * 2019-12-27 2021-09-24 中国船舶重工集团有限公司第七一0研究所 一种复合式环境干扰磁场屏蔽系统
CN111554470B (zh) * 2020-05-15 2022-10-21 北京北方华创微电子装备有限公司 消磁装置及半导体加工设备
JP2023533500A (ja) * 2020-07-09 2023-08-03 ラム リサーチ コーポレーション 調節可能な形状トリムコイル
CN116171651A (zh) * 2020-09-18 2023-05-26 朗姆研究公司 使用磁场的等离子体放电均匀性控制
CN114823045B (zh) * 2022-04-28 2024-01-05 北京航空航天大学宁波创新研究院 一种磁屏蔽室消磁线圈系统及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU856037A1 (ru) * 1979-11-06 1981-08-15 Минское Производственное Объединение "Горизонт" Система магнитного экранировани масочного кинескопа
US4963789A (en) * 1989-05-01 1990-10-16 Conrac Scd, Inc. Method and apparatus for dynamic magnetic field neutralization
US4973849A (en) * 1988-09-20 1990-11-27 Hitachi, Ltd. Electron beam lithography apparatus having external magnetic field correcting device

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235124A (en) * 1963-09-30 1966-02-15 Paul H Kuever Multiple point, quick operating fastener means
US4779707A (en) * 1986-07-29 1988-10-25 Montgomery Elevator Company Modular elevator cab construction
US4948922A (en) * 1988-09-15 1990-08-14 The Pennsylvania State University Electromagnetic shielding and absorptive materials
US5073744A (en) * 1989-05-01 1991-12-17 Interstate Electronics Corp. Method and apparatus for dynamic magnetic field neutralization
US5032792A (en) 1990-04-05 1991-07-16 United States Of America Electromagnetic coil array having three orthogonally related coil pairs for use as Helmholtz and Degaussing coils
US5225999A (en) * 1990-07-06 1993-07-06 The Trustees Of The University Of Pennsylvania Magnetic environment stabilization for effective operation of magnetically sensitive instruments
JPH04370638A (ja) * 1991-06-18 1992-12-24 Jeol Ltd 外部磁界の消去装置
US5355650A (en) * 1993-04-28 1994-10-18 Agar Robert S Batten mounting system
US5367221A (en) * 1993-05-28 1994-11-22 Barco N. V. Magnetic immunity system (MIS) and monitor incorporating the MIS
US5473221A (en) * 1994-11-18 1995-12-05 Hughes Aircraft Company Bucking field system and method for mitigating the effects of an external magnetic field on a cathode ray tube display
US5938302A (en) * 1995-09-22 1999-08-17 Amco Engineering Co. Multiple enclosures and method
US5639150A (en) * 1995-09-22 1997-06-17 Amco Engineering Co. Electronic component enclosure and method
US5749178A (en) * 1996-08-06 1998-05-12 Garmong; Victor H. Shielded enclosure
DE19718649A1 (de) 1997-05-02 1998-11-05 Peter Heiland Vorrichtung und Verfahren zur aktiven Kompensation magnetischer und elektromagnetischer Störfelder
TW530189B (en) * 1998-07-01 2003-05-01 Asml Netherlands Bv Lithographic projection apparatus for imaging of a mask pattern and method of manufacturing a device using a lithographic projection apparatus
US6115885A (en) * 1998-07-27 2000-09-12 Hewlett-Packard Company Twisted hinge
US6437347B1 (en) * 1999-04-13 2002-08-20 International Business Machines Corporation Target locking system for electron beam lithography
US20050145662A1 (en) * 1999-06-18 2005-07-07 Let's Go Aero, Inc. Equipment and cargo carrier systems
US6269008B1 (en) * 1999-11-22 2001-07-31 Lucent Technologies Inc. Multi-walled electromagnetic interference shield
JP2001284239A (ja) * 2000-04-03 2001-10-12 Nikon Corp 荷電粒子線露光装置、及び半導体デバイスの製造方法
US6415558B1 (en) * 2000-07-06 2002-07-09 Autoquip Corporation Tornado shelter
JP2002033262A (ja) 2000-07-18 2002-01-31 Nikon Corp 荷電粒子線露光装置の磁気シールド方法
JP2002170764A (ja) * 2000-12-04 2002-06-14 Nikon Corp 荷電粒子線露光装置、荷電粒子線露光装置の調整方法及び半導体デバイスの製造方法
JP2002217091A (ja) * 2001-01-19 2002-08-02 Nikon Corp 荷電粒子線露光装置
US20020153495A1 (en) * 2001-04-21 2002-10-24 Nikon Corporation. Magnetically shielded enclosures for housing charged-particle-beam systems
JP2002324997A (ja) * 2001-04-26 2002-11-08 Nikon Corp 磁気シールドルーム
JP2003068603A (ja) * 2001-08-23 2003-03-07 Nikon Corp 荷電粒子線露光装置
JP2004079603A (ja) * 2002-08-12 2004-03-11 Nikon Corp 磁気シールド解析手法、磁気シールド解析プログラム及び荷電粒子線露光装置の設計手法
US6880564B2 (en) * 2002-09-20 2005-04-19 Advanced Neuromodulation Systems, Inc. Dosage control apparatus
US7038450B2 (en) * 2002-10-16 2006-05-02 Trustees Of Princeton University High sensitivity atomic magnetometer and methods for using same
EP2302459A3 (en) 2002-10-25 2011-04-06 Mapper Lithography Ip B.V. Lithography system
CN101414127A (zh) 2002-10-30 2009-04-22 迈普尔平版印刷Ip有限公司 电子束曝光系统
US7129502B2 (en) 2003-03-10 2006-10-31 Mapper Lithography Ip B.V. Apparatus for generating a plurality of beamlets
US20070010702A1 (en) * 2003-04-08 2007-01-11 Xingwu Wang Medical device with low magnetic susceptibility
WO2004094739A2 (en) * 2003-04-17 2004-11-04 Frank Mcdonald Modular building panels, method of assembly of building panels and method of making building panels
ATE524822T1 (de) 2003-05-28 2011-09-15 Mapper Lithography Ip Bv Belichtungsverfahren für strahlen aus geladenen teilchen
JP2006209980A (ja) * 2005-01-25 2006-08-10 Tokyo Seimitsu Co Ltd 電子線露光装置
JP2006287015A (ja) * 2005-04-01 2006-10-19 Canon Inc 荷電粒子線露光装置
US20090265972A1 (en) * 2006-03-15 2009-10-29 Cherng Chang Sheet holders
US7521687B2 (en) * 2006-03-30 2009-04-21 Tokyo Electron Limited Static electricity deflecting device, electron beam irradiating apparatus, substrate processing apparatus, substrate processing method and method of manufacturing substrate
DE102008035297B4 (de) * 2007-07-31 2017-08-17 Hitachi High-Technologies Corporation Aberrationskorrektureinrichtung für Ladungsteilchenstrahlen in einem optischen System einer Ladungsteilchenstrahlvorrichtung und Ladungsteilchenstrahlvorrichtung mit der Aberrationskorrektureinrichtung
WO2009055930A1 (en) * 2007-10-31 2009-05-07 D-Wave Systems Inc. Systems, methods, and apparatus for combined superconducting magnetic shielding and radiation shielding
US8355765B2 (en) * 2008-01-31 2013-01-15 D-Wave Systems Inc. Magnetic vacuum systems and devices for use with superconducting-based computing systems
JP2010027993A (ja) * 2008-07-24 2010-02-04 Ricoh Co Ltd 電子線描画装置
EP2399270B1 (en) 2009-02-22 2013-06-12 Mapper Lithography IP B.V. Charged particle lithography apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU856037A1 (ru) * 1979-11-06 1981-08-15 Минское Производственное Объединение "Горизонт" Система магнитного экранировани масочного кинескопа
US4973849A (en) * 1988-09-20 1990-11-27 Hitachi, Ltd. Electron beam lithography apparatus having external magnetic field correcting device
US4963789A (en) * 1989-05-01 1990-10-16 Conrac Scd, Inc. Method and apparatus for dynamic magnetic field neutralization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU221966U1 (ru) * 2023-04-18 2023-12-01 Общество с ограниченной ответственностью "АкваГелиос" Устройство для обеспечения заданного уровня модуля вектора индукции гипогеомагнитного поля в экранирующей цилиндрической камере

Also Published As

Publication number Publication date
JP2014511567A (ja) 2014-05-15
US20130043414A1 (en) 2013-02-21
EP2676168A2 (en) 2013-12-25
WO2012110465A3 (en) 2012-11-01
US8884253B2 (en) 2014-11-11
RU2013142077A (ru) 2015-03-27
WO2012110465A4 (en) 2012-12-27
EP2676168B1 (en) 2018-09-12
WO2012110465A2 (en) 2012-08-23
KR101586202B1 (ko) 2016-01-18
CN103477285A (zh) 2013-12-25
JP5902201B2 (ja) 2016-04-13
KR20140012097A (ko) 2014-01-29
TW201246261A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
RU2558646C2 (ru) Система для магнитного экранирования
JP6208653B2 (ja) 粒子光学装置、粒子光学部品、検査システム、検査方法、および、リソグラフィシステム
JP5068180B2 (ja) 静電ゾーンプレートを備える荷電粒子曝露
KR101900050B1 (ko) 멀티 하전 입자빔 장치
TWI732305B (zh) 帶電粒子射束設備、場曲校正器、及操作帶電粒子射束設備的方法
TWI539482B (zh) 粒子光學系統及裝置與此系統及裝置用的粒子光學元件
JP5097512B2 (ja) 荷電粒子ビーム用軌道補正器、及び荷電粒子ビーム装置
JP2013508992A (ja) 調整装置、および荷電粒子マルチ・ビームレット・リソグラフィ・システム
KR20150138098A (ko) 입자 빔 시스템
KR20120098627A (ko) 다중 빔을 갖는 대전 입자 광학 시스템
JP2014513432A (ja) 一つ以上の荷電粒子ビームのマニピュレーションのためのマニピュレーターデバイスを備えている荷電粒子システム
JP2007500948A (ja) 荷電粒子ビームレット露光システム
JP2015056668A (ja) 補正プレートを有する荷電粒子多重ビーム装置
JP5318406B2 (ja) 改良ウィーン型フィルタを有する粒子ビーム装置
US7560713B2 (en) Correction lens system for a particle beam projection device
US20080210887A1 (en) Charged Particle System
TWI751477B (zh) 多帶電粒子束描繪裝置及多帶電粒子束描繪方法
WO2018167924A1 (ja) 荷電粒子ビーム光学系、露光装置、露光方法、及び、デバイス製造方法
KR102631001B1 (ko) 샘플 검사에서 이미지 콘트라스트 향상
JPS6142132A (ja) 荷電ビ−ム露光装置
JP2023166336A (ja) シャント装置を有する調節可能永久磁石レンズ
JP2000049079A (ja) 荷電粒子線露光装置
GB2369241A (en) Charged particle beam exposure device with aberration correction
JPH01241123A (ja) 光電子転写装置