RU2492542C2 - Суперконденсатор с множеством обмоток - Google Patents

Суперконденсатор с множеством обмоток Download PDF

Info

Publication number
RU2492542C2
RU2492542C2 RU2010138621/07A RU2010138621A RU2492542C2 RU 2492542 C2 RU2492542 C2 RU 2492542C2 RU 2010138621/07 A RU2010138621/07 A RU 2010138621/07A RU 2010138621 A RU2010138621 A RU 2010138621A RU 2492542 C2 RU2492542 C2 RU 2492542C2
Authority
RU
Russia
Prior art keywords
supercapacitor
wound
elements
wound elements
electrically conductive
Prior art date
Application number
RU2010138621/07A
Other languages
English (en)
Other versions
RU2010138621A (ru
Inventor
Филипп АЗЕ
Оливье КОМОН
Жан-Мишель ДЕПОН
Original Assignee
Бэтскеп
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бэтскеп filed Critical Бэтскеп
Publication of RU2010138621A publication Critical patent/RU2010138621A/ru
Application granted granted Critical
Publication of RU2492542C2 publication Critical patent/RU2492542C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • H01G4/385Single unit multiple capacitors, e.g. dual capacitor in one coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • H01G9/151Solid electrolytic capacitors with wound foil electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

Объектом настоящего изобретения является суперконденсатор с двойным электрохимическим слоем, содержащий по меньшей мере два комплекса (2, 3) и по меньшей мере один разделитель (4) между ними, при этом комплексы (2, 3) и разделитель (4) намотаны вместе спиралевидно, образуя намотанный элемент (10). Согласно изобретению суперконденсатор дополнительно содержит по меньшей мере один другой комплекс (1) и по меньшей мере один другой разделитель (4), при этом другой комплекс (1) и другой разделитель (4) намотаны вместе спиралевидно вокруг намотанного элемента (10), образуя по меньшей мере один последующий намотанный элемент (20), причем эти последовательно намотанные элементы (10, 20) разделены электроизолирующим пространством. Снижение сопротивления между двумя последовательно соединенными звеньями суперконденсатора, а также повышение объемной и массовой плотности энергии, является техническим результатом предложенного изобретения. 2 н. и 31 з.п. ф-лы, 28 ил.

Description

Область техники, к которой относится изобретение
Изобретение в основном относится к суперконденсаторам, то есть к конденсаторам с двойным электрохимическим слоем (или EDLC - Electrochemical Double Layer Capacitor).
Уровень техники
Суперконденсатор является средством накопления энергии, позволяющим получить показатели плотности мощности и плотности энергии, промежуточные между плотностью мощности и плотностью энергии диэлектрических конденсаторов и батарей. Их время разрядки обычно составляет примерно несколько секунд.
Известный суперконденсатор содержит цилиндрический намотанный элемент, содержащий по меньшей мере два электрода. Каждый электрод изготовлен из смеси активированного угля (называемого также «активным веществом»), сажи и полимеров. Во время этапа экструзии проводящую пасту наносят на алюминиевый коллектор, который служит коллектором тока. Оба электрода разделены пористым разделителем, чтобы предотвратить короткие замыкания между двумя электродами. Во время этапа пропитки суперконденсатор заполняют электролитом. Этот электролит состоит из соли, растворенной в растворителе, как правило, в ацетонитриле. Эта соль делится на две разновидности заряженных частиц, которые называют ионами (например: BF4- и ТЕА+).
Обычно толщина электрода составляет 100 мкм. Ионы имеют размер порядка 1/1000 мкм, то есть в 100000 меньше толщины электрода. Активированный уголь (или активное вещество) является исключительно пористым материалом.
Когда при помощи генератора постоянного напряжения подают напряжение на два электрода суперконденсатора, ионы перемещаются в порах максимально близко к поверхности угля. Чем большее количество ионов находится на поверхности угля, тем больше емкость.
Количество энергии, накапливающейся в суперконденсаторе, зависит от напряжения, подаваемого на электроды, и от общей емкости суперконденсатора.
Многочисленные исследования показали, что, чем выше рабочее напряжение суперконденсаторов, тем короче срок их службы из-за очень интенсивного образования газа.
Образование газа связано с разложением образующего электролит материала, и это разложение зависит от напряжения между электродами суперконденсатора.
Например, напряжение разложения чистого ацетонитрила составляет 5,9 В.
В настоящее время опорное напряжение, подаваемое на электроды суперконденсаторов, составляет 2,7 В (см., в частности, документ WO 9815962, где указано, что напряжение суперконденсатора необходимо ограничивать, чтобы избежать чрезмерного разложения электролита).
Для устранения этого недостатка несколько суперконденсаторов электрически соединяют друг с другом, образуя модуль. Это позволяет увеличить напряжение, подаваемое на модуль.
Для электрического соединения двух смежных суперконденсаторов используют средства соединения, содержащие две крышки и перемычку.
Каждая крышка выполнена с возможностью закрывания соответствующего суперконденсатора для электрического соединения с ним, например, при помощи сварки.
Кроме того, каждая крышка содержит контактный вывод, выполненный с возможностью вхождения в контакт со сквозным отверстием перемычки, электрически соединяя два смежных суперконденсатора.
Однако такие суперконденсаторы имеют ряд недостатков.
В частности, два суперконденсатора, электрически соединенные перемычкой и двумя крышками, имеют большие объем и массу.
Кроме того, стоимость изготовления, связанная с закупкой и монтажом перемычек и крышек для соединения двух суперконденсаторов, остается высокой.
Кроме того, последовательное сопротивление Rs между двумя электрическими суперконденсаторами, которое соответствует сумме сопротивлений суперконденсатора и соединительных средств (перемычка + крышка + сварной шов), является высоким.
Задачей изобретения является создание суперконденсатора, срок службы которого повышен при эталонном напряжении.
Дополнительной задачей изобретения является создание суперконденсатора с ограниченным образованием газа.
Еще одна задача изобретения состоит в создании суперконденсатора, способного выдерживать напряжение, превышающее эталонное, без снижения характеристик.
Раскрытие изобретения
Поставленная задача решена в суперконденсаторе, содержащем по меньшей мере два электрода и по меньшей мере один разделитель между ними, при этом электроды и разделитель намотаны вместе спиралевидно, образуя намотанный элемент, при этом суперконденсатор дополнительно содержит по меньшей мере один другой электрод и по меньшей мере один другой разделитель, при этом другой электрод и другой разделитель намотаны вместе спиралевидно вокруг намотанного элемента, образуя по меньшей мере один последующий намотанный элемент, причем эти последовательно намотанные элементы разделены электроизолирующим пространством.
«Комплексом» названо объединение коллектора тока с по меньшей мере одним электродом, при этом коллектор тока и электрод содержат общую электропроводящую поверхность.
«Последовательными комплексами» названы два компланарных комплекса (перед спиралевидной намоткой для образования намотанного элемента), разделенные во время их намотки электроизолирующим пространством шириной d.
«Общим комплексом» названо любое электрически непрерывное объединение комплексов.
Разделитель (разделители) выходит (выходят) за пределы находящихся друг против друга электродов каждого комплекса, но не выходят за пределы коллекторов комплексов, служащих соединительным выводом наружу.
Предпочтительно электрод суперконденсатора является общим для двух последовательных намотанных элементов.
Предпочтительно суперконденсатор дополнительно содержит по меньшей мере второй другой электрод, при этом другие электроды и другой разделитель спиралевидно намотаны вместе вокруг намотанного элемента, образуя последующий намотанный элемент.
Предпочтительно электроизолирующее пространство образовано бандажом, образованным по меньшей мере одним оборотом диэлектрического изолирующего материала.
Предпочтительно электроизолирующее пространство образовано отделением по меньшей мере одного из электродов первого намотанного элемента от по меньшей мере одного электрода второго намотанного элемента на расстояние q.
Предпочтительно расстояние q составляет по меньшей мере 1 мм.
Предпочтительно разделители являются сплошными, так что суперконденсатор содержит единый разделитель, общий для разных намотанных элементов и выполняющий функцию бандажа между разными намотанными элементами.
Предпочтительно высота каждого намотанного элемента является постоянной.
Предпочтительно намотанные элементы имеют разную высоту.
Предпочтительно намотанные элементы смещены друг относительно друга вдоль их продольной оси.
Предпочтительно намотанные элементы электрически соединены первой крышкой, проводящей по всей своей площади и расположенной на одной из сторон основания намотанных элементов.
Предпочтительно первая крышка имеет зубчатое поперечное сечение.
Предпочтительно первая крышка является по существу плоской.
Предпочтительно намотанные элементы электрически соединены второй крышкой, проводящей по всей своей площади и расположенной на другой из сторон основания намотанных элементов, соединяя намотанные элементы параллельно.
Предпочтительно намотанные элементы электрически соединены второй проводящей крышкой, содержащей электропроводящие участки, при этом указанные проводящие участки отделены друг от друга электроизолирующими участками, а каждый проводящий участок находится, соответственно, в электрическом контакте с намотанным элементом, соединяя намотанные элементы последовательно.
Предпочтительно один из электропроводящих участков имеет форму диска, а другие электропроводящие участки имеют форму кольца, при этом проводящие участки отделены друг от друга электроизолирующими участками в виде кольца.
Предпочтительно вторая крышка лежит по существу в одной плоскости.
Предпочтительно вторая крышка имеет зубчатое поперечное сечение.
Предпочтительно каждый проводящий участок имеет вид участка диска, при этом участки дисков отделены друг от друга радиальными изолирующими участками.
Предпочтительно суперконденсатор соединен с по меньшей мере одним другим суперконденсатором такого же типа посредством по меньшей мере двух перемычек, имеющих электропроводящую часть, предназначенную для вхождения в контакт, соответственно, с проводящим участком в виде диска на крышке.
Предпочтительно суперконденсатор электрически соединен с другим суперконденсатором такого же типа по меньшей мере одной соединительной перемычкой, содержащей по меньшей мере две электропроводящие части, изолированные друг от друга по меньшей мере одной электроизолирующей частью, при этом указанные проводящие части предназначены для вхождения в контакт, соответственно, с проводящим участком крышки.
Предпочтительно соединительная перемычка по существу является плоской, а крышка содержит электроизолирующие зоны, находящиеся на поверхности контакта между крышкой и перемычкой, при этом электроизолирующие зоны расположены таким образом, что каждая проводящая часть перемычки входит в электрический контакт только с одним проводящим участком крышки.
Предпочтительно каждая электропроводящая часть содержит выступающий соединительный элемент на концах соединительной перемычки, каждый из которых предназначен для вхождения в контакт с соответствующим проводящим участком крышки.
Предпочтительно высота бандажа находится между высотой активного вещества первого намотанного элемента и общей высотой указанного первого намотанного элемента.
Предпочтительно электроды намотанных элементов имеют разную ширину и/или длину.
Предпочтительно электроды намотанных элементов имеют разную толщину.
Предпочтительно электроды намотанных элементов имеют различную природу.
Основание намотанных элементов, перпендикулярное к оси намотки, может иметь форму круга, или шестиугольника, или треугольника, или восьмиугольника, или прямоугольника, или эллипса.
Предпочтительно намотанные элементы не имеют выступающих углов.
Поставленная задача решена также в модуле, содержащем корпус с расположенным в нем по меньшей мере одним описанным выше суперконденсатором.
Предпочтительно модуль может содержать одновременно суперконденсаторы в соответствии с настоящим изобретением и известные суперконденсаторы, такие как суперконденсатор, показанный на фиг.17.
Иными словами, дополнительно к суперконденсатору согласно изобретению модуль может содержать стандартный суперконденсатор, имеющий цилиндрический намотанный элемент, по меньшей мере два электрода и по меньшей мере один разделитель, спиралевидно намотанные вместе с образованием намотанного элемента, находящегося в корпусе, и крышки для закрывания корпуса, причем этот стандартный суперконденсатор электрически соединен с заявленным суперконденсатором посредством по меньшей мере одной соединительной перемычки.
Другие задачи, особенности и преимущества изобретения будут более понятны из дальнейшего описания, представленного исключительно в качестве неораничивающего примера, со ссылками на чертежи.
Краткое описание чертежей
На фиг.1а-7 показаны различные варианты выполнения намотанных элементов суперконденсатора в соответствии с настоящим изобретением;
на фиг.8-13 показаны различные варианты выполнения крышек суперконденсатора в соответствии с настоящим изобретением;
на фиг.14-16 показаны различные варианты выполнения соединительной перемычки для соединения смежных суперконденсаторов;
на фиг.17 показан известный суперконденсатор;
на фиг.18-20 показаны графики зависимости объема V суперконденсатора от числа намотанных элементов;
на фиг.21-23 показаны графики зависимости массы m суперконденсатора от числа намотанных элементов;
на фиг.24-28 показаны различные типы электрического монтажа суперконденсаторов в соответствии с настоящим изобретением.
Осуществление изобретения
На фиг.1-23 показаны различные варианты выполнения суперконденсатора в соответствии с настоящим изобретением. На фигурах эквивалентные элементы суперконденсатора обозначены одинаковыми цифровыми позициями.
На фиг.1а и 1b показан суперконденсатор согласно первому варианту осуществления изобретения, вид в поперечном разрезе.
Суперконденсатор содержит два комплекса 2 и 3, расположенные друг против друга и разделенные разделителем 4.
Комплексы 2, 3 и разделитель намотаны вместе спиралевидно, образуя первый намотанный элемент.
Суперконденсатор содержит также другой комплекс 1, следующий за комплексом 2, и другой разделитель 4. Другой электрод и другой разделитель спиралевидно намотаны вместе вокруг первого намотанного элемента, образуя по меньшей мере один второй последующий намотанный элемент.
Последовательные комплексы 1 и 2 разделены расстоянием q в направлении, окружном относительно продольной оси суперконденсатора.
Предпочтительно расстояние q между последовательными комплексами 1 и 2 достаточно для обеспечения электрической изоляции последовательных комплексов 1 и 2 друг от друга. В показанном на фиг.1 варианте выполнения расстояние q больше или равно 1 мм.
Расстояние q в один миллиметр является достаточным, чтобы избежать появления слишком интенсивного электрического поля между двумя последовательными комплексами 1 и 2, что привело бы к разложению электролита в нормальных условиях использования суперконденсатора.
Комплекс 3, находящийся напротив двух последовательных комплексов, называют «общим комплексом».
Разделители 4 позволяют электрически изолировать последовательные комплексы 1 и 2 от общего комплекса 3. Один из разделителей расположен между общим комплексом 3 и последовательными комплексами 1 и 2. Другой разделитель 4 расположен на другой стороне общего комплекса 3 таким образом, что общий комплекс 3 находится между разделителями 4.
Каждый из комплексов 1, 2, 3 содержит коллектор тока 11, 21, 31 и по меньшей мере один электрод, содержащий активное вещество, при этом электрод содержит электропроводящую сторону, общую с коллектором тока 11, 21, 31.
В варианте выполнения, показанном на фиг.1а и 1b, каждый комплекс 1, 2, 3 содержит два противоположных электрода 12, 13, 22, 23, 32, 33 по обе стороны от коллектора тока 11, 21, 31. Каждый электрод 12, 13, 22, 23, 32, 33 содержит электропроводящую поверхность, общую с соответствующей стороной коллектора тока 11, 21, 31.
Находящиеся друг против друга зоны последовательных и общих комплексов образуют два звена суперконденсатора, емкости которых определены их соответствующими длинами. Непрерывность общего комплекса 3 обеспечивает последовательное соединение двух звеньев суперконденсатора.
Комплексы 1, 2, 3 и разделители 4 образованы, соответственно, одним или несколькими наложенными друг на друга листами.
Предпочтительно последовательные комплексы 1, 2, общий комплекс 3 и разделители 4 наматывают вместе последовательно спиралевидно для образования последовательных первого и второго намотанных элементов.
Предложенное решение является более дешевым, чем описанные выше известные суперконденсаторы. Действительно, число перемычек, крышек и трубок (служащих гнездами для намотанных элементов) для электрического соединения двух звеньев суперконденсатора меньше числа перемычек, крышек и трубок, необходимых для электрического соединения нескольких известных суперконденсаторов.
Кроме того, предложенное решение позволяет снизить последовательное сопротивление Rs системы (за счет уменьшения числа крышек и перемычек, необходимых для соединения звеньев суперконденсатора, по сравнению с числом крышек и перемычек, необходимых для соединения известных суперконденсаторов) и значительно увеличить допустимую энергию на единицу объема с одновременной оптимизацией емкости.
Таким образом, описанный выше суперконденсатор позволяет получить компактную намотанную структуру:
- обеспечивающую последовательные или параллельные электрические соединения звеньев суперконденсатора одинаковой емкости C или разных емкостей C, C', работающих при одинаковом напряжении питания Un, чтобы повысить общие токи и/или напряжение компактной структуры;
- отвечающую специальным требованиям выравнивания баланса емкостей для вариантов выполнения (монтаж треугольником или звездой звеньев суперконденсатора любых емкостей, работающих при любых напряжениях);
- позволяющую оптимизировать объемные и массовые плотности энергии и мощности сборок звеньев суперконденсатора одинаковой емкости С, работающих при одинаковом напряжении Un.
Другими преимуществами, связанными с исключением перемычек и крышек для последовательного/параллельного соединения двух звеньев суперконденсатора, являются:
- уменьшение объема суперконденсатора,
- уменьшение массы по сравнению с двумя соединенными последовательно известными суперконденсаторами,
- уменьшение объема двух последовательно/параллельно соединенных суперконденсаторов: двойной объем известного суперконденсатора (при совместном спиралевидном наматывании двух комплексов и разделителя) больше объема суперконденсатора в соответствии с настоящим изобретением (полученного путем совместного спиралевидного наматывания трех комплексов и двух разделителей), показанного на фиг.1, следовательно, увеличивается объемная и массовая плотность энергии и мощности, отсутствует уменьшение внутреннего свободного объема по сравнению с последовательным соединением известных (стандартных) суперконденсаторов, а также достигается выигрыш во времени с точки зрения способа изготовления (n звеньев в одном суперконденсаторе) за счет упрощения способа изготовления путем единой намотки, единой пропитки, единой термической обработки и единой сварки.
На фиг.2 показан другой вариант выполнения суперконденсатора в соответствии с настоящим изобретением.
Суперконденсатор, показанный на фиг.2, отличается от суперконденсатора, показанного на фиг.1, тем, что содержит четыре комплекса вместо трех.
Два первых комплекса 2, 3а располагают друг против друга. Комплекс 2 располагают между двумя разделителями 4. Два первых комплекса 2, 3а и разделители 4 наматывают вместе спиралевидно для получения первого намотанного элемента.
Два других комплекса 1, 3b следуют за двумя первыми комплексами 2, 3а и отделены (от двух первых комплексов) расстоянием q в окружном направлении.
Два комплекса 1, 3b наматывают вместе спиралевидно вокруг первого намотанного элемента, образованного комплексами 2, 3а, чтобы получить, по меньшей мере, один второй последующий намотанный элемент.
В этом варианте выполнения каждый намотанный элемент образует независимый суперконденсатор. Последовательное или параллельное соединение двух полученных таким образом суперконденсаторов обеспечивают крышки 50, что будет подробно описано ниже.
На фиг.3 показаны три разных намотанных элемента 10, 20, 30 суперконденсатора в соответствии с настоящим изобретением. Последовательные намотанные элементы 10, 20, 30 являются коаксиальными относительно оси Z. Эти последовательные намотанные элементы 10, 20, 30 разделены электроизолирующим пространством, позволяющим изолировать намотанные элементы друг от друга.
Согласно этому варианту выполнения электроизолирующее пространство образовано расстоянием q, разделяющим два последовательных намотанных элемента. Предпочтительно это расстояние q должно быть достаточным, чтобы исключить прямое прохождение тока между двумя последовательно намотанными элементами. Например, расстояние q может превышать один миллиметр.
Согласно другому варианту выполнения, электроизолирующее пространство может быть образовано бандажом 40, образованным по меньшей мере одним оборотом диэлектрического изолирующего материала. Использование бандажа для электрического разделения двух последовательно намотанных элементов упрощает изготовление суперконденсатора.
Предпочтительно высота бандажа находится между высотой активного материала первого намотанного элемента и общей высотой указанного первого намотанного элемента.
Как показано на фиг.4, разделители 4 могут быть сплошными, так что суперконденсатор содержит единый разделитель 4, общий для разных намотанных элементов и выполняющий роль бандажа между последовательно намотанными элементами.
В варианте выполнения, показанном на фиг.3, различные намотанные элементы 10, 20, 30 имеют постоянную высоту. Кроме того, основания различных намотанных элементов 10, 20, 30 являются компланарными, что облегчает их наматывание.
В других вариантах выполнения, как, например, в варианте, показанном на фиг.5, последовательно намотанные элементы 10, 20, 30 имеют разную высоту, при этом основания последовательно намотанных элементов лежат в одной плоскости.
В других вариантах выполнения последовательно намотанные элементы 10, 20, 30 имеют одинаковую высоту, но их основания смещены относительно друг друга вдоль продольной оси. Такие варианты выполнения показаны на фиг.6 и 7.
В варианте выполнения, показанном на фиг.6, последовательно намотанные элементы 10, 20, 30 вставлены друг в друга. Иными словами, последовательно намотанные элементы являются коаксиальными и расположены вокруг центрального намотанного элемента 10.
В варианте выполнения, показанном на фиг.7, последовательно намотанные элементы 10, 20, 30 смещены друг относительно друга таким образом, что их основания в продольном сечении образуют зубцы.
Последовательно намотанные элементы суперконденсатора предназначены для соединения друг с другом или с намотанными элементами других смежных суперконденсаторов при помощи крышек 50 и/или перемычек.
Далее будут подробно описаны различные типы крышек 50, которые можно использовать для соединения между собой намотанных элементов одного суперконденсатора или различных смежных суперконденсаторов.
На фиг.8 показан первый вариант выполнения крышки 50, обеспечивающей электрическое соединение двух намотанных элементов одного суперконденсатора. Крышка 50 имеет зубчатое поперечное сечение.
Крышка 50 согласно первому варианту выполнения предназначена для закрывания суперконденсатора, основания намотанных элементов которого смещены друг относительно друга. Для электрического соединения намотанных элементов одинаковой высоты и не смещенных друг относительно друга (как показано на фиг.5) используют по существу плоскую крышку 50.
Предпочтительно крышка является электропроводной по всей своей площади и обеспечивает электрический контакт между последовательно намотанными элементами суперконденсатора, образуя общий контактный вывод для этих намотанных элементов.
Другую сторону суперконденсатора можно закрыть крышкой 50, являющейся электропроводной по всей своей площади, чтобы параллельно соединить последовательно намотанные элементы суперконденсатора.
Другую сторону суперконденсатора можно также закрыть крышкой 50, содержащей электропроводящие участки, которые отделены друг от друга электроизолирующими участками, при этом каждый электропроводящий участок, соответственно, входит в электрический контакт с намотанным элементом таким образом, чтобы последовательно соединить намотанные элементы.
На фиг.9 и 10 показаны варианты выполнения крышек, содержащих электропроводящие участки, предназначенные, соответственно, для вхождения в контакт с одним из намотанных элементов.
В варианте выполнения, показанном на фиг.9, крышка содержит два электропроводящих участка. Первый электропроводящий участок S1 имеет форму диска, а второй электропроводящий участок S2 имеет форму кольца. Электропроводящие участки S1 и S2 отделены друг от друга электроизолирующими кольцевьми участками 60. Эта крышка 50 предназначена для закрывания суперконденсатора, содержащего два последовательно намотанных элемента. Первый электропроводящий участок S1 электрически соединен с центральным намотанным элементом 10 суперконденсатора, а второй электропроводящий участок S2 электрически соединен с наружным намотанным элементом 20 суперконденсатора.
В варианте выполнения, показанном на фиг.10, крышка 50 содержит три электропроводящих участка S1, S2, S3. Один из электропроводящих участков S1 имеет форму диска. Другие электропроводящие участки S2, S3 выполнены в виде кольца. Электропроводящие участки S1, S2, S3 отделены друг от друга электроизолирующими кольцевыми участками 60. Электропроводящие участки S1, S2, S3 электрически соединены с соответствующими намотанными элементами 10, 20, 30. Эта крышка 50 предназначена для закрывания суперконденсатора, содержащего три последовательно намотанных элемента.
Разумеется, крышка 50 может содержать более трех электропроводящих участков, поскольку число проводящих участков зависит от числа намотанных элементов суперконденсатора.
В зависимости от варианта применения крышка 50 может располагаться по существу в плоскости или иметь зубчатое поперечное сечение, как показано на фиг.11.
Кроме того, электропроводящие участки могут иметь другие формы. На фиг.12 и 13 показаны крышки 50, в которых электропроводящие участки выполнены в виде части диска. Части диска отделены друг от друга радиальными изолирующими участками.
В варианте выполнения, показанном на фиг.12, крышка 50 содержит два электропроводящих участка S1, S2 в виде полудиска. Каждый участок S1 (соответственно, S2) предназначен для соединения с соответствующим намотанным элементом 10 (соответственно, 20) суперконденсатора в зоне Z1 (соответственно, Z2) каждого участка S1 (соответственно, S2). Эта крышка 50 предназначена для закрывания суперконденсатора, содержащего два намотанных элемента.
В варианте выполнения, показанном на фиг.13, крышка 50 содержит три электропроводящих участка S1, S2, S3 в виде трети диска. Каждый участок S1 (соответственно, S2, S3) электрически соединен с соответствующим намотанным элементом 10 (соответственно, 20, 30) суперконденсатора на уровне сварных зон Z1 (соответственно, Z2, Z3). Эта крышка 50 предназначена для закрывания суперконденсатора, содержащего три намотанных элемента 10, 20, 30.
После закрывания суперконденсатора одной из крышек 50, описанных выше со ссылками на фиг.9-13, суперконденсатор можно соединить со смежным суперконденсатором или смежными суперконденсаторами, используя электропроводящие соединительные перемычки.
На фиг.14 показан пример выполнения соединительной перемычки 70. Каждая соединительная перемычка 70 содержит электропроводящую часть, предназначенную для вхождения в контакт с соответствующим проводящим участком S1, S2, S3 в виде диска крышки 50, описанной со ссылками на фиг.13.
В частности, каждая перемычка 70 является по существу плоской. Основная часть соединительной перемычки 70 является прямоугольной. Концы 80 перемычки имеют треугольную форму. Размер и форму этих концов 80 выполняют достаточными для того, чтобы они могли входить в контакт с соответствующим проводящим участком S1, S2, S3 крышки 50, не перекрывая изолирующую часть, разделяющую проводящие участки крышки 50. Таким образом, соединительные перемычки 70 изолированы друг от друга. Отсутствие контакта между перемычками 70 обеспечивает их электрическую изоляцию, исключая короткое замыкание.
На фиг.15 показан другой вариант выполнения соединительной перемычки 70. Эта соединительная перемычка 70 обеспечивает электрическое соединение двух суперконденсаторов типа описанного со ссылками на фиг.9 и 10.
Соединительная перемычка 70 содержит две (или более) электропроводящие части, изолированные друг от друга электроизолирующей (или несколькими электроизолирующими) частью (частями). Каждая электропроводящая часть предназначена для вхождения в контакт с соответствующим проводящим участком S1, S2, S3 крышки 50. Каждая электропроводящая часть содержит соединительный элемент 90, образующий выступ на концах 80 соединительной перемычки 70. Каждый из этих выступающих элементов 90 предназначен для вхождения в контакт с соответствующим проводящим участком S1, S2, S3 крышки 50.
На фиг.16 показан другой вариант выполнения соединительной перемычки 70 и крышки. Такие соединительная перемычка 70 и крышка выполнены с возможностью соединения двух суперконденсаторов, каждый из которых содержит три намотанных элемента. Разумеется, эти крышка и перемычка могут содержать более трех электропроводящих участков, если суперконденсаторы содержат более трех намотанных элементов.
Соединительная перемычка 70 является по существу плоской. Крышка содержит электроизолирующие зоны, находящиеся на поверхности контакта между крышкой и перемычкой. Эти электроизолирующие зоны располагают таким образом, чтобы каждая проводящая часть перемычки входила в электрический контакт только с одним проводящим участком крышки. Это позволяет попарно электрически соединять намотанные элементы соединенных таким образом суперконденсаторов.
Предпочтительно суперконденсатор может быть асимметричным, то есть электроды разных комплексов могут отличаться по длине, и/или толщине, и/или природы своего материала.
Работа с асимметричным суперконденсатором позволяет оптимизировать емкость суперконденсатора и его старение за счет лучшего контроля за потенциалом каждого электрода.
Асимметрии суперконденсатора можно достичь, например, меняя толщину электродов намотанных элементов таким образом, чтобы положительные и отрицательные электроды каждого намотанного элемента имели разные объемы.
Асимметрию суперконденсатора можно также получить, меняя толщину и/или длину электродов намотанных элементов.
Асимметрию суперконденсатора можно также получить, меняя материал компонентов электродов намотанных элементов. Например, как вариант, электроды намотанного элемента имеют одинаковую толщину, но выполнены из разных материалов и, следовательно, имеют разную емкостную плотность.
Суперконденсаторы могут иметь разную форму. Например, суперконденсаторы могут быть цилиндрическими.
Суперконденсаторы могут также иметь в основании, перпендикулярном к оси намотки, форму шестиугольника, или треугольника, или восьмиугольника, или прямоугольника, или эллипса. Это позволяет ограничить мертвый объем между двумя смежными суперконденсаторами. Намотанные элементы могут быть могут не иметь выступающих углов.
Общий случай, позволяющий показать выигрыш в объеме на совместно намотанной системе
Как отмечено выше, суперконденсатор в соответствии с настоящим изобретением по сравнению с известными модулями позволяет уменьшить объем, связанный с последовательным или параллельным электрическим соединением двух суперконденсаторов.
Известный модуль показан на фиг.17. Модуль содержит два суперконденсатора 120, каждый из которых содержит цилиндрический намотанный элемент, включающий в себя два электрода и разделитель. Участок 190 электродов выступает наружу. Суперконденсаторы соединены последовательно посредством соединительной перемычки 170 и крышек 180. Каждая крышка 180 закрывает соответствующий суперконденсатор 120 таким образом, чтобы электрически соединяться с ним в зоне выступающего наружу участка 190 электрода. Каждая крышка 180 образует контакт с перемычкой 70 за счет сварки таким образом, чтобы последовательно электрически соединять два суперконденсатора 120.
Чтобы показать выигрыш в объеме суперконденсатора в соответствии с настоящим изобретением по сравнению с известным модулем, необходимо использовать следующие параметры:
C - получаемая емкость (Ф);
ξ - емкостная плотность (Ф/см3);
h - активная высота (см);
H - общая высота (см);
e - толщина намотанного сэндвича разделитель-электрод-коллектор-электрод-разделитель-электрод-коллектор-электрод (см);
int - внутренний диаметр, от которого начинается круговая намотка (⌀int>0) (см).
Выходными данными являются:
k - количество витков;
ext - наружный диаметр обмотки конденсатора С, содержащей k витков (см);
Cn - емкость соединенных параллельно n обмоток (Ф);
ext n - наружный диаметр конденсатора Cn (см)
Vn - объем конденсатора с n обмотками емкостью Cn (см3)
V - объем параллельно соединенных n конденсаторов емкостью С (см3)
Формулы:
C = ξ h e 2 π k ( int + k e )
Figure 00000001
ext=⌀int+2ke
k = int + int 2 + 8 C ξ π h 2 e
Figure 00000002
e x t = int 2 + 8 C ξ π h
Figure 00000003
Cn=nC
V n = e x t n 2 H = ( int 2 + 8 n C ξ π h ) H
Figure 00000004
V = n e x t 2 H = n ( int 2 + 8 C ξ π h ) H
Figure 00000005
Цифровое выражение вышеуказанных формул
В приведенных ниже примерах значение емкости каждой обмотки принято за одинаковое, что на практике значит, что обмотки большего диаметра имеют меньшую толщину, чем обмотки меньшего диаметра, при этом для каждого конденсатора длина обмотки является одинаковой.
Пример 1
C=600 Ф ξ=30 Ф/см3 h=8 см H=10 см
e=0,05 см int=2,5 см
На фиг.18 показан график, на котором символом V обозначена линия, характеризующая объем модуля, состоящего из n намотанных элементов, а символом Vn - линия, характеризующая объем эквивалентного одного суперконденсатора согласно изобретению, содержащего n совместно намотанных элементов. Объемы выражены в см3 (ось ординат слева). %ΔV показывает выигрыш в объеме в процентном выражении между совместно намотанным элементом и объединенными элементами (ось ординат справа).
Пример 2
C=2600 Ф ξ=30 Ф/см3 h=8 см H=10 см
e=0,05 см int=2,5 см
На фиг.19 показан график, на котором символом V обозначена линия, характеризующая объем модуля, состоящего из n намотанных элементов, а символом Vn - линия, характеризующая объем эквивалентного одного суперконденсатора согласно изобретению, содержащего n совместно намотанных элементов. Объемы выражены в см (ось ординат слева). %ΔV показывает выигрыш в объеме в процентном выражении между совместно намотанным элементом и объединенными элементами (ось ординат справа).
Пример 3
C=5000 Ф ξ=30 Ф/см3 h=8 см H=10 см
e=0,05 см int=2,5 см
На фиг.20 показан график, на котором символом V обозначена линия, характеризующая объем модуля, состоящего из n намотанных элементов, а символом Vn - линия, характеризующая объем эквивалентного одного суперконденсатора согласно изобретению, содержащего n совместно намотанных элементов. Объемы выражены в см (ось ординат слева). %ΔV показывает выигрыш в объеме в процентном выражении между совместно намотанным элементом и объединенными элементами (ось ординат справа).
Результат:
Из фиг.18, 19, 20 видно, что выигрыш в объеме получен при любом числе совместно намотанных элементов и при любой используемой первоначальной емкости.
Общий случай, позволяющий показать выигрыш в массе на совместно намотанной системе
Как было указано выше, суперконденсатор в соответствии с настоящим изобретением по сравнению с известными модулями позволяет уменьшить массу, связанную с последовательным или параллельным электрическим соединением двух суперконденсаторов.
Чтобы показать выигрыш в массе суперконденсатора в соответствии с настоящим изобретением по сравнению с известным модулем, необходимо использовать следующие параметры:
ec - толщина крышки (см);
et - толщина трубки (см);
m u C
Figure 00000006
- масса конденсатора C (г);
d - плотность материала трубки и крышки (г/см3);
Выходными данными являются:
m c C
Figure 00000007
- масса крышки конденсатора емкостью C (г);
m t C
Figure 00000008
- масса трубки конденсатора емкостью C (г);
m - общая масса n параллельно соединенных конденсаторов емкостью С (г);
mn - общая масса конденсатора из n обмоток емкостью C (г);
Формулы:
m c C = π e x t 2 e c d
Figure 00000009
m t C = π e x t e t H d
Figure 00000010
m = n ( m u C + 2 m c C + m t C )
Figure 00000011
m n = m u C n + 2 m c C n + m t C n
Figure 00000012
Цифровое выражение вышеуказанных формул
ec=0,4 см et=0,05 см
d (плотность алюминия) = 2,7 г/см3
m u 600 Ф = 75 г
Figure 00000013
m u 2600 Ф = 325 г
Figure 00000014
Пример 1
ec=0,4 см et=0,05 см
d (объемная масса алюминия) = 2,7 г/см3
m u 600 Ф = 75 г
Figure 00000015
На фиг.21 показан график, на котором символом m обозначена линия, характеризующая массу модуля, состоящего из n намотанных элементов, а символом mn - линия, характеризующая массу эквивалентного одного суперконденсатора согласно изобретению, содержащего n совместно намотанных элементов. Масса выражена в граммах (ось ординат слева). %Δm показывает выигрыш в массе в процентном выражении между совместно намотанным элементом и объединенными элементами (ось ординат справа).
Пример 2
ec=0,4 см et=0,05 см
d (объемная масса алюминия) = 2,7 г/см3
m u 2600 Ф = 325 г
Figure 00000016
На фиг.22 показан график, на котором символом m обозначена линия, характеризующая массу модуля, состоящего из n намотанных элементов, а символом mn - линия, характеризующая массу эквивалентного одного суперконденсатора согласно изобретению, содержащего n совместно намотанных элементов. Масса выражена в граммах (ось ординат слева). %Δm показывает выигрыш в массе в процентном выражении между совместно намотанным элементом и объединенными элементами (ось ординат справа).
Пример 3
ec=0,4 см et=0,05 см
d (объемная масса алюминия) = 2,7 г/см3
m u 5000 Ф = 650 г
Figure 00000017
На фиг.23 показан график, на котором символом m обозначена линия, характеризующая массу модуля, состоящего из n намотанных элементов, а символом mn - линия, характеризующая массу эквивалентного одного суперконденсатора согласно изобретению, содержащего n совместно намотанных элементов. Масса выражена в граммах (ось ординат слева). %Δm показывает выигрыш в массе в процентном выражении между совместно намотанным элементом и объединенными элементами (ось ординат справа).
Результат
Из фиг.21, 22, 23 видно, что выигрыш в массе получен при любом числе совместно намотанных элементов и при любой используемой первоначальной емкости. Этот выигрыш в массе не учитывает соответствующий выигрыш в дополнительных соединительных элементах (соединительные перемычки, крышки и т.д.), что дает еще больший выигрыш с точки зрения массы.
Вывод
Независимо от числа совместно намотанных элементов получен одновременный выигрыш в массе и в объеме по сравнению с параллельной или последовательной сборкой нескольких намотанных элементов согласно известным техническим решениям.
Таким образом, новая система способствует существенному повышению объемной и массовой плотности энергии.
Необходимо отметить, что, как видно из фигур, масса каждого электрода, толщина пропитки, коллектора, тип углерода и ширина обмотки могут быть разными.
В представленных примерах были взяты самые простые случаи, однако при желании их можно легко усложнить. Независимо от компоновки, выигрыш в массе и объеме является значительным. Этот выигрыш может также выражаться в напряжении, согласно решению, описанному со ссылками на фиг.8.
Каждый электрод может быть симметричным (наиболее простой и наиболее распространенный случай) относительно коллектора, чтобы удвоить количество активного вещества конденсатора и радикально увеличить объемную емкость всего устройства и, следовательно, максимальную допустимую энергию. Однако не следует забывать и случай асимметрии:
- обмотки разной емкости в одном элементе;
- разные активные вещества (например, углероды разной пористости);
- комбинация совместных намоток с множеством дорожек, то есть суперконденсатор, содержащий по меньшей мере два расположенных рядом комплекса, разделенных расстоянием d, и по меньшей мере один общий комплекс напротив двух находящихся рядом комплексов, отделенный от них по меньшей мере одним разделителем, при этом разделитель и комплексы намотаны вместе спиралевидно, образуя намотанный элемент (являющийся объектом отдельной заявки) с множеством обмоток согласно настоящему изобретению.
На фиг.24-28 показаны различные примеры монтажа суперконденсаторов в соответствии с настоящим изобретением.
На фиг.24 показан пример монтажа, в котором последовательно намотанные элементы 10, 20, 30 (каждый из которых образует суперконденсатор) последовательно соединены при помощи специальной крышки, содержащей различные проводящие и изолирующие зоны и позволяющей получить последовательное электрическое соединение различных намотанных элементов.
На фиг.25 показан другой пример монтажа, в котором каждый намотанный элемент 10, 20, 30 первого суперконденсатора последовательно соединен с намотанным элементом 10', 20', 30' другого суперконденсатора, при этом различные намотанные элементы первого суперконденсатора соединены параллельно.
В частности, основания каждого суперконденсатора закрывают крышками (типа показанной на фиг.10), содержащими три электропроводящих участка S1, S2, S3 (S1 в виде диска и S2, S3 в виде кольца), отделенные друг от друга электроизолирующими участками 60 (в виде кольца). После этого оба суперконденсатора устанавливают друг на друга таким образом, что:
- центральный намотанный элемент 10 первого суперконденсатора последовательно соединен с центральным намотанным элементом 10' второго суперконденсатора;
- наружный намотанный элемент 30 первого суперконденсатора последовательно соединен с наружным намотанным элементом 30' второго суперконденсатора;
- промежуточный намотанный элемент 20 первого суперконденсатора последовательно соединен с промежуточным намотанным элементом 20' второго суперконденсатора.
Преимуществом такого монтажа является то, что электрическое соединение двух суперконденсаторов не требует использования соединительной перемычки. Очевидно, что в случае электрического соединения двух смежных суперконденсаторов можно реализовать такой же монтаж, используя специальные соединительные перемычки (как соединительная перемычка, показанная на фиг.16), как показано на фиг.26.
На фиг.27 показан вариант выполнения, в котором последовательные намотанные элементы суперконденсатора соединяют таким образом, чтобы получить монтаж в виде звезды.
В частности, нижнее основание суперконденсатора закрывают крышкой, проводящей по всей ее площади, а верхнее основание суперконденсатора закрывают крышкой, показанной на фиг.13, содержащей три участка диска, соединенные с соответствующим намотанным элементом суперконденсатора. Для соединения намотанных элементов суперконденсатора с намотанными элементами других смежных суперконденсаторов используют соединительные перемычки типа перемычки, показанной на фиг.14.
Наконец, на фиг.28 показан пример монтажа, в котором два суперконденсатора электрически соединены последовательно, при этом намотанные элементы каждого суперконденсатора соединены параллельно.
В частности, основания каждого суперконденсатора закрывают крышками, проводящими по всей своей площади, и соединяют соединительными перемычками, проводящими по всей своей площади.
Таким образом, суперконденсаторы согласно изобретению позволяют получить большое число видов электрического монтажа, что намного удобнее, чем суперконденсаторы согласно известным решениям.
Понятно, что в описанный выше суперконденсатор можно вносить многочисленные изменения, не выходя за рамки настоящего изобретения.
Такое техническое решение можно применять также для любых батарей или элементов питания (литий-ионных, литий-полимерных, Ni-Cd, Ni-MH) или даже для топливных элементов.
Суперконденсатор в соответствии с настоящим изобретением имеет много преимуществ:
- для суперконденсатора в соответствии с настоящим изобретением при объемной энергии, идентичной объемной энергии двух стандартных суперконденсаторов, можно применять меньшее напряжение и, следовательно, значительно ограничить образование газа, существенно увеличив тем самым срок службы;
- внутренний объем суперконденсатора в соответствии с настоящим изобретением может за счет монтажа превышать внутренний объем двух объединенных стандартных суперконденсаторов, что также позволяет увеличить срок службы.
Наконец, в модуле, содержащем несколько соединенных друг с другом суперконденсаторов, по меньшей мере половина последовательного сопротивления модуля является сопротивлением соединения между обмотками и крышками. В модуле, содержащем несколько суперконденсаторов в соответствии с настоящим изобретением, последовательное сопротивление модуля значительно уменьшается по причине уменьшения числа необходимых соединений между крышкой и обмоткой по сравнению с модулем, содержащим несколько стандартных суперконденсаторов.

Claims (33)

1. Суперконденсатор с двойным электрохимическим слоем, содержащий по меньшей мере два комплекса (2, 3) и по меньшей мере один разделитель (4) между ними, при этом каждый комплекс содержит коллектор тока и по меньше мере один электрод, имеющий общую электропроводящую поверхность, при этом комплексы (2, 3) и разделитель (4) намотаны вместе спиралевидно по оси намотки, образуя намотанный элемент (10), отличающийся тем, что дополнительно содержит по меньшей мере один другой комплекс (1) и по меньшей мере один другой разделитель (4), при этом другой комплекс (1) и другой разделитель (4) намотаны вместе спиралевидно вокруг намотанного элемента (10), образуя по меньшей мере один последующий намотанный элемент (20), причем эти последовательно намотанные элементы (10, 20) разделены электроизолирующим пространством с расстоянием q в окружном направлении относительно оси намотки.
2. Суперконденсатор по п.1, отличающийся тем, что один комплекс (3) суперконденсатора является общим для двух последовательно намотанных элементов (10, 20).
3. Суперконденсатор по п.1, отличающийся тем, что дополнительно содержит по меньшей мере второй другой комплекс (3b), при этом другие комплексы (3а, 3b) и другой разделитель (4) спиралевидно намотаны вместе вокруг намотанного элемента (10), с образованием последующего намотанного элемента (20).
4. Суперконденсатор по п.1, отличающийся тем, что расстояние q составляет по меньшей мере 1 мм.
5. Суперконденсатор по пп.1-4, отличающийся тем, что разделители (4) являются сплошными, так что суперконденсатор содержит единый разделитель, общий для разных намотанных элементов (10, 20, 30) и выполняющий функцию бандажа (40) между разными намотанными элементами (10, 20, 30).
6. Сунерконденсатор по п.1, отличающийся тем, что высота каждого намотанного элемента (10,20,30) является постоянной.
7. Суперконденсатор по п.1, отличающийся тем, что намотанные элементы (10, 20, 30) имеют разную высоту.
8. Суперконденсатор по п.1, отличающийся тем, что намотанные элементы (10, 20, 30) смещены друг относительно друга вдоль их продольной оси (Z).
9. Суперконденсатор по п.1, отличающийся тем, что намотанные элементы (10, 20, 30) электрически соединены первой крышкой (50), являющейся электропроводной по всей своей площади и расположенной на одной из сторон основания намотанных элементов (10, 20, 30).
10. Сунерконденсатор по п.9, отличающийся тем, что первая крышка (50) имеет зубчатое поперечное сечение.
11. Суперконденсатор по п.9, отличающийся тем, что первая крышка (50) является, по существу, плоской.
12. Суперконденсатор по п.8, отличающийся тем, что намотанные элементы (10, 20, 30) электрически соединены второй крышкой (50), являющейся электропроводной но всей своей площади и расположенной на другой из сторон основания намотанных элементов (10, 20, 30), соединяя намотанные элементы (10, 20, 30) параллельно.
13. Суперконденсатор по п.8, отличающийся тем, что намотанные элементы (10, 20, 30) электрически соединены второй электропроводящей крышкой (50), содержащей электропроводящие участки (S1, S2, S3), при этом электропроводящие участки (S1, S2, S3) отделены друг от друга электроизолирующими участками (60), а каждый электропроводящий участок (S1, S2, S3) находится в электрическом контакте с соответствующим намотанным элементом (10, 20, 30), соединяя эти намотанные элементы (10, 20, 30) последовательно.
14. Суперконденсатор по п.13, отличающийся тем, что один (S1) из электропроводящих участков (S1, S2, S3) имеет форму диска, а другие (S2, S3) электропроводящие участки имеют форму кольца, при этом электропроводящие участки (S1, S2, S3) отделены друг от друга электроизолирующими участками (60) в виде кольца.
15. Сунерконденсатор по п.12, отличающийся тем, что вторая крышка (50) лежит по, существу, в одной плоскости.
16. Суперконденсатор по п.12, отличающийся тем, что вторая крышка (50) имеет зубчатое поперечное сечение.
17. Суперконденсатор по п.13, отличающийся тем, что каждый электропроводящий участок (S1, S2, S3) имеет вид участка диска, при этом участки дисков (S1, S2, S3) отделены друг от друга радиальными изолирующими участками (60).
18. Суперконденсатор по п.17, отличающийся тем, что он соединен с по меньшей мере одним другим суперконденсатором такого же типа посредством по меньшей мере двух перемычек (70), имеющих электропроводящую часть, предназначенную для вхождения в контакт с соответствующим проводящим участком (S1, S2, S3) в виде диска на крышке (50).
19. Суперконденсатор по п.13, отличающийся тем, что он электрически соединен с другим суперконденсатором такого же типа по меньшей мере одной соединительной перемычкой (70), содержащей по меньшей мере две электропроводящие части, изолированные друг от друга по меньшей мере одной электроизолирующей частью, при этом указанные проводящие части выполнены с возможностью вхождения в контакт с соответствующим проводящим участком (S1, S2, S3) крышки (50).
20. Суперконденсатор по п.19, отличающийся тем, что соединительная перемычка (70), по существу, является плоской, а крышка (50) содержит электроизолирующие зоны (60), расположенные на поверхности контакта между крышкой (50) и перемычкой (70), при этом электроизолирующие зоны (60) расположены так, что каждая электропроводящая часть перемычки (70) входит в электрический контакт только с одним проводящим участком (S1, S2, S3) крышки (50).
21. Суперконденсатор по п.19, отличающийся тем, что каждая электропроводящая часть содержит выступающий соединительный элемент на концах (80) соединительной перемычки (70), каждый из которых выполнен с возможностью вхождения в контакт с соответствующим проводящим участком (S1, S2, S3) крышки (50).
22. Суперконденсатор по любому из пп.1, 10-18, 20, 21, отличающийся тем, что электроды (12, 13, 22, 23, 32, 33) комплексов (1, 2, 3а, 3b) намотанных элементов (10, 20, 30) имеют разную длину,
23. Суперконденсатор по любому из пп.1, 10-18, 20, 21, отличающийся тем, что электроды (12, 13, 22, 23, 32, 33) комплексов (1, 2, 3а, 3b) намотанных элементов (10, 20, 30) имеют разную толщину.
24. Суперконденсатор по п.1, отличающийся тем, что электроды (12, 13, 22, 23, 32, 33) комплексов (1, 2, 3а, 3b) намотанных элементов (10, 20, 30) имеют различную природу.
25. Суперконденсатор по п.1, отличающийся тем, что основание намотанных элементов (10, 20, 30), перпендикулярное к оси (Z) намотки, имеет форму круга.
26. Суперконденсатор по п.1, отличающийся тем, что основание намотанных элементов (10, 20, 30), перпендикулярное к оси (Z) намотки, имеет форму шестиугольника.
27. Суперконденсатор по п.1, отличающийся тем, что основание намотанных элементов (10, 20, 30), перпендикулярное к оси (Z) намотки, имеет форму треугольника.
28. Суперконденсатор по п.1, отличающийся тем, что основание намотанных элементов (10, 20, 30), перпендикулярное к оси (Z) намотки, имеет форму восьмиугольника.
29. Суперконденсатор по п.1, отличающийся тем, что основание намотанных элементов (10, 20, 30), перпендикулярное к оси (Z) намотки, имеет форму прямоугольника.
30. Суперконденсатор по п.25, отличающийся тем, что намотанные элементы (10, 20, 30) не имеют выступающих углов.
31. Суперконденсатор по п.1, отличающийся тем, что основание намотанных элементов (10, 20, 30), перпендикулярное к оси (Z) намотки, имеет форму эллипса.
32. Модуль, характеризующийся тем, что содержит корпус, в котором расположен по меньшей мере один суперконденсатор по любому из пп.1-31.
33. Модуль по п.32, характеризующийся тем, что содержит по меньшей мере один стандартный суперконденсатор, имеющий цилиндрический намотанный элемент, по меньшей мере два электрода и по меньшей мере один разделитель, спиралевидно намотанные вместе с образованием намотанного элемента, находящегося в корпусе, и крышки для закрывания корпуса, причем этот стандартный суперконденсатор электрически соединен с суперконденсатором посредством по меньшей мере одной соединительной перемычки.
RU2010138621/07A 2008-02-19 2009-02-12 Суперконденсатор с множеством обмоток RU2492542C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0851056A FR2927727B1 (fr) 2008-02-19 2008-02-19 Ensemble de stockage d'energie electrique multibobines.
FR0851056 2008-02-19
PCT/EP2009/051665 WO2009103660A2 (fr) 2008-02-19 2009-02-12 Supercondensateur multibobines

Publications (2)

Publication Number Publication Date
RU2010138621A RU2010138621A (ru) 2012-03-27
RU2492542C2 true RU2492542C2 (ru) 2013-09-10

Family

ID=39730605

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010138621/07A RU2492542C2 (ru) 2008-02-19 2009-02-12 Суперконденсатор с множеством обмоток

Country Status (14)

Country Link
US (1) US8749952B2 (ru)
EP (1) EP2250655B1 (ru)
JP (1) JP5653222B2 (ru)
KR (1) KR101690795B1 (ru)
CN (1) CN102099881B (ru)
AU (1) AU2009216777B2 (ru)
CA (1) CA2715060C (ru)
ES (1) ES2608497T3 (ru)
FR (1) FR2927727B1 (ru)
IL (1) IL207689A (ru)
PL (1) PL2250655T3 (ru)
RU (1) RU2492542C2 (ru)
UA (1) UA103611C2 (ru)
WO (1) WO2009103660A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553572C1 (ru) * 2014-02-05 2015-06-20 Открытое Акционерное Общество "Специальное Конструкторское Бюро Радиоизмерительной Аппаратуры" Устройство воспроизведения электрического поля

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10164304B1 (en) 2014-10-31 2018-12-25 The United States Of America, As Represented By The Secretary Of The Navy Thermally dissipative electrochemical cell
US9767962B2 (en) 2016-01-22 2017-09-19 Micron Technology, Inc. Apparatuses, multi-chip modules and capacitive chips
EP3471118B1 (en) * 2016-06-08 2022-01-12 RTR Energia, S.L. Three-phase capacitor formed by three cylinders connected to form a triangle
KR101803086B1 (ko) * 2016-06-08 2017-11-29 주식회사 네스캡 전기화학 커패시터
US10646813B2 (en) 2016-09-23 2020-05-12 Lehigh University Gas separation apparatus and methods using same
ES2922524T3 (es) * 2016-12-22 2022-09-16 Rtr Energia S L Condensador monofásico cilíndrico para tensiones elevadas
CA3053788A1 (en) 2017-02-20 2018-08-23 The Research Foundation For The State University Of New York Multi-cell multi-layer high voltage supercapacitor
KR102048817B1 (ko) 2017-11-10 2019-11-26 한국전력공사 그래핀 전극을 포함하는 액시얼 타입의 원통형 슈퍼커패시터
KR101999736B1 (ko) 2017-11-10 2019-10-01 한국전력공사 그래핀 전극을 포함하는 액시얼 타입의 원통형 리튬 이온 커패시터
KR102301720B1 (ko) * 2018-07-10 2021-09-10 주식회사 엘지에너지솔루션 전기화학 커패시터 및 이의 제조 방법
DE102019127294B3 (de) * 2019-10-10 2021-01-14 Spiraltec Gmbh Vorrichtung zur elektrochemischen Stromerzeugung und Stromspeicherung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2457004A1 (fr) * 1979-05-17 1980-12-12 Standard Telephones Cables Ltd Condensateur electrolytique non polarise, a feuilles enroulees
RU2042986C1 (ru) * 1990-11-28 1995-08-27 Акционерное общество "ЭЛКО-ЛТД" Высоковольтный рулонный конденсатор
US6366445B1 (en) * 1999-04-02 2002-04-02 General Electric Company Cartridge capacitor and method of manufacturing the same
US6762926B1 (en) * 2003-03-24 2004-07-13 Luxon Energy Devices Corporation Supercapacitor with high energy density

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE328592C (de) 1920-10-29 Continentale Isola Werke Akt G Elektrischer Plattenkondensator, aus zwei oder mehreren Einzelkondensatoren bestehend
CH84526A (fr) 1919-06-16 1920-07-16 Georges Giles Condensateur électrique tubulaire et procédé pour sa fabrication
GB306517A (en) 1928-02-22 1930-06-23 Elek Zitats Ag Hydrawerk Improvements in and relating to electric condensers
GB381017A (en) * 1931-01-31 1932-09-29 Ericsson Telefon Ab L M Improvements in high tension condensers
FR848360A (fr) * 1938-07-08 1939-10-27 Le Materiel Telephonique Sa Condensateurs multiples
US2505545A (en) * 1944-10-16 1950-04-25 Gen Electric Capacitor paper
GB846083A (en) 1955-09-05 1960-08-24 Dubilier Condenser Co 1925 Ltd Improvements in or relating to electrical capacitors
US2949570A (en) * 1957-09-25 1960-08-16 Illinois Tool Works Low value wound capacitor
US3106671A (en) * 1958-04-16 1963-10-08 Cornell Dubilier Electric Multifunctional capacitor construction
GB909350A (en) * 1960-08-05 1962-10-31 Siemens Ag Improvements in or relating to capacitors
US3292063A (en) * 1964-08-03 1966-12-13 Kellerman David Wound capacitors
FR1526673A (fr) * 1967-06-12 1968-05-24 Gen Electric Condensateur bobiné composite
DE1764861C3 (de) 1968-08-20 1974-03-21 Siemens Ag, 1000 Berlin U. 8000 Muenchen Kapazitives Netzwerk
US3622843A (en) * 1969-12-03 1971-11-23 Gen Electric Aluminum electrode electrolytic capacitor construction
GB1533116A (en) * 1975-02-21 1978-11-22 Chloride Group Ltd Electric batteries
US4327395A (en) * 1980-09-15 1982-04-27 Shizuki Electric Co., Inc. Metallized polypropylene film capacitor
ATE19709T1 (de) * 1982-10-20 1986-05-15 Asea Jumet Sa Verfahren zur herstellung eines selbstheilfaehigen kondensators.
GB2111749B (en) * 1982-12-16 1985-07-03 Asea Ab Improvements in or relating to a power capacitor
US4638402A (en) * 1985-05-07 1987-01-20 Lim Basilio Y Multi-section capacitor electrically coupled in parallel
JPH02116110A (ja) * 1988-10-26 1990-04-27 Hitachi Condenser Co Ltd 電気二重層コンデンサの製造方法
US5047300A (en) * 1989-06-14 1991-09-10 Bolder Battery, Inc. Ultra-thin plate electrochemical cell
EP0650174A3 (en) * 1993-10-21 1995-08-02 Philips Electronics Nv Multiple metal film capacitor with improved oxidation resistance.
US5862035A (en) 1994-10-07 1999-01-19 Maxwell Energy Products, Inc. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes
SK283830B6 (sk) 1995-08-14 2004-02-03 Universal Resources Ag Dvojvrstvový kondenzátor
JP3470470B2 (ja) 1995-09-27 2003-11-25 ソニー株式会社 円筒形二次電池
RU98120524A (ru) * 1996-05-15 2000-10-10 Хайперион Каталайзис Интернэшнл Графитовые нановолокна в электрохимических конденсаторах
JPH10275748A (ja) * 1997-03-31 1998-10-13 Nec Corp 電気二重層コンデンサ
CN1132053C (zh) * 1997-04-21 2003-12-24 精工爱普生株式会社 液晶显示装置、液晶显示装置的制造方法及电子仪器
EP0948005A4 (en) * 1997-06-16 2006-03-22 Matsushita Electric Ind Co Ltd DOUBLE-LAYER CAPACITOR AND METHOD FOR THE PRODUCTION THEREOF
JPH1126322A (ja) * 1997-06-27 1999-01-29 Elna Co Ltd 電気二重層コンデンサ
SG65094A1 (en) * 1997-09-11 1999-05-25 Mitsui Chemicals Inc Non-aqueous electrolytic solution for capacitor and capacitor containing non-aqueous electrolytic solution
JP3419311B2 (ja) * 1998-07-15 2003-06-23 トヨタ自動車株式会社 バイポーラ型リチウムイオン2次電池
JP2000114122A (ja) * 1998-10-06 2000-04-21 Fuji Electric Co Ltd エネルギー貯蔵素子
EP1138051B1 (en) * 1998-12-05 2006-04-19 Energy Storage Systems Pty, Ltd A charge storage device
JP3797813B2 (ja) * 1999-01-18 2006-07-19 エルナー株式会社 電気二重層コンデンサ
DE60039141D1 (de) * 1999-02-04 2008-07-24 Advanced Capacitor Technologie Kondensatormodul, Gruppe von Modulen und Gehäuse für solche Modulen
JP2000294459A (ja) * 1999-04-01 2000-10-20 Toyota Motor Corp 電気二重層キャパシタ
JP2000331668A (ja) * 1999-05-21 2000-11-30 Sanyo Electric Co Ltd 電気エネルギー蓄積デバイス
US6414838B1 (en) * 1999-08-10 2002-07-02 Honda Giken Kogyo Kabushiki Kaisha Cylindrical electric double-layer capacitor
US6456484B1 (en) * 1999-08-23 2002-09-24 Honda Giken Kogyo Kabushiki Kaisha Electric double layer capacitor
US6426863B1 (en) * 1999-11-25 2002-07-30 Lithium Power Technologies, Inc. Electrochemical capacitor
US6534212B1 (en) * 2000-05-05 2003-03-18 Hawker Energy Products, Inc. High performance battery and current collector therefor
JP2002025867A (ja) * 2000-07-04 2002-01-25 Jeol Ltd 電気二重層キャパシタおよび電気二重層キャパシタ用炭素材料
JP3509735B2 (ja) * 2000-10-25 2004-03-22 本田技研工業株式会社 筒型電気二重層コンデンサ
AUPR194400A0 (en) * 2000-12-06 2001-01-04 Energy Storage Systems Pty Ltd An energy storage device
CN1260751C (zh) * 2001-06-01 2006-06-21 松下电器产业株式会社 高分子电解质复合体和用它的电解电容器及制造方法
JP4015993B2 (ja) * 2001-06-29 2007-11-28 富士重工業株式会社 有機電解質キャパシタ
JP3866542B2 (ja) * 2001-07-11 2007-01-10 本田技研工業株式会社 円筒型電気二重層キャパシタの製造方法
US8021775B2 (en) * 2001-07-13 2011-09-20 Inventek Corporation Cell structure for electrochemical devices and method of making same
JP2003100569A (ja) * 2001-09-26 2003-04-04 Nec Tokin Corp 電気二重層キャパシタ
TW535178B (en) * 2001-12-31 2003-06-01 Luxon Energy Devices Corp Cylindrical high-voltage super capacitor and its manufacturing method
JP4007026B2 (ja) * 2002-03-18 2007-11-14 新神戸電機株式会社 捲回式円筒型電池
US7061749B2 (en) * 2002-07-01 2006-06-13 Georgia Tech Research Corporation Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
US6831826B2 (en) * 2002-11-29 2004-12-14 Honda Motor Co., Ltd. Polarized electrode for electric double-layer condenser, and electric double-layer condenser manufactured using the same, and process for manufacturing electrode sheet for electric double-layer condenser, and laminating apparatus
EP1595300B1 (en) * 2003-02-20 2007-06-20 HONDA MOTOR CO., Ltd. Accumulator cell assembly with extended collector foil
DE60303261T2 (de) * 2003-04-11 2006-09-14 Luxon Energy Devices Corp. Superkondensator mit hoher Energiedichte
US7920371B2 (en) * 2003-09-12 2011-04-05 Maxwell Technologies, Inc. Electrical energy storage devices with separator between electrodes and methods for fabricating the devices
WO2005124801A1 (ja) * 2004-06-22 2005-12-29 Zeon Corporation 電気二重層キャパシタ用電極材料およびその製造方法
JP2006059912A (ja) * 2004-08-18 2006-03-02 Nec Tokin Corp 電気二重層キャパシタ
US7492574B2 (en) * 2005-03-14 2009-02-17 Maxwell Technologies, Inc. Coupling of cell to housing
US7440258B2 (en) * 2005-03-14 2008-10-21 Maxwell Technologies, Inc. Thermal interconnects for coupling energy storage devices
KR100552431B1 (ko) * 2005-03-31 2006-02-20 코칩 주식회사 고전압 전기이중층 커패시터
KR100686804B1 (ko) * 2005-04-25 2007-02-26 삼성에스디아이 주식회사 초고용량 캐패시터을 구비하는 전극 조립체 및 이를포함하는 리튬 이차 전지
WO2007062125A1 (en) * 2005-11-22 2007-05-31 Maxwell Technologies, Inc. Ultracapacitor pressure control system
JP2007150014A (ja) * 2005-11-29 2007-06-14 Matsushita Electric Ind Co Ltd 蓄電装置
US7881043B2 (en) * 2005-12-01 2011-02-01 Panasonic Corporation Wound electric double-layer capacitor
EP1801825A1 (en) 2005-12-23 2007-06-27 Abb Research Ltd. A film, a capacitor, a voltage transformer and a method of using a capacitor
JP4650833B2 (ja) * 2006-02-09 2011-03-16 三洋電機株式会社 陽極体とその製造方法、および固体電解コンデンサ
KR100774735B1 (ko) * 2006-02-14 2007-11-08 엘에스전선 주식회사 전극체-리드의 접속구조, 이를 구비한 전기이중층 캐패시터및 그 제조방법
KR100964490B1 (ko) * 2007-10-12 2010-06-21 킴스테크날리지 주식회사 쿼지바이폴라 구조를 갖는 전기화학셀
US7983021B2 (en) * 2007-10-31 2011-07-19 Corning Incorporated Oblong electrochemical double layer capacitor
US8705225B2 (en) * 2009-03-31 2014-04-22 Tdk Corporation Electric double layer capacitor with non-equal areas of the active material layers of the positive electrode and the negative electrode
WO2011109480A2 (en) * 2010-03-02 2011-09-09 Applied Nanostructed Solution, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2457004A1 (fr) * 1979-05-17 1980-12-12 Standard Telephones Cables Ltd Condensateur electrolytique non polarise, a feuilles enroulees
RU2042986C1 (ru) * 1990-11-28 1995-08-27 Акционерное общество "ЭЛКО-ЛТД" Высоковольтный рулонный конденсатор
US6366445B1 (en) * 1999-04-02 2002-04-02 General Electric Company Cartridge capacitor and method of manufacturing the same
US6762926B1 (en) * 2003-03-24 2004-07-13 Luxon Energy Devices Corporation Supercapacitor with high energy density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553572C1 (ru) * 2014-02-05 2015-06-20 Открытое Акционерное Общество "Специальное Конструкторское Бюро Радиоизмерительной Аппаратуры" Устройство воспроизведения электрического поля

Also Published As

Publication number Publication date
WO2009103660A2 (fr) 2009-08-27
ES2608497T3 (es) 2017-04-11
CA2715060A1 (fr) 2009-08-27
FR2927727B1 (fr) 2017-11-17
WO2009103660A3 (fr) 2009-12-23
KR20100137470A (ko) 2010-12-30
EP2250655A2 (fr) 2010-11-17
KR101690795B1 (ko) 2016-12-28
US8749952B2 (en) 2014-06-10
FR2927727A1 (fr) 2009-08-21
JP5653222B2 (ja) 2015-01-14
CN102099881B (zh) 2014-06-11
JP2011515016A (ja) 2011-05-12
UA103611C2 (ru) 2013-11-11
AU2009216777A1 (en) 2009-08-27
CN102099881A (zh) 2011-06-15
CA2715060C (fr) 2016-09-06
RU2010138621A (ru) 2012-03-27
AU2009216777B2 (en) 2013-12-19
PL2250655T3 (pl) 2017-02-28
EP2250655B1 (fr) 2016-10-05
IL207689A (en) 2015-09-24
US20110043962A1 (en) 2011-02-24
IL207689A0 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
RU2492542C2 (ru) Суперконденсатор с множеством обмоток
CN100541881C (zh) 低阻抗分层电池设备及其制造方法
US8098483B2 (en) Multi electrode series connected arrangement supercapacitor
US10312028B2 (en) Electrochemical energy storage devices and manufacturing methods
US20080013254A1 (en) Method of making, apparatus, and article of manufacture for an ultracapacitor electrode termination contact interface
US20140254065A1 (en) Electrochemical energy storage device with flexible metal current collector
RU2493629C2 (ru) Суперконденсатор с множеством дорожек
US20080241656A1 (en) Corrugated electrode core terminal interface apparatus and article of manufacture
US7462418B2 (en) Accumulator cell assembly
US7433174B2 (en) Method of making, apparatus, and article of manufacturing for an electrode termination contact interface
US20210203175A1 (en) Energy storage system
KR102488331B1 (ko) 개선된 전기화학적 에너지 저장 장치 및 제조 방법
JP2020194930A (ja) 電気化学セルおよび電気化学セルの製造方法
KR100923861B1 (ko) 에너지 저장장치
KR101022308B1 (ko) 에너지 저장장치
JPH0383319A (ja) 電気二重層コンデンサ
KR102425491B1 (ko) 에너지 저장장치
JPH10135079A (ja) 巻回式二次電池
KR101369738B1 (ko) 콘덴서용 전극구조체 및 상기 전극구조체를 포함하는 콘덴서
JP2006261404A (ja) エネルギー蓄積装置
JP2003100570A (ja) 電気二重層キャパシタ

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210213