RU2543502C1 - Устройство преобразования мощности - Google Patents

Устройство преобразования мощности Download PDF

Info

Publication number
RU2543502C1
RU2543502C1 RU2013138457/07A RU2013138457A RU2543502C1 RU 2543502 C1 RU2543502 C1 RU 2543502C1 RU 2013138457/07 A RU2013138457/07 A RU 2013138457/07A RU 2013138457 A RU2013138457 A RU 2013138457A RU 2543502 C1 RU2543502 C1 RU 2543502C1
Authority
RU
Russia
Prior art keywords
controller
motor
ripple
currents
current
Prior art date
Application number
RU2013138457/07A
Other languages
English (en)
Other versions
RU2013138457A (ru
Inventor
Моримицу СЕКИМОТО
Томоиса ТАНИГУТИ
Хироси ХИБИНО
Тосиюки МАЕДА
Original Assignee
Дайкин Индастриз, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дайкин Индастриз, Лтд. filed Critical Дайкин Индастриз, Лтд.
Publication of RU2013138457A publication Critical patent/RU2013138457A/ru
Application granted granted Critical
Publication of RU2543502C1 publication Critical patent/RU2543502C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано в преобразователях мощности. Технический результат - повышение коэффициента мощности и коэффициента полезного действия. Звено (3) DC содержит конденсатор (3а), подключенный параллельно выходу схемы (2) преобразователя, и выдает пульсирующее напряжение (vdc) звена DC. Схема (4) инвертора преобразует выход звена (3) DC в АС путем коммутации и подает АС в подключенный к ней двигатель (7). Контроллер (5) управляет коммутацией схемы (4) инвертора таким образом, что токи (iu, iv и iw) двигателя пульсируют синхронно с пульсацией напряжения (vin) питания. Контроллер (5) управляет коммутацией схемы (4) инвертора в соответствии с нагрузкой двигателя (7) или рабочим состоянием двигателя (7) и снижает амплитуду пульсации токов (iu, iv и iw) двигателя. 5 з.п. ф-лы, 5 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к устройству преобразования мощности, преобразующему входную мощность в заданную мощность путем коммутации.
УРОВЕНЬ ТЕХНИКИ
В некоторых устройствах преобразования мощности, включающих в себя схему преобразователя и схему инвертора, в звене постоянного тока (DC) имеется конденсатор с относительно небольшой емкостью для создания пульсации (колебания) в напряжении звена DC и обеспечивается пульсация тока нагрузки синхронно с напряжением звена DC, благодаря чему увеличивается ширина проводимости входного тока для повышения коэффициента мощности (См., например, ПАТЕНТНЫЕ ДОКУМЕНТЫ 1 и 2 и НЕПАТЕНТНЫЙ ДОКУМЕНТ 1).
СПИСОК БИБЛИОГРАФИЧЕСКИХ ССЫЛОК
ПАТЕНТНЫЕ ДОКУМЕНТЫ
ПАТЕНТНЫЙ ДОКУМЕНТ 1: Публикация патента Японии № 2002-51589.
ПАТЕНТНЫЙ ДОКУМЕНТ 2: Публикация патента Японии № 2005-130666.
НЕПАТЕНТНЫЙ ДОКУМЕНТ
НЕПАТЕНТНЫЙ ДОКУМЕНТ 1: Haga, Saito и Takahashi, CONTROL OF HIGH-POWER FACTOR ELECTROLYTIC CAPACITORLESS INVERTER OF SINGLE- PHASE DIODE RECTIFIER CIRCUIT (Хага, Саито и Такахаши, УПРАВЛЕНИЕ ЭЛЕКТРОЛИТИЧЕСКИМ БЕЗЪЕМКОСТНЫМ ИНВЕРТОРОМ С БОЛЬШИМ КОЭФФИЦИЕНТОМ МОЩНОСТИ ОДНОФАЗНОЙ ДИОДНОЙ СХЕМЫ ВЫПРЯМИТЕЛЯ), Институт инженеров Японии по электротехнике, доклады на общем собрании Н15-4-069 (Н15, март), стр. 99.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
ТЕХНИЧЕСКАЯ ЗАДАЧА
Однако в вышеописанных примерах для создания большой пульсации тока ток двигателя, подключенного к нагрузке, снижается приблизительно до нуля. Таким образом, в приведенных примерах действующее значение тока двигателя может увеличиться со снижением коэффициента полезного действия двигателя.
Настоящее изобретение было сделано с учетом этой проблемы. Задачей настоящего изобретения является повышение коэффициента мощности и коэффициента полезного действия двигателя, подключенного в качестве нагрузки в устройстве преобразования мощности.
РЕШЕНИЕ ЗАДАЧИ
Для решения задачи в соответствии с первым аспектом изобретения устройство преобразования мощности включает в себя схему (2) преобразователя, выполненную с возможностью осуществления двухполупериодного выпрямления напряжения (vin) питания источника (6) питания переменного тока (АС); звено (3) DC, включающее в себя конденсатор (3а), подключенный параллельно выходу схемы (2) преобразователя, и выполненное с возможностью вывода пульсирующего напряжения (vdc) DC; схему (4) инвертора, выполненную с возможностью преобразования выхода звена (3) DC в АС путем коммутации и подачи АС в подключенный к ней двигатель (7); и контроллер (5), выполненный с возможностью управления коммутацией таким образом, что токи (iu, iv и iw) двигателя (7) пульсируют синхронно с пульсацией напряжения (vin) питания. Контроллер (5) управляет коммутацией в соответствии с нагрузкой двигателя (7) или рабочим состоянием двигателя (7) и снижает амплитуду пульсации токов (iu, iv и iw).
В данной конфигурации емкость конденсатора (3а) устанавливается такой, чтобы напряжение (vdc) звена DC пульсировало более интенсивно, тем самым увеличивая ширину электропроводности в схеме (2) преобразователя и повышая коэффициент мощности. Кроме того, управление коммутацией в схеме (4) инвертора осуществляется таким образом, что токи (iu, iv и iw) двигателя (7) пульсируют синхронно с пульсацией напряжения (vin) питания. Таким образом, гармоника входного тока (iin), подаваемого с источника (6) питания АС в устройство (1) преобразования мощности, уменьшается. Поскольку амплитуда пульсации токов (iu, iv и iw) уменьшается в соответствии с нагрузкой двигателя (7), подключенного к схеме (4) инвертора, или рабочим состоянием двигателя (7), действующие значения токов (iu, iv и iw), протекающих в двигатель (7), снижаются.
В соответствии со вторым аспектом изобретения, в устройстве преобразования мощности первого аспекта контроллер (5) уменьшает амплитуду пульсации в соответствии, по меньшей мере, с одним из токов (iu, iv и iw), электрической мощности, скорости (ωm) или крутящего момента двигателя (7).
При использовании одного из токов (iu, iv и iw), электрической мощности, скорости (ωm) или крутящего момента двигателя (7) обнаруживается величина нагрузки схемы (4) инвертора, которой является двигатель (7). В данной конфигурации управление амплитудой пульсации токов (iu, iv и iw) осуществляется с использованием любого из этих обнаруженных значений или совокупности обнаруженных значений. Традиционно устройства преобразования мощности включают в себя механизм для обнаружения фазового угла (θin) входного АС, токов (iu, iv и iw), скорости (ωm) и крутящего момента двигателя (7). Поэтому эти значения легко обнаруживаются.
В соответствии с третьим аспектом изобретения, в устройстве преобразования мощности первого или второго аспекта контроллер (5) управляет коммутацией таким образом, что напряжение (vdc) DC выше нуля, и снижает амплитуду пульсации.
В данной конфигурации контроллер (5) управляет коммутацией таким образом, что напряжение (vdc) звена DC выше нуля. Таким образом, в качестве средства обнаружения тока двигателя (7) используется так называемая «система второго контура», при этом состояние коммутации схемы (4) инвертора надежно обнаруживается.
В соответствии с четвертым аспектом изобретения, в устройстве преобразования мощности первого аспекта контроллер (5) снижает амплитуду пульсации при запуске двигателя (7).
В данной конфигурации ввиду того, что при запуске двигателя (7) амплитуда пульсации снижается, крутящим моментом двигателя (7) при запуске управляют так, чтобы он был постоянным.
В соответствии с пятым аспектом изобретения, в устройстве преобразования мощности первого аспекта контроллер (5) постепенно снижает амплитуду пульсации после запуска двигателя (7).
В данной конфигурации после запуска двигателя (7) пульсация токов (iu, iv и iw) двигателя уменьшает гармонику входного тока (iin), подаваемого с источника (6) питания АС в устройство (1) преобразования мощности.
В соответствии с шестым аспектом изобретения, в устройстве преобразования мощности в соответствии с аспектами с первого по пятый контроллер (5) включает в себя контроллер (56) тока, выполняющий, по меньшей мере, одно из пропорционального управления, интегрального управления или дифференциального управления для снижения отклонения опорных значений (id* и iq*) токов (iu, iv и iw) от фактических значений токов (id и iq), и изменяет коэффициент усиления контура управления при снижении амплитуды пульсации.
В данной конфигурации управление амплитудой пульсации токов (iu, iv и iw) двигателя (7) осуществляется с помощью, по меньшей мере, одного из пропорционального управления, интегрального управления или дифференциального управления.
ПРЕИМУЩЕСТВА ИЗОБРЕТЕНИЯ
В соответствии с первым аспектом изобретения в тех случаях, когда нагрузка подключенного двигателя (7) меньше предварительно определенного значения, действующие значения токов, протекающих через двигатель (7), уменьшаются, благодаря чему повышается коэффициент полезного действия двигателя (7). То есть, настоящее изобретение повышает как коэффициент мощности, так и коэффициент полезного действия двигателя (7).
В соответствии со вторым аспектом изобретения ввиду того, что нагрузка, подключенная к схеме (4) инвертора, легко обнаруживается, легко осуществляется управление амплитудой пульсации.
В соответствии с третьим аспектом изобретения, в тех случаях, когда в качестве средства обнаружения тока двигателя (7) используется так называемая «система второго контура», состояние коммутации схемы (4) инвертора надежно обнаруживается, благодаря чему осуществляется надежное управление значениями тока двигателя (7).
В соответствии с четвертым аспектом изобретения при запуске крутящим моментом двигателя (7) управляют так, чтобы он был постоянным, благодаря чему осуществляется стабильное управление двигателем (7). Кроме того, снижается падение коэффициента полезного действия при запуске.
В соответствии с пятым аспектом изобретения уменьшается гармоника входного тока (iin), подаваемого с источника (6) питания АС в устройство (1) преобразования мощности, благодаря чему после запуска двигателя (7) повышается коэффициент мощности.
В соответствии с шестым аспектом изобретения контроллер (56) тока, который, как правило, входит в схему (4) инвертора, управляет амплитудой пульсации токов (iu, iv и iw) двигателя, благодаря чему легко осуществляется управление амплитудой пульсации.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 представляет собой блок-схему, иллюстрирующую конфигурацию устройства преобразования мощности в соответствии с первым вариантом осуществления настоящего изобретения.
Фиг. 2 иллюстрирует формы сигнала напряжения звена DC и опорное значение управляющего тока, где k=1 в приведенном ниже уравнении (1).
Фиг. 3 иллюстрирует формы сигнала напряжения звена DC и опорное значение управляющего тока, где k меньше 1 в приведенном ниже уравнении (1).
Фиг. 4 представляет собой временную диаграмму, иллюстрирующую соотношение между величиной колебания и нагрузкой.
Фиг. 5 представляет собой временную диаграмму, иллюстрирующую соотношение между величиной колебания и коэффициентом усиления контура управления в контроллере тока оси dq при запуске двигателя.
ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Ниже со ссылками на чертежи подробно описываются варианты осуществления настоящего изобретения. Необходимо отметить, что описываемые ниже варианты осуществления излагаются лишь с целью представления предпочтительных по характеру примеров и не предполагают ограничения объема, применений и использования изобретения.
Первый вариант осуществления настоящего изобретения
Конфигурация
Фиг. 1 представляет собой блок-схему, иллюстрирующую конфигурацию устройства (1) преобразования мощности в соответствии с первым вариантом осуществления настоящего изобретения. Как показано на чертеже, устройство (1) преобразования мощности включает в себя схему (2) преобразователя, звено (3) DC, схему (4) инвертора и контроллер (5). Устройство (1) преобразования мощности преобразует мощность АС, поступающую с однофазного источника (6) питания АС, в мощность, имеющую предварительно определенную частоту, а затем подает мощность в двигатель (7). Двигатель (7) в соответствии с данным вариантом осуществления представляет собой трехфазный двигатель АС для приведения в действие компрессора, предусмотренного в схеме циркуляции хладагента в установке кондиционирования воздуха.
<Схема (2) преобразователя>
Схема (2) преобразователя соединена с источником (6) питания АС и выполняет двухполупериодное выпрямление выхода АС с источника (6) питания АС в DC. В данном примере схема (2) преобразователя представляет собой схему диодного моста, в которой множество (четыре в данном варианте осуществления) диодов (D1-D4) соединены друг с другом в конфигурации моста. Диоды (D1-D4) выполняют двухполупериодное выпрямление напряжения АС источника (6) питания АС в напряжение DC.
<Звено (3) DC>
Звено (3) DC содержит конденсатор (3а). Конденсатор (3а) подключен параллельно выходу схемы (2) преобразователя. Напряжение DC (т.е. напряжение (vdc) звена DC), создаваемое на обоих концах конденсатора (3а), подается на входные узлы схемы (4) инвертора. Конденсатор (3а) представляет собой, например, пленочный конденсатор. Конденсатор (3а) имеет электростатическую емкость, сглаживающую лишь напряжение пульсаций (т.е. колебание напряжения), создаваемое в соответствии с частотой коммутации, когда коммутирующие устройства схемы (4) инвертора, которая описывается ниже, выполняют коммутацию. То есть, конденсатор (3а) представляет собой конденсатор с малой емкостью, который не имеет электростатической емкости, сглаживающей напряжение, выпрямляемое схемой (2) преобразователя (т.е. колебание напряжения, вызываемое напряжением питания). Следовательно, напряжение (vdc) звена DC, выдаваемое со звена (3) DC, имеет столь большую пульсацию, что его максимальное значение в два или более раз превышает минимальное значение.
<Схема (4) инвертора>
Входные узлы схемы (4) инвертора соединены параллельно с конденсатором (3а) звена (3) DC. Схема (4) инвертора преобразует выход звена (3) DC в трехфазный АС путем коммутации и подает АС на соединенный с ней двигатель (7). В схеме (4) инвертора в соответствии с данным вариантом осуществления множество коммутирующих устройств соединено друг с другом в конфигурации моста. Данная схема (4) инвертора выдает трехфазный АС в двигатель (7) и, следовательно, имеет шесть коммутирующих устройств (Su, Sv, Sw, Sx, Sy и Sz). В частности, схема (4) инвертора содержит три коммутирующих ветви, в каждой из которых два коммутирующих устройства последовательно соединены друг с другом. Каждая из коммутирующих ветвей соединена с фазной обмоткой (не показана) двигателя (7) в средней точке между коммутирующим устройством (Su, Sv или Sw) верхнего плеча и коммутирующим устройством (Sx, Sy или Sz) нижнего плеча. Каждый из обратных диодов (Du, Dv, Dw, Dx, Dy и Dz) соединен встречно-параллельно с соответствующим одним из коммутирующих устройств (Su, Sv, Sw, Sx, Sy и Sz). Схема (4) инвертора выполняет операцию включения/выключения коммутирующих устройств (Su, Sv, Sw, Sx, Sy и Sz) для преобразования напряжения (vdc) звена DC, выдаваемого со звена (3) DC, в трехфазное напряжение АС путем коммутации, а затем подает напряжение на двигатель (7). Контроллер (5) управляет операцией включения/выключения.
<Контроллер (5)>
Контроллер (5) управляет коммутацией (операцией включения/выключения) в схеме (4) инвертора таким образом, что токи (т.е. токи (iu, iv и iw) двигателя), протекающие в двигателе (7), пульсируют синхронно с пульсацией напряжения (vin) питания. В данном примере контроллер (5) содержит контроллер (50) скорости, генератор (51) опорного тока, умножитель (52), генератор (54) опорного значения тока dq, преобразователь (55) координат, контроллер (56) тока оси dq и контроллер (57) широтно-импульсной модуляции (ШИМ).
Контроллер (50) скорости
Контроллер (50) скорости содержит вычитатель (50а) и пропорционально-интегральный (ПИ) оператор (50b). Контроллер (50) скорости вычисляет разность между угловой скоростью (ωm) вращения механического угла двигателя (7) и опорным значением (ωm*) механического угла с помощью вычитателя (50а) и выполняет пропорционально-интегральную операцию (ПИ операцию) c помощью ПИ оператора (50b) для выдачи первого опорного значения тока (im*) в умножитель (52).
Генератор (51) опорного тока
Генератор (51) опорного тока принимает синусное значение (sin(θin)) фазового угла (θin) напряжения (vin) питания, получает коэффициент модуляции (т.е. колебание), выражаемый нижеследующим уравнением (1), на основе начального значения и выдает коэффициент модуляции (т.е. колебание) в умножитель (52)
колебание=k|sinθin|+(1-k) (1)
В уравнении (1) k является действительным числом, равным 0<k≤1. Как будет подробно описываться ниже, генератор (51) опорного тока изменяет значение k (далее именуемое также «величиной колебания») в соответствии с величиной нагрузки, которой является двигатель (7). В данном примере генератор (51) опорного тока устанавливает постоянное значение k в тех случаях, когда нагрузка больше или равна предварительно определенному значению, и уменьшает значение k, когда нагрузка меньше предварительно определенного значения. При уменьшении значения k генератор (51) опорного тока проверяет напряжение (vdc) звена DC и постоянно изменяет установленное значение k, как будет подробно описываться ниже. То есть, при уменьшении значения k генератор (51) опорного тока управляет амплитудой пульсации токов (iu, iv и iw) в соответствии с нагрузкой. Величина нагрузки известна, по меньшей мере, по одному из обнаруженных значений скорости (ωm), крутящего момента, токов (iu, iv и iw) двигателя и электрической мощности двигателя (7), либо по совокупности обнаруженных значений.
Умножитель (52)
Умножитель (52) умножает первое опорное значение тока (im*), выдаваемое с контроллера (50) скорости, на коэффициент модуляции (т.е. колебание), выдаваемый с генератора (51) опорного тока, и выдает опорное значение управляющего тока (idq*) в генератор (54) опорного значения тока dq. Опорное значение управляющего тока (idq*) выражается с помощью нижеследующего уравнения (2)
idq*=im*×пульсация (2)
Генератор (54) опорного значения тока dq
Генератор (54) опорного значения тока dq получает опорное значение тока (id*) оси d и опорное значение тока (iq*) оси q по опорному значению управляющего тока (idq*) и опорному значению фазы (β*) тока, которая описывается ниже, на основе нижеследующего уравнения (3) и выдает полученные значения в контроллер (56) тока оси dq. В частности, генератор (54) опорного значения тока dq умножает опорное значение управляющего тока (idq*) на отрицательное синусное значение (-sinβ*) и косинусное значение (-cosβ*) предварительно определенного значения (β*) для генерирования опорного значения тока (id*) оси d и опорного значения тока (iq*) оси q соответственно. Значение β* является опорным значением тока, протекающего через двигатель (7) в фазе β
[ i d * i q * ] = i d q * [ sin β * cos β * ]
Figure 00000001
(3)
Преобразователь (55) координат
Преобразователь (55) координат получает ток (id) оси d и ток (iq) оси q по углу вращения (электрическому углу (θe)) ротора (не показан) двигателя (7) и токам (iu, iv и iw) двигателя. В частности, преобразователь (55) координат получает ток (id) оси d и ток (iq) оси q на основе нижеследующего уравнения (4)
[ i d i q ] = 2 3 [ cos θ e cos ( θ e 2 π / 3 ) cos ( θ e + 2 π / 3 ) sin θ e sin ( θ e 2 π / 3 ) sin ( θ e + 2 π / 3 ) ] [ i u i v i w ]
Figure 00000002
(4)
Контроллер (56) тока оси dq
Контроллер (56) тока оси dq является примером контроллера тока настоящего изобретения. Контроллер (56) тока оси dq управляет схемой (4) инвертора с помощью контроллера (57) ШИМ для уменьшения отклонения опорных значений (id* и iq*) токов (iu, iv и iw) двигателя от фактических значений тока. В данном варианте осуществления контроллер (56) тока оси dq содержит три контроллера: пропорциональный контроллер, интегральный контроллер и дифференциальный контроллер. То есть, контроллер (56) тока оси dq выполняет пропорционально-интегрально-дифференциальную (ПИД) операцию. В частности, контроллер (56) тока оси dq принимает угловую скорость (ωm) электрического угла, которая является скоростью вращения двигателя (7), ток (id) оси d и ток (iq) оси q, опорное значение тока (id*) оси d и опорное значение тока (iq*) оси q. Затем контроллер (56) тока оси dq выдает опорное значение напряжения (vd*) оси d и опорное значение напряжения (vq*) оси q в контроллер (57) ШИМ на основе нижеследующего уравнения (5). В уравнении (5) Ld и Lq представляют собой индуктивность двигателя по оси d и оси q, а φа представляет собой постоянную противоэлектродвижущей силы (противо-ЭДС) двигателя. Ra представляет собой сопротивление обмотки двигателя. Условное обозначение s представляет собой дифференциальный оператор. KPd, KId и KDd представляют собой пропорциональный коэффициент усиления контура управления, интегральный коэффициент усиления контура управления и дифференциальный коэффициент усиления контура управления соответственно. В уравнении (5) первый и второй члены с правой стороны основаны на традиционной модели двигателя, а третий член основан на ПИД операции
[ v d * v q * ] = [ R a + s L d ω a L q ω a L d R a + s L q ] [ i d i q ] + [ 0 ω a ϕ a ] + [ ( K P d + 1 s K I d + s K D d ) ( i d * i d ) ( K P q + 1 s K I q + s K D q ) ( i q * i q ) ]
Figure 00000003
(5)
Контроллер (57) ШИМ
Контроллер (57) ШИМ принимает опорное значение напряжения (vd*) оси d, опорное значение напряжения (vq*) оси q, напряжение (vdc) звена DC и электрический угол (θe) и генерирует сигналы опорных значений (Tu, Tv и Tw) для управления операцией включения/выключения коммутирующих устройств (Su, Sv, Sw, Sx, Sy и Sz) на основе этих значений. В частности, сначала контроллер (57) ШИМ получает опорные значения (vu*, vv* и vw*) фазового угла на основе нижеследующего уравнения (6)
[ v u * v v * v w * ] = 2 3 [ cos θ e sin θ e cos ( θ e 2 π / 3 ) sin ( θ e 2 π / 3 ) cos ( θ e + 2 π / 3 ) sin ( θ e + 2 π / 3 ) ] [ v d * v q * ]
Figure 00000004
(6)
Затем контроллер (57) ШИМ получает время τj включенного состояния коммутирующих устройств (Su, Sv или Sw) верхнего плеча в фазах по опорным значениям (vu*, vv* и vw*) фазового угла и напряжению (vdc) звена DC на основе нижеследующего уравнения (7). В уравнении (7) Тс представляет собой период несущей. В уравнении (7) j=u, v, w. Например, τu представляет собой время, когда коммутирующее устройство (Su) верхнего плеча включено в фазе U.
Контроллер (57) ШИМ устанавливает время τj включенного состояния, равным периоду (Тс) несущей в тех случаях, когда результат вычисления уравнения (7) больше периода (Тс) несущей, и равным 0 в тех случаях, когда результат вычисления меньше 0
τ j = v j * + 0 , 5 v d c v d c T c
Figure 00000005
(7)
После этого контроллер (57) ШИМ выдает в схему (4) инвертора сигналы опорных значений (Tu, Tv и Tw) для выполнения операции включения/выключения коммутирующих устройств (Su, Sv, Sw, Sx, Sy и Sz) в фазах в соответствии со временем τj включенного состояния в каждом периоде (Тс) несущей.
<Действие устройства (1) преобразования мощности>
В данном варианте осуществления ввиду того, что звено DC содержит конденсатор (3а) с малой емкостью, напряжение (vdc) звена DC главным образом пульсирует. Пульсация напряжения (vdc) звена DC увеличивает ширину электропроводности диодов (D1-D4) схемы (2) преобразователя, посредством этого повышая коэффициент мощности. Контроллер (5) управляет коммутацией в схеме (4) инвертора таким образом, что токи (iu, iv и iw) двигателя пульсируют синхронно с пульсацией напряжения (vin) питания. Это уменьшает гармонику входного тока (iin), подаваемого с источника (6) питания АС в устройство (1) преобразования мощности. Данный вариант осуществления отличается управлением схемой (4) инвертора в период малой нагрузки, например, при работе двигателя (7) с малой скоростью вращения. Работа устройства (1) преобразования мощности в период малой нагрузки описывается ниже. Работа традиционного устройства преобразования мощности в период малой нагрузки соответствует случаю k=1 в уравнении (1). Фиг. 2 иллюстрирует формы сигнала напряжения (vdc) звена DC и опорное значение управляющего тока (idq*) в случае, если k=1 в уравнении (1). В том случае, если k=1, как показано на чертеже, опорное значение управляющего тока (idq*) уменьшается приблизительно до нуля таким образом, что ток двигателя главным образом пульсирует. В результате этого в традиционном устройстве преобразования мощности действующие значения токов двигателя в период малой нагрузки могут возрастать, посредством этого снижая коэффициент полезного действия двигателя. В устройстве (1) преобразования мощности в соответствии с данным вариантом осуществления схема (4) инвертора может действовать при k=1 в соответствии с рабочим состоянием (например, в период большой нагрузки и т.д.).
Как правило, электростатическая емкость конденсатора (3а) звена (3) DC устанавливается такой, чтобы сглаживать колебание в соответствии с коммутацией коммутирующих устройств (Su, Sv, Sw, Sx, Sy и Sz) в тех случаях, когда нагрузка максимальна. При такой установке емкости, как показано на фиг. 2, напряжение (vdc) звена DC не уменьшается до нуля вблизи перехода через нулевое значение напряжения источника (6) питания АС, при этом в период малой нагрузки конденсатор (3а) в некоторой степени заряжается. Традиционное устройство преобразования мощности снижает ток двигателя (7), подключенного в качестве нагрузки, приблизительно до нуля, в то время как имеется некоторое напряжение (vdc) звена DC для создания большой пульсации тока. В таком состоянии двигатель (7) не может создавать какой-либо крутящий момент вблизи перехода через нулевое значение.
Однако в том случае, если конденсатор (3а) заряжается вблизи перехода через нулевое значение, предполагается, что двигатель (7) создает крутящий момент с использованием зарядного напряжения конденсатора (3а). В частности, конденсатор (3а) разряжается за счет уменьшения колебания (т.е. пульсации) токов (iu, iv и iw) двигателя. Посредством этого снижаются действующие значения токов (iu, iv и iw) двигателя, требуемых для создания крутящего момента, по сравнению с традиционными методами.
В частности, в устройстве (1) преобразования мощности генератор (51) опорного тока контроллера (5) уменьшает величину k в уравнении (1) в период малой нагрузки по сравнению с периодом большой нагрузки для получения коэффициента модуляции (т.е. колебания). В случае, если величина k меньше, коэффициент модуляции (т.е. колебание) напряжения входа АС с источника (6) питания АС вблизи нуля является большим по сравнению со случаем, в котором k=1. То есть, амплитуда коэффициента модуляции (т.е. колебания) меньше. Фиг. 3 иллюстрирует формы сигнала напряжения (vdc) звена DC и опорное значение управляющего тока (idq*), где k меньше 1 в приведенном ниже уравнении (1). Как показано на чертеже, опорное значение управляющего тока (idq*) больше вблизи перехода через нулевое значение по сравнению со случаем, в котором k=1.
Как описано выше, величина нагрузки известна по одному из обнаруженных значений скорости (ωm), крутящего момента, токов (iu, iv и iw) двигателя и электрической мощности двигателя (7), либо по совокупности обнаруженных значений. Фиг. 4 представляет собой временную диаграмму, иллюстрирующую соотношение между величиной (k) колебания и нагрузкой. Как показано на фиг. 4, по мере того, как величина нагрузки уменьшается с предварительно определенной величины, контроллер (5) постепенно уменьшает величину k. В связи с этим, когда опорное значение управляющего тока (idq*) вблизи перехода через нулевое значение возрастает, опорное значение тока (id*) оси d и опорное значение тока (iq*) оси q, выдаваемые с генератора (54) опорного значения тока dq, возрастают (см. уравнение (3)). В результате опорное значение напряжения (vd*) оси d и опорное значение напряжения (vq*) оси q, выдаваемые с контроллера (56) тока оси dq, вблизи перехода через нулевое значение являются большими по сравнению со случаем, в котором k=1 (см. уравнение (5)). Посредством этого увеличивается время включенного состояния коммутирующих устройств (Su, Sv или Sw) верхнего плеча в предварительно определенных фазах, разряжается заряд в конденсаторе (3а) и снижается амплитуда пульсации токов (iu, iv и iw) двигателя. В связи с этим, амплитуда пульсации уменьшается, и действующие значения токов (iu, iv и iw) двигателя уменьшаются, благодаря чему снижаются потери в обмотке двигателя (7) и повышается коэффициент полезного действия двигателя.
Действующие значения токов (iu, iv и iw) двигателя уменьшаются с уменьшением величины k в уравнении (1), поэтому предполагается, что с уменьшением величины k увеличивается повышение коэффициента полезного действия двигателя. Однако если величина k слишком мала, т.е. колебание токов (iu, iv и iw) двигателя уменьшается слишком сильно, конденсатор (3а) полностью разряжается, доводя напряжение (vdc) звена DC до нуля. В случаях, когда напряжение (vdc) звена DC является нулевым, и, например, в качестве средства обнаружения тока двигателя (7) применяется система (так называемая «система второго контура») с использованием шунтирующих резисторов, состояние коммутации схемы (4) инвертора (т.е. какое из верхних и нижних плеч схемы (4) инвертора включено) не обнаруживается, и токи двигателя (7) не обнаруживаются. Поэтому в случаях, когда применяется система второго контура, существует необходимость в управлении коммутацией схемы (4) инвертора таким образом, чтобы напряжение (vdc) звена DC было выше нуля (см. фиг. 3).
Следовательно, в тех случаях, когда в данном варианте осуществления используется система второго контура, существует необходимость в регулировании величины k таким образом, чтобы напряжение (vdc) звена DC было выше нуля. Например, величина k может быть установлена таким образом, чтобы напряжение (vdc) звена DC приблизительно равнялось напряжению включенного состояния обратных диодов (Du, Dv, Dw, Dx, Dy и Dz). В данном варианте осуществления при уменьшении величины k генератор (51) опорного тока проверяет напряжение (vdc) звена DC и постоянно изменяет установленную величину k.
Если величина k слишком мала, может уменьшиться коэффициент мощности источника питания, либо может увеличиться гармоническая составляющая входного тока. Поэтому существует также необходимость в установлении величины k в соответствии с рабочим состоянием.
Преимущества варианта осуществления
Как описано выше, в данном варианте осуществления напряжение (vdc) звена DC главным образом пульсирует в звене (3) DC для увеличения ширины электропроводности в схеме (2) преобразователя и повышения посредством этого коэффициента мощности. В период малой нагрузки действующие значения токов, протекающих в двигатель (7), снижаются, благодаря чему повышается коэффициент полезного действия двигателя (7).
Второй вариант осуществления настоящего изобретения
Во втором варианте осуществления описывается пример управления при запуске двигателя (7). В данном варианте осуществления сама конфигурация схемы устройства (1) преобразования мощности является такой же, как и в первом варианте осуществления.
Например, в схеме инвертора, содержащей конденсатор малой емкости в звене DC, при пульсации тока двигателя синхронно с источником питания в период малой нагрузки, например, при запуске двигателя, коэффициент полезного действия может понизиться, либо управление может быть нестабильным. В данном варианте осуществления управление схемой (4) инвертора при запуске двигателя (7) осуществляется таким образом, что крутящий момент, т.е. токи (iu, iv и iw) двигателя, является постоянным.
Фиг. 5 представляет собой временную диаграмму, иллюстрирующую соотношение между величиной (k) колебания и коэффициентом усиления контура управления в контроллере (56) тока оси dq при запуске двигателя (7). Контроллером (56) тока оси dq является, например, контроллер, выполняющий, по меньшей мере, одно из пропорционального управления, интегрального управления или дифференциального управления для снижения отклонения значений (id* и iq*) токов (iu, iv и iw) двигателя от фактических значений токов. Например, в тех случаях, когда контроллер (56) тока оси dq выполняет любое из управлений, коэффициент усиления контура управления контроллера (56) тока оси dq является коэффициентом усиления контура управления выбранного управления. В тех случаях, когда контроллер (56) тока оси dq выполняет комбинацию из множества типов управления, коэффициент усиления контура управления контроллера (56) тока оси dq является коэффициентом усиления контура управления, по меньшей мере, одного из типов управления.
Как показано на фиг. 5, в период (т.е. период обработки запуска) обработки запуска контроллер (56) тока оси dq устанавливает коэффициент усиления контура управления относительно высоким. Обработка запуска предназначена для перевода двигателя (7) из остановленного состояния в рабочее состояние с целевой скоростью вращения.
В данном примере контроллер (5) управляет схемой (4) инвертора в том случае, когда k=0 в период обработки запуска. В результате токи (iu, iv и iw) двигателя в период обработки запуска не пульсируют. По окончании обработки запуска, т.е. когда двигатель (7) работает с целевой скоростью вращения, контроллер (56) тока оси dq постепенно снижает коэффициент усиления контура управления. С другой стороны, по окончании обработки запуска контроллер (5) постепенно увеличивает величину k в соответствии с величиной нагрузки. Посредством этого постепенно увеличивается амплитуда пульсации токов (iu, iv и iw) двигателя. В данном примере величина k (т.е. величина колебания) устанавливается равной 1.
Преимущества варианта осуществления
Как описано выше, в данном варианте осуществления до тех пор, пока двигатель (7) не будет запущен и не будет работать с предварительно определенной скоростью вращения, токи (iu, iv и iw) двигателя управляются таким образом, что они не пульсируют. Таким образом, в данном варианте осуществления крутящим моментом двигателя (7) при запуске управляют так, чтобы он был постоянным, благодаря чему осуществляется устойчивое управление двигателем (7). Благодаря этому также уменьшается падение коэффициента полезного действия при запуске. Поскольку по окончании обработки запуска амплитуда пульсации токов (iu, iv и iw) двигателя постепенно увеличивается, коэффициент мощности после запуска повышается.
Другие варианты осуществления
Способ получения коэффициента модуляции (т.е. колебания) (уравнение (1)) является лишь примером. Например, в уравнении (1) вместо абсолютного значения синусного значения фазового угла (θin) могут использоваться различные типы вычислений, например, вычисление с помощью квадрата синусного значения. Дело в том, что коэффициент модуляции (т.е. колебание) устанавливается таким образом, что амплитуда пульсации токов (iu, iv и iw) двигателя изменяется в соответствии с нагрузкой и рабочим состоянием двигателя (7).
Конфигурация контроллера (56) тока оси dq является лишь примером. Например, контроллер (56) тока оси dq может представлять собой любой из пропорционального контроллера, интегрального контроллера или дифференциального контроллера, либо может представлять совокупность пропорционального контроллера, интегрального контроллера и дифференциального контроллера для снижения отклонения опорных значений (id* и iq*) токов (iu, iv и iw) двигателя от фактических значений токов.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
Настоящее изобретение целесообразно применять в устройстве преобразования мощности, преобразующем входную мощность в предварительно определенную мощность путем коммутации.
ОПИСАНИЕ УСЛОВНЫХ ОБОЗНАЧЕНИЙ
1 Устройство преобразования мощности
2 Схема преобразователя
3 Звено DC
Конденсатор
4 Схема инвертора
5 Контроллер
7 Двигатель
56 Контроллер тока оси dq (контроллер тока)

Claims (6)

1. Устройство преобразования мощности, содержащее:
схему (2) преобразователя, выполненную с возможностью осуществления двухполупериодного выпрямления напряжения (vin) питания источника (6) питания АС;
звено (3) DC, включающее в себя конденсатор (3а), подключенный параллельно выходу схемы (2) преобразователя, и выполненное с возможностью вывода пульсирующего напряжения (vdc) DC;
схему (4) инвертора, выполненную с возможностью преобразования выхода звена (3) DC в АС путем коммутации и подачи АС в подключенный к ней двигатель (7); и
контроллер (5), выполненный с возможностью управления коммутацией таким образом, что токи (iu, iv и iw) двигателя (7) пульсируют синхронно с пульсацией напряжения (vin) питания, причем
контроллер (5) управляет коммутацией в соответствии с нагрузкой двигателя (7) или рабочим состоянием двигателя (7) и снижает амплитуду пульсации токов (iu, iv и iw).
2. Устройство преобразования мощности по п. 1, причем
контроллер (5) уменьшает амплитуду пульсации в соответствии, по меньшей мере, с одним из токов (iu, iv и iw), электрической мощности, скорости (ωm) или крутящего момента двигателя (7).
3. Устройство преобразования мощности по п. 1 или 2, причем
контроллер (5) управляет коммутацией таким образом, что напряжение (vdc) DC выше нуля, и снижает амплитуду пульсации.
4. Устройство преобразования мощности по п. 1, причем
контроллер (5) снижает амплитуду пульсации при запуске двигателя (7).
5. Устройство преобразования мощности по п. 4, причем
контроллер (5) постепенно снижает амплитуду пульсации после запуска двигателя (7).
6. Устройство преобразования мощности по п. 1, причем
контроллер (5) включает в себя контроллер (56) тока, выполняющий, по меньшей мере, одно из пропорционального управления, интегрального управления или дифференциального управления для снижения отклонения опорных значений (id* и iq*) токов (iu, iv и iw) от фактических значений токов (id и iq), и изменяет коэффициент усиления контура управления при снижении амплитуды пульсации.
RU2013138457/07A 2011-01-18 2012-01-18 Устройство преобразования мощности RU2543502C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011007818A JP5212491B2 (ja) 2011-01-18 2011-01-18 電力変換装置
JP2011-007818 2011-01-18
PCT/JP2012/000273 WO2012098873A1 (ja) 2011-01-18 2012-01-18 電力変換装置

Publications (2)

Publication Number Publication Date
RU2013138457A RU2013138457A (ru) 2015-02-27
RU2543502C1 true RU2543502C1 (ru) 2015-03-10

Family

ID=46515508

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013138457/07A RU2543502C1 (ru) 2011-01-18 2012-01-18 Устройство преобразования мощности

Country Status (10)

Country Link
US (1) US9214881B2 (ru)
EP (2) EP3979490A1 (ru)
JP (1) JP5212491B2 (ru)
KR (1) KR101594662B1 (ru)
CN (1) CN103314513B (ru)
AU (1) AU2012208179B2 (ru)
BR (1) BR112013017911A2 (ru)
ES (1) ES2894604T3 (ru)
RU (1) RU2543502C1 (ru)
WO (1) WO2012098873A1 (ru)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012209369A1 (de) * 2012-06-04 2013-12-05 Siemens Aktiengesellschaft Regeleinrichtung zur Beseitigung von Störungen im Netz
WO2014077596A1 (ko) * 2012-11-14 2014-05-22 포스코에너지 주식회사 인버터의 리플 및 옵셋 보상 장치 및 그 방법
US9331614B2 (en) * 2013-02-08 2016-05-03 Regal Beloit America, Inc. Systems and methods for controlling electric machines
US20150229203A1 (en) * 2014-02-12 2015-08-13 Gholamreza Esmaili Smart Resistor-Less Pre-Charge Circuit For Power Converter
WO2015146197A1 (ja) * 2014-03-27 2015-10-01 ダイキン工業株式会社 電力変換装置
JP6435956B2 (ja) * 2014-03-27 2018-12-12 ダイキン工業株式会社 電力変換装置
JP6291996B2 (ja) * 2014-04-21 2018-03-14 ダイキン工業株式会社 電力変換装置
US10439542B2 (en) * 2014-09-30 2019-10-08 Daikin Industries, Ltd. Electric power conversion device
JP6578657B2 (ja) * 2014-12-26 2019-09-25 ダイキン工業株式会社 電力変換装置
KR101589623B1 (ko) 2015-04-13 2016-01-28 정민금속 주식회사 용접에 의한 이음부가 형성되는 사각파이프 단부의 확관장치
JP6520336B2 (ja) * 2015-04-15 2019-05-29 富士電機株式会社 電力変換装置の制御装置
JP6229819B1 (ja) * 2016-03-05 2017-11-15 日立工機株式会社 電動工具
EP3217522A1 (de) * 2016-03-08 2017-09-13 Siemens Aktiengesellschaft Rückspeisefähige gleichrichtervorrichtung
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US10284132B2 (en) 2016-04-15 2019-05-07 Emerson Climate Technologies, Inc. Driver for high-frequency switching voltage converters
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US10770966B2 (en) 2016-04-15 2020-09-08 Emerson Climate Technologies, Inc. Power factor correction circuit and method including dual bridge rectifiers
KR101857367B1 (ko) 2016-11-25 2018-05-11 엘지전자 주식회사 공기조화기의 전동기 제어장치 및 그 제어 방법
KR101888842B1 (ko) * 2017-01-02 2018-08-16 엘지전자 주식회사 모터 제어 장치 및 모터 제어 장치의 제어 방법
DE102017126150A1 (de) 2017-11-08 2019-05-09 Ebm-Papst Mulfingen Gmbh & Co. Kg Kapazitätsreduzierung
JP7335403B2 (ja) * 2018-03-08 2023-08-29 ナブテスコ株式会社 Ac-ac電力変換装置
JP7154019B2 (ja) * 2018-03-08 2022-10-17 ナブテスコ株式会社 Ac-ac電力変換装置
CN109995305B (zh) * 2019-04-26 2020-11-10 深圳和而泰智能控制股份有限公司 压缩机的力矩输入控制方法、装置、设备和冰箱
JP7345673B2 (ja) * 2020-10-26 2023-09-15 三菱電機株式会社 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
CN112910357B (zh) * 2021-02-06 2023-04-11 广东希塔变频技术有限公司 用于电机驱动的控制方法、装置、电路和变频空调器
CN113922664B (zh) * 2021-09-30 2024-04-16 南京理工大学 低频大脉动电流输出无脉动电流输入的功率变换装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1577060A1 (ru) * 1988-03-10 1990-07-07 Волжское объединение по производству легковых автомобилей "АвтоВАЗ" Электропривод переменного тока
EP1049241A2 (en) * 1999-04-30 2000-11-02 Texas Instruments Incorporated Modified space vector pulse width modulation technique to reduce DC bus ripple effect in voltage source inverters
RU2193814C2 (ru) * 1997-03-19 2002-11-27 Хитачи Лтд. Устройство и способ управления асинхронным электродвигателем
JP2005130666A (ja) * 2003-10-27 2005-05-19 Daikin Ind Ltd インバータ制御方法及び多相電流供給回路
DE102005028945A1 (de) * 2004-09-30 2006-04-27 Mitsubishi Denki K.K. Motorantriebsvorrichtung
WO2009133700A1 (ja) * 2008-04-28 2009-11-05 ダイキン工業株式会社 インバータ制御装置および電力変換装置
RU2392732C1 (ru) * 2006-07-06 2010-06-20 Мицубиси Электрик Корпорэйшн Устройство управления вектором асинхронного двигателя, способ управления вектором асинхронного двигателя и устройство управления приводом асинхронного двигателя

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625548A (en) * 1994-08-10 1997-04-29 American Superconductor Corporation Control circuit for cryogenically-cooled power electronics employed in power conversion systems
US5936855A (en) * 1996-09-03 1999-08-10 Mercury Electric Corporation Harmonic correction of 3-phase rectifiers and converters
AU728824B2 (en) * 1997-10-31 2001-01-18 Hitachi Limited Power converter
US6614991B2 (en) * 1999-03-17 2003-09-02 Diehl Ako Stiftung & Co. Kg Inverter-fed three-phase motor for household appliance, especially for the direct drive of washing machines
JP3540665B2 (ja) * 1999-04-21 2004-07-07 財団法人鉄道総合技術研究所 交流電気車駆動装置
JP2002051589A (ja) 2000-07-31 2002-02-15 Isao Takahashi モータ駆動用インバータの制御装置
JP4718041B2 (ja) * 2000-11-22 2011-07-06 ダイキン工業株式会社 インバータ制御方法およびその装置
JP3699663B2 (ja) 2001-05-24 2005-09-28 勲 高橋 インバータ制御方法およびその装置
JP4575704B2 (ja) * 2003-04-22 2010-11-04 パナソニック株式会社 モータ制御装置、圧縮機、空気調和機、及び冷蔵庫
JP4060777B2 (ja) * 2003-09-03 2008-03-12 株式会社東芝 電気車制御装置
US7746024B2 (en) * 2006-03-07 2010-06-29 Hamilton Sundstrand Corporation Electric engine start system with active rectifier
ES2493394T3 (es) * 2006-04-03 2014-09-11 Panasonic Corporation Dispositivo inversor y acondicionador de aire
JP4079178B2 (ja) * 2006-04-19 2008-04-23 ダイキン工業株式会社 電力変換器及びその制御方法並びに空気調和機
US7495410B2 (en) * 2007-01-30 2009-02-24 Rockwell Automation Technologies, Inc. Systems and methods for improved motor drive power factor control
KR100886194B1 (ko) * 2007-06-08 2009-02-27 한국전기연구원 계통 연계형 고압 권선형 유도 발전기 제어 장치
US7683568B2 (en) * 2007-09-28 2010-03-23 Rockwell Automation Technologies, Inc. Motor drive using flux adjustment to control power factor
US7957166B2 (en) * 2007-10-30 2011-06-07 Johnson Controls Technology Company Variable speed drive
JP4735638B2 (ja) * 2007-11-13 2011-07-27 パナソニック株式会社 モータ駆動装置
US8503200B2 (en) * 2010-10-11 2013-08-06 Solarbridge Technologies, Inc. Quadrature-corrected feedforward control apparatus and method for DC-AC power conversion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1577060A1 (ru) * 1988-03-10 1990-07-07 Волжское объединение по производству легковых автомобилей "АвтоВАЗ" Электропривод переменного тока
RU2193814C2 (ru) * 1997-03-19 2002-11-27 Хитачи Лтд. Устройство и способ управления асинхронным электродвигателем
EP1049241A2 (en) * 1999-04-30 2000-11-02 Texas Instruments Incorporated Modified space vector pulse width modulation technique to reduce DC bus ripple effect in voltage source inverters
US6313602B1 (en) * 1999-04-30 2001-11-06 Texas Instruments Incorporated Modified space vector pulse width modulation technique to reduce DC bus ripple effect in voltage source inverters
JP2005130666A (ja) * 2003-10-27 2005-05-19 Daikin Ind Ltd インバータ制御方法及び多相電流供給回路
DE102005028945A1 (de) * 2004-09-30 2006-04-27 Mitsubishi Denki K.K. Motorantriebsvorrichtung
RU2392732C1 (ru) * 2006-07-06 2010-06-20 Мицубиси Электрик Корпорэйшн Устройство управления вектором асинхронного двигателя, способ управления вектором асинхронного двигателя и устройство управления приводом асинхронного двигателя
WO2009133700A1 (ja) * 2008-04-28 2009-11-05 ダイキン工業株式会社 インバータ制御装置および電力変換装置
KR20100134790A (ko) * 2008-04-28 2010-12-23 다이킨 고교 가부시키가이샤 인버터 제어장치 및 전력변환장치

Also Published As

Publication number Publication date
US20130300327A1 (en) 2013-11-14
KR101594662B1 (ko) 2016-02-16
EP2667502B1 (en) 2021-10-06
CN103314513A (zh) 2013-09-18
AU2012208179A1 (en) 2013-08-15
ES2894604T3 (es) 2022-02-15
JP5212491B2 (ja) 2013-06-19
EP2667502A4 (en) 2017-08-09
EP2667502A1 (en) 2013-11-27
US9214881B2 (en) 2015-12-15
KR20140002736A (ko) 2014-01-08
RU2013138457A (ru) 2015-02-27
BR112013017911A2 (pt) 2016-10-11
AU2012208179B2 (en) 2015-02-12
EP3979490A1 (en) 2022-04-06
WO2012098873A1 (ja) 2012-07-26
CN103314513B (zh) 2015-09-30
JP2012151962A (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
RU2543502C1 (ru) Устройство преобразования мощности
Inazuma et al. High-power-factor single-phase diode rectifier driven by repetitively controlled IPM motor
CN111149287B (zh) 功率转换装置
WO2012098875A1 (ja) 電力変換装置
CN109546913B (zh) 一种电容小型化电机驱动装置
JP2011061887A (ja) 電力変換装置、電力変換装置の制御方法、および空気調和機
CN113014124A (zh) 电力转换装置
JP5813934B2 (ja) 電力変換装置
Abe et al. Source current harmonics and motor copper loss reduction control of electrolytic capacitor-less inverter for IPMSM drive
RU2361356C1 (ru) Способ и устройство управления асинхронным двигателем
JP2008228477A (ja) 電動機制御装置
JP4448300B2 (ja) 同期機の制御装置
JP2005020837A (ja) 多相電流供給回路
JP6384060B2 (ja) 電力変換装置
JP2009290970A (ja) 電力供給システム
CN105207552B (zh) 多相发电机电源转换系统及其操作方法
JP6330572B2 (ja) 電力変換装置
WO2024147893A1 (en) Hybrid rectifier for driving dynamically varying direct current load
JP2015080370A (ja) 電力変換装置
WO2018034007A1 (ja) 電力変換装置
CN115776246A (zh) 一种低谐波三相有源整流电路及电源装置
JP2018121524A (ja) 電力変換装置
JP2018121524A5 (ru)
CN109560725A (zh) 具有追相模块的马达控制系统