RU2499016C2 - Способ производства материалов из карбоната кальция с улучшенными адсорбционными свойствами поверхности частиц - Google Patents

Способ производства материалов из карбоната кальция с улучшенными адсорбционными свойствами поверхности частиц Download PDF

Info

Publication number
RU2499016C2
RU2499016C2 RU2011127182/05A RU2011127182A RU2499016C2 RU 2499016 C2 RU2499016 C2 RU 2499016C2 RU 2011127182/05 A RU2011127182/05 A RU 2011127182/05A RU 2011127182 A RU2011127182 A RU 2011127182A RU 2499016 C2 RU2499016 C2 RU 2499016C2
Authority
RU
Russia
Prior art keywords
calcium carbonate
lithium
pcc
dry
stage
Prior art date
Application number
RU2011127182/05A
Other languages
English (en)
Other versions
RU2011127182A (ru
Inventor
Патрик А.К. ГЕЙН
Маттиас Бури
Беат Карт
Клаудиа ПУДАК
Original Assignee
Омиа Девелопмент Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40723198&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2499016(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Омиа Девелопмент Аг filed Critical Омиа Девелопмент Аг
Publication of RU2011127182A publication Critical patent/RU2011127182A/ru
Application granted granted Critical
Publication of RU2499016C2 publication Critical patent/RU2499016C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/041Grinding
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/69Water-insoluble compounds, e.g. fillers, pigments modified, e.g. by association with other compositions prior to incorporation in the pulp or paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/385Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H3/00Paper or cardboard prepared by adding substances to the pulp or to the formed web on the paper-making machine and by applying substances to finished paper or cardboard (on the paper-making machine), also when the intention is to impregnate at least a part of the paper body
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paper (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

Изобретение может быть использовано в химической промышленности. Способ производства содержащих карбонат кальция материалов, поверхность частиц которых имеет улучшенные свойства адсорбции диспергатора, включает следующие стадии: a) получение, по меньшей мере, одного содержащего карбонат кальция материала в виде водной суспензии или в сухом виде; b) получение, по меньшей мере, одного содержащего ионы лития соединения, выбранного из группы, в которую входят гидроксид лития, или оксид лития, или неорганические и/или органические мономерные соли лития, выбранные из группы, в которую входят соли одно- или многоосновных кислот, например карбонат лития, сульфаты лития, цитрат лития, гидрокарбонат лития, ацетат лития, хлорид лития, фосфат лития, в сухом виде или в водном растворе, и их смеси; c) сочетание, по меньшей мере, одного содержащего ионы лития соединения по стадии b) и, по меньшей мере, одного содержащего карбонат кальция материала по стадии a). Изобретение позволяет получить содержащий карбонат кальция материал в сухом виде или в виде суспензии, имеющей высокую концентрацию сухого вещества и одновременно низкую вязкость по Брукфильду, которая сохраняет устойчивость с течением времени, и хорошую буферную способность по отношению к pH. 7 н. и 37 з.п. ф-лы, 2 ил., 10 табл., 9 пр.

Description

Настоящее изобретение относится к технической области суспензий, содержащих карбонаты материалов или высушенных минеральных материалов и их применению в производстве бумаги, красок и пластмасс, в частности их применению в бумажной промышленности, включая изготовление или производство и/или покрытие бумажных листов.
В способе производства листов бумаги, картона или аналогичного продукта специалисты в данной области все больше стремятся к частичной замене дорогостоящего целлюлозного волокна более дешевым минеральным материалом в целях уменьшения себестоимости бумаги с одновременным улучшением ее свойств.
Данный содержащий карбонат кальция материал, который хорошо известен специалистам в данной области, представляет собой, например, природный (тонкодисперсный) карбонат кальция (GCC), в том числе мрамор, кальцит, известняк, и/или мел, и/или синтетический (осажденный) карбонат кальция (PCC), включая скаленоэдрическую, и/или ромбоэдрическую, и/или кальцитную, и/или ватеритную кристаллические формы, и разнообразные аналогичные наполнители, содержащие карбонаты кальция, в том числе доломитные или смешанные наполнители на основе карбоната, содержащие различные металлы, например, в частности, связанный с магнием и его аналогами кальций, различные материалы, включая тальк или его аналоги, и смеси данных наполнителей, в том числе, например, смеси талька и карбоната кальция или каолина и карбоната кальция смеси, или смеси природного карбоната кальция с гидроксидом алюминия, слюдой или с синтетическими или натуральными волокнами или совместные структуры минералов, в том числе совместные структуры талька и карбоната кальция или талька и диоксида титана.
Уже давно стало вполне обычным в процессе мокрого помола использование водорастворимых полимеров на основе частично или полностью нейтрализованной полиакриловой кислоты или ее производных (EP 0046573, EP 0100947, EP 0100948, EP 0129329, EP 0261039, EP 0516656, EP 0542643, EP 0542644) в качестве диспергаторов для получения водных минеральных суспензий, но данные диспергаторы не позволяют выполнить требуемые вышеуказанные критерии чистоты и вязкости или не позволяют обеспечить требуемую устойчивость pH водных минеральных суспензий с течением времени, или не обладают достаточной способностью рассеяния видимого света, которое требует конечный потребитель применяемой бумаги.
Специалистам известно решение другого типа, описанное в патентных заявках WO 02/49766, EP 0850685, WO 2008/010055, WO 2007/072168, о получении водных суспензий очищенных минеральных материалов, обеспечивающее высокую концентрацию сухого вещества и низкую вязкость по Брукфильду, которая сохраняет устойчивость с течением времени. Известное решение такого типа предусматривает использование определенных диспергаторов, например, сополимеров акриловой кислоты с малеиновой кислотой, или определенную скорость нейтрализации, или использование неорганического соединения фтора для введения в водную суспензию минеральных частиц, которая образуется на стадии механического и/или термического концентрирования после стадии мокрого помола, при низком содержании твердой фазы без использования диспергатора или диспергирующего вещества.
Кроме того, специалистам в данной области известен патент США 3006779, который описывает совершенно иное решение на основании неорганического диспергатора, состоящего из гомогенной смеси натрий-фосфатного стекла, оксида цинка и соли или гидроксида калия или лития.
Аналогично, в патентной заявке WO 2006/081501 предлагается применение неорганического диспергатора, например, силиката лития.
Наконец, диссертация, озаглавленная «Влияние адсорбции полиэлектролита на реологию концентрированной дисперсии кальцита» (Robert Petzenhauser, 1993 г.), в которой изучено влияние различных полиакрилатов на суспензию кальцита, подтверждает существование трудностей в отношении устойчивости вязкости получаемых суспензий со всеми изученными полиакрилатами, включая полиакрилаты лития.
Тем не менее, ни одно из известных решений не позволяет специалистам решить задачу получения содержащего карбонат кальция материала в сухом виде или в виде суспензии, имеющей высокую возможную концентрацию сухого вещества и одновременно низкую вязкость по Брукфильду, которая сохраняет устойчивость с течением времени, и хорошую буферную способность по отношению к pH, а также не позволяет работать с уменьшенным содержанием диспергатора или диспергирующего вещества и/или повышенным содержанием твердой фазы, в то время как содержащие карбонат кальция материалы имеют улучшенные адсорбционные свойства поверхности частиц диспергаторов.
Таким образом, одной из целей настоящего изобретения является предложение способа производства содержащих карбонат кальция материалов, имеющих улучшенные адсорбционные свойства поверхности частиц диспергаторов для высокоустойчивых суспензий.
Кроме того, весьма желательно, не использовать в данном способе соединения, которые могли бы реагировать неконтролируемым образом в среде их применения.
Например, существуют ионные соединения, которые легко образуют нерастворимые в воде соли, гидроксиды или оксиды или комплексы с добавляемыми соединениями в определенных интервалах значений pH.
Следовательно, следующей целью настоящего изобретения является предложение способа с использованием соединений, которые не вступают в какие-либо нежелательные побочные реакции в среде минеральных материалов, особенно в содержащей их водной среде, т.е. соединений в виде солей, которые не вступают в какие-либо побочные реакции, а остаются неизменными в отношении своего ионного состава, будь то форма соли или диссоциированная форма.
Столкнувшись с вышеупомянутыми проблемами получения водных минеральных суспензий содержащих карбонат кальция материалов с требуемыми свойствами и необходимостью минимизации расхода диспергатора и/или диспергирующего вещества без ухудшения свойств конечных продуктов, например, оптических свойств бумаги, заявитель неожиданно обнаружил, что определенные содержащие ионы лития соединения действуют как модификаторы свойств поверхности частиц карбоната кальция, позволяя получать водные минеральные суспензии содержащих карбонат кальция материалов, имеющих устойчивые с течением времени значения рН и способных содержать высокие концентрации сухих твердых веществ при низкой и устойчивой вязкости по Брукфильду.
Не связанный какой-либо теорией, заявитель считает, что применение определенных содержащих ионы лития соединений модифицирует поверхность частиц содержащего карбонат кальция материала и, следовательно, модифицирует адсорбционные свойства поверхности частиц карбонат кальция, независимо от природы содержащего карбонат кальция материала.
Тем не менее, хотя присутствие данных соединений лития модифицирует адсорбционные свойства карбоната кальция, при таком низком содержании лития введение этого элемента, в частности, перечисленных ниже соединений лития, как правило, не оказывает никакого заметного воздействия на форму кристаллов пигмента на фотографиях, полученных методом сканирующей электронной микроскопии (SEM), и/или на удельную поверхность или порошковую дифрактограмму пигмента.
Таким образом, указанная выше цель достигается способом производства содержащих карбонат кальция материалов, поверхность частиц которых имеет улучшенные свойства адсорбции диспергатора, который состоит из стадий:
а) получение, по меньшей мере, одного содержащего карбонат кальция материала в виде водной суспензии или в сухом виде,
b) получение, по меньшей мере, одного содержащего ионы лития соединения, выбранного из группы, в которую входят гидроксид лития или оксид лития или неорганические и/или органические мономерные соли лития, выбранные из группы, в которую входят соли одно- или многоосновных кислот, например, карбонат лития, сульфаты лития, цитрат лития, гидрокарбонат лития, ацетат лития, хлорид лития, фосфат лития, в сухом виде или в водном растворе, и их смеси,
c) сочетание, по меньшей мере, одного содержащего ионы лития соединения по стадии b) и, по меньшей мере, одного содержащего карбонат кальция материала по стадии a).
Соли лития и двух- или трехосновных мономерных кислот могут представлять собой также смешанные соли, например, (Na,Li)3PO4, в том числе олимпит или налипоит.
Полученные содержащие карбонат кальция материалы могут быть в сухом виде или в виде суспензии. Их можно сушить или повторно суспендировать после сушки, как описано в каком-либо из следующих предпочтительных вариантов осуществления.
Предлагается использовать в настоящем изобретении, по меньшей мере, один содержащий карбонат кальция материал предпочтительно в виде синтетического карбоната кальция (PCC), получаемого из, по меньшей мере, одного источника ионов кальция и, по меньшей мере, одного источника карбоната, гидрокарбоната и/или CO2, или в виде природного содержащего карбонат минерального материала (GCC).
Особенно пригодный содержащий карбонат кальция материал выбирают из группы, в которую входят природный карбонат кальция (GCC), например мрамор, кальцит, известняк и/или мел; осажденный карбонат кальция (PCC), например ватерит и/или кальцит; и содержащие карбонат кальция минералы, например доломит или смешанные наполнители на основе карбоната, например содержащие связанный с магнием кальций и их аналоги и производные, различные материалы, в том числе, например, глина или тальк или их аналоги или производные, и их смеси, в том числе, например, смеси талька и карбоната кальция или каолина и карбоната кальция, или смеси природного карбоната кальция и гидроксида алюминия, слюды или синтетических или натуральных волокон или совместные структуры минералов, например, совместные структуры талька и карбоната кальция или талька и диоксида титана.
Наиболее предпочтительно, чтобы, по меньшей мере, один содержащий карбонат кальция материал представлял собой природный карбонат кальция (GCC), или осажденный карбонат кальция (PCC), или смесь GCC и PCC, или смесь GCC и PCC и глины, или смесь GCC и PCC и талька, и наиболее предпочтительно, чтобы GCC представлял собой мрамор, мел, кальцит или известняк, или PCC представлял собой кальцитный PCC, например, ромбоэдрический PCC или скаленоэдрический PCC.
Вышеуказанный способ можно улучшить рядом дополнительных стадий:
Так, например, данный способ производства можно оптимизировать путем измельчения или диспергирования при пониженном содержании диспергатора и/или увеличенном содержании твердой фазы и путем производства водной суспензии частиц содержащего карбонат кальция материала с добавлением выбранного содержащего ионы лития соединения как модификатора адсорбционных свойств поверхности частиц карбоната кальция.
Особенно предпочтительный вариант осуществления включает стадию помола, в которой измельчают, по меньшей мере, один содержащий карбонат кальция материал, возможно, в присутствии диспергаторов и/или диспергирующих веществ (стадия d).
Диспергаторы или диспергирующие вещества, используемые по настоящему изобретению, могут представлять собой любые традиционные органические диспергаторы, например, гомополимеры полиакрилата натрия и/или сополимеры и полималеинаты и т.д. Их предпочтительно использовать в ненейтрализованной или частично нейтрализованной форме. Предпочтительные диспергаторы включают, например, частично нейтрализованные, полностью нейтрализованные и, особенно, ненейтрализованные полиакриловые кислоты. «Ненейтрализованный» означает, что все карбоксильные группы присутствуют в виде свободной кислоты, в то время как «частично нейтрализованный» означает, что часть карбоксильных групп кислоты образует соли, и «полностью нейтрализованный» означает нейтрализацию всех карбоксильных групп кислоты. Нейтрализованные группы могут присутствовать в диссоциированной, частично диссоциированной или недиссоциированной форме.
Предпочтительно, чтобы на стадии d) присутствовало, по меньшей мере, одно содержащее ионы лития соединение.
Если GCC используют на стадии d), может быть предпочтительной стадия мокрого обогащения мокроизмельченного природного карбоната кальция перед стадией d), что позволит удалить примеси, в том числе силикатные примеси, например, пенной флотацией.
Кроме того, может быть целесообразно просеивание и/или концентрирование (стадия e) тонкодисперсного материала, полученного на стадии d).
«Просеивание» в контексте настоящего изобретения осуществляют в хорошо известных просеивающих устройствах, включая сита, осадительные центрифуги и т.д. «Просеивание» следует понимать как обогащение путем удаления грубых частиц размером более 45 мкм.
«Концентрирование» проводят, например, термическим или механическим способом, применяя центрифугу, фильтр-пресс, тубчатый пресс или их сочетание.
Если тонкодисперсный материал просеивают и/или концентрируют на стадии e), может быть предпочтительным диспергирование материала в водной среде после просеивания и/или концентрирования (стадия f), причем еще более предпочтительно, если диспергирование проводят в присутствии, по меньшей мере, одного содержащего ионы лития соединения, которое может отличаться или нет от используемого на стадии d).
Тонкодисперсный материал, полученный на любой из стадий d), e) или f), можно сушить, если содержащий карбонат кальция материал на стадии a) получен в виде водной суспензии (стадия g).
C другой стороны, если содержащий карбонат кальция материал на стадии a) получен в сухом виде, или если не выполняются стадии e), f) и g), полученный на стадии d) тонкодисперсный материал можно диспергировать в водной среде (стадия h).
В предпочтительном варианте осуществления водную суспензию, полученную на стадии h), можно измельчать (стадия i).
Кроме того, высушенный материал на стадии g) можно повторно диспергировать в водной среде (стадия j).
В наиболее предпочтительных вариантах осуществления стадию i) и/или стадию j) проводят в присутствии, по меньшей мере, одного содержащего ионы лития соединения.
Как правило, для добавления, по меньшей мере, одного содержащего ионы лития соединения существует несколько предпочтительных вариантов осуществления.
Например, можно добавлять, по меньшей мере, одно содержащее ионы лития соединение до, и/или во время, и/или после стадии a), если, по меньшей мере, одним содержащим карбонат кальция материалом является PCC.
Таким образом, соединение лития можно также добавлять до, во время или после осаждения синтетического карбоната кальция. Например, соединение лития можно добавлять до стадии насыщения углекислым газом.
C другой стороны, если, по меньшей мере, одним содержащим карбонат кальция материалом является GCC, предпочтительно добавлять, по меньшей мере, одно содержащее ионы лития соединение до, и/или во время, и/или после стадии помола d), если стадии e) и f) не выполняются.
Кроме того, можно, однако, добавлять, по меньшей мере, одно содержащее ионы лития соединение после стадии помола d) и до, и/или во время, и/или после стадии просеивания и/или концентрирования e), если выполняется только стадия e).
Кроме того, можно добавлять, по меньшей мере, одно содержащее ионы лития соединение до, и/или во время, и/или после стадии диспергирования f).
Если содержащий карбонат кальция материал получают в сухом виде на стадии a), за которой идут последовательно стадии d) и h), предпочтительно добавление содержащего ионы лития соединения однократно до, во время или после стадии d) или несколькими порциями, каждую из которых вводят до, во время или после стадии h).
Если проводят стадию диспергирования f), и если содержащее ионы лития соединение полностью частично добавляют до стадии f), содержащее ионы лития соединение предпочтительно добавлять до, и/или во время, и/или после стадии d).
Как указано выше, водные минеральные суспензии содержащих карбонат кальция материалов, полученные способом производства по настоящему изобретению, имеют хорошие буферные свойства по отношению к pH, т.е. обеспечивают устойчивость pH с течением времени, высокое содержание сухой твердой фазы и низкую вязкость по Брукфильду, устойчивую с течением времени.
«Высокое содержание сухой твердой фазы» по настоящему изобретению означает, что содержание твердой фазы в водной суспензии или взвеси содержащего карбонат кальция материала составляет предпочтительно 10-82 мас.%, предпочтительнее 50-81мас.% и наиболее предпочтительно 65-80 мас.%, например, 70-78% от полной массы суспензии или взвеси.
«Устойчивое с течением времени значение pH» в контексте настоящего изобретения означает, что минеральная суспензия будет сохранять значение pH в узком интервале, предпочтительно 8,5-10,5, предпочтительнее 9-10, например, 9,5 при хранении в течение предпочтительно, по меньшей мере, 6 суток, предпочтительнее, по меньшей мере, 7 суток, наиболее предпочтительно, по меньшей мере, 8 суток.
Таким образом, наиболее предпочтительно выполнять стадию d) способа по настоящему изобретению при pH выше 7, предпочтительно выше 7,5, предпочтительнее от 8,5 до 10,5 и наиболее предпочтительно от 9 до 10, например 9,5.
В данном отношении, специалист легко определит, какое значение pH будет пригодным для осуществления свойств, которых он желает достичь, зная, что на это влияет добавление основания, предпочтительно основания одно- или двухвалентного катиона, наиболее предпочтительно натрия или кальция, например, добавление щелочного биоцидного препарата или выделение гидроксида, в том числе Ca(OH)2, во время измельчения материала, в том числе во время совместного измельчения осажденного карбоната кальция и природного карбоната кальция.
Во всей настоящей заявке значение pH измеряли при комнатной температуре (21±1°C) с точностью ±0,3 единицы pH.
Предпочтительно выбирают, по меньшей мере, одно содержащее ионы лития соединение из группы, в которую входят гидроксид лития или оксид лития или неорганические и/или органические мономерные соли лития, выбранные из группы, в которую входят соли одно- или многоосновных кислот, например, карбонат лития, сульфаты лития, цитрат лития, гидрокарбонат лития, ацетат лития, хлорид лития, фосфат лития в сухом виде или в водном растворе и их смеси.
Концентрация ионов лития по отношению к полной массе сухого карбоната кальция составляет предпочтительно 10-2000 частей на миллион (ч/млн), предпочтительнее 100-1000 ч/млн, наиболее предпочтительно 200-800 ч/млн.
В данном отношении, по меньшей мере, одно содержащее ионы лития соединение, которое можно добавлять до, во время и/или после стадии d), предпочтительно присутствует в количестве 0,0035-1 мас.%, предпочтительно 0,0035-0,5 мас.% и наиболее предпочтительно 0,02-0,2 мас.% по отношению к полной массе сухого карбоната кальция.
Указанные содержащие ионы лития соединения добавляют для получения водной суспензии материала с низкой вязкостью по Брукфильду, устойчивой с течением времени; это означает, что исходная вязкость по Брукфильду водной минеральной суспензии содержащего карбонат кальция материала после 1 часа производства составляет предпочтительно до 4000 мПа·с, предпочтительнее до 2000 мПа·с, наиболее предпочтительно до 500 мПа·с при измерении после одноминутного перемешивания на вискозиметре Брукфильда модели DV-III при комнатной температуре (21±1°C) и скорости вращения 100 об/мин (оборотов в минуту) с соответствующим шпинделем из набора шпинделей RV, и что вязкость по Брукфильду водной суспензии содержащего карбонат кальция материала после 8 суток хранения без перемешивания составляет до 4000 мПа·с, предпочтительно до 2000 мПа·с, более предпочтительно до 500 мПа·с при измерении после одноминутного перемешивания на вискозиметре Брукфильда модели DV-III при комнатной температуре (21±1°C) и скорости вращения 100 об/мин (оборотов в минуту) с соответствующим шпинделем из набора шпинделей RV. Наиболее предпочтительно, если после 8 суток хранения без перемешивания вязкость составляет до 1000 мПа·с, более предпочтительно до 500 мПа·с при измерении после одноминутного перемешивания на вискозиметре Брукфильда модели DV-III при комнатной температуре (21±1°C) и скорости вращения 100 об/мин с соответствующим шпинделем из набора шпинделей RV.
В предпочтительном варианте осуществления содержащий карбонат кальция материал содержит GCC и PCC, причем PCC присутствует в количестве 10-90 мас.%, предпочтительно 20-80 мас.% и наиболее предпочтительно 30-70 мас.% от полной массы PCC и GCC.
Если отсутствует стадия e), f) или g), все количество, по меньшей мере, одного содержащего ионы лития соединения предпочтительно используют до стадии помола d), часть, по меньшей мере, одного содержащего ионы лития соединения используют до стадии помола d), а остальное количество добавляют во время стадии d).
Кроме того, можно с успехом использовать сочетание различных содержащих ионы лития соединений. Когда используют диспергатор, используемое количество, по меньшей мере, одного содержащего ионы лития соединения составляет в сухой массе 0,01-5%, предпочтительно 0,05-2%, наиболее предпочтительно 0,1-1% по отношению к сухой массе содержащего карбонат кальция материала.
Стадию помола d) способа по настоящему изобретению проводят предпочтительно при температуре выше 5°C, предпочтительнее 20-120°C, например, 45-105°C, или, например, 85-100°C.
Кроме того, предпочтительно, чтобы концентрация твердой фазы, которую содержит материал в виде водной суспензии на стадии помола d), составляла 10-82% (от сухой массы содержащего карбонат кальция материала), предпочтительно 50-81%, наиболее предпочтительно 60-80% и особенно предпочтительно 65-72%.
В следующем предпочтительном варианте осуществления настоящего изобретения тонкодисперсный материал, полученный на стадии d), содержит фракцию частиц мельче 1 мкм более 20 мас.%, предпочтительно более 60 мас.%, предпочтительнее более 75 мас.% и наиболее предпочтительно более 85 мас.%, особенно более 95 мас.%, по отношению к полной массе тонкодисперсного материала, при измерении на седиментометре Sedigraph 5100™.
Значение d50 (медианный диаметр частиц или медианный размер частиц) тонкодисперсного материала составляет предпочтительно около 0,2-5 мкм, предпочтительнее 0,2-1,5 мкм и наиболее предпочтительно 0,25-1 мкм, например, 0,45-0,7 мкм. Данное значение d50 определяют при измерении на седиментометре Sedigraph 5100™.
На стадии помола d) содержащий карбонат кальция материал получают предпочтительно в виде водной суспензии, содержащей 1-82 мас.%, предпочтительно 15-81 мас.% и наиболее предпочтительно 40-80 мас.% сухого GCC и/или PCC, например, 63-72 мас.% сухого GCC или 47-72 мас.% сухого PCC. Указанную водную суспензию можно получать из дисперсии материала в виде осадка на фильтре.
Особенно предпочтительно проводить стадию d) при содержании твердой фазы 10-35 мас.% по отношению к полной массе суспензии в отсутствие каких-либо диспергаторов или диспергирующих веществ и при содержании твердой фазы 60-82 мас.% по отношению к полной массе суспензии в присутствии диспергаторов и/или диспергирующих веществ.
Конечное содержание твердой фазы в содержащей карбоната кальция суспензии составляет 45-82 мас.%.
Предпочтительно содержащие карбонат кальция материалы имеют высокое конечное содержание твердой фазы, которое составляет 45-75 мас.%, предпочтительнее 68-73 мас.%, если стадию помола d) проводят без какого-либо диспергатора или диспергирующего вещества, и 65-82 мас.%, предпочтительно 72-78 мас.%, если стадию помола d) проводят в присутствии диспергаторов или диспергирующих веществ.
Другой целью настоящего изобретения является получение содержащего карбонат кальция материала способом по настоящему изобретению.
Предпочтительно такие содержащие карбонат кальция материалы имеют не только указанные выше свойства, в том числе устойчивое с течением времени значение pH, высокое содержание сухой твердой фазы и низкую устойчивую вязкость по Брукфильду, но также имеют превосходные оптические свойства, например, высокую светорассеивающую способность в видимом диапазоне.
Мерой светорассеяния является коэффициент рассеяния S. Коэффициент S должен превышать 110 м2/кг для плотности покрытия 20 г/м2, отражая способность покрытия рассеивать видимый свет. Его можно измерять, например, способом, описанным в патентной заявке WO 02/49766 (стр. 8-10). Соответственно, светорассеивающую способность выражает коэффициент светорассеяния Кубелки-Мунка (Kubelka-Munk), определяемый способом, который хорошо известен специалистам и описан в публикациях Кубелки и Мунка (Zeitschrift fur Technische Physik 12, 539 (1931)) и Кубелки (J. Optical Soc. Am. 38 (5), 448 (1948) и J. Optical Soc. Am. 44 (4), 330 (1954)).
Предпочтительно, чтобы содержащий карбонат кальция материал, полученный способом по настоящему изобретению, имел коэффициент рассеяния S от 120 м2/кг для плотности покрытия 20 г/м2 и вязкость по Брукфильду до 1000 мПа·с, предпочтительно коэффициент рассеяния S от 140 м2/кг для плотности покрытия 20 г/м2 и вязкость по Брукфильду до 500 мПа·с.
Концентрация ионов лития в таких содержащих карбонат кальция материалах по отношению к полной массе сухого карбоната кальция составляет предпочтительно 10-2000 ч/млн, предпочтительнее 100-1000 ч/млн, наиболее предпочтительно 200-800 ч/млн.
Наиболее предпочтительно, чтобы данный материал содержал, по меньшей мере, одно содержащее ионы лития соединение в количестве 0,0035-1 мас.%, предпочтительно 0,0035-0,5 мас.% и наиболее предпочтительно 0,02-0,2 мас.%, в частности 0,05%, по отношению к полной массе сухого карбоната кальция.
Кроме того, конечный содержащий карбонат кальция материал может содержать фракцию частиц мельче 1 мкм более 50 мас.%, предпочтительно более 80 мас.%, предпочтительнее более 85 мас.%, еще предпочтительнее более 90 мас.% и наиболее предпочтительно более 95 мас.% по отношению к полной массе тонкодисперсного материала.
В предпочтительном варианте осуществления конечный содержащий карбонат кальция материал имеет значение d50 около 0,2-5 мкм, предпочтительно 0,2-1,5 мкм и наиболее предпочтительно 0,25-1 мкм, например, 0,45-0,7 мкм. Значение d50 определяют при измерении на седиментометре Sedigraph 5100™.
Тонкодисперсный материал в сухом виде после стадии g) предпочтительно содержит карбонат кальция, выбранный из группы, в которую входят природный карбонат кальция (GCC), например мрамор, мел, известняк или кальцит, или осажденный карбонат кальция (PCC), например ватерит и/или кальцит, и содержащие карбонат кальция минералы, например доломит или смешанные наполнители на основе карбоната, содержащие, в том числе, в частности, связанный с магнием кальций и их аналоги или производные, различные материалы, например глину или тальк или их аналоги или производные, и смеси данных наполнителей, например смеси, содержащие тальк и карбонат кальция или каолин и карбонат кальция, или смеси природного карбоната кальция с гидроксидом алюминия, слюдой или синтетическими или натуральными волокнами, или совместные структуры минералов, например, совместные структуры талька и карбоната кальция или талька и диоксида титана.
Предпочтительно, чтобы материал представлял собой GCC или осажденный карбонат кальция (PCC) или смесь GCC и PCC, или смесь GCC и PCC и глины, или смесь GCC и PCC и талька.
Наиболее предпочтительно выбирать GCC из мрамора, мела, кальцита или известняка или выбирать PCC из кальцитных PCC, к которым относятся ромбоэдрический PCC и скаленоэдрический PCC.
Тонкодисперсный материал в сухом виде может также иметь значение d50 около 0,2-5 мкм, предпочтительно 0,2-1,5 мкм и наиболее предпочтительно 0,25-1 мкм, например, 0,45-0,7 мкм.
Также предпочтительно, чтобы он мог содержать фракцию частиц мельче 1 мкм более 50 мас.%, предпочтительно более 80 мас.%, предпочтительнее более 85 мас.%, еще предпочтительнее более 90 мас.% и наиболее предпочтительно более 95 мас.% при измерении на седиментометре Sedigraph™ 5100.
Наконец, еще одной целью настоящего изобретения является использование водных минеральных суспензий содержащих карбонат кальция материалов и/или высушенного содержащего карбонат кальция материала по настоящему изобретению в любой области применения минерального материала, особенно в производстве бумаги, красок и пластмасс и в любой другой области применения указанных суспензий и/или порошков, в частности, при использовании суспензий в бумажной промышленности, например, для производства бумаги и/или покрытия бумаги и/или поверхностной обработки бумаги, или в качестве наполнителя в процессе производства бумажных, картонных или аналогичных листов. Высушенные порошки предпочтительно использовать в производстве пластмасс и/или красок, а также повторно суспендировать в воде для восстановления суспензии. Наполнитель можно использовать непосредственно как наполнитель в составе в процессе производства бумажных, картонных или аналогичных листов или косвенно в восстанавливаемой смеси отходов покрытия, если восстанавливаемые смеси отходов покрытия используют в процессе производства бумажных, картонных или аналогичных листов.
Особенно предпочтительно применение в производстве бумаги, красок и пластмасс.
Бумага, краски и пластмассы по настоящему изобретению отличаются тем, что они содержат указанные тонкодисперсные минеральные материалы по настоящему изобретению.
Наконец, еще одним аспектом настоящего изобретения является использование, по меньшей мере, одного содержащего ионы лития соединения в процессе производства содержащих карбонат кальция материалов, имеющих улучшенные адсорбционные свойства поверхности частиц по настоящему изобретению.
Приведенные ниже чертежи, примеры и опыты служат иллюстрациями настоящего изобретения и не должны ограничивать его каким-либо образом.
Описание чертежей:
Фиг. 1 представляет порошковую дифрактограмму материала прототипа по опыту 8a.
Фиг. 2 представляет порошковую дифрактограмму материала, полученного в опыте 8b по настоящему изобретению.
Примеры
Пример 1
Данный пример относится к получению материала, перерабатываемого по настоящему изобретению.
Все размеры частиц и медианные диаметры измеряли на седиментографе Sedigraph™ фирмы Micromeritics.
Значения вязкости по Брукфильду измеряли на модели DV-III вискозиметра Брукфильда при комнатной температуре (21±1°C) и перемешивании со скоростью вращения 100 об/мин (оборотов в минуту) с соответствующим шпинделем из набора шпинделей RV.
Все весовые молекулярные массы (Mw), численные молекулярные массы (Mn) и соответствующие значения полидисперсности и массовой доли до 1500 Дальтон (Да) различных полимеров измеряли в расчете на 100 мол.% натриевой соли при pH 8 методом водной гельпроникающей хроматографии (GPC) с калибровкой по ряду из пяти стандартных образцов полиакрилата натрия, которые поставляет фирма Polymer Standard Service, под регистрационными номерами PSS-PAA 18K, PSS-PAA 8K, PSS-PAA 5K, PSS-PAA 4K и PSS-PAA 3K.
Удельную площадь поверхности в м2/г измеряли методом Брунауэра, Эммета и Теллера (BET) по стандарту ISO 4652.
Рентгенофазовый анализ (РФА) модифицированных PCC и GCC проводили следующим способом.
Минералогические фазы, присутствующие в указанных выше образцах карбоната кальция, определяли рентгенофазовым анализом (РФА) на дифрактометре Bruker D8 Advance методом порошковой дифракции. В состав данного дифрактометра входят рентгеновская трубка мощностью 2,2 кВт, 9-позиционный держатель образца, гониометр θ-θ и детектор VANTEC-1. Во всех опытах использовали источник излучения Cu Kα с никелевым фильтром. Дифрактограммы записывали автоматически с шагом 2θ=0,01° и скоростью сканирования, составляющей 1 шаг в секунду, в интервале углов 2θ от 20 до 50°. Полученные порошковые дифрактограммы классифицировали с помощью файлов порошковых дифрактограмм (PDF) базы данных 2 Международного центра дифракционных данных (ICDD). Сравнение экспериментальных и эталонных (из ICDD) порошковых дифрактограмм приведено на фиг. 1 и кратко описано в таблице 1.
Таблица 1
Параметры решетки исследованных порошков карбоната кальция по сравнению с соответствующими данными эталона (ICDD)
Описание образца a, Å c, Å
ICCD #05-0586, синтетический кальцит 4,989 17,062
Опыт 8a, S-PCC, прототип 5,0014 17,0477
Опыт 8b, S-PCC, настоящее изобретение 5,0023 17,0451
ICCD #47-1743, природный кальцит 4,9896 17,0610
Опыт 7b, GCC, настоящее изобретение 4,9832 17,0338
Опыты 1a и 1b:
Данные опыты относятся к получению ромбоэдрического PCC с d50=0,3 мкм.
Для этого 200 кг оксида кальция (Tagger Kalk, Golling A) добавляли к 1700 л нагретой до 40°C водопроводной воды в реакторе с мешалкой; содержимое реактора непрерывно перемешивали в течение 30 минут и затем пропускали полученную суспензию гидроксида кальция («известковое молоко»), содержащее 13,1 мас.% твердой фазы, через сито с размером отверстий 100 мкм.
Осаждение карбоната кальция проводили в 1800-литровом цилиндрическом реакторе из нержавеющей стали, оборудованном мешалкой и зондами для измерения pH и электропроводности суспензии.
В реактор для насыщения углекислым газом добавляли 1700 л суспензии гидроксида кальция, полученной на стадии гашения извести, и поддерживали температуру реакционной смеси на уровне желательной начальной температуры 16°C.
Газ, содержащий 20-30 об.% CO2 в воздухе, затем барботировали снизу вверх через суспензию со скоростью 200 м3/ч при перемешивании суспензии со скоростью 200-300 об/мин. Избыточное давление потока газа составляло 150-200 мбар, что соответствовало гидростатическому давлению суспензии Ca(OH)2 в реакторе.
В процессе насыщения углекислым газом температуру суспензии не контролировали, и она повышалась за счет выделения тепла в экзотермической реакции осаждения.
После достижения минимальной электропроводности насыщение углекислым газом продолжали еще 4 минуты и затем прекращали.
Содержащую 16,7 мас.% твердой фазы водную суспензию осажденного карбоната кальция, полученную на данной стадии насыщения углекислым газом, затем пропускали через сито с отверстиями размером 45 мкм и подавали на центрифугу для механического обезвоживания. Осадок на фильтре, полученный центрифугированием, повторно диспергировали в воде и приготовляли суспензию с концентрацией 47,2 мас.%. В процессе приготовления суспензии к смеси добавляли 1,0 мас.% (сухого вещества в расчете на сухой карбонат кальция) анионного диспергатора на основе полиакрилата натрия, имеющего Mw 12500 и полидисперсность 2,8.
Затем суспензию пропускали через вертикальную мельницу тонкого помола Dynomill™ объемом 1,4 л, содержащую в качестве среды гранулы ZrO диаметром 0,6-1,2 мм для деагломерации первоначально агрегированного осажденного карбоната кальция на отдельные частицы, чтобы получить средний размер частиц d50 около 0,3 мкм (Micromeritics Sedigraph™ 5100) после помола.
Полученную суспензию отдельных частиц ультрадисперсного осажденного карбоната кальция затем дополнительно концентрировали в вакуумном испарителе для получения конечной суспензии, содержащей 66,7 мас.% твердой фазы.
Физические свойства конечного продукта приведены ниже в таблице 2a.
Таблица 2а
Содержание твердой фазы в суспензии PCC (%) Вязкость суспензии PCC (мПа•с) (вискозиметр Брукфильда DV II, 100 об/мин, шпиндель 3) Полиморфная модификация PCC d50 (мкм) Удельная площадь поверхности по BET (м2/г)
66,7 850 Ромбоэдрический кальцит (R-PCC) 0,27 16,5
Полученную минеральную суспензию затем подвергали распылительной сушке до содержания твердой фазы более 99,5 мас.% и назвали «минерал 1a» по прототипу.
По такой же методике, как описано выше, получали эквивалентный R-PCC, но в присутствии 2000 ч/млн по массе LiOH, добавленного до стадии насыщения углекислым газом гашеной извести.
Полученную суспензию отдельных частиц ультрадисперсного осажденного карбоната кальция затем дополнительно концентрировали в вакуумном испарителе для получения конечной суспензии, содержащей 67,7 мас.% твердой фазы.
Физические свойства конечного продукта приведены ниже в таблице 2b.
Таблица 2b
Содержание твердой фазы в суспензии PCC (%) Вязкость суспензии PCC (мПа·с) (вискозиметр Брукфильда DV II, 100 об/мин, шпиндель 3) Полиморфная модификация PCC d50 (мкм) Удельная площадь поверхности по BET (м2/г)
67,7 230 Ромбоэдрический кальцит (R-PCC) 0,29 15,8
Суспензию затем подвергали распылительной сушке до содержания твердой фазы более 99,5 мас.% и назвали «минерал 1b» по настоящему изобретению.
Опыт 2
Данный опыт относится к получению тонкодисперсного природного норвежского карбоната кальция, имеющего d50=45 мкм.
Норвежский мрамор из области Молде с диаметром частиц 10-300 мм подвергали сухому самоизмельчению до уровня d50 в пределах 42-48 мкм. Полученный минерал назвали «минерал 2».
Опыт 3
Данный опыт относится к получению тонкодисперсного природного норвежского карбоната кальция, имеющего d50=0,8 мкм.
Минерал 2 подвергали мокрому помолу при содержании 20 мас.% твердой фазы с водопроводной водой в вертикальной мельнице тонкого помола Dynomill™ в режиме рециркуляции без введения добавок, например, диспергаторов и/или диспергирующих веществ, до тонкости, составляющей до 60 мас.% частиц, имеющих диаметр менее 1 мкм. После помола продукт имел медианный диаметр частиц d50=0,8 мкм.
После помола суспензию концентрировали тубчатым прессом для получения порошка, содержащего 80-83 мас.% твердой фазы.
Полученный минерал назвали «минерал 3».
Опыты 4a и 4b
Данные опыты относятся к получению двух видов тонкодисперсного природного норвежского карбоната кальция, имеющего d50=0,6 мкм.
Минерал 2 подвергали мокрому помолу при содержании 15-25 мас.% твердой фазы с водопроводной водой в вертикальной мельнице тонкого помола Dynomill™ в режиме рециркуляции без введения добавок, например, диспергаторов и/или диспергирующих веществ, до тонкости, составляющей до 75 мас.% частиц, имеющих диаметр менее 1 мкм. После помола продукт имел медианный диаметр частиц d50=0,6 мкм.
Полученный таким образом минерал назвали «минерал 4a».
После помола суспензию концентрировали фильтр-прессом и получали осадок на фильтре, содержащий 69,5 мас.% твердой фазы.
Полученный таким образом минерал назвали «минерал 4b».
Опыт 5
Данный опыт относится к получению тонкодисперсного природного норвежского карбоната кальция, имеющего d50=0,4 мкм.
Минерал 2 подвергали мокрому помолу при содержании 20 мас.% твердой фазы с водопроводной водой в вертикальной мельнице тонкого помола Dynomill™ в режиме рециркуляции без введения добавок, например, диспергаторов и/или диспергирующих веществ, до тонкости, составляющей до 75 мас.% частиц, имеющих диаметр менее 1 мкм. После помола продукт имел медианный диаметр частиц d50=0,4 мкм.
После помола суспензию концентрировали тубчатым прессом и получали осадок на фильтре, содержащий 78-80 мас.% твердой фазы.
Полученный таким образом минерал назвали «минерал 5».
Опыт 6
Данный опыт относится к получению тонкодисперсного природного норвежского карбоната кальция, имеющего d50=0,6 мкм.
Минерал 2 подвергали мокрому помолу при содержании 35 мас.% твердой фазы с водопроводной водой в вертикальной мельнице тонкого помола Dynomill™ в режиме рециркуляции с применением в качестве диспергатора 0,25 мас.% полиакриловой кислоты, имеющей Mw 6000 и полидисперсность 2,6, до тонкости, составляющей до 75 мас.% частиц, имеющих диаметр менее 1 мкм. После помола продукт имел медианный диаметр частиц d50=0,6 мкм.
Полученный таким образом минерал назвали «минерал 6».
Опыты 7a и 7b
Данный опыт относится к получению тонкодисперсного природного итальянского карбоната кальция, имеющего d50=1,5 мкм.
Вначале итальянский каррерский мрамор из Тосканы, имеющий диаметр частиц 10-300 мм, измельчали в щековой дробилке до диаметра 0,1-5 мм.
Затем для получения тонкодисперсного материала с медианным диаметром, равным 1,5 мкм, полученный мрамор загружали в шаровую мельницу Hosokawa™ S.O. 80/32 с применением 100 кг бочкообразных помольных железных гранул (цильпебс), имеющих медианный диаметр 0,25 мм.
Сухой помол проводили в непрерывном режиме.
Выходной поток из помольной камеры пропускали через отверстие 20×6 мм в классификатор Alpine Turboplex™ 100 ATP. Компрессор классификатора устанавливали на 300 м3/ч и выбирали соответствующие значения скорости вращения классификатора и потока воздуха для получения тонкодисперсного материала с диаметром частиц, не превышающих заданный уровень (далее именуется «полезный материал»); весь оставшийся тонкодисперсный материал с диаметром частиц, превышающих данное значение, возвращали как исходный материал для помола.
Помол выполняли таким образом, чтобы система всегда содержала 15 кг материала. Для этого исходный материал постоянно пополняли сырьем в количестве, соответствующем количеству полезного материала, выведенного из процесса, чтобы поддерживать количество материала в системе на уровне 15 кг.
Примечательно, что после пуска и до записи результатов, приведенных ниже, системе помола позволяли работать, пока наблюдали устойчивость количества получаемых полезных продуктов и значений производительности помола и энергии помола.
Опыт 7a соответствует введению сухого диспергатора в систему помола таким образом, чтобы поддерживать постоянство количества карбоната натрия.
Полученный таким образом минерал назвали «минерал 7a».
Опыт 7b соответствует введению сухого диспергатора в систему помола таким образом, чтобы поддерживать постоянство количества карбоната лития.
Полученный таким образом минерал назвали «минерал 7b».
Результаты приведены в следующей таблице 3.
Таблица 3
Опыт Тип добавки Количество добавки (ч/млн) Поток воздуха в классификатор (м3/ч) Скорость вращения классификатора (об/мин) Размер частиц продукта помола d50 (мкм) Производи-тельность помола (кг/ч)
7a Na2CO3 2500 150 10000 1,45 5,6
7b Li2CO3 2500 150 10000 1,55 6,5
Опыты 8a и 8b
Данные опыты относятся к получению скаленоэдрического PCC, имеющего значение d50=2,3 мкм.
Для этого 200 кг оксида кальция (Tagger Kalk, Golling A) добавляли к 1700 л нагретой до 40°C водопроводной воды в реакторе с мешалкой; содержимое реактора непрерывно перемешивали в течение 30 минут и затем пропускали полученную суспензию гидроксида кальция («известковое молоко»), содержащее 13,3 мас.% твердой фазы через сито с размером отверстий 100 мкм.
Осаждение карбоната кальция проводили в 1800-литровом цилиндрическом реакторе из нержавеющей стали, оборудованном мешалкой и зондами для измерения pH и электропроводности суспензии.
В реактор для насыщения углекислым газом добавляли 1700 л суспензии гидроксида кальция, полученной на стадии гашения извести, и поддерживали температуру реакционной смеси на уровне желательной начальной температуры 50°C.
Газ, содержащий 20-30 об.% CO2 в воздухе, затем барботировали снизу вверх через суспензию со скоростью 200 м3/ч при перемешивании суспензии со скоростью 200-300 об/мин. Избыточное давление потока газа составляло 150-200 мбар, что соответствовало гидростатическому давлению суспензии Ca(OH)2 в реакторе.
В процессе насыщения углекислым газом температуру суспензии не контролировали, и она повышалась за счет выделения тепла в экзотермической реакции осаждения.
После достижения минимальной электропроводности насыщение углекислым газом продолжали еще 4 минуты и затем прекращали.
Продукт, полученный на данной стадии насыщения углекислым газом, затем пропускали через сито с отверстиями размером 45 мкм и выделяли в виде водной суспензии осажденного карбоната кальция, содержащей 17,4 мас.% твердой фазы.
Физические свойства осажденного карбоната кальция, полученного после насыщения углекислым газом, приведены ниже в таблице 4a.
Таблица 4а
Содержание твердой фазы в суспензии PCC (%) Вязкость суспензии PCC (мПа·с) (вискозиметр Брукфильда DV II, 100 об/мин, шпиндель 3) Полиморфная модификация PCC d50 (мкм) Удельная площадь поверхности по BET (м2/г)
17,4 15 Скалено-эдрический кальцит (S-PCC) 2,3 6,3
Минеральную суспензию затем подвергали распылительной сушке до содержания твердой фазы более 99,5 мас.% и назвали «минерал 8a» по прототипу.
По такой же методике, как описано выше, получали эквивалентный S-PCC, но в присутствии 2000 ч/млн по массе LiOH, добавленного до стадии насыщения углекислым газом гашеной извести.
Суспензию затем подвергали распылительной сушке до содержания твердой фазы более 99,5 мас.% и назвали «минерал 8b» по настоящему изобретению.
Физические свойства осажденного карбоната кальция, полученного после насыщения углекислым газом, приведены ниже.
Таблица 4b
Содержание твердой фазы в суспензии PCC (%) Вязкость суспензии PCC (мПа·с) (вискозиметр Брукфильда DV II, 100 об/мин, шпиндель 3) Полиморфная модификация PCC d50 (мкм) Удельная площадь поверхности по BET (м2/г)
17,7 15 Скаленоэдри-ческий кальцит (S-PCC) 2,4 6,1
Как видно при сравнении таблицы 4a и таблицы 4b, присутствие LiOH во время осаждения не оказало влияния на измеренные физические свойства S-PCC.
Пример 2
Данный пример иллюстрирует применение содержащего ионы лития соединения как модификатора адсорбционных свойств, что позволяет получать водные суспензии карбоната кальция с высоким содержанием сухой твердой фазы с одновременной низкой вязкостью по Брукфильду, которая сохраняет устойчивость с течением времени, и хорошими буферными свойствами по отношению к pH.
В частности, данный пример иллюстрирует введение карбоната лития после мокрого помола в целях модификации адсорбции на поверхности частиц карбоната кальция и соответственного улучшения диспергирования мрамора мокрого помола с медианным диаметром d50=0,6 мкм.
Коэффициент рассеяния S более 110 м2/кг для плотности покрытия 20 г/м2, который отражает способность покрытия рассеивать видимый свет, измеряют способом, описанным в патентной заявке WO 02/49766 (стр. 8-10). Соответственно, светорассеивающую способность выражает коэффициент светорассеяния Кубелки-Мунка (Kubelka-Munk), определяемый способом, который хорошо известен специалистам и описан в публикациях Кубелки и Мунка (Zeitschrift fur Technische Physik 12, 539 (1931)) и Кубелки (J. Optical Soc. Am. 38 (5), 448 (1948) и J. Optical Soc. Am. 44 (4), 330 (1954)).
Опыт 9
Данный опыт иллюстрирует прототип.
Для его проведения 0,9% (от массы сухого минерала) обычной нейтральной калиевой соли (100 мол.%) полиакриловой кислоты (Mw=6000) добавляли в содержащую 35 мас.% твердой фазы суспензию минерала 6 перед концентрированием в лаборатории в разомкнутом цикле. Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 10
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения 0,15% (от массы сухого минерала) такого же полиакрилата калия, как в опыте 9, и 0,33% (от массы сухого минерала) карбоната лития добавляли в содержащую 35 мас.% твердой фазы суспензию минерала 6 перед концентрированием в лаборатории в разомкнутом цикле до содержания твердой фазы 69,1 мас.%.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Вязкость по Брукфильду после 8 суток хранения при комнатной температуре (21±1°C) без перемешивания измеряли после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 11
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения 0,15% (от массы сухого минерала) такого же полиакрилата калия, как в опыте 9, и 0,33% (от массы сухого минерала) карбоната лития добавляли в содержащую 35 мас.% твердой фазы суспензию минерала 6 перед концентрированием в лаборатории в разомкнутом цикле до содержания твердой фазы 71,0 мас.%.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Вязкость по Брукфильду после 8 суток хранения при комнатной температуре (21±1°C) без перемешивания измеряли после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 12
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения 0,15% (от массы сухого минерала) такого же полиакрилата калия, как в опыте 9, и 0,33% (от массы сухого минерала) карбоната лития добавляли в содержащую 35 мас.% твердой фазы суспензию минерала 6 перед концентрированием в лаборатории в разомкнутом цикле до содержания твердой фазы 72,5 мас.%.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Вязкость по Брукфильду после 8 суток хранения без перемешивания при комнатной температуре (21±1°C) измеряли после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 13
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения 0,085% (от массы сухого минерала) такого же полиакрилата калия, как в опыте 9, и 0,33% (от массы сухого минерала) карбоната лития (соответствует 625 ч/млн Li+) добавляли в содержащую 35 мас.% твердой фазы суспензию минерала 6 перед концентрированием в лаборатории в разомкнутом цикле до содержания твердой фазы 73,7 мас.%.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Вязкость по Брукфильду после 8 суток хранения без перемешивания при комнатной температуре (21±1°C) измеряли после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Результаты приведены в следующей таблице 5.
Таблица 5
Номер опыта Содер-жание твердой фазы (мас.%) Содержание добавки от массы сухого минерала (мас.%) Исходная вязкость по Брукфильду (100 об/мин, шпиндель 3) (мПа·с) Вязкость по Брукфильду через 8 суток (100 об/мин, шпиндель 3) (мПа·с) Коэффициент рассеяния покрытия плотностью 20 г/м22/кг)
Прототип 9 66,8 0,9 ~1000, но суспензия клейкая ~1000, но суспензия клейкая 115
Изобретение 10 69,1 0,085+0,33% Li2CO3 210 280 167
Изобретение 11 71,0 0,085+0,33% Li2CO3 300 410 160
Изобретение 12 72,5 0,085+0,33% Li2CO3 462 550 156
Изобретение 13 73,7 0,085+0,33% Li2CO3 695 830 148
Содействие улучшению адсорбции и соответствующему улучшению диспергирования при использовании содержащего ионы лития соединения, в частности, карбоната лития, четко продемонстрировано в приведенной выше таблице и доказано высоким коэффициентом светорассеяния.
Пример 3
Данный пример относится к введению соли лития в сочетании с обычным полимером после стадии механического концентрирования в целях диспергирования осадка на фильтре, полученного из концентрированного мокроизмельченного мрамора с медианным диаметром частиц d50=0,6 мкм.
Опыт 14
Данный опыт иллюстрирует прототип.
Для его проведения минерал 4b диспергировали при содержании твердой фазы 67,8 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,54% (от массы сухого минерала) обычной нейтральной калиевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,7.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 15
Данный опыт иллюстрирует прототип.
Для его проведения минерал 4b диспергировали при содержании твердой фазы 67,8 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,68% (от массы сухого минерала) обычной нейтральной калиевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,7.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 16
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения минерал 4b диспергировали при содержании твердой фазы 70,9 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,23% (от массы сухого минерала) обычной нейтральной калиевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,7, плюс 0,28 мас.% карбоната лития.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Вязкость по Брукфильду после 8 суток хранения при комнатной температуре (21±1°C) без перемешивания измеряли после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Измеряли два значения pH: исходное значение pH через один час после приготовления и значение pH после 8 суток хранения.
Опыт 17
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения минерал 4b диспергировали при содержании твердой фазы 70,9 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,31% (от массы сухого минерала) обычной нейтральной калиевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,7, плюс 0,28 мас.% карбоната лития (соответствует 530 ч/млн Li+).
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Вязкость по Брукфильду после 8 суток хранения без перемешивания при комнатной температуре (21±1°C) измеряли после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Измеряли два значения pH: исходное значение pH через один час после приготовления и значение pH после 8 суток хранения.
Опыт 18
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения минерал 4b диспергировали при содержании твердой фазы 70,9 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,39% (от массы сухого минерала) обычной нейтральной калиевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,7, плюс 0,28 мас.% карбоната лития.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Вязкость по Брукфильду после 8 суток хранения при комнатной температуре (21±1°C) без перемешивания измеряли после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Измеряли два значения pH: исходное значение pH через один час после приготовления и значение pH после 8 суток хранения.
Результаты собраны в следующей таблице 6.
Таблица 6
Номер опыта Содержание твердой фазы (мас.%) Содержание добавки от массы сухого минерала (мас.%) Исходная вязкость по Брукфильду (100 об/мин, шпиндель 3) (мПа·с) Вязкость по Брукфильду через 8 суток (100 об/мин, шпиндель 3) (мПа·с) Значения pH через 1 час/8 суток
Прототип 14 67,8 0,54 >4000 >4000 9,4/9,3
Прототип 15 67,8 0,68 >4000 >4000 9,7/9,5
Изобретение 16 70,9 0,23+0,28 585 620 9,6/9,4
Изобретение 17 70,9 0,31+0,28 166 172 9,7/9,7
Изобретение 18 70,9 0,39+0,28 128 134 9,6/9,8
Путем сравнения обычного полимера и карбоната лития в сочетании с таким же обычным полимером данная таблица четко показывает эффективность способа, использующего карбонат лития для диспергирования осадка на фильтре, полученного из концентрированного мокроизмельченного мрамора с медианным диаметром частиц d50=0,6 мкм.
Пример 4
Данный пример иллюстрирует применение карбоната лития для сухого помола и получения суспензии сухоизмельченного карбоната кальция с высоким содержанием твердой фазы.
Опыт 19
Данный опыт иллюстрирует прототип.
Для его проведения минерал 7a диспергировали при содержании твердой фазы 68,5 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,23% (от массы сухого минерала) обычной нейтральной натриевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=3500 и полидисперсность 2,9.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 20
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения минерал 7b диспергировали при содержании твердой фазы 68,5 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,23% (от массы сухого минерала) обычной нейтральной натриевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=3500 и полидисперсность 2,9.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Результаты собраны в следующей таблице 7.
Таблица 7
Номер опыта Содержание твердой фазы (мас.%) Содержание добавки от массы сухого минерала (мас.%) Исходная вязкость по Брукфильду (100 об/мин, шпиндель 3) (мПа·с) Вязкость по Брукфильду через 8 суток (100 об/мин, шпиндель 3) (мПа·с) Значения pH через 1 час/8 суток
Прототип 19 68,5 0,23 1384 2140 10,2/9,9
Изобретение 20 68,5 0,23 609 720 10,1/9,9
Показано преимущество применения добавки Li2CO3 в процессе сухого помола по сравнению с Na2CO3 в прототипе.
Пример 5
Данный пример иллюстрирует применение различных солей лития для получения суспензий природного и тонкодисперсного карбоната кальция с высоким содержанием твердой фазы.
Опыт 21
Данный опыт иллюстрирует прототип.
Для его проведения 602 г минерала 4b диспергировали при содержании твердой фазы 66,5 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением различных количеств нейтральной натриево-кальциевой соли (70/30 мол.%) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,6.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 4.
Результаты:
Содержание твердой фазы в суспензии (мас.%) Содержание диспергатора (мас.% в расчете на сухие вещества) Исходная вязкость по Брукфильду (мПа·с)
66,8 0,35 3600
66,8 0,99 3050
66,8 1,60 3200
Опыт 22
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения 602 г минерала 4b диспергировали при содержании твердой фазы 67,5 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением следующего «состава A».
Смешивали 76,14 г раствора, содержащего 32 мас.% нейтральной натриево-кальциевой соли (70/30 мол.%) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,6, и 42,6 г раствора, содержащего 23,5 мас.% Li2SO4, и получали прозрачный раствор «состава A».
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Получение состава А
Содержание твердой фазы в суспензии (мас.%) Содержание состава А (мас.% в расчете на сухие вещества) Исходная вязкость по Брукфильду (мПа·с)
67,5 0,39 367
67,5 0,65 81
Опыт 23
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения 602 г минерала 4b диспергировали при содержании твердой фазы 67,5 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением следующего «состава B»:
Смешивали 134 г раствора, содержащего 32 мас.% нейтральной натриево-кальциевой соли (70/30 мол.%) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,6, и 70 г цитрата лития и получали «состав B» в виде прозрачного раствора, слегка мутнеющего в процессе хранения.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Получение состава В
Содержание твердой фазы в суспензии (мас.%) Содержание состава А (мас.% в расчете на сухие вещества) Исходная вязкость по Брукфильду (мПа·с)
67,5 0,44 321
67,5 0,69 82
Пример 6
Данный пример иллюстрирует применение имеющего высокую полидисперсность полиакрилата в сочетании с солями лития для получения суспензий природного и тонкодисперсного карбоната кальция с высоким содержанием твердой фазы.
Для получения имеющего высокую полидисперсность полиакрилата натрия смешивали следующие полиакрилаты натрия, образующие «состав C»:
100 г нейтральной натриевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,6 и содержащей 18-20 мас.% молекул с массой до 1500 Дальтон,
и
100 г нейтральной натриевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=3500 и полидисперсность 2,4 и содержащей 28-30 мас.% молекул с массой до 1500 Дальтон,
и
100 г нейтральной натриевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=1200 и полидисперсность 2,8 и содержащей более 70 мас.% молекул с массой до 1500 Дальтон.
Соответствующий «состав C» имел Mw=3600 и полидисперсность 2.,8 и содержал 34-36 мас.% молекул с массой до 1500 Дальтон.
Опыт 24
Данный опыт иллюстрирует прототип.
Для получения суспензий минерал 7a диспергировали при содержании твердой фазы 66 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением различном количестве (мас.% в расчете на сухие вещества) «состава C», чтобы контролировать вязкость по Брукфильду. Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Результаты:
Содержание твердой фазы в суспензии (мас.%) Содержание диспергатора (мас.% в расчете на сухие вещества) Исходная вязкость по Брукфильду (мПа·с)
66,8 0,35 >5000
66,8 1,0 >5000
66,8 1,60 >5000
Опыт 25
Данный опыт иллюстрирует настоящее изобретение.
Для получения суспензий минерал 7a диспергировали при содержании твердой фазы 66 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением различном количестве (мас.% в расчете на сухие вещества) «состава C» в сочетании с карбонатом лития, чтобы контролировать вязкость по Брукфильду.
Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Результаты:
Содержание твердой фазы в суспензии (мас.%) Содержание «состава C» (мас.%) Содержание соли лития (Li2CO3) (мас.%) Вязкость по Брукфильду (мПа·с)
65,8 0,3 0,35 ~2600
65,8 0,6 0,35 476
64,8 0,9 0,35 280
Опыт 26
Данный опыт иллюстрирует прототип.
Для получения суспензий минерал 4b диспергировали при содержании твердой фазы 55 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением полиакрилата натрия-магния (1,05 мас.% в расчете на сухие вещества), имеющего Mw=1500 и содержащего более 65 мас.% молекул с массой до 1500 Дальтон, чтобы контролировать вязкость по Брукфильду. Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Результаты:
Содержание твердой фазы в суспензии (мас.%) Содержание диспергатора (мас.% в расчете на сухие вещества) Исходная вязкость по Брукфильду (мПа·с)
55,4 1,0 1250
60,0 1,0 >5000
Опыт 27
Данный опыт иллюстрирует настоящее изобретение
Для получения суспензий минерал 4b диспергировали при содержании твердой фазы 60 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением полиакрилата натрия-магния (0,45 мас.% в расчете на сухие вещества), имеющего Mw=1500 и содержащего более 65 мас.% молекул с массой до 1500 Дальтон, чтобы контролировать вязкость по Брукфильду, в сочетании с карбонатом лития (0,5 мас.% в расчете на сухие вещества по отношению к карбонату кальция). Затем измеряли исходную вязкость по Брукфильду через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Результаты:
Содержание твердой фазы в суспензии (мас.%) Содержание диспергатора (мас.% в расчете на сухие вещества) Исходная вязкость по Брукфильду (мПа·с)
61,6 0,40 82
Пример 7
Данный пример иллюстрирует применение содержащего ионы лития соединения как модификатора адсорбционных свойств, что позволяет получать водные суспензии S-PCC с высоким содержанием сухой твердой фазы, имеющие исходную низкую вязкость по Брукфильду, которая сохраняет устойчивость с течением времени, и хорошие буферные свойства по отношению к pH.
Опыт 28
Данный опыт иллюстрирует прототип.
Для его проведения минерал 8a диспергировали при содержании твердой фазы 50,0 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,44% (от массы сухого минерала) обычной нейтральной натриево-магниевой соли (100 мол.%, соотношение 1:1) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,7.
Затем вязкость по Брукфильду измеряли при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 29
Данный опыт иллюстрирует прототип.
Для его проведения минерал 8a диспергировали при содержании твердой фазы 60,1 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 1,50% (от массы сухого минерала) обычной нейтральной натриево-магниевой соли (100 мол.%, соотношение 1:1) полиакриловой кислоты, имеющей Mw = 6000 и полидисперсность 2,7.
Затем вязкость по Брукфильду измеряли при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 30
Данный опыт иллюстрирует прототип.
Для его проведения минерал 8a диспергировали при содержании твердой фазы 50,0 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,30% (от массы сухого минерала) обычной нейтральной натриевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=3500.
Затем вязкость по Брукфильду измеряли при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 31
Данный опыт иллюстрирует прототип.
Для его проведения минерал 8a диспергировали при содержании твердой фазы 55,6 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,30% (от массы сухого минерала) обычной нейтральной натриевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=3500.
Затем вязкость по Брукфильду измеряли при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Следует отметить, что невозможно использовать суспензию, содержащую 60,0 мас.% твердой фазы, вследствие очень высокой вязкости по Брукфильду.
Опыт 32
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения минерал 8b диспергировали при содержании твердой фазы 50,0 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,22% (от массы сухого минерала) обычной нейтральной натриево-магниевой соли (100 мол.%, соотношение 1:1) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,7.
Затем вязкость по Брукфильду измеряли при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 33
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения минерал 8b диспергировали при содержании твердой фазы 59,5 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,46% (от массы сухого минерала) обычной нейтральной натриево-магниевой соли (100 мол.%, соотношение 1:1) полиакриловой кислоты, имеющей Mw=6000 и полидисперсность 2,7.
Затем вязкость по Брукфильду измеряли при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 34
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения минерал 8b диспергировали при содержании твердой фазы 49,9 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,32% (от массы сухого минерала) обычной нейтральной натриевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=3500.
Затем вязкость по Брукфильду измеряли при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 35
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения минерал 8b диспергировали при содержании твердой фазы 59,4 мас.% с помощью зубчатой дисковой мешалки Pendraulik (вращение со скоростью 3000 об/мин в течение 5-10 минут) с добавлением 0,53% (от массы сухого минерала) обычной нейтральной натриевой соли (100 мол.%) полиакриловой кислоты, имеющей Mw=3500.
Затем вязкость по Брукфильду измеряли при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Результаты собраны в следующей таблице 8.
Таблица 8
Номер опыта Содержание твердой фазы (мас.%) Содержание добавки от массы сухого минерала (мас.%) Исходная вязкость по Брукфильду (100 об/мин, шпиндель 3) (мПа·с) Значения pH через 1 час/8 суток
Прототип 28 50,0 0,44 113 10,2/10,4
Прототип 29 60,1 1,50 >4000 10,3/10,4
Прототип 30 50,0 0,30 95 9,9/10,2
Прототип 31 55,6 0,59 103 10/10,2
Изобретение 32 50,0 0,22 53 10,2/10,2
Изобретение 33 59,5 0,46 94 9,9/10,2
Изобретение 34 49,9 0,32 39 10,2/10,4
Изобретение 35 59,4 0,53 104 10,1/10,4
Данные таблицы 8 четко демонстрируют эффективность модификации S-PCC с применением ионов лития по настоящему изобретению.
Пример 8
Данный пример иллюстрирует применение содержащего ионы лития соединения как модификатора адсорбционных свойств, что позволяет получать водные суспензии карбоната кальция с высокой концентрацией сухой твердой фазы и одновременной низкой исходной вязкостью по Брукфильду, которая сохраняет устойчивость с течением времени, и хорошими буферными свойствами по отношению к pH.
В частности, данный пример иллюстрирует введение карбоната лития в процессе мокрого помола суспензий с высоким содержанием твердой фазы.
Опыт 36
Данный опыт иллюстрирует прототип.
Для его проведения минерал 2 диспергировали при содержании твердой фазы 76 мас.% с добавлением 0,55% (в расчете на сухие вещества) обычного полиакрилата натрия-магния, имеющего Mw=6000 и полидисперсность Mw/Mn=2,5, и подвергали мокрому измельчению в 1,5-литровой мельнице тонкого помола (Dynomill) в режиме рециркуляции до медианного диаметра d50=0,85 мкм, 91 мас.% <2 мкм, 63 мас.% <1 мкм, 21 мас.% <0,2 мкм.
Затем исходную вязкость по Брукфильду после помола измеряли через 1 час после получения и после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 37
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения минерал 2 диспергировали при содержании твердой фазы 78 мас.% твердой фазы с добавлением 0,55 мас.% (в расчете на сухие вещества) обычного полиакрилата натрия-магния, имеющего Mw=6000 и полидисперсность Mw/Mn=2,5, и 500 ч/млн ионов Li в виде Li2CO3, затем подвергали мокрому измельчению в 1,5-литровой мельнице тонкого помола (Dynomill) в режиме рециркуляции до медианного диаметра d50=0,87 мкм, 90 мас.% <2 мкм, 62 мас.% <1 мкм, 22 мас.% <0,2 мкм.
Затем исходную вязкость по Брукфильду после помола измеряли через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) и после длительного выдерживания при 60°C со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Опыт 38
Данный опыт иллюстрирует настоящее изобретение.
Для его проведения минерал 2 диспергировали при содержании твердой фазы 76 мас.% с добавлением 0,55 мас.% (в расчете на сухие вещества) обычного полиакрилата натрия-магния, имеющего Mw=6000 и полидисперсность Mw/Mn=2,5, и 500 ч/млн ионов Li в виде LiOH·H2O, затем подвергали мокрому измельчению в 1,5-литровой мельнице тонкого помола (Dynomill) в режиме рециркуляции до медианного диаметра d50=0,81 мкм, 93 мас.% <2 мкм, 65 мас.% <1 мкм, 23 мас.% <0,2 мкм.
Затем исходную вязкость по Брукфильду после помола через один час после приготовления и после одноминутного перемешивания при комнатной температуре (21±1°C) и после длительного выдерживания при 60°C измеряли при 20°C и скорости 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3.
Результаты приведены в следующей таблице 9.
Таблица 9
Номер опыта Содержание твердой фазы (мас.%) Содержание добавки от массы сухого минерала (мас.%) Исходная вязкость по Брукфильду (100 об/мин, шпиндель 3) (мПа·с) Вязкость по Брукфильду через 15 суток (100 об/мин, шпиндель 3) (мПа·с) Вязкость по Брукфильду через 30 суток (100 об/мин, шпиндель 3) (мПа·с)
Прототип 36 76,8 0,55 240 300 420
Изобретение 37 79,2 0,55% +500 ч/млн Li в виде Li2CO3 205 155 135
Изобретение 38 76,5 0,55% +500 ч/млн Li в виде LiOH•H2O 225 220 225
Пример 9
Данный пример иллюстрирует применение содержащего ионы лития соединения как модификатора адсорбционных свойств, что позволяет получать водные суспензии карбоната кальция с высокой концентрацией сухой твердой фазы и одновременной низкой исходной вязкостью по Брукфильду, которая сохраняет устойчивость с течением времени, и хорошими буферными свойствами по отношению к pH, а также хорошей рассеивающей способностью по сравнению с добавками карбонатов других щелочных металлов.
В частности, данный пример иллюстрирует введение карбоната лития после мокрого помола суспензий с высоким содержанием твердой фазы с добавлением 0,55 мас.% (в расчете на сухие вещества) обычного полиакрилата натрия-магния, имеющего Mw=6000 и полидисперсность Mw/Mn=2,5, для модификации адсорбции на поверхности частиц карбоната кальция и, соответственно, улучшения диспергирования мокроизмельченного мрамора с медианным диаметром частиц d50=0,8 мкм, соответствующим 91 мас.% <2 мкм, 63 мас.% <1 мкм, 21 мас.% <0,2 мкм. Содержание твердой фазы в суспензии во время помола составляло 63 мас.%. Минеральная суспензия (A).
Коэффициент рассеяния S более 110 м2/кг для плотности покрытия 20 г/м2, отражающий способность покрытия рассеивать видимый свет, измеряют способом, описанным в патентной заявке WO 02/49766 (стр.8-10). Соответственно, светорассеивающую способность выражает коэффициент светорассеяния Кубелки-Мунка (Kubelka-Munk), определяемый способом, который хорошо известен специалистам и описан в публикациях Кубелки и Мунка (Zeitschrift fur Technische Physik 12, 539 (1931)) и Кубелки (J. Optical Soc. Am. 38 (5), 448 (1948) и J. Optical Soc. Am. 44 (4), 330 (1954)).
Опыт 39
Данный опыт иллюстрирует прототип.
К данной минеральной суспензии (A) добавляли 1,3 мас.% K2CO3 в виде порошка при перемешивании в течение 5 мин.
Затем вязкость по Брукфильду измеряли после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3. После выдерживания снова измеряли вязкость и рассеивающую способность.
Опыт 40
Данный опыт иллюстрирует прототип.
К данной минеральной суспензии (A) добавляли 1,0 мас.% Na2CO3 в виде порошка при перемешивании в течение 5 мин.
Затем вязкость по Брукфильду измеряли после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3. После выдерживания снова измеряли вязкость и рассеивающую способность.
Опыт 41:
Данный опыт иллюстрирует настоящее изобретение.
К данной минеральной суспензии (A) добавляли 0,7 мас.% Li2CO3 в виде порошка при перемешивании в течение 5 мин.
Затем вязкость по Брукфильду измеряли после одноминутного перемешивания при комнатной температуре (21±1°C) со скоростью 100 об/мин с помощью вискозиметра Брукфильда типа DV-III, оборудованного шпинделем 3. После выдерживания снова измеряли вязкость и рассеивающую способность.
Результаты приведены в следующей таблице 10.
Таблица 10
Номер опыта Содержание твердой фазы (мас.%) Содержание добавки от массы сухого минерала (мас.%) Коэффициент рассеяния покрытия плотностью 20 г/м22/кг) Коэффици-ент рассеяния покрытия плотностью 20 г/м22/кг) Вязкость по Брукфильду через 30 суток (100 об/мин, шпиндель 3) (мПа·с)
Прототип
Ссылка на опыт без карбоната щелочного металла
Минеральная суспензия (A) 62,8 Без добавки карбоната щелочного металла 107 38 37
Прототип 39 62,8 1,3 мас.% K2CO3 124 Измерение невозможно из-за высокой клейкости Измерение невозможно из-за высокой клейкости
Прототип 40 62,8 1,0 мас.% Na2CO3 126 Измерение невозможно из-за высокой клейкости Измерение невозможно из-за высокой клейкости
Изобретение 41 62,8 0,7 мас.% Li2CO3 126 455 547
Применение соли Li по настоящему изобретению может повысить рассеивающую способность по сравнению со стандартным продуктом и обеспечить хорошую вязкость с течением времени.

Claims (44)

1. Способ производства содержащих карбонат кальция материалов, поверхность частиц которых имеет улучшенные свойства адсорбции диспергатора, состоящий из стадий:
a) получение, по меньшей мере, одного содержащего карбонат кальция материала в виде водной суспензии или в сухом виде;
b) получение, по меньшей мере, одного содержащего ионы лития соединения, выбранного из группы, в которую входят гидроксид лития, или оксид лития, или неорганические и/или органические мономерные соли лития, выбранные из группы, в которую входят соли одно- или многоосновных кислот, например карбонат лития, сульфаты лития, цитрат лития, гидрокарбонат лития, ацетат лития, хлорид лития, фосфат лития, в сухом виде или в водном растворе, и их смеси;
c) сочетание, по меньшей мере, одного содержащего ионы лития соединения по стадии b) и, по меньшей мере, одного содержащего карбонат кальция материала по стадии a).
2. Способ по п.1, отличающийся тем, что, по меньшей мере, один содержащий карбонат кальция материал получают в виде синтетического карбоната кальция (РСС) из, по меньшей мере, одного источника ионов кальция и, по меньшей мере, одного источника карбоната, гидрокарбоната и/или CO2, или в виде природного содержащего карбонат минерального материала (GCC).
3. Способ по любому из пп.1 или 2, отличающийся тем, что, по меньшей мере, один содержащий карбонат кальция материал выбирают из группы, в которую входят природный карбонат кальция (GCC), например мрамор, кальцит, известняк и/или мел; осажденный карбонат кальция (РСС), например ватерит и/или кальцит; и содержащие карбонат кальция минералы, например доломит или смешанные наполнители на основе карбоната, в том числе, в частности, связанный с магнием кальций, различные материалы, например глина или тальк и их смеси, в том числе, например смеси, содержащие тальк и карбонат кальция или каолин и карбонат кальция, или смеси, содержащие природный карбонат кальция и гидроксид алюминия, слюду или синтетические или натуральные волокна, или совместные структуры минералов, например совместные структуры талька и карбоната кальция или талька и диоксида титана.
4. Способ по п.3, отличающийся тем, что, по меньшей мере, один содержащий карбонат кальция материал представляет собой природный карбонат кальция (GCC), или осажденный карбонат кальция (РСС), или смесь GCC и РСС, или смесь GCC и РСС и глины, или смесь GCC и РСС и талька, и наиболее предпочтительно в качестве GCC выбирают мрамор, мел, кальцит или известняк, или в качестве РСС выбирают кальцитный РСС, например ромбоэдрический РСС или скаленоэдрический РСС.
5. Способ по п.1, отличающийся тем, что, по меньшей мере, один содержащий карбонат кальция материал измельчают, возможно, в присутствии диспергаторов и/или диспергирующих веществ (стадия d), и предпочтительно в присутствии, по меньшей мере, одного содержащего ионы лития соединения.
6. Способ по п.5, отличающийся тем, что тонкодисперсный материал просеивают и/или концентрируют (стадия е).
7. Способ по п.6, отличающийся тем, что материал после просеивания и/или концентрирования (стадия е) диспергируют в водной среде (стадия f), предпочтительно в присутствии, по меньшей мере, одного содержащего ионы лития соединения.
8. Способ по п.5, отличающийся тем, что тонкодисперсный материал сушат (стадия g).
9. Способ по п.6, отличающийся тем, что тонкодисперсный материал сушат (стадия g).
10. Способ по п.7, отличающийся тем, что тонкодисперсный материал сушат (стадия g).
11. Способ по п.5, отличающийся тем, что тонкодисперсный содержащий карбонат кальция материал по стадии d) диспергируют в водной среде, если его получают в сухом виде на стадии a) (стадия h).
12. Способ по п.11, отличающийся тем, что водную суспензию, полученную на стадии h), измельчают (стадия i), предпочтительно в присутствии, по меньшей мере, одного содержащего ионы лития соединения.
13. Способ по п.8, отличающийся тем, что высушенный материал по стадии g) повторно диспергируют в водной среде (стадия j), предпочтительно в присутствии, по меньшей мере, одного содержащего ионы лития соединения.
14. Способ по п.1 или 2, отличающийся тем, что, по меньшей мере, одно содержащее ионы лития соединение добавляют до, и/или во время, и/или после стадии а), если, по меньшей мере, один содержащий карбонат кальция материал представляет собой РСС.
15. Способ по п.5, отличающийся тем, что, по меньшей мере, одно содержащее ионы лития соединение добавляют до, и/или во время, и/или после стадии помола d), если, по меньшей мере, один содержащий карбонат кальция материал представляет собой GCC.
16. Способ по п.6, отличающийся тем, что, по меньшей мере, одно содержащее ионы лития соединение добавляют после стадии помола d) и до, и/или во время, и/или после стадии е) просеивания и/или концентрирования.
17. Способ по п.7, отличающийся тем, что, по меньшей мере, одно содержащее ионы лития соединение добавляют до, и/или во время, и/или после стадии диспергирования f).
18. Способ по п.11, отличающийся тем, что, по меньшей мере, одно содержащее ионы лития соединение добавляют единовременно до, во время или после стадии помола d), или несколькими порциями, каждую из которых добавляют до, во время или после стадии диспергирования h).
19. Способ по п.7, отличающийся тем, что, если все или часть количества, по меньшей мере, одного содержащего ионы лития соединения добавляют до стадии диспергирования f), по меньшей мере, одно содержащее ионы лития соединение добавляют до, и/или во время, и/или после стадии помола d).
20. Способ по п.5, отличающийся тем, что стадию помола d) проводят при pH выше 7, предпочтительно выше 7,5, предпочтительнее от 8,5 до 10,5, и наиболее предпочтительно от 9 до 10, например 9,5.
21. Способ по п.1 или 2, отличающийся тем, что концентрация ионов лития по отношению к полной массе сухого карбоната кальция составляет 10-2000 ч./млн, предпочтительно 100-1000 ч./млн, наиболее предпочтительно 200-800 ч./млн.
22. Способ по п.1 или 2, отличающийся тем, что, по меньшей мере, одно содержащее ионы лития соединение присутствует в концентрации 0,0035-1 мас.%, предпочтительно 0,0035-0,8 мас.% и наиболее предпочтительно 0,02-0,4 мас.% по отношению к полной массе сухого карбоната кальция.
23. Способ по п.1 или 2, отличающийся тем, что, по меньшей мере, один содержащий карбонат кальция материал содержит GCC и РСС, причем РСС присутствует в количестве 10-90 мас.%, предпочтительно 20-80 мас.% и наиболее предпочтительно 30-70 мас.% по отношению к полной массе РСС и GCC.
24. Способ по пп.5, 6, 7 или 8, отличающийся тем, что, в случае отсутствия стадии e), f) или g), все количество, по меньшей мере, одного содержащего ионы лития соединения используют до стадии помола d), или часть, по меньшей мере, одного содержащего ионы лития соединения используют до стадии помола d), причем остальное количество добавляют во время стадии d).
25. Способ по п.1 или 2, отличающийся тем, что при использовании диспергатора количество, по меньшей мере, одного используемого содержащего ионы лития соединения составляет 0,01-5%, предпочтительно 0,05-2%, наиболее предпочтительно 0,1-1% сухой массы по отношению к сухой массе содержащего карбонат кальция материала.
26. Способ по п.5, отличающийся тем, что стадию помола d) проводят при температуре выше 5°C, предпочтительно 20-120°C, предпочтительнее 45-105°C и наиболее предпочтительно 85-100°C.
27. Способ по п.5, отличающийся тем, что концентрация твердой фазы в материале в виде водной суспензии, измельчаемом на стадии помола d), составляет 10-82% (от сухой массы содержащего карбонат кальция материала), предпочтительно 50-81%, наиболее предпочтительно 60-80% и особенно предпочтительно 65-72%.
28. Способ по п.5, отличающийся тем, что тонкодисперсный материал, полученный на стадии помола d), содержит фракцию частиц мельче 1 мкм более 20 мас.%, предпочтительно более 60 мас.%, предпочтительнее более 75 мас.%, еще предпочтительнее более 85 мас.% и наиболее предпочтительно более 95 мас.% по отношению к полной массе тонкодисперсного материала.
29. Способ по п.1 или 2, отличающийся тем, что, по меньшей мере, один содержащий карбонат кальция материал получают в виде водной суспензии, содержащей 1-82 мас.%, предпочтительно 15-81 мас.% и наиболее предпочтительно 40-80 мас.% сухого GCC и/или РСС, и, в частности 63-72 мас.% сухого GCC и/или 47-72 мас.% сухого РСС.
30. Способ по п.5, отличающийся тем, что стадию помола d) проводят при содержании твердой фазы 10-35 мас.% по отношению к полной массе суспензии в отсутствие каких-либо диспергаторов или диспергирующих веществ или при содержании твердой фазы 60-82 мас.% по отношению к полной массе суспензии в присутствии диспергаторов и/или диспергирующих веществ.
31. Способ по п.1 или 2, отличающийся тем, что содержание в суспензии твердой фазы конечного содержащего карбонат кальция материала, как правило, составляет 45-82 мас.%, предпочтительно 45-75 мас.%, предпочтительнее 68-73 мас.%, если стадию помола d) проводят без какого-либо диспергатора или диспергирующего вещества, или 65-82 мас.% и предпочтительнее 72-78 мас.%, если стадию помола d) проводят в присутствии диспергаторов или диспергирующих веществ.
32. Способ по п.1 или 2, отличающийся тем, что вязкость по Брукфильду суспензии конечного содержащего карбонат кальция материала устойчива с течением времени, причем вязкость по Брукфильду водной суспензии содержащего карбонат кальция материала через 1 ч после получения ниже 4000 мПа·с, предпочтительно до 2000 мПа·с, предпочтительнее до 500 мПа·с, а вязкость по Брукфильду водной суспензии содержащего карбонат кальция материала после 8 суток хранения без перемешивания ниже 4000 мПа·с, предпочтительно до 2000 мПа·с, предпочтительнее до 1000 мПа·с, особенно до 500 мПа·с.
33. Способ по п.1 или 2, отличающийся тем, что суспензия конечного содержащего карбонат кальция материала имеет коэффициент рассеяния S≥120 м2/кг для плотности покрытия 20 г/м2 и вязкость по Брукфильду ниже 1000 мПа·с, предпочтительно коэффициент рассеяния S≥140 м2/кг для плотности покрытия 20 г/м2 и вязкость по Брукфильду ниже 500 мПа·с.
34. Содержащий карбонат кальция материал, отличающийся тем, его получают способом по любому из пп.1-31.
35. Содержащий карбонат кальция материал по п.34, отличающийся тем, что концентрация ионов лития по отношению к полной массе сухого карбоната кальция составляет 10-2000 ч./млн, предпочтительно 100-1000 ч./млн, наиболее предпочтительно 200-800 ч./млн.
36. Содержащий карбонат кальция материал по любому из пп.34 или 35, отличающийся тем, что он содержит, по меньшей мере, одно содержащее ионы лития соединение в количестве 0,0035-1 мас.%, предпочтительно 0,0035-0,5 мас.% и наиболее предпочтительно 0,02-0,2 мас.%, в частности 0,05%, по отношению к полной массе сухого карбоната кальция.
37. Содержащий карбонат кальция материал по любому из пп.34 или 35, отличающийся тем, что он имеет значение d50 около 0,2-5 мкм, предпочтительно 0,2-1,5 мкм, наиболее предпочтительно 0,25-1 мкм, в частности 0,45-0,7 мкм.
38. Содержащий карбонат кальция материал по любому из пп.34 или 35, отличающийся тем, что он содержит фракцию частиц мельче 1 мкм более 50 мас.%, предпочтительно более 80 мас.%, предпочтительнее более 85 мас.%, еще предпочтительнее более 90 мас.% и наиболее предпочтительно более 95 мас.% по отношению к полной массе тонкодисперсного материала.
39. Содержащий карбонат кальция материал по любому из пп.34 или 35, отличающийся тем, что он имеет коэффициент рассеяния S≥120 м2/кг для плотности покрытия 20 г/м2 и вязкость по Брукфильду ниже 1000 мПа·с, предпочтительно коэффициент рассеяния S≥140 м2/кг для плотности покрытия 20 г/м2 и вязкость по Брукфильду ниже 500 мПа·с.
40. Применение содержащих карбонат кальция материалов по любому из пп.34-39 в производстве бумаги, красок и пластмасс.
41. Бумага, содержащая материалы на основе карбоната кальция по любому из пп.34-39.
42. Пластмассы, содержащие материалы на основе карбоната кальция по любому из пп.34-39.
43. Краски, содержащие материалы на основе карбоната кальция по любому из пп.34-39.
44. Применение, по меньшей мере, одного содержащего ионы лития соединения в способе производства по любому из пп.1-33.
RU2011127182/05A 2008-12-04 2009-12-02 Способ производства материалов из карбоната кальция с улучшенными адсорбционными свойствами поверхности частиц RU2499016C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP08170747.3 2008-12-04
EP08170747A EP2194103A1 (en) 2008-12-04 2008-12-04 Process for manufacturing calcium carbonate materials having a particle surface with improved adsorption properties
US20520609P 2009-01-16 2009-01-16
US61/205,206 2009-01-16
PCT/EP2009/066223 WO2010063757A1 (en) 2008-12-04 2009-12-02 Process for manufacturing calcium carbonate materials having a particle surface with improved adsorption properties

Publications (2)

Publication Number Publication Date
RU2011127182A RU2011127182A (ru) 2013-01-10
RU2499016C2 true RU2499016C2 (ru) 2013-11-20

Family

ID=40723198

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011127182/05A RU2499016C2 (ru) 2008-12-04 2009-12-02 Способ производства материалов из карбоната кальция с улучшенными адсорбционными свойствами поверхности частиц

Country Status (16)

Country Link
US (2) US9879139B2 (ru)
EP (2) EP2194103A1 (ru)
JP (3) JP2012511073A (ru)
KR (2) KR101706396B1 (ru)
CN (1) CN102264847B (ru)
CA (1) CA2744927C (ru)
DK (1) DK2373746T3 (ru)
ES (1) ES2427867T5 (ru)
HR (1) HRP20130818T1 (ru)
MX (1) MX2011005665A (ru)
PL (1) PL2373746T3 (ru)
PT (1) PT2373746E (ru)
RU (1) RU2499016C2 (ru)
SI (1) SI2373746T1 (ru)
TW (1) TWI490278B (ru)
WO (1) WO2010063757A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646432C1 (ru) * 2014-05-26 2018-03-05 Омиа Интернэшнл Аг Способ изготовления крошки , включающей в свой состав карбонат кальция

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2374353T3 (pl) * 2010-04-09 2013-04-30 Omya Int Ag Sposób konserwacji wodnych preparatów materiałów mineralnych, konserwowane wodne preparaty materiałów mineralnych i zastosowanie związków konserwujących w wodnych preparatach materiałów mineralnych
PL2390284T5 (pl) * 2010-05-28 2017-10-31 Omya Int Ag Sposób wytwarzania zawiesiny materiałów mineralnych o wysokiej zawartości części stałych
SI2455429T1 (sl) 2010-11-19 2013-12-31 Omya International Ag Postopek za pripravo vodne suspenzije mineralnih snovi z uporabo aminov, kombiniranih z vinil karboksilnimi polimeri
WO2012092986A1 (en) 2011-01-07 2012-07-12 Omya Development Ag Process for water based mineral material slurry surface whitening
EP2702009A4 (en) * 2011-04-28 2015-02-18 Calera Corp METHODS AND COMPOSITIONS USING CALCIUM CARBONATE AND STABILIZER
SI2623467T1 (sl) * 2012-02-03 2016-08-31 Omya International Ag Postopek za pripravo vodne raztopine, ki vsebuje vsaj en zemeljsko alkalijski hidrogenkarbonat in njegova uporaba
EP2929781A1 (en) 2014-04-10 2015-10-14 Omya International AG MIC reduction with lithium ions
PL2939980T3 (pl) * 2014-04-30 2018-08-31 Omya International Ag Wytwarzanie strącanego węglanu wapnia
CN104031418B (zh) * 2014-05-20 2016-01-06 凤台县精华助剂有限公司 一种分散度高的改性碳酸钙及其制备方法
US10647143B2 (en) 2014-05-26 2020-05-12 Omya International Ag Calcium carbonate for rotogravure printing medium
EP2995654A1 (en) 2014-09-15 2016-03-16 Omya International AG Dry process for preparing a surface-modified alkaline earth metal carbonate-containing material
ES2728380T3 (es) * 2015-01-07 2019-10-24 Omya Int Ag Proceso para obtener un CCM ultrafino con propiedades de elevada dispersión de luz y elevado contenido de sólidos
EP3124436A1 (en) * 2015-07-31 2017-02-01 Omya International AG Precipitated calcium carbonate with improved resistance to structural breakdown
CN105623315A (zh) * 2016-02-02 2016-06-01 安徽恒昊科技有限公司 一种新材料用粉体的制备方法
US11014858B2 (en) 2016-03-30 2021-05-25 Gcp Applied Technologies Inc. Mineral grinding
TR201815833T4 (tr) * 2016-06-24 2018-11-21 Omya Int Ag Ekstrüzyon desteği olarak yüzey reaktif kalsiyum karbonat.
CN109957997A (zh) * 2017-12-14 2019-07-02 东升新材料(山东)有限公司 一种改善印刷效果的微涂涂料及其应用
CN108929570A (zh) * 2018-05-10 2018-12-04 桂林永福恒达实业有限公司 一种湿法生产超微细碳酸钙的方法
CN109024047A (zh) * 2018-08-03 2018-12-18 广州市宏晓包装制品有限公司 一种去金属纸浆生产工艺
CN113302242A (zh) * 2019-02-26 2021-08-24 Omya国际股份公司 制备经表面处理的碳酸钙材料的方法
FR3093012B1 (fr) * 2019-02-26 2021-01-22 Coatex Sas Réduction de l’hygroscopicité d’un matériau minéral
KR20210129697A (ko) * 2019-02-26 2021-10-28 옴야 인터내셔널 아게 분쇄된 탄산칼슘-포함 물질을 포함하는 수성 현탁액을 제조하는 방법
EP4149887A1 (en) 2020-05-13 2023-03-22 Basf Se Biocide free pigment dispersions and methods of preparing them
CN117157361A (zh) 2021-04-09 2023-12-01 巴斯夫欧洲公司 聚醚在颜料分散体中的用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006779A (en) * 1959-01-09 1961-10-31 Wyandotte Chemicals Corp Continuous calcium carbonate slurry process
RU2246510C2 (ru) * 1998-12-24 2005-02-20 Омя Аг, Сн Обработанный наполнитель, или пигмент, или минерал для бумаги, в частности, пигмент, содержащий природный карбонат кальция, способ его получения, содержащие его композиции и их применения
WO2006081501A1 (en) * 2005-01-27 2006-08-03 Imerys Pigments, Inc. Aqueous mineral suspensions
WO2007141260A1 (en) * 2006-06-09 2007-12-13 Omya Development Ag Composites of inorganic and/or organic microparticles and nano-calcium carbonate particles

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2750299A (en) * 1953-03-30 1956-06-12 Calgon Inc Calcium carbonate dispersions and method of making same
JPS5367729A (en) 1976-11-30 1978-06-16 Dainichi Seika Kogyo Kk Aqueous pigment dispersion
FR2488814A1 (fr) 1980-08-21 1982-02-26 Coatex Sa Agent de broyage pour suspension aqueuse de materiaux mineraux en vue d'applications pigmentaires
FR2539137A1 (fr) 1982-08-06 1984-07-13 Coatex Sa Agent de broyage a base de polymeres et/ou copolymeres acryliques neutralises pour suspension aqueuse de materiaux mineraux grossiers en vue d'applications pigmentaires
FR2531444A1 (fr) 1982-08-06 1984-02-10 Coatex Sa Agent de broyage a base de polymeres et/ou copolymeres acryliques pour suspension aqueuse de materiaux mineraux grossiers en vue d'applications pigmentaires
EP0127388B1 (en) 1983-05-20 1986-12-30 Ciba Specialty Chemicals Water Treatments Limited Water soluble polymers
FR2603042B1 (fr) 1986-08-22 1988-11-10 Coatex Sa Compositions pigmentaires complexes pour l'enduction du papier
JPH028261A (ja) * 1988-06-27 1990-01-11 Sanyo Chem Ind Ltd 無機顔料用分散剤
US5181662A (en) * 1989-01-27 1993-01-26 Coatex S.A. Process for grinding calcium carbonate in aqueous media
DE4004953C3 (de) 1990-02-19 1998-01-29 Stockhausen Chem Fab Gmbh Verfahren zur Herstellung von neutralisierten Polyacrylsäuren und ihre Verwendung als Mahl- und Dispergierhilfsmittel
JPH04209661A (ja) * 1990-12-02 1992-07-31 Sanyo Chem Ind Ltd 無機顔料の湿式粉砕用分散剤
JPH05201725A (ja) 1991-09-05 1993-08-10 Nitsuchitsu:Kk 超高濃度炭酸カルシウムスラリー
DE69224150T2 (de) 1991-11-12 1998-10-15 Coatex Sa Mahl- und/oder Dispersionshilfsmittel auf Basis von Polymeren und/oder teilweise durch Magnesium neutralisierten Kopolymeren für wässerige Suspensionen von mineralen Materialien, welche sich eignen für pigmentäre Anwendungen
CA2080961C (fr) 1991-11-12 2002-04-02 Jean-Bernard Egraz Agent de broyage et/ou de dispersion a base de polymeres et/ou copolymeres neutralises en partie par du magnesium pour suspensions aqueuses de materiaux mineraux en vue d'applications pigmentaires
JP3160400B2 (ja) * 1992-12-22 2001-04-25 三井化学株式会社 塗被紙用組成物
GB9622905D0 (en) * 1996-11-02 1997-01-08 Ecc Int Ltd Dispersing agents and their use
GB9627002D0 (en) 1996-12-27 1997-02-12 Ecc Int Ltd Dispersed aqueous suspensions
FR2802830B1 (fr) * 1999-12-27 2002-06-07 Coatex Sa Utilisation de polymeres hydrosolubles comme agent de dispersion de suspension aqueuse de carbonate de calcium suspensions aqueuses obtenues et leurs utilisations
FR2818165B1 (fr) 2000-12-20 2003-10-31 Coatex Sas Agent d'aide au broyage de materiaux mineraux en suspension aqueuse. suspensions aqueuses obtenues et leurs utilisations
GB0221632D0 (en) * 2002-09-17 2002-10-30 Imerys Minerals Ltd Grinding method
FR2852600B1 (fr) * 2003-03-18 2005-06-10 Nouveau pigment mineral contenant du carbonate de calcium, suspension aqueuse le contenant et ses usages
FR2894846B1 (fr) 2005-12-20 2008-02-01 Coatex Sas Utilisation de dispersants pour concentrer des matieres minerales dans l'eau, dispersions obtenues et leurs utilisations.
GB0611154D0 (en) 2006-06-06 2006-07-19 Glaxo Group Ltd Novel receptor antagonists and their methods of use
FR2903618B1 (fr) 2006-07-12 2008-10-31 Coatex Sas Agent de dispersion et/ou d'aide au broyage pour dispersion et suspension aqueuse de matieres minerales, dispersion et suspension obtenues et leurs utilisations.
DE602007009124D1 (de) * 2007-12-12 2010-10-21 Omya Development Ag Verfahren zur Herstellung von oberflächenreaktives Fällungskalziumkarbonat
GB0803882D0 (en) 2008-03-03 2008-04-09 Unilever Plc Stackable cosmetic jar
FR2940141B1 (fr) * 2008-12-19 2010-12-17 Coatex Sas Utilisation de polymeres acryliques neutralises par le lithium comme agents dispersants ou d'aide au broyage en milieu aqueux de matieres minerales

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006779A (en) * 1959-01-09 1961-10-31 Wyandotte Chemicals Corp Continuous calcium carbonate slurry process
RU2246510C2 (ru) * 1998-12-24 2005-02-20 Омя Аг, Сн Обработанный наполнитель, или пигмент, или минерал для бумаги, в частности, пигмент, содержащий природный карбонат кальция, способ его получения, содержащие его композиции и их применения
WO2006081501A1 (en) * 2005-01-27 2006-08-03 Imerys Pigments, Inc. Aqueous mineral suspensions
WO2007141260A1 (en) * 2006-06-09 2007-12-13 Omya Development Ag Composites of inorganic and/or organic microparticles and nano-calcium carbonate particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646432C1 (ru) * 2014-05-26 2018-03-05 Омиа Интернэшнл Аг Способ изготовления крошки , включающей в свой состав карбонат кальция

Also Published As

Publication number Publication date
ES2427867T3 (es) 2013-11-04
US9896567B2 (en) 2018-02-20
ES2427867T5 (es) 2022-04-19
KR101706396B1 (ko) 2017-02-13
JP2015120916A (ja) 2015-07-02
DK2373746T3 (da) 2013-09-23
RU2011127182A (ru) 2013-01-10
EP2194103A1 (en) 2010-06-09
HRP20130818T1 (hr) 2013-11-08
SI2373746T1 (sl) 2013-11-29
CA2744927C (en) 2018-03-27
MX2011005665A (es) 2011-06-16
CA2744927A1 (en) 2010-06-10
EP2373746B1 (en) 2013-06-19
WO2010063757A1 (en) 2010-06-10
KR20110100262A (ko) 2011-09-09
US9879139B2 (en) 2018-01-30
TW201030105A (en) 2010-08-16
US20130237657A1 (en) 2013-09-12
US20110297043A1 (en) 2011-12-08
CN102264847A (zh) 2011-11-30
JP2012511073A (ja) 2012-05-17
TWI490278B (zh) 2015-07-01
EP2373746B2 (en) 2022-01-12
EP2373746A1 (en) 2011-10-12
PL2373746T3 (pl) 2013-11-29
JP2016176054A (ja) 2016-10-06
KR20150085107A (ko) 2015-07-22
JP6114252B2 (ja) 2017-04-12
PT2373746E (pt) 2013-09-24
CN102264847B (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
RU2499016C2 (ru) Способ производства материалов из карбоната кальция с улучшенными адсорбционными свойствами поверхности частиц
US9944535B2 (en) Precipitated calcium carbonate from pulp mill waste having an improved brightness, method for the production and use thereof
ES2428391T3 (es) Proceso para fabricar suspensiones acuosas de materiales minerales o materiales minerales secos, los productos obtenidos, además de los usos de los mismos
US11021374B2 (en) PCC with reduced portlandite content
EP3487812A1 (en) Production of amorphous calcium carbonate
CA3233025A1 (en) Process for preparing a wet ground mineral material
TWI551546B (zh) 具有改善之亮度的自紙漿研磨廢料沈澱的碳酸鈣,其製造方法及其應用

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner