RU2519840C2 - Способ получения титаната лития - Google Patents

Способ получения титаната лития Download PDF

Info

Publication number
RU2519840C2
RU2519840C2 RU2010150909/05A RU2010150909A RU2519840C2 RU 2519840 C2 RU2519840 C2 RU 2519840C2 RU 2010150909/05 A RU2010150909/05 A RU 2010150909/05A RU 2010150909 A RU2010150909 A RU 2010150909A RU 2519840 C2 RU2519840 C2 RU 2519840C2
Authority
RU
Russia
Prior art keywords
lithium
mixture
titanium oxide
titanium
based component
Prior art date
Application number
RU2010150909/05A
Other languages
English (en)
Other versions
RU2010150909A (ru
Inventor
Вадим ГОРШКОВ
Олег ВОЛКОВ
Канаме ТАКЕЯ
Original Assignee
Энердел, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Энердел, Инк. filed Critical Энердел, Инк.
Publication of RU2010150909A publication Critical patent/RU2010150909A/ru
Application granted granted Critical
Publication of RU2519840C2 publication Critical patent/RU2519840C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Изобретение может быть использовано в производстве аккумуляторов на основе лития, применяемых в перезаряжаемых батареях. Для получения титаната лития, имеющего формулу Li4Ti5O12-x, где 0<x<0,02, получают смесь оксида титана и компонента на основе лития, при этом компонент на основе лития и оксид титана присутствуют в полученной смеси в количествах, необходимых для обеспечения атомного отношения лития к титану 0,8. Компонент на основе лития включает порошок карбоната лития и порошок гидроксида лития. Полученную смесь используют в качестве прекурсора для кальцинирования. Далее проводят спекание смеси в газовой атмосфере, содержащей восстановитель, с образованием титаната лития. Этап спекания вызывает твердофазную реакцию между порошком карбоната лития и оксидом титана и жидкотвердофазную реакцию между порошком гидроксида лития и оксидом титана. Изобретение позволяет получить титанат лития, имеющий высокие показатели электронной проводимости и электрохимической емкости. 8 з.п. ф-лы, 13 ил., 2 табл.

Description

РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Данная заявка относится к и испрашивает преимущество приоритета по заявке на патент Соединенных Штатов с серийным номером 12/152352, поданной 14 мая 2008 г., которая относится к и испрашивает преимущество приоритета по заявкам на патент Соединенных Штатов с серийными номерами 11/462520, поданной 4 августа 2006 г., и 60/917721, поданной 14 мая 2007 г., содержание которых полностью включено в данный документ.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
1. Область изобретения
[0002] Настоящее изобретение в целом относится к титанату лития и способу получения титаната лития. Точнее говоря, настоящее изобретение относится к титанату лития, имеющему отличную электронную проводимость и отличную электрохимическую емкость.
2. Описание уровня техники
[0003] В автомобилях, таких как, например, автомобили с гибридным приводом, для обеспечения движущей силы используется несколько движительных систем. Наиболее распространенными гибридными автомобилями являются бензоэлектрические гибридные автомобили, имеющие как двигатель внутреннего сгорания (ДВС), так и электрический двигатель. В бензоэлектрических гибридных автомобилях для питания ДВС применяется бензин, а для питания электродвигателей - аккумуляторные батареи. Аккумуляторные батареи бензоэлектрических гибридных автомобилей перезаряжаются путем утилизации их кинетической энергии. Кинетическая энергия может быть обеспечена за счет рекуперативного торможения или, при движении на средней эксплуатационной скорости или на холостом ходу, из выходной мощности ДВС. Это отличается от чисто электрических автомобилей (электромобилей), в которых аккумуляторные батареи заряжаются от внешнего источника, такого как, например, электрическая сеть либо специальный прицеп с генератором.
[0004] В состав аккумуляторных батарей входят перезаряжаемые аккумуляторы на основе лития, которые, как правило, содержат два разноименных электрода, т.е. анод и катод, погруженные в проводящий ионы электролит, при этом между двумя электродами помещается сепаратор. Электрическая энергия производится в аккумуляторах путем электрохимической реакции, проходящей между двумя разноименными электродами.
[0005] Наибольшее количество энергии батареи потребляется в тот момент, когда она поставляет ток для работы электрического двигателя при ускорении, в особенности, при запуске электрического двигателя. Сила тока, необходимая для электрического двигателя, может превышать несколько сотен ампер. Многие типы батарей, способных выдавать необходимую силу тока, имеют большой объем или требуют корпуса больших размеров, что приводит к излишнему весу батарей и увеличению их стоимости. Вместе с тем такие высокие значения тока требуются на очень ограниченные отрезки времени, как правило секунды. Таким образом, так называемые "сильноточные батареи", обеспечивающие высокие значения тока на короткие промежутки времени, как правило, являются идеальными для применения в гибридных и чисто электрических автомобилях.
[0006] Перезаряжаемые батареи, в состав которых входят перезаряжаемые аккумуляторы на основе лития и которые могут быть охарактеризованы как литиевые аккумуляторы или литий-ионные аккумуляторы, или литий-полимерные аккумуляторы, объединяют высокую электрохимическую емкость с требуемым потенциалом мощности и сроком службы, которые позволяют гибридным автомобилям соответствовать эксплуатационным нормам, оставаясь при этом экономичными. Под "высокой электрохимической емкостью" подразумевается то, что перезаряжаемые батареи имеют в четыре раза большую плотность энергии, чем свинцово-кислотные батареи, а также в два-три раза большую плотность энергии, чем у никель-кадмиевых и никель-металлогидридных батарей. Кроме того, перезаряжаемые батареи с аккумуляторами на основе лития, вероятно, являются одними из наиболее дешевых систем батарей.
[0007] Титанат лития, представленный формулой Li4Ti5O12 (или Li4/3Ti5/3O4), считается одним из самых используемых материалов для использования в анодах перезаряжаемых литий-ионных и литий-полимерных аккумуляторов. Титанат лития, Li4Ti5O12, известен из работы А. Дешанвера и др. (A. Deschanvers et al.) (Mater. Res. Bull., т.6, 1971 г., стр.699). Как в дальнейшем печаталось в работе К.М. Колбоу и др. (К.М. Colbow et al.) (J. of Power Sources, т.26, №3/4, от 16 мая 1989 г., стр.397-402), Li4Ti5O12 может действовать в обратимой электрохимической реакции, при этом элементарный литий не способен вступать в такие обратимые реакции. После детального исследования, проведенного Т. Озуку и др. (Т. Ozhuku et al.) (J. of Electrochemical Society, т.142, №5, 1995 г., стр.1431-1435), Li4Ti5O12 начали рассматривать как анодный материал для литиевых аккумуляторов типа кресла-качалки. В действительности, патент Соединенных Штатов №5545468, выданный на имя Кошиба (Koshiba) и др., описывает применение титаната лития с различными соотношениями лития к титану в титанате лития. В частности, титанат лития из этого патента ′468 представлен формулой LixTiyO4, где 0,8≤x≤1,4 и 1,6≤y≤2,2, в катоде для литиевого аккумулятора. В патенте ′468 уточняется, что, в принципе, x+y≈3. Другими словами, в патенте ′468 сообщается, что при сохранении общего количества титана и лития, примерно равного 3, в составе титаната лития могут быть различные соотношения лития и титана, так что сохраняется стехиометрическое количество лития и титана по отношению к кислороду. Патентная публикация Соединенных Штатов №2002/0197532 на имя Тэкерея (Thackeray) и др. также описывает титанат лития, который применяется в качестве анода в литиевом аккумуляторе. Титанат лития может представлять собой стехиометрическую или дефектную шпинель, в которой распределение лития может ыть различным от состава к составу.
[0008] Кроме способности вступать в обратимые электрохимические реакции, Li4Ti5O12 также имеет другие преимущества, делающие его пригодным для применения в перезаряжаемых аккумуляторах на основе лития. К примеру, благодаря уникально низкому значению изменения объема титаната лития во время процессов зарядки и разрядки, титанат лития обладает превосходной циклируемостью, т.е. способностью пройти большое число циклов зарядки и разрядки без ухудшения аккумуляторов. Своей превосходной циклируемостью титанат лития обязан в первую очередь кубической структуре шпинели Li4Ti5O12. Согласно данным С. Шарнера (S. Scharner) и др. (J. of Electrochemical Society, т.146, №3, 1999 г., стр.857-861) параметр решетки кубической структуры шпинели (кубич., пространственная группа Fd-3m (227)) изменяется от 8,3595 до 8,3538 Å в предельных состояниях во время зарядки и разрядки. Данное изменение линейного параметра равняется изменению объема примерно 0,2%. Li4Ti5O12 имеет электрохимический потенциал против элементарного лития примерно 1,55 B и может быть интеркалирован литием с получением интеркалированного титаната лития, представленного формулой Li7Ti5O12 и имеющего теоретическую электрохимическую емкость до 175 мА·ч/г включительно.
[0009] Другим преимуществом Li4Ti5O12 является пологая кривая разрядки. В частности, процессы зарядки и разрядки Li4Ti5O12 происходят в двухфазной системе. Li4Ti5O12 имеет структуру шпинели и во время зарядки преобразовывается в Li7Ti5O12, который имеет упорядоченную структуру типа каменной соли. В результате, электрический потенциал во время процессов зарядки и разрядки определяется электрохимическим равновесием пары Li4Ti5O12/Li7Ti5O12 и не зависит от концентрации лития. Это отличается от кривой разрядки многих других материалов электродов для литиевых источников питания, которые сохраняют свою структуру во время процессов зарядки и разрядки. К примеру, хотя переход заряженной фазы во многих катодных материалах, таких как LiCoO2, является предопределенным, все еще существует расширенный предел переменного состава LixCoO2 между этими структурами. В результате, электрический потенциал таких материалов, как LiCoO2, зависит от концентрации лития в LiCoO2, т.е. состояния заряда или разряда. Таким образом, кривая разрядки материалов, в которых электрический потенциал зависит от концентрации в таком материале лития, как правило, является наклонной и зачастую ступенчатой.
[0010] В данной области техники существует общее мнение, что сохранение отличной электрохимической емкости связано с отличной электронной проводимостью. В состав Li4Ti5O12 входит титан в его высшей степени окисления, равной +4, что соотносится с очень низкой электронной проводимостью. Электронная проводимость аналогичных соединений настолько низка, что многие из этих соединений граничат с диэлектриками или изоляторами. Как таковая, электрохимическая емкость Li4Ti5O12 меньше идеальной. Это распространяется и на титанаты лития из патента ′468 и публикации ′532, как изложено выше.
[0011] Как правило, электронная проводимость Li4Ti5O12 улучшается путем легирования Li4Ti5O12 3-d элементами, как описано М. Накаямой (М. Nakayama) и др. (Solid State Ionics, т.117, I. 3-4, от 2 февраля 1999 г., стр.265-271). Например, электронная проводимость Li[Li(1-x)/3CrxTi(5-2x)/3]O4, который считается твердым раствором между Li4Ti5O12 и LiCrTiO4, лучше, чем электронная проводимость Li4Ti5O12. Однако увеличение количества ионов Cr, замещающих ионы титана в Li4Ti5O12, также снижает обратимую электрохимическую емкость по сравнению с Li4Ti5O12 вследствие электрохимической инертности, свойственной присутствию ионов Cr. Присутствие ионов Cr снижает удельный по площади импеданс (ASI) и увеличивает номинальную токонесущую способность по сравнению с ASI и номинальной токонесущей способностью Li4Ti5O12. Потеря емкости практически равна доле замещенного титана.
[0012] Другие попытки замещения титана в титанатах лития демонстрируют аналогичные недостатки. К примеру, замена титана в Li4Ti5O12 ванадием, марганцем и железом приводит к существенной потере обратимой электрохимической емкости во время первого цикла зарядки-разрядки. См. П. Кубиак (P. Kubiak), А. Гарсиа (A. Garsia), М. Вомс (М. Womes), Л. Алдон (L. Aldon), Ж. Оливье-Фуркад (J. Olivier-Fourcade), П.-Э. Липпен (Р.-Е. Lippens), Ж.-Ш. Жума (J.-C. Jumas) "Фазовый переход в шпинели Li4Ti5O12, вызванный введением лития. Влияние замещения Ti/V, Ti/Mn, Ti/Fe" (J. of Power Sources, т.119-121, от 1 июня 2003 г., стр.626-630).
[0013] Принимая во внимание вышесказанное, остается возможность предоставить титанат лития, который модифицирован с тем, чтобы обладать превосходной электронной проводимостью при сохранении обратимой электрохимической емкости, характерной для титаната лития. Также существует возможность предоставить аккумулятор на основе лития, в состав которого входит титанат лития.
ИЗЛОЖЕНИЕ СУЩНОСТИ И ПРЕИМУЩЕСТВ ИЗОБРЕТЕНИЯ
[0014] Данное изобретение представляет собой способ синтезирования титаната лития, включающий в себя: 1) смешивание порошка карбоната лития или порошка гидроксида лития с оксидом титана различными способами смешивания и использование их в качестве прекурсора для кальцинирования, 2) использование синтетического продукта или смеси, содержащих титан и литий, полученных из растворов, содержащих как титановые, так и литиевые ингредиенты, в качестве прекурсора для кальцинирования, а также 3) приготовление смешанной суспензии из порошка соединения титана и содержащего литий раствора, после чего следует осаждение соединения лития путем сушки распылением для получения смеси порошка соединения титана и соединения лития, а также использование его в качестве прекурсора для кальцинирования. В каждом способе применяются параметры производства для получения титаната лития, качество которого отвечает характеристикам, необходимым для вторичных батарей.
[0015] По существу, титанат лития по настоящему изобретению применим для аккумуляторов на основе лития, используемых в перезаряжаемых батареях, являющихся источником питания для электродвигателей в бензоэлектрических гибридных автомобилях, а также титанат лития по настоящему изобретению вносит вклад в сохранение энергетических ресурсов путем улучшения эксплуатационных характеристик аккумуляторов на основе лития.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0016] Другие преимущества настоящего изобретения будут легко оценены по мере лучшего их понимания в свете следующего подробного описания, при рассмотрении в связи с прилагаемыми чертежами, на которых:
[0017] Фиг.1 представляет собой схематическое изображение перезаряжаемой батареи, в состав которой входят аккумуляторы на основе лития;
[0018] Фиг.2 представляет собой схематическое изображение автомобиля, в конструкцию которого входит перезаряжаемая батарея с Фиг.2;
[0019] Фиг.3 представляет собой диаграмму валентность-состав титаната лития, демонстрирующую взаимосвязь между соотношениями лития к титану в титанате лития и валентностью титана в титанате лития, где ромбы указывают на структуры шпинели, квадраты указывают на нешпинельные структуры, а закрашенные символы указывают на титанаты лития, в состав которых входят интеркалированные ионы лития;
[0020] Фиг.4 представляет собой рентгеновский дифракционный спектр традиционного Li4Ti5O12 из уровня техники, синтезированного в соответствии со сравн. примером 1 в таблице 2;
[0021] Фиг.5 представляет собой рентгеновский дифракционный спектр Li4Ti5O11,985 по настоящему изобретению, синтезированный в соответствии с примером 2 в таблице 1;
[0022] Фиг.6 представляет собой график, демонстрирующий зависимость log(σ) от 1/Т, измеренную для Li4Ti5O11,985 по настоящему изобретению, синтезированного в соответствии с примером 2 из таблицы 1, причем измерения проводились 4-зондовым методом;
[0023] Фиг.7 представляет собой кинетическую кривую этапа спекания, на которой Li4Ti5O12 восстанавливается газовой смесью H2/аргон (4,81 об.% H2), представляющую зависимость концентрации H2 от температуры во время нагревания при постоянном возрастании температуры 2,5°C/мин;
[0024] Фиг.8 представляет собой кинетическую кривую этапа спекания по Фиг.7 в координатах log(x) от 1/Т, где x - это x в Li4Ti5O12-x;
[0025] Фиг.9 представляет собой график, показывающий зависимость электрохимической емкости (мА·ч) от числа циклов для аккумулятора, в состав которого входит электрод с Li4Ti5O12-x по настоящему изобретению, причем противоэлектродом является металлический литий;
[0026] Фиг.10 представляет собой график, на котором показана первая разрядка аккумулятора, в состав которого входит электрод с Li4Ti5O12-x по настоящему изобретению, причем противоэлектродом является металлический литий;
[0027] Фиг.11 представляет собой график, на котором показана вторая зарядка аккумулятора, в состав которого входит электрод с Li4Ti5O12-x по настоящему изобретению, причем противоэлектродом является металлический литий;
[0028] Фиг.12 представляет собой график, на котором показана 382-я разрядка аккумулятора, в состав которого входит электрод с Li4Ti5O12-x по настоящему изобретению, причем противоэлектродом является металлический литий; и
[0029] Фиг.13 представляет собой график, на котором показана 382-я зарядка аккумулятора, в состав которого входит электрод с Li4Ti5O12-x по настоящему изобретению, причем противоэлектродом является металлический литий.
ДЕТАЛЬНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[0030] Титанат лития по настоящему изобретению может применяться в аккумуляторах на основе лития. Аккумуляторы на основе лития, включающие в себя титанат лития по настоящему изобретению, могут быть полезны во многих применениях, однако особенно пригодны в перезаряжаемых батареях для транспортных средств 10, таких как гибридные или электрические автомобили 10; однако необходимо принять во внимание то, что элементы на основе лития могут быть использованы в неперезаряжаемых батареях. Перезаряжаемые батареи являются источником питания для электрического двигателя автомобилей 10.
[0031] В состав аккумуляторов на основе лития входят электролит, анод и катод. Электролиты для аккумуляторов на основе лития, как правило, представляют собой проводящие по ионам лития неводные электролиты и известны в данной области техники. В состав по меньшей мере одного из анода и катода входит титанат лития по настоящему изобретению. Например, аккумулятор на основе лития в дальнейшем может определяться как литиевый аккумулятор, где в состав катода входит титанат лития по настоящему изобретению. Как правило, титанат лития присутствует в катоде в количестве, составляющем по меньшей мере 80 весовых частей, чаще - от 80 до 90 весовых частей, чаще всего - в количестве примерно 82 весовых части в расчете на общую массу катода. Кроме титаната лития, в состав катода литиевого аккумулятора также, как правило, входит проводящее вещество, например, технический углерод, и связующее вещество, например, поливинилиденфторид, которые составляют остальное в катоде. В частности, технический углерод присутствует, как правило, в количестве от 8 до 10 весовых частей, чаще - примерно 8 весовых частей, в расчете на общую массу катода, а связующее вещество, как правило, присутствует в количестве от 8 до 12 весовых частей, чаще - примерно 10 весовых частей, в расчете на общую массу катода. Как правило, анодом в литиевых аккумуляторах является металлический литий или сплав лития с магнием или алюминием.
[0032] В качестве альтернативы аккумулятор на основе лития в дальнейшем может определяться как литий-ионный аккумулятор и литий-полимерный аккумулятор, в котором в состав анода входит титанат лития по настоящему изобретению в описанных выше количествах.
[0033] При использовании в перезаряжаемых батареях для гибридных или электрических автомобилей 10 данные аккумуляторы, как правило, используются в блоке батарей, представленном номером 14 на Фиг.1 и 2. Блоки батарей 14, как правило, состоят из четырех рядов аккумуляторов, соединенных между собой и расположенных с перекрытием вдоль каждого ряда. Как правило, в каждом ряду находится пять блоков аккумуляторов. Однако необходимо принять во внимание, что в блоке батарей 14 также могут применяться другие конфигурации аккумуляторов.
[0034] Как известно в данной области техники, перезаряжаемые батареи, как правило, входят в состав множества блоков батарей 14, соединенных в контур для обеспечения достаточной энергии для питания автомобиля 10. Как показано на Фиг.1 и 2, контур оснащен переключателями 18 и расположенной в контуре 16 системой 20 управления батареями. В конструкцию системы 20 управления батареями входит схема 22 сопряжения и управления переключателями для контроля использования энергии от аккумуляторов и перезарядки аккумуляторов в блоках батарей 14.
[0035] Титанат лития по настоящему изобретению имеет следующую формулу:
Li4Ti5O12-x,
где x больше 0. Как правило, 0<x<0,02. Другими словами, титанат лития по настоящему изобретению дефицитен по кислороду и обладает отличной электронной проводимостью по сравнению с титанатом лития по приведенной выше формуле, в которой нет недостатка кислорода. В то же время, концентрация лития в титанате лития по настоящему изобретению остается такой же, как и в титанате лития, не имеющем недостатка кислорода. В результате, ожидаемая обратимая электрохимическая емкость титаната лития по настоящему изобретению останется такой же, как и обратимая электрохимическая емкость титаната лития, имеющего стехиометрическое количество кислорода.
[0036] Влияние на электронную проводимость в результате недостатка кислорода приписывается изменению степени окисления, т.е. валентности, титана в титанате лития. В частности, титанаты лития, содержащие ионы титана со степенью окисления +3, проявляют высокую электронную проводимость, характерную для материалов типа металлов, в то время как титанаты лития, содержащие ионы титана со степенью окисления +4, проявляют низкую электронную проводимость, что характерно для материалов-диэлектриков. На Фиг.3 представлена его степень окисления в различных титанатах лития на вертикальной оси как v(Ti), т.е. валентность титана. В связи с этим, Фиг.3 демонстрирует относительную электронную проводимость различных титанатов лития, в различных состояниях интеркаляции, причем более высокие значения v(Ti) соотносятся с более низкой электронной проводимостью. Li4Ti5O12 является примером титаната лития, в котором присутствуют атомы титана со степенью окисления +4.
[0037] Во время электрохимической интеркаляции или зарядки традиционного Li4Ti5O12 имеет место фазовый переход от шпинели к типу "каменной соли", при котором в традиционный Li4Ti5O12 интеркалируются три атома лития с получением Li7Ti5O12. Li7Ti5O12 имеет более высокую электронную проводимость, чем традиционный Li4Ti5O12, вследствие преобразования атомов титана в традиционный Li4Ti5O12 со степени окисления +4 до степени окисления +3 во время интеркаляции, как показано на Фиг.3 и представлено следующим уравнением:
Li4Ti5O12+zLi++ze-→(1-z/3)Li4Ti4+5O12+z/3Li7Ti4+2Ti3+3O12,
где z представляет собой число атомов лития, которые интеркалируются в Li4Ti5O12. По сути, традиционный Li4Ti5O12 проявляет переменную электронную проводимость исходя из состоянии интеркаляции, и во время интеркаляции и разрядки могут существовать зоны высокой и низкой электронной проводимости вследствие несопоставимых различий в электронной проводимости между традиционным Li4Ti5O12 и Li7Ti5O12. Плохая электронная проводимость традиционного Li4Ti5O12 вызывает первоначальную "тренировку" аккумуляторов при низком токе, а также препятствует полному заряду. Данные обстоятельства крайне ограничивают возможности применения традиционного Li4Ti5O12 по сильноточным назначениям.
[0038] В соответствии с настоящим изобретением было неожиданно обнаружено, что существует следующее взаимодействие:
Li4Ti5O12+δH2→Li4Ti4+5-2δTi3+O12-δ+δH2O↑.
Фактически, восстановление Li4Ti5O12 до Li4Ti5O12-x приводит к преобразованию атомов титана в Li4Ti5O12 со степени окисления +4 до степени окисления +3 в результате компенсации заряда, демонстрируя таким образом повышение электронной проводимости Li4Ti5O12-x при сохранении в титанате лития того же числа атомов лития и титана. Другими словами, средняя валентность титана в титанате лития по настоящему изобретению менее 4. Практический результат вышеизложенного обнаруженного факта состоит в том, что данный титанат лития будет демонстрировать менее радикальные изменения электронной проводимости на всех стадиях процессов зарядки и разрядки, в отличие от традиционного Li4Ti5O12, который перед зарядкой демонстрирует значение электронной проводимости, близкое к проводимости материалов-диэлектриков, так что различные зоны Li4Ti5O12-x и Li7Ti5O12-x будут представлять собой более однородные среды для процессов зарядки и разрядки по сравнению с традиционным Li4Ti5O12, что является выгодным для сильноточных применений.
[0039] Поскольку присутствуют те же числа электрохимически активных атомов лития и титана, как и в Li4Ti5O12, ожидаемая обратимая электрохимическая емкость будет такой же для Li4Ti5O12-x, как и для Li4Ti5O12. Li4Ti5O12-x также сохраняет ту же структуру шпинели, как и Li4Ti5O12, которая обладает превосходной циклируемостью. Как описано ранее, обычно 0<x<0,02 для сохранения в титанате лития той же структуры шпинели, что и в Li4Ti5O12. В частности, ссылаясь на Фиг.3, титанат лития по настоящему изобретению, обладая недостатком кислорода, переводит Li4Ti5O12-x на позицию, представленную точкой "A" на Фиг.3, вследствие преобразования атомов титана в Li4Ti5O12 со степени окисления +4 до степени окисления +3, при этом позиция, обозначенная точкой "B", указывает состояние интеркаляции Li4Ti5O12-x. Для сохранения структуры шпинели, аналогичной структуре Li4Ti5O12, значение x ограничивается, поскольку в том случае, если количество титана в степени окисления +3 будет слишком высоким, будет образовываться титанат лития со структурой Li2Ti3O7. Li2Ti3O7 имеет орторомбическую кристаллическую структуру с пространственной группой Pbnm (62). Хотя Li2Ti3O7 может быть пригоден для некоторых применений, шпинельная структура Li4Ti5O12 является более предпочтительной в связи со способностью интеркалировать больше лития в свою структуру, чем может быть интеркалировано в Li2Ti3O7, а также вследствие того, что Li4Ti5O12 демонстрирует низкое изменение объема с 8,3595 до 8,3538 Å между интеркалированным и деинтеркалированным состояниями, что обеспечивает превосходную циклируемость.
[0040] Способ получения Li4Ti5O12-x включает в себя стадию получения смеси диоксида титана и компонента на основе лития. Диоксид титана может быть использован как в форме рутила, так и в форме анатаза, так же как и любая форма оксида-гидроксида титана (например, Ti(OH)2xO2-x). Может быть использован любой компонент на основе лития, традиционно применяемый для получения Li4Ti5O12. Как правило, компонент на основе лития выбирается из группы, состоящей из карбоната лития, гидроксида лития, оксида лития и их комбинаций, чистота компонента на основе лития, как правило, составляет не менее 99%. Также могут быть использованы соли лития и органических кислот. Как правило, компонент на основе лития и оксид титана присутствуют в данной смеси в количествах, необходимых для обеспечивания атомного отношения Li/Ti=0,8 в конечном титанате лития по настоящему изобретению.
[0041] Смесь, в состав которой входит диоксид титана и компонент на основе лития, спекают в газовой атмосфере, содержащей восстановитель, с образованием титаната лития. В частности, смесь спекают при температуре не менее 450°C, чаще - от примерно 500 до 925°C, чаще всего - от примерно 700 до примерно 920°C, в течение не менее 30 минут, чаще - от примерно 60 до примерно 180 минут.
[0042] Восстановителем может быть любое вещество, способное восстановить кислород в Li4Ti5O12, и, как правило, выбирается из группы, состоящей из водорода, углеводорода, монооксида углерода и их комбинаций. Как правило, восстановитель присутствует в газовой атмосфере в объемной концентрации не менее 0,1%, обычно от примерно 1 до примерно 100% по объему, чтобы эффективно восстанавливать Li4Ti5O12 с получением Li4Ti5O12-x.
[0043] Кроме восстановителя, в состав газовой атмосферы, как правило, входит другой газ, выбираемый из группы инертных газов, неактивных газов и их комбинаций. С целью предотвращения нежелательных побочных реакций во время спекания, а также для предотвращения внедрения примесей в Li4Ti5O12-x может быть использован любой инертный газ, такой как любой благородный газ. К примеру, может быть использован такой неактивный газ, как чистый азот.
[0044] Следующие примеры имеют целью проиллюстрировать настоящее изобретение и ни в коем случае не должны рассматриваться как ограничивающие объем изобретения.
ПРИМЕРЫ
[0045] Титанат лития по настоящему изобретению с формулой Li4Ti5O12-x получают в соответствии с описанным выше способом по изобретению. В частности, традиционный Li4Ti5O12 сначала получают приготовлением смеси, включающей диоксид титана и соединение на основе лития. Смесь приготавливают, помещая диоксид титана и соединение на основе лития в сосуд в количествах, указанных в таблице 1. Диоксид титана и соединение на основе лития перемешивают и перемалывают в шаровой мельнице в течение примерно 60 минут при скорости вращения не менее 150 об/мин, при этом выполняют замеры гранулометрического состава до достижения размера частиц менее 5 мкм, предпочтительней - менее 2 мкм, с унимодальным распределением, обеспечивая достаточное перемешивание диоксида титана и компонента на основе лития. Затем смесь спекают в газовой атмосфере, создаваемой газом или газовой смесью с постоянным потоком, при температурах и в течение промежутков времени, указанных в таблице 1. В состав газа или газовой смеси входит восстановитель и инертный или неактивный газ в количествах, указанных в таблице 1. Получаемый титанат лития имеет формулу Li4Ti5O12-x где 0<x<0,02. Важные свойства титаната лития по настоящему изобретению также включены в приведенную ниже таблицу 1.
Таблица 1
Компонент Пример 1 Пример 2 Пример 3
Смесь
Диоксид титана, массовая доля в расчете на общую массу смеси 72,992 80,655 76,632
Компонент A на основе лития, массовая доля в расчете на общую массу смеси 27,008 - 14,178
Компонент B на основе лития, массовая доля в расчете на общую массу смеси 19,345 9,190
Всего 100,0 100,0 100,0
Газовая атмосфера
Поток восстановителя A, л/(мин·кг) в
расчете на общую массу смеси
0,002 - -
Поток восстановителя B, л/(мин·кг) в расчете на общую массу смеси - 0,0025 -
Поток восстановителя C, л/(мин·кг) в расчете на общую массу смеси - 0,05
Поток инертного газа A, л/(мин·кг) в расчете на общую массу смеси 0,048 0,0225
Поток неактивного газа B, л/(мин·кг) в расчете на общую массу смеси 0,095
Всего 0,05 0,025 0,1
Продолжительность спекания, мин 120 100 180
Температура спекания, °C 850 900 800
Значение X в формуле Li4Ti5O12-x 0,009±0,001 0,015±0,001 0,005±0,001
Обратимая электрохимическая емкость, мА·ч/г 168 170 160
Параметр кристаллической структуры (a), Å, при 300 K 8,36012 8,35978 8,36023
Логарифм электронной проводимости на постоянном токе, (См·см-1), при 300 K -5,2 -4,7 -5,9
[0046] Компонент A на основе лития - Li2CO3.
[0047] Компонент B на основе лития - LiOH.
[0048] Восстановитель A - H2.
[0049] Восстановитель B - CH4 (метан).
[0050] Восстановитель C - CO (монооксид углерода).
[0051] Инертный газ A - аргон.
[0052] Неактивный газ B - N2 (азот).
СРАВНИТЕЛЬНЫЙ ПРИМЕР
[0053] Традиционный титанат лития, имеющий формулу Li4Ti5O12, получают способом, аналогичным представленному выше; однако в газовой атмосфере отсутствует восстановитель. Количества компонентов, используемых для получения традиционного титаната лития, показаны в приведенной ниже таблице 2, так же как и соответствующие свойства традиционного титаната лития.
Таблица 2
Компонент Сравн. пример 1 Сравн. пример 2
Смесь
Диоксид титана, массовая доля в расчете на общую массу смеси 72,992 80,655
Компонент A на основе лития, массовая доля в расчете на общую массу смеси 27,008 -
Компонент B на основе лития, массовая доля в расчете на общую массу смеси - 19,345
Всего 100 100
Газовая атмосфера
Поток инертного газа A, л/(мин·кг) в расчете на общую массу смеси 0,1 -
Поток неактивного газа B, л/(мин·кг) в расчете на общую массу смеси - 0,2
Всего 0,1 0,2
Продолжительность спекания, мин 180 120
Температура спекания, °C 850 900
Значение X в формуле Li4Ti5O12-x 0±0,0005 0±0,0005
Обратимая электрохимическая емкость, мА·ч/г 145 150
Параметр кристаллической структуры (a), Å, при 300 K 8,36055 8,35915
Логарифм электронной проводимости на постоянном токе, (См·см-1), при 300 K <-9 ~-9
РЕЗУЛЬТАТЫ
[0054] Относительно обратимой электрохимической емкости и электронной проводимости, приведенных в примерах и сравнительных примерах, очевидно, что титанаты лития по настоящему изобретению демонстрируют более высокую электронную проводимость, чем традиционные титанаты лития из сравнительных примеров, демонстрируя при этом еще более высокую обратимую электрохимическую емкость.
[0055] Точнее говоря, спектры рентгеновской дифракции получены на рентгеновском дифрактометре Bruker D4 с излучением CuKα и детектором Sol-X. Все образцы, перечисленные в таблицах 1 и 2, дают четко определенные спектры, соответствующие кубической структуре (пр. гр. Fd-3m (227)). В большинстве образцов присутствуют небольшие количества остаточного TiO2 (<0,5%). Используется способ полнопрофильного анализа с моделью традиционной структуры (см., например, С. Шарнер (S. Scharner), В. Вепнер (W. Wepner), П. Шмид-Бойрманн (P. Schmid-Beurmann). «Доказательство двухфазного формирования после введения лития в шпинель Li1,33Ti1,67O4», Journal of the Electrochemical Society, т.146, I. 3, стр.857-861, 1999 г.), параметр (a) кубической кристаллической решетки рассчитан и приведен в таблицах 1 и 2. Два типовых спектра, один для Li4Ti5O12 из уровня техники, представленного в сравн. примерах 1 и 2, и один для Li4Ti5O11,985 1,985 по настоящему изобретению, представленного в примере 2, приведены на Фиг.4 и 5 соответственно.
[0056] Электронную проводимость образцов в примерах измеряют на таблетках диаметром 20 мм и толщиной 2-3 мм, которые были спрессованы и выдержаны внутри порошковых образцов при условиях синтеза до достижения состояния равновесия. Измерения проводят 4-зондовым методом на постоянном токе при напряжении 90 вольт. Попытки получить достоверные данные по образцам Li4Ti5O12 (таблица 2, сравн. примеры 1 и 2) являются неудовлетворительными, поскольку проводимость данных образцов находится очень близко к нижнему пределу измерения для данного способа. Поэтому был точно определен только порядок проводимости. Результаты измерений для Li4Ti5O11,985, синтезированного в соответствии с примером 2 в таблице 1, в узком интервале температур, близком к комнатной температуре, показаны на Фиг.6. Основными источниками расхождений в измерениях являются природа уплотненных порошковых образцов со значительной пористостью, а также близость к границам зерен и эффекты контактов.
[0057] Кинетика этапа спекания для восстановления Li4Ti5O12 тестируется способом температурно-управляемого восстановления. Во время линейного нагревания образцов в газовой атмосфере с восстановителем измерение концентрации газа проводится после прохождения над образцом. На Фиг.7 показана зависимость концентрации водорода, т.е. восстановителя, от температуры Li4Ti5O12. Разница между начальной концентрацией водорода и концентрацией водорода после прохождения газовой атмосферы над образцом дает количество водорода, использованное в процессе спекания. Путем интегрирования данной кривой, используя значения массы образца и потока газовой смеси, можно рассчитать значение x в формуле Li4Ti5O12-x как функцию температуры. Восстановление, происходящее на этапе спекания, становится заметным после достижения отметки 450°C и равномерно протекает до достижения отметки 925°C. На Фиг.8 показана зависимость логарифма x в формуле Li4Ti5O12-x от обратной абсолютной температуры (по Кельвину). Данная кривая имеет сходство с графиком Аррениуса и близка к линейной в интервале температур 500°C<Т<925°C.
[0058] На Фиг.9 показано, что аккумулятор на основе лития, в состав которого входит Li4Ti5O12-x, сохраняет электрохимическую емкость после множества циклов, а Фиг.10-13 демонстрируют пологие кривые зарядки и разрядки Li4Ti5O12-x даже после множества циклов зарядки и разрядки.
[0059] Очевидно, что качество активного вещества, влияющее на эксплуатационные характеристики вторичной литиевой батареи, регулируются его составом, а также связаны с различными свойствами порошка, включая размер частиц, гранулометрический состав частиц, удельную поверхность, кристалличность, размер кристаллов, гранулометрический состав кристаллов, объем пор, объемное распределение пор и кристалличность. Что касается данных свойств активного вещества, кристалличность определяется температурой нагревания и продолжительностью нагревания при перемешивании и нагревании выбранных соединения лития и соединения титана, а свойства порошка определяются последующим измельчением и просеиванием.
[0060] Однако если, например, улучшение кристалличности и микронизация кристаллических частиц регулируются одновременно, улучшение кристалличности достигается при сосредоточивании на температуре нагревания и продолжительности нагревания путем выбора высокой температуры и длительного времени нагревания, в то время как микронизация регулируется, большей частью, при низкой температуре в течение короткого времени. Таким образом, диапазон регулирования очень узок, поскольку существует необходимость выполнять одновременно противоречивые операции. Подобный пример можно привести, когда активное вещество получают из вторичных частиц и если укрупнение вторичных частиц и микронизацию первичных частиц регулируют одновременно, укрупнение вторичных частиц достигается в условиях высокой температуры и при продолжительном нагревании, а микронизация первичных частиц, как правило, регулируется при низкой температуре в течение короткого времени.
[0061] Таким образом, аналогично вышеупомянутому случаю, диапазон регулирования очень узок, поскольку существует необходимость выполнять противоречивые операции одновременно. Более того, диапазон регулирования является еще более узким, если при регулировании четырех вышеупомянутых пунктов необходимо достичь определенных целей. Таким образом, для регулирования еще более высокого качества активного вещества для высоких эксплуатационных характеристик батареи предполагается введение новых параметров получения.
[0062] Способы, предлагаемые для синтезирования титаната лития, включают в себя смешивание порошка карбоната лития или порошка гидроксида лития с оксидом титана различными способами смешивания и использование их в качестве прекурсора для кальцинирования, использование синтетического продукта или смеси, содержащих титан и литий, полученных из растворов, содержащих как титановые, так и литиевые ингредиенты, в качестве прекурсора для кальцинирования, а также приготовление смешанной суспензии из порошка соединения титана и содержащего литий раствора, после чего следует осаждение соединения лития путем сушки распылением для получения смеси порошка соединения титана и соединения лития, а также использование его в качестве прекурсора для кальцинирования.
[0063] Согласно настоящему изобретению в качестве исходных материалов для термального синтеза титаната лития используются одновременно разнообразные соединения лития, поскольку термальный синтез проводится с учетом характера присущих каждому соединению лития свойств, а также их поведения в реакции с соединениями титана, и путем регулирования свойств порошка, включая кристаллические характеристики, например кристалличность, размер кристаллов, гранулометрический состав кристаллов, а также свойства порошка, такие как размер частиц порошка и удельная поверхность, отражающие качество титаната лития, так чтобы его качество соответствовало характеристикам, необходимым для литиевых батарей.
[0064] Способ получения титаната лития по настоящему изобретению включает в себя термальный синтез после смешивания двух или более соединений лития с оксидом титана. Переход атомов, сопровождающий образование титаната лития во время термального синтеза, считается зависящим от того, является ли реакция твердофазной или жидкотвердофазной. После образования титаната лития рост кристаллических частиц зависит от существующего состояния окружающих частиц, температуры и времени.
[0065] Ссылаясь на вышесказанное, карбонат лития плавится при температуре 726°C и разлагается на оксид лития и диоксид углерода (углекислый газ) при температурах выше 1500°C. С другой стороны, гидроксид лития плавится при температуре 450°C и разлагается с выделением оксида лития при температурах выше 924°C. Точнее говоря, процесс нагревания для синтезирования титаната лития не является таким же, как в случае использования смеси карбоната лития и оксида титана и в случае использования смеси гидроксида лития и оксида титана в термальном синтезе. При проведении синтеза путем кальцинирования с оксидом титана при температуре ниже точки плавления соответствующего соединения лития, карбонат лития и оксид титана претерпевают твердофазную реакцию (т.е. реакцию твердого вещества с твердым веществом), в то время как гидроксид лития и оксид титана претерпевают жидкотвердофазную реакцию (т.е. реакцию жидкого вещества с твердым веществом), к примеру, при температуре 500°C. Считается, что в случае жидкотвердофазной реакции переход атомов, сопровождающий образование титаната лития, происходит легче по сравнению с твердофазной реакцией.
[0066] После образования титаната лития рост кристаллических частиц зависит от существующего состояния окружающих частиц, температуры и времени. Температура и время меняются в зависимости от типа использованных исходных материалов, что увеличивает диапазон регулировки качества титаната лития благодаря новым параметрам. В настоящем изобретении показательные соединения - карбонат лития, гидроксид лития и оксид титана, являются продуктами, производимыми в промышленности, однако соединения лития и соединение титана ими не ограничиваются.
[0067] Кроме того, как часть исходного материала для термального синтеза могут быть использованы разнообразные соединения титана, а также предварительно приготовленные соединения титана и лития. В приведенном в заявке примере использованы порошок оксида титана (-325 меш), производитель Alfa Aesar, порошок карбоната лития (-325 меш), производитель FMC, и порошок гидроксида лития (-200 меш), производитель Science Lab, но выбор материалов не ограничивается приведенными примерами. Кроме 30,5 г оксида титана, образец 1, содержащий 11,3 г карбоната лития, образец 2, содержащий 8,5 г карбоната лития и 3,3 г гидроксида лития, образец 3, содержащий 5,7 г карбоната лития и 6,5 г гидроксида лития, образец 4, содержащий 2,8 г карбоната лития и 9,8 г гидроксида лития, и образец 5, содержащий 13,0 г гидроксида лития, отдельно тщательно перемешивали в тиглях для замешивания. Смеси отдельно подавали в керамический реактор, а термальный синтез проводили в муфельной печи. Условия нагрева включают в себя нагревание от комнатной температуры до 150°C и поддержание данной температуры в течение 2 часов, последующее нагревание до 450°C и поддержание данной температуры в течение 2 часов и дальнейшее нагревание до 950°C и поддержание данной температуры в течение 8 часов, после чего следует охлаждение до комнатной температуры для получения синтетических продуктов.
[0068] Подтверждены рост первичных частиц и эффект подавления, оказываемый на размер вторичных частиц, при увеличении количества исходного материала гидроксида лития. Точнее говоря, несмотря на то, что используется тот же оксид титана и условия нагрева являются одинаковыми, при увеличении количества гидроксида лития вместо карбоната лития имеется возможность лучшего регулирования качества. Кроме того, подтверждены различия в кристалличности. Проведена оценка различий данных батарей и проверены их эксплуатационные характеристики. Эти новые параметры получения предусмотрены настоящим изобретением, чтобы дать вышеупомянутые различия в получении титаната лития желаемого качества.
[0069] Описание данного изобретения приводится для наглядности, и необходимо понимать, что использованная терминология предназначена для описания, а не в качестве ограничения. Очевидно, что в свете вышеупомянутых идей возможно множество модификаций и вариаций настоящего изобретения, и практическое применение данного изобретения может отличаться от конкретного приведенного здесь описания.

Claims (9)

1. Способ получения титаната лития, имеющего следующую формулу: Li4Ti5O12-x, где 0<x<0,02, включающий в себя этапы:
получение смеси оксида титана и компонента на основе лития, так чтобы компонент на основе лития и оксид титана присутствовали в полученной смеси в количествах, необходимых для обеспечивания атомного отношения лития к титану 0,8, причем компонент на основе лития включает порошок карбоната лития и порошок гидроксида лития;
использование полученной смеси в качестве прекурсора для кальцинирования; и
спекание данной смеси в газовой атмосфере, содержащей восстановитель, с образованием титаната лития, причем этап спекания вызывает твердофазную реакцию между порошком карбоната лития и оксидом титана и жидкотвердофазную реакцию между порошком гидроксида лития и оксидом титана.
2. Способ по п.1, дополнительно включающий этап осаждения компонента на основе лития путем сушки распылением с получением смеси оксида титана и компонента на основе лития.
3. Способ по п.1, при этом восстановитель выбирают из группы, состоящей из водорода, углеводорода, монооксида углерода и их комбинаций.
4. Способ по п.1, при этом восстановитель присутствует в газовой атмосфере в объемной концентрации не менее 0,1%.
5. Способ по п.1, при этом в состав газовой атмосферы дополнительно входит другой газ, выбранный из группы, состоящей из инертного газа, неактивного газа и их комбинаций.
6. Способ по п.1, при этом смесь спекают при температуре не менее 450°C.
7. Способ по п.6, при этом смесь спекают в течение не менее 30 минут.
8. Способ по п.1, дополнительно включающий регулирование гранулометрического состава кристаллов компонента на основе лития.
9. Способ по п.1, дополнительно включающий смешивание двух компонентов на основе лития, выбранных из группы порошка карбоната лития и порошка гидроксида лития.
RU2010150909/05A 2008-05-14 2009-05-14 Способ получения титаната лития RU2519840C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/152,352 2008-05-14
US12/152,352 US7820137B2 (en) 2006-08-04 2008-05-14 Lithium titanate and method of forming the same
PCT/US2009/043962 WO2009140501A1 (en) 2008-05-14 2009-05-14 Lithium titanate and method of forming the same

Publications (2)

Publication Number Publication Date
RU2010150909A RU2010150909A (ru) 2012-06-20
RU2519840C2 true RU2519840C2 (ru) 2014-06-20

Family

ID=41319058

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010150909/05A RU2519840C2 (ru) 2008-05-14 2009-05-14 Способ получения титаната лития

Country Status (7)

Country Link
US (2) US7820137B2 (ru)
EP (1) EP2294013A4 (ru)
JP (1) JP2011520752A (ru)
KR (1) KR20110013460A (ru)
CN (1) CN102026920A (ru)
RU (1) RU2519840C2 (ru)
WO (1) WO2009140501A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658305C1 (ru) * 2017-06-15 2018-06-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Способ изготовления активной массы анода литиевого аккумулятора

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153888B1 (ko) * 2009-09-23 2012-06-18 한국세라믹기술원 수산화 티타늄을 이용한 나노구상 티탄산니튬 산화물 및 그 제조방법
EP2554517B1 (en) 2010-03-31 2017-08-02 Nippon Chemi-Con Corporation Composite of lithium titanate nanoparticles and carbon, electrode containing said electrode material, electrochemical capacitor and method for producing said composite
CN102208609B (zh) * 2010-03-31 2014-05-28 比亚迪股份有限公司 一种用于锂离子电池的钛酸锂材料制备方法及钛酸锂材料
JP5829796B2 (ja) * 2010-03-31 2015-12-09 日本ケミコン株式会社 チタン酸リチウムナノ粒子とカーボンの複合体の製造方法
KR101250587B1 (ko) * 2010-04-20 2013-04-03 연세대학교 산학협력단 전이금속 산화물/탄소나노튜브 복합체 제조 방법 및 그 복합체
EP2612840A4 (en) * 2010-08-31 2016-07-20 Toda Kogyo Corp LITHIUM TITANATE PARTICLE POWDER AND METHOD OF PREPARATION THEREOF, MG-CONTAINING LITHIUM TITANATE PARTICLE POWDER, AND METHOD OF PRODUCING THEREOF, NEGATIVELECTECTIVE ACTIVE MATERIAL IN PARTICLE POWDER FOR NON-ACID ELECTROLYTE SECONDARY BATTERY AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US9269948B2 (en) 2010-11-16 2016-02-23 Toyota Jidosha Kabushiki Kaisha Positive electrode active material, process for producing same, and lithium secondary battery using same
JP2012146763A (ja) * 2011-01-11 2012-08-02 Nippon Chemicon Corp 電気化学キャパシタ
US20120251885A1 (en) * 2011-03-28 2012-10-04 Blue Juice, Inc. High power, wide-temperature range electrode materials, electrodes, related devices and methods of manufacture
JP5698052B2 (ja) * 2011-03-30 2015-04-08 株式会社クボタ チタン酸リチウムの製造方法、電極、及びリチウムイオン二次電池
DE102011016836A1 (de) * 2011-04-12 2012-10-18 Süd-Chemie AG Verfahren zur Herstellung von Lithiumtitan-Spinell
JP5940529B2 (ja) * 2011-06-10 2016-06-29 東邦チタニウム株式会社 チタン酸リチウム凝集体及びこれを用いたリチウムイオン二次電池、リチウムイオンキャパシタ
CN102354748A (zh) * 2011-09-30 2012-02-15 苏州大学 一种锂离子电池负极材料及其制备方法
JP5884084B2 (ja) * 2011-11-29 2016-03-15 パナソニックIpマネジメント株式会社 負極活物質、蓄電デバイス及び負極活物質の製造方法
JP6053325B2 (ja) * 2012-05-22 2016-12-27 スリーエム イノベイティブ プロパティズ カンパニー 焼成物、金属イオン吸着材、金属イオンの除去方法、及び金属イオン除去設備
JP5968712B2 (ja) * 2012-07-27 2016-08-10 東邦チタニウム株式会社 チタン酸リチウム粉体の製造方法、及び該チタン酸リチウム粉体を用いたリチウムイオン二次電池及びリチウムイオンキャパシタ
CN103700828B (zh) * 2012-09-27 2016-03-09 清华大学 锂离子电池正极复合材料
US9059451B2 (en) 2012-10-18 2015-06-16 GM Global Technology Operations LLC Coatings for lithium titanate to suppress gas generation in lithium-ion batteries and methods for making and use thereof
KR101515991B1 (ko) 2012-11-21 2015-04-30 삼화콘덴서공업주식회사 티탄계 산화물 복합체 제조방법
US9034519B2 (en) 2013-01-18 2015-05-19 GM Global Technology Operations LLC Ultrathin surface coating on negative electrodes to prevent transition metal deposition and methods for making and use thereof
KR101479626B1 (ko) 2013-05-03 2015-01-06 삼화콘덴서공업주식회사 Lto/탄소 복합체, lto/탄소 복합체 제조방법, lto/탄소 복합체를 이용한 이용한 음극활물질 및 음극활물질을 이용한 하이브리드 슈퍼커패시터
CN103332735A (zh) * 2013-07-04 2013-10-02 南京航空航天大学 氢化钛酸锂纳米材料的制备方法
RU2538254C1 (ru) * 2013-07-17 2015-01-10 Хожбауди Хамзатович Альвиев Способ получения наноразмерных порошков композита на основе титаната лития
CN103474645B (zh) * 2013-09-22 2016-01-20 四川科能锂电有限公司 钛酸锂的制备方法
US9531004B2 (en) 2013-12-23 2016-12-27 GM Global Technology Operations LLC Multifunctional hybrid coatings for electrodes made by atomic layer deposition techniques
US9564639B2 (en) 2014-02-12 2017-02-07 GM Global Technology Operations LLC High performance silicon electrodes having improved interfacial adhesion between binder and silicon
US11223042B2 (en) * 2014-03-31 2022-01-11 Tronox Llc Lithium-intercalated titanium dioxide, lithium titanate particles made therefrom, and related methods
CN104600269A (zh) * 2014-04-25 2015-05-06 上海应用技术学院 一种石墨烯/氧缺位钛酸锂复合材料的制备方法
CN104617287A (zh) * 2014-04-25 2015-05-13 上海应用技术学院 一种锂离子电池负极材料纳米氧缺位型钛酸锂的制备方法
CN105185973B (zh) * 2014-05-28 2019-04-16 神华集团有限责任公司 一种复合材料及其制备以及含有该材料的锂离子电池负极活性物质、负极材料、负极和电池
JP6329034B2 (ja) * 2014-09-01 2018-05-23 東邦チタニウム株式会社 チタン酸リチウムの製造方法およびそれを用いたリチウムイオン二次電池の製造方法
KR101924036B1 (ko) * 2015-06-09 2018-11-30 주식회사 엘지화학 리튬 이차전지용 음극활물질의 제조방법, 이에 의해 제조된 음극활물질, 및 이를 포함하는 음극 슬러리 및 리튬 이차전지
JP6012057B2 (ja) * 2015-06-22 2016-10-25 日本ケミコン株式会社 チタン酸リチウムナノ粒子の製造方法
JP6612566B2 (ja) * 2015-09-16 2019-11-27 株式会社東芝 リチウムイオン非水電解質二次電池用負極、リチウムイオン非水電解質二次電池、電池パック及び自動車
CN105810901A (zh) * 2016-03-14 2016-07-27 中国科学院广州能源研究所 一种Ti3+/Ti4+混合价态的掺杂铁元素的锂离子电池钛酸锂负极材料及其制备方法
US10396360B2 (en) 2016-05-20 2019-08-27 Gm Global Technology Operations Llc. Polymerization process for forming polymeric ultrathin conformal coatings on electrode materials
US10164245B2 (en) 2016-09-19 2018-12-25 GM Global Technology Operations LLC High performance silicon electrodes having improved interfacial adhesion between binder, silicon and conductive particles
JP6400250B1 (ja) * 2017-01-20 2018-10-03 東邦チタニウム株式会社 電池特性にバラツキがないチタン酸リチウム、これを用いたリチウムイオン二次電池、及びその製造方法
US11228037B2 (en) 2018-07-12 2022-01-18 GM Global Technology Operations LLC High-performance electrodes with a polymer network having electroactive materials chemically attached thereto
US10868307B2 (en) 2018-07-12 2020-12-15 GM Global Technology Operations LLC High-performance electrodes employing semi-crystalline binders
US10741873B2 (en) * 2018-07-16 2020-08-11 Ford Global Technologies, Llc Composition for sintered lithium titanate-lithium lanthanum titanium oxide composite
KR102640207B1 (ko) * 2018-11-05 2024-02-23 삼성전자주식회사 혼합전도체, 이를 포함하는 전기화학소자 및 그 제조방법
KR102361162B1 (ko) 2020-06-03 2022-02-10 한국세라믹기술원 고출력 특성을 갖는 하이브리드 슈퍼커패시터용 음극활물질 제조 방법과, 이를 갖는 하이브리드 슈퍼커패시터 및 그 제조 방법
US11799083B2 (en) 2021-08-26 2023-10-24 GM Global Technology Operations LLC Lithiation additive for a positive electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1119982A1 (ru) * 1983-08-05 1984-10-23 Институт химии Уральского научного центра АН СССР Способ получени титаната лити
JP2002211925A (ja) * 2000-11-20 2002-07-31 Ishihara Sangyo Kaisha Ltd チタン酸リチウム及びその製造方法並びにそれを用いてなるリチウム電池

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1920719A (en) * 1931-01-15 1933-08-01 Stich Eugen Aerating device
US2517525A (en) * 1947-10-13 1950-08-01 Sun Oil Co Catalytic reaction apparatus
US3441216A (en) * 1964-11-16 1969-04-29 Raymond J Good Air diffuser unit for aerating sewage
US3708206A (en) * 1970-07-20 1973-01-02 Union Carbide Corp Process for leaching base elements, such as uranium ore, in situ
US3814394A (en) * 1971-11-17 1974-06-04 M Murray Apparatus for encapsulating hot gases from high stacks
US3823776A (en) * 1973-04-26 1974-07-16 Mobil Oil Corp Oil recovery method by oxidation and forming surfactants in situ
US4007118A (en) * 1975-10-16 1977-02-08 Cubic Corporation Ozone oxidation of waste water
US4021347A (en) * 1976-01-09 1977-05-03 Teller Ray E Sewage treatment system
US4203837A (en) * 1976-01-16 1980-05-20 Hoge John H Process for removal of discrete particulates and solutes from liquids by foam flotation
US4838434A (en) * 1979-11-15 1989-06-13 University Of Utah Air sparged hydrocyclone flotation apparatus and methods for separating particles from a particulate suspension
US4268283A (en) * 1979-12-31 1981-05-19 W-K-M Wellhead Systems, Inc. Fluid control means for geothermal wells
US4310057A (en) * 1980-05-30 1982-01-12 Brame Durward B Apparatus for extracting subterranean gas samples
USRE34890E (en) * 1981-08-06 1995-04-04 Gore Enterprise Holdings, Inc. Waterproof shoe construction
US4837153A (en) * 1984-08-22 1989-06-06 Laurenson Jr John G Compost air injection and evacuation system with improved air control
US4639314A (en) * 1985-01-18 1987-01-27 Tyer Robert R Fine bubble diffuser and diffuser system having filtered blow-down tube
US4684479A (en) * 1985-08-14 1987-08-04 Arrigo Joseph S D Surfactant mixtures, stable gas-in-liquid emulsions, and methods for the production of such emulsions from said mixtures
US4941957A (en) * 1986-10-22 1990-07-17 Ultrox International Decomposition of volatile ogranic halogenated compounds contained in gases and aqueous solutions
DE3703824A1 (de) * 1987-02-07 1988-08-18 Thomae Gmbh Dr K Verfahren zur simultanen chemischen und biologischen beseitigung fester und fluessiger organischer abfaelle und vorrichtungen zur durchfuehrung dieses verfahrens
US4730672A (en) * 1987-03-04 1988-03-15 Midwest Water Resource, Inc. Method of removing and controlling volatile contaminants from the vadose layer of contaminated earth
US4804050A (en) * 1987-04-30 1989-02-14 K-V Associates, Inc. Method of underground fluid sampling
US5205927A (en) * 1987-09-25 1993-04-27 Battelle Memorial Institute Apparatus for treatment of soils contaminated with organic pollutants
US5227184A (en) * 1987-10-30 1993-07-13 American Water Purification, Inc. Method for sanitizing food products
CA1321664C (en) * 1988-05-04 1993-08-24 Stan Houser Method and apparatus for removing iron from well water
US4844795A (en) * 1988-05-13 1989-07-04 Bassim Halwani Method and apparatus for decontaminating the aquifer of hydrocarbons
DE8808089U1 (ru) * 1988-06-23 1988-10-06 Ieg - Industrie-Engineering Gmbh, 7410 Reutlingen, De
US4832122A (en) * 1988-08-25 1989-05-23 The United States Of America As Represented By The United States Department Of Energy In-situ remediation system and method for contaminated groundwater
US5078921A (en) * 1988-10-21 1992-01-07 The Deister Concentrator Company, Inc. Froth flotation apparatus
DE4001012C1 (ru) * 1990-01-16 1991-05-02 Ieg - Industrie-Engineering Gmbh, 7410 Reutlingen, De
US5221159A (en) * 1990-03-28 1993-06-22 Environmental Improvement Technologies, Inc. Subsurface contaminant remediation, biodegradation and extraction methods and apparatuses
US5215680A (en) * 1990-07-10 1993-06-01 Cavitation-Control Technology, Inc. Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles
US5122165A (en) * 1990-07-10 1992-06-16 International Environmental Systems, Inc. Removal of volatile compounds and surfactants from liquid
US5133906A (en) * 1990-10-09 1992-07-28 Tony Louis Aerator
US5126111A (en) * 1990-12-05 1992-06-30 Nutech Energy Systems Inc. Fluid purification
US5180503A (en) * 1991-05-10 1993-01-19 The Board Of Trustees Of The Leland Stanford Junior University In-situ vapor stripping for removing volatile organic compounds from groundwater
US5389267A (en) * 1991-05-10 1995-02-14 The Board Of Trustees Of The Leland Stanford Junior University In-situ vapor stripping for removing volatile organic compounds from groundwater
US5178491A (en) * 1991-06-19 1993-01-12 International Technology Corporation Vapor-phase nutrient delivery system for in situ bioremediation of soil
CA2182668C (en) * 1992-01-07 2004-09-21 Joseph A. Pezzullo Process for soil decontamination by oxidation and vacuum extraction
US6217767B1 (en) * 1992-02-03 2001-04-17 Clark Environmental Services Vacuum sparging process for treating contaminated groundwater and/or wastewater
US5427693A (en) * 1992-02-10 1995-06-27 O-Three Limited Modular ozone water treatment apparatus and associated method
US5178755A (en) * 1992-02-20 1993-01-12 Estr Inc. UV-enhanced ozone wastewater treatment system
US5302286A (en) * 1992-03-17 1994-04-12 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for in situ groundwater remediation
DE4227570C1 (de) * 1992-05-29 1993-09-30 Ieg Ind Engineering Gmbh Anordnung zum Austreiben leichtflüchtiger Verunreinigungen an Ort und Stelle
US5332333A (en) * 1993-01-27 1994-07-26 Bentley Harold W Vacuum extraction method and apparatus for removing volatile contaminants from the vadose layer of contaminated earth
US5286141A (en) * 1993-02-12 1994-02-15 Vigneri Ronald J Method and system for remediation of groundwater contamination
US5430228A (en) * 1993-02-24 1995-07-04 Hughes Aircraft Company Ozone methods for the destruction of chemical weapons
JP3502118B2 (ja) 1993-03-17 2004-03-02 松下電器産業株式会社 リチウム二次電池およびその負極の製造法
US5425598B1 (en) * 1993-08-12 1997-07-15 Leslie H Pennington System for sparging ground water contaminants
ZA94750B (en) 1993-09-02 1994-09-29 Technology Finance Corp Electrochemical cell
US5406950A (en) * 1993-12-23 1995-04-18 Mallinckrodt Medical, Inc. Inhalable contrast agent
US5431286A (en) * 1994-01-06 1995-07-11 Inco Limited Recirculating column flotation apparatus
US5624635A (en) * 1994-01-18 1997-04-29 Pryor; Alan E. Method and apparatus for ozone treatment of soil
US5480549A (en) * 1994-01-25 1996-01-02 The United States Of America As Represented By The United States Department Of Energy Method for phosphate-accelerated bioremediation
US5398757A (en) * 1994-02-22 1995-03-21 K N Energy, Inc. Mono-well for soil sparging and soil vapor extraction
US5402848A (en) * 1994-04-07 1995-04-04 Kelly; Leo G. Method and apparatus for conducting environmental procedures
US6210955B1 (en) * 1994-10-05 2001-04-03 Gas Research Institute Foam transport process for in-situ remediation of contaminated soils
US5525008A (en) * 1995-01-11 1996-06-11 Wilson; James T. Remediation apparatus and method for organic contamination in soil and groundwater
SE503894C2 (sv) * 1995-01-19 1996-09-30 Norrtaelje Kommun Anordning för distribution och dispersion av luftmättat vatten
US5622450A (en) * 1995-03-24 1997-04-22 Grant, Jr.; Richard P. Pressure extraction process for removing soil and groundwater contaminants
US6827861B2 (en) * 1995-05-05 2004-12-07 William B. Kerfoot Gas-gas-water treatment system for groundwater and soil remediation
US5855775A (en) * 1995-05-05 1999-01-05 Kerfoot; William B. Microporous diffusion apparatus
US5609798A (en) * 1995-06-07 1997-03-11 Msp Corporation High output PSL aerosol generator
US6403034B1 (en) * 1995-10-31 2002-06-11 Christopher Nelson Method of reducing the concentration of recalcitrant organic contamination in a soil matrix
US5741427A (en) * 1996-03-14 1998-04-21 Anesys Corp. Soil and/or groundwater remediation process
US6116516A (en) * 1996-05-13 2000-09-12 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
US5620593A (en) * 1996-06-12 1997-04-15 Stagner; Joseph C. Multi-stage in-well aerator
IL118741A0 (en) * 1996-06-26 1996-10-16 Ozontech Ltd Ozone application for disinfection purification and deodorization
US6022640A (en) * 1996-09-13 2000-02-08 Matsushita Electric Industrial Co., Ltd. Solid state rechargeable lithium battery, stacking battery, and charging method of the same
US6086769A (en) * 1996-09-16 2000-07-11 Commodore Separation Technologies, Inc. Supported liquid membrane separation
US5925257A (en) * 1996-09-27 1999-07-20 Albelda; David Method and apparatus for removing biofilm from an aqueous liquid
US6007274A (en) * 1997-05-19 1999-12-28 Arcadis Geraghty & Miller In-well air stripping, oxidation, and adsorption
US5879108A (en) * 1997-06-09 1999-03-09 Eder Associates Air sparging/soil vapor extraction apparatus
CN1155134C (zh) 1997-07-15 2004-06-23 索尼株式会社 非水基电解质二次电池
US5860598A (en) * 1997-08-14 1999-01-19 Cruz; Luis R Fog atomizer
JPH11333476A (ja) * 1998-05-29 1999-12-07 Mitsubishi Electric Corp オゾン混合処理法およびオゾン混合処理装置
US6221531B1 (en) * 1998-07-09 2001-04-24 The University Of Chicago Lithium-titanium-oxide anodes for lithium batteries
US6083403A (en) * 1998-11-05 2000-07-04 Nalco Chemical Company Stabilized substituted aminomethane-1, 1-diphosphonic acid n-oxides and use thereof in preventing scale and corrosion
DE29821687U1 (de) * 1998-12-05 2000-04-06 Gea Finnah Gmbh Vorrichtung zum Erzeugen eines Aerosols
US6645673B2 (en) 1999-02-16 2003-11-11 Toho Titanium Co., Ltd. Process for producing lithium titanate and lithium ion battery and negative electrode therein
US6251289B1 (en) * 1999-06-03 2001-06-26 Grt, Inc. Treatment of contaminated liquids with oxidizing gases and liquids
US6352387B1 (en) * 1999-12-02 2002-03-05 Robert A. Briggs Recirculation-enhanced subsurface reagent delivery system
US6436285B1 (en) * 1999-12-22 2002-08-20 William B. Kerfoot Laminated microporous diffuser
US6364162B1 (en) * 2000-01-06 2002-04-02 Johnson Research & Development Co. Automatic pressurized fluid gun
US6367555B1 (en) * 2000-03-15 2002-04-09 Corley P. Senyard, Sr. Method and apparatus for producing an oil, water, and/or gas well
US6582611B1 (en) * 2000-07-06 2003-06-24 William B. Kerfoot Groundwater and subsurface remediation
US6409487B1 (en) * 2000-09-12 2002-06-25 Dc Shoes, Inc. Shoe with inflatable bladder and secure deflation valve
US6533499B2 (en) * 2001-03-13 2003-03-18 Boyd Breeding Soil and groundwater remediation system
US6805798B2 (en) * 2001-05-18 2004-10-19 William B. Kerfoot Environmental remediation method and apparatus
US6866781B2 (en) * 2001-06-06 2005-03-15 A. Russell Schindler Direct oxygen injection groundwater remediation method and system
JP4073868B2 (ja) * 2001-07-20 2008-04-09 アルテアナノ インコーポレイテッド チタン酸リチウムの製造方法
US6733207B2 (en) * 2002-03-14 2004-05-11 Thomas R. Liebert, Jr. Environmental remediation system and method
US6921477B2 (en) * 2002-04-08 2005-07-26 Steven L. Wilhelm Groundwater treatment system and method
US6916579B2 (en) * 2002-05-30 2005-07-12 Enerl Battery Company Cathode material for lithium battery
US7264419B2 (en) * 2003-03-19 2007-09-04 Applied Process Technology, Inc. System and method for remediating contaminated soil and groundwater in situ
US7208090B2 (en) * 2003-12-23 2007-04-24 Usfilter Corporation Wastewater treatment control
JP2005340078A (ja) * 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用活物質、その製造方法およびリチウムイオン二次電池
US7541016B2 (en) * 2006-04-11 2009-06-02 Enerdel, Inc. Lithium titanate and method of forming the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1119982A1 (ru) * 1983-08-05 1984-10-23 Институт химии Уральского научного центра АН СССР Способ получени титаната лити
JP2002211925A (ja) * 2000-11-20 2002-07-31 Ishihara Sangyo Kaisha Ltd チタン酸リチウム及びその製造方法並びにそれを用いてなるリチウム電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658305C1 (ru) * 2017-06-15 2018-06-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Способ изготовления активной массы анода литиевого аккумулятора

Also Published As

Publication number Publication date
CN102026920A (zh) 2011-04-20
US7820137B2 (en) 2010-10-26
WO2009140501A1 (en) 2009-11-19
JP2011520752A (ja) 2011-07-21
EP2294013A1 (en) 2011-03-16
EP2294013A4 (en) 2013-06-12
US8052955B2 (en) 2011-11-08
US20090136415A1 (en) 2009-05-28
KR20110013460A (ko) 2011-02-09
RU2010150909A (ru) 2012-06-20
US20110044886A1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
RU2519840C2 (ru) Способ получения титаната лития
US7541016B2 (en) Lithium titanate and method of forming the same
JP5265187B2 (ja) リチウム金属酸化物材料、及び合成方法と用途
US7820327B2 (en) Lithium titanate and lithium cells and batteries including the same
EP2115801B1 (en) Lithium titanate and lithium cells and batteries including the same
US20220384797A1 (en) Li/na-ion battery anode materials
US9437873B2 (en) Spinel-type lithium manganese-based composite oxide
EP3683870A1 (en) Manganese spinel doped with magnesium, cathode material comprising same, method for preparing same and lithium ion battery comprising same
KR101340821B1 (ko) 리튬 이차 전지용 고전압 음극 활성 물질
JP2021520333A (ja) O3/p2混合相ナトリウム含有ドープ層状酸化物材料
RU2397576C1 (ru) Анодный материал для литий-ионных хит и способ его получения
GB2588254A (en) Li/Na-ion battery anode materials
US9960423B2 (en) Spinel-type lithium metal composite oxide
KR100830974B1 (ko) 리튬 이온 이차 전지용 음극 활물질의 제조 방법, 이에의해 제조된 리튬 이온 이차 전지용 음극 활물질, 및 이를포함하는 리튬 이온 이차 전지
JP7135354B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
KR20220022462A (ko) 무질서 암염 물질을 갖는 캐소드 및 캐소드를 형성하는 방법
JP2021147314A (ja) 遷移金属複合水酸化物粒子、遷移金属複合水酸化物粒子の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
KR102533325B1 (ko) 리튬 전이 금속 복합 산화물 및 제조 방법
JPH10241689A (ja) 非水系電池用電極活物質
Heidari et al. Li 0.33 La 0.56 TiO 3, a novel coating to improve the electrochemical properties and safety of NCM523 cathode materials for Li-ion batteries
JP2023160251A (ja) 高ニッケルカソード活物質の製造方法およびカソード電極の製造方法
Griffith et al. Translating a Material Discovery into a Commercial Product in the Modern Lithium-ion Battery Market

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160515