RU2453555C2 - Способ очистки аполипопротеина а-1 - Google Patents

Способ очистки аполипопротеина а-1 Download PDF

Info

Publication number
RU2453555C2
RU2453555C2 RU2009127816/04A RU2009127816A RU2453555C2 RU 2453555 C2 RU2453555 C2 RU 2453555C2 RU 2009127816/04 A RU2009127816/04 A RU 2009127816/04A RU 2009127816 A RU2009127816 A RU 2009127816A RU 2453555 C2 RU2453555 C2 RU 2453555C2
Authority
RU
Russia
Prior art keywords
buffer
urea
column
conductivity
apoa
Prior art date
Application number
RU2009127816/04A
Other languages
English (en)
Other versions
RU2009127816A (ru
Inventor
Кью ХОАНГ (US)
Кью ХОАНГ
Бао КСИАНГФЕЙ (CN)
Бао КСИАНГФЕЙ
Original Assignee
Кью ХОАНГ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кью ХОАНГ filed Critical Кью ХОАНГ
Publication of RU2009127816A publication Critical patent/RU2009127816A/ru
Application granted granted Critical
Publication of RU2453555C2 publication Critical patent/RU2453555C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/775Apolipopeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Способ очистки аполипопротеина А-1 включает смешивание фракции плазмы IV, полученной по способу низкотемпературного фракционирования этанолом с 1-8 М раствором мочевины для формирования подготовительного раствора фракции IV; загрузку подготовительного раствора в первую колонку для анионной хроматографии и последующее элюирование с 1-8 М раствором мочевины с получением раствора ароА-1 протеина; и загрузку раствора ароА-1 протеина во вторую колонку для анионной хроматографии и элюирование с 0-1 М раствором мочевины с получением чистого ароА-1 протеина. 25 з.п. ф-лы, 7 ил., 6 пр.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к получению протеинов и, в частности, к получению ароА-1.
Уровень техники
Липопротеин высокой плотности (HDL) является важным липопротеином крови. Он участвует в процессе, называемом обратный транспорт холестерина (RCT), посредством которого холестерин из клеток тканей может транспортироваться в печень, где метаболизируется до безвередной субстанции, тем самым сдерживая возникновение и развитие атеросклероза (AS). Аполипопротеин А-1 (ароА-1) является основной формой аполипопротеина в липопротеине высокой плотности (HDL). Он тесно связан с физиологической функцией HDL в крови. Он является главным участником в HDL антиатеросклеротическом действии. Кроме того, согласно последним данным исследований, недостаток в ароА-1 может вызвать развитие атеросклероза и усиливать воспалительный процесс. Также ароА-1 снижает содержание липопротеинов низкой плотности (LDL) и очищает бляшки. В дополнение, согласно последним данным исследований, ароА-1 является перспективным для применения в лекарственных средствах с противовоспалительным действием или действием, направленным на печень.
Для очистки ароА-1 обычно используются способы, такие как скоростное ультрацентрифугирование, осаждение органическим растворителем и высокоэффективная жидкостная хроматография (HPLC). Однако существуют некоторые существенные недостатки в этих способах, такие как низкий выход, высокая стоимость, небезопасность и небольшой объем производства. Эти способы не пригодны для промышленного получения ароА-1.
С другой стороны, при получении одной из фракций после фракционирования плазмы фракция плазмы IV всегда исключается, поскольку пригодный продукт не может быть очищен для коммерческого применения. В соответствии с настоящим изобретением обеспечивается способ очистки, пригодный для крупносерийного производства, в результате которого из фракции плазмы IV получают ароА-1 с высокой чистотой.
Раскрытие изобретения
Согласно настоящему изобретению было обнаружено, что мочевина может сильно влиять на действие ароА-1 при ионообменной хроматографии. Если ароА-1 не связан с мочевиной, то он очень легко адсорбируется на анионообменной колонке и относительно тяжело элюируется из колонки. Однако, если ароА-1 связан с мочевиной, то он очень легко элюируется из анионообменной колонки. Таким образом, по настоящему изобретению ароА-1 очищали с помощью двух анионообменных колонок, используя два разных профиля элюции.
Настоящее изобретение обеспечивает способ очистки аполипопротеина А-1, включая следующие стадии: а) фракцию плазмы крови IV (полученную по способу низкотемпературного фракционирования этанолом) смешивают с 1-8 М раствором мочевины, формируя предварительный раствор, содержащий фракцию IV; b) предварительный раствор, полученный в стадии а), загружают в первую колонку для анионной хроматографии, и затем элюируют 1-8 М раствором мочевины с получением ароА-1 протеина; с) раствор ароА-1 протеина из стадии b) загружают во вторую колонку для анионной хроматографии, и затем элюируют 0-1 М раствором мочевины с получением чистого ароА-1 протеина. Этот способ имеет преимущества, такие как высокий выход, низкая стоимость и пригодность для промышленного производства. Кроме того, этот способ использует фракцию плазмы IV в качестве исходного материала, вследствие чего существует возможность применения источников плазмы.
Чистый ароА-1, полученный в данном изобретении, является перспективным для применения в лечении атеросклероза, противовоспалительном лечении, антитоксическом лечении, лекарствах, направленных на лечение печени, и др.
Подробное описание чертежей
Фиг.1 представляет схему, показывающую способ получения ароА-1 из фракции плазмы крови IV.
Фиг.2 показывает процесс элюции первой ионообменной хроматографии в примере 1.
Фиг.3 показывает результат электрофореза в полиакриламидном геле с додецилсульфатом натрия (SDS-PAGE) образца, полученного при первой ионообменной хроматографии в примере 1.
Фиг.4 показывает результат электрофореза SDS-PAGE образца, полученного при второй ионообменной хроматографии в примере 1.
Фиг.5 показывает результат электрофореза SDS-PAGE образца, полученного в примере 4.
Фиг.6 показывает результат электрофореза SDS-PAGE образца, полученного в примере 2.
Фиг.7 показывает результат электрофореза SDS-PAGE образца, полученного в примере 3.
Раскрытие предпочтительного воплощения изобретения
Воплощение способа настоящего изобретения проиллюстрировано на фиг.1, которая представляет схему, показывающую способ получения ароА-1 из фракции плазмы крови IV.
(1) Предварительная подготовка фракции плазмы крови IV
Описываемую фракцию IV получают с помощью способа низкотемпературного фракционирования этанолом (Cohn, Е. J.; Strong, L.E.; Huges, W.L.; et al., Preparation and properties of serum and plasma proteins IV. A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. Amer Chem Soc, 1946, 68:459-475). Фракцию IV растворяют в буфере, к раствору добавляют определенное количество и тщательно перемешивают. В этом способе ароА-1 связан с мочевиной, и такая комбинация является обратимой. Концентрация добавляемой мочевины составляет 1-8 М, предпочтительно 3-7 М и более предпочтительно 5-6 М. Массовое соотношение фракции IV и мочевины составляет 1:30-300, предпочтительно 1:90-240, и более предпочтительно 1:150-210.
Буфер, который обычно используется в данном случае, выбирают из следующих: Tris буфер, фосфатный буфер или HEPES буфер, предпочтительно Tris буфер. pH буфера составляет 7,2-8,5, предпочтительно 7,5-8, и более предпочтительно 7,8.
В другом примере фракцию IV при низкой температуре (0-4°С).
В другом примере подготовительный раствор центрифугируют для удаления и затем фильтруют. Скорость центрифугирования составляет 6000-10000 об/мин, предпочтительно 8000 об/мин, размер пор фильтрационной мембраны составляет 0,2-0,6 мкм, предпочтительно 0,45 мкм.
(2) Первая DEAE анионообменная хроматография
Раствор, полученный в стадии (1), загружают в DEAE (диэтиламиноэтанол) анионообменную колонку, и протеин в растворе, включая ароА-1, присоединяется в колонке. В частности, содержащий ароА-1 раствор, полученный в стадии (1), растворяют водой 1-10 кратно, и предпочтительно 3-7 кратно. После растворения раствор загружают в анионообменную колонку при скорости потока 0,5-1,5 мл/мин, предпочтительно 0,8-1,2 мл/мин.
Затем протеин элюируют посредством двух стадий элюции. В первой стадии для элюирования колонки используется буфер со слабой проводимостью. В этот период времени ароА-1 слабо соединяется с колонкой, и протеин, содержащий по большей части ароА-1, может быть элюирован первым. Во второй стадии для элюирования колонки используется буфер с высокой проводимостью, и элюирует протеин, содержащий главным образом примеси.
Элюент, который элюирует ароА-1, содержит 1-8 М мочевину, предпочтительно 3-7 М, и более предпочтительно 5-6 М. Проводимость составляет 1-4 мс/см, предпочтительно 2-3,8 мс/см, и более предпочтительно 2,5-3,6 мс/см. Соли в элюенте могут включать, но не ограничиваясь, NaCl, КСl, MgCl2 и СаСl2. NaCl является предпочтительным.
Элюент, который элюирует примеси, содержит 0-1 М мочевину; 0 М является предпочтительным. Проводимость составляет 4,5-100 мс/см. Соли в элюенте могут включать, но не ограничиваясь, NaCl, КСl, MgCl2 и СаСl2. NaCl является предпочтительным.
Буфер, который обычно используется в данном случае, выбирают из следующих: Tris буфер, фосфатный буфер или HEPES буфер, предпочтительно Tris буфер. pH буфера составляет 7,2-8,5, предпочтительно 7,5-8, и более предпочтительно 7,8.
Скорость потока в колонке раствора, содержащего подготовительную фракцию, на стадии 1 составляет 0,5-1,5 мл/мин, предпочтительно 0,8-1,2 мл/мин. Соотношение объемов фракции IV и колонки составляет 1:5-50, предпочтительно 1:15-40, и более предпочтительно 1:20-30.
(3) Вторая DEAE анионообменная хроматография
АроА-1 раствор, полученный в первой DEAE анионообменной хроматографии стадии 1, содержащий ароА-1, мочевину и следовое количество примесей, разбавляли водой с получением раствора с низкой проводимостью и затем загружали во вторую DEAE колонку.
Протеин связывется во второй DEAE колонке, и мочевина остается в растворе и элиминируется как элюат. Затем протеин элюируется посредством двух стадий. В первой стадии для элюирования колонки используется буфер со слабой проводимостью. АроА-1 сильно соединяется с колонкой, и примеси элюируются из колонки. Во второй стадии для элюирования колонки используется буфер с высокой проводимостью, и элюируется чистый ароА-1.
Проводимость элюента, который элюирует примеси, составляет 1-20 мс/см, предпочтительно 7-15 мс/см, более предпочтительно 9-12 мс/см. 0-1 М мочевина может присутствовать в элюенте, и 0 М является предпочтительным. Соли в элюент могут включать, но не ограничиваясь, NaCl, КСl, MgCl2 и СаСl2. NaCl является предпочтительным.
Проводимость элюента, который элюирует ароА-1, составляет 50-100 мс/см, предпочтительно 70-95 мс/см, и более предпочтительно 80-90 мс/см. 0-1 М мочевина может присутствовать в элюенте, и 0 М является предпочтительным. Соли в элюенте могут включать, но не ограничиваясь, NaCl, КСl, MgCl2 и СаСl2. NaCl является предпочтительным.
В другом примере после связывания ароА-1 и следового количества примесей во второй DEAE колонке применяется градиент проводимости 3 мс/см/мин для элюирования протеина. Проводимость элюента возрастает от 1 до 100 мс/см. Чистый ароА-1 элюирует при проводимости между 30 и 60 мс/см и его собирают.
Буфер, который обычно используется в данном случае, выбирают из следующих: Tris буфер, фосфатный буфер или HEPES буфер, предпочтительно Tris буфер. pH буфера составляет 7,2-8,5, предпочтительно 7,5-8, более предпочтительно 7,8.
В данном изобретении также обеспечиваются способы постпроцессинга для обработки чистого ароА-1 раствора, полученного в (3). Способы включают стадию ультрафильтрации, стадию добавления стабилизатора и стадию лиофилизации. В итоге получают лиофилизированный ароА-1 после стадий постпроцессинга.
Ультрафильтрация, которая наиболее часто используется в данной области, используется для приведения ароА-1 раствора в необходимое состояние, устанавливая соответствующее рН и концентрацию протеина. Для ультрафильтрации используют ультрафильтрационную мембрану Millipore PES с предельной молекулярной массой 5000, рабочая температура составляет 4°С и рабочее давление находится под 0,3 МПа.
Добавляемый стабилизатор выбирают из часто используемого в данной области, включая, но, не ограничиваясь, гидроксипропилцеллюлозу, гидроксипропилметилцеллюлозу, гликолят щелочной целлюлозы, сахарозу, сорбиерит и др.
Применяют способ лиофилизации, который часто используется в данной области, а именно: продукт замораживают ниже -36°С в течение 3-4 часов и затем лиофилизируют под вакуумом 7-9 Па. Температура в холодной ловушке составляет около -55°С, и затем, во второй период, температура равна 40°С и время составляет около 15 часов.
Хроматографические колонки, применяемые в данном изобретении, могут выбираться среди часто используемых колонок в данной области, и среда для хроматографии может быть средой для QAE (четвертичный амин) или DEAE анионообменной хроматографии, предпочтительно DEAE.
Изобретение в дальнейшем иллюстрируется подробно в следующих примерах. Необходимо понимать, что эти примеры применяются для объяснения изобретения, но не для ограничения объема изобретения. Для тех экспериментов в следующих примерах, если условие не определено, это означает, что условие является рутинным или рекомендовано производителем. Если же определено, то соотношения, указанные ниже, являются массовыми соотношениями.
Если указано другое, определения технических и научных терминов являются теми, которые обычно подразумеваются специалистом в данной области техники.
ПРИМЕР 1. Очистка АроА-1
Исходные материалы включают: 0,2 г фактора плазмы IV, две 5 мл DEAE анионообменные колонки (от GE Healthcare) и оборудование для очистки и определения проводимости, а именно АКТА EXPLORER 100 (от GE Healthcare).
(1) Предварительная обработка фактора плазмы IV
0,2 г фракции IV растворяют в 100 мл Tris буфера (pH 7,8, 4°С). К раствору добавляют мочевину до тех пор, пока конечная концентрация не достигнет 6 моль/л, и тщательно перемешивают. Раствор центрифугируют при 8000 об/мин с удалением осадка, затем фильтруют с помощью 0,45 мкм фильтра.
(2) Первая DEAE анионообменная хроматография
Первую DEAE колонку уравновешивают Tris буфером (pH 7,8), содержащим 6 моль/л мочевины. Раствор из стадии (1) загружают в DEAE колонку при скорости потока 1 мл/мин. Используют Tris буфер (pH 7,8, проводимость 3,5 мс/см) с концентрацией мочевины 6 моль/л для элюирования колонки. АроА-1 элюируется. Объем элюции составляет 20 мл. Используют четыре разных Tris буферов (каждый с pH 7,8, и с проводимостями 4,3 мс/см, 5,4 мс/см, 6,7 мс/см и 59,2 мс/см, соответственно) для элюирования колонки, и элюируются примеси. Результаты процесса элюции и SDS-PAGE электрофореза показаны на фиг.2 и 3, соответственно. Х-координата на фиг.2 представляет объем элюции в процессе хроматографии, и y-координата - концентрацию протеина в элюате. Числа 1-9 показывают зоны, откуда взят образец. Образец определяли с помощью электрофореза SDS-PAGE на фиг.3. Стрелка показывает положение ароА-1 протеина.
(3) Вторая DEAE анионообменная хроматография
АроА-1, элюированный в стадии (2) (pH 7,8, проводимость 3,5 мс/см), содержащий ароА-1, мочевину и следовое количество примеси, разбавляли водой 5-кратно и загружали в DEAE колонку при скорости потока 10 мл/мин. АроА-1 и следовое количество примеси связывались в колонке, и мочевина оставалась в растворе и вытекала в качестве элюата.
Tris буфер без мочевины (pH 7,8, проводимость 11,7 мс/см) используют для элюирования колонки и элюируют примеси из колонки. Затем используют Tris буфер без мочевины (pH 7,8, проводимость 85,2 мс/см) для элюирования колонки, в результате элюируется ароА-1.
Результаты SDS-PAGE электрофореза показывают, что на данной стадии получается чистый ароА-1 (Фиг.4). Образец 1 представляет собой протеин в растворе элюата колонки в течение процесса элюции. Образец 2 представляет собой протеиновый маркер. Числа 3-5 показывают образец, собранный в течение первого процесса элюции, который содержит, главным образом, примеси. Числа 6-10 определяют образец, собранный в течение второго процесса элюции, который содержит по большей части ароА-1. Образцы 6 и 7 разбавляли 5-кратно, а образец 8-10-кратно. Стрелка показывает положение ароА-1 протеина.
ПРИМЕР 2. Очистка АроА-1
0.2 г фракции плазмы IV и оборудование являются такими же, как в примере 1.
(1) предварительная подготовка фракции плазмы крови IV
0,2 г фракции IV растворяют в 100 мл Tris буфера (pH 7,8, 4°С). Мочевину добавляют к раствору до тех пор, пока конечная концентрация не достигнет 6 моль/л, и раствор тщательно перемешивают. Раствор центрифугируют при 8000 об/мин с удалением осадка и затем фильтруют фильтром с 0,45 мкм.
(2) Первая DEAE анионообменная хроматография
Первую DEAE колонку уравновешивают Tris буфером (pH 7,8), содержащим 1 моль/л мочевины. Раствор из стадии (1) загружают в первую DEAE колонку при скорости потока 1 мл/мин. Для элюирования колонки используют Tris буфер (pH 7,8, проводимость 3,5 мс/см) с мочевиной в концентрации 1 моль/л. Элюируется АроА-1. Объем элюции составляет 20 мл. Для элюирования колонки используют Tris буфер (pH 7,8, 59,2 мс/см, соответственно), при этом элюируются примеси.
(3) Вторая DEAE анионообменная хроматография
Процедура аналогична указанной в примере 1. Результаты очистки представлены на фиг.5. Образец 1 представляет собой супернатант фракции плазмы IV после процесса предварительной подготовки. Образцы 4-8 являются ароА-1, собранным в процессе очистки. Образец 10 представляет примеси, собранные в течение процесса очистки. Стрелка показывает положение ароА-1 протеина.
ПРИМЕР 3. Очистка ароА-1
0.2 г фракции плазмы IV и оборудование являются такими же, как в Примере 1.
(1) предварительная подготовка фракции плазмы крови IV
0,2 г фракции IV растворяют в 100 мл Tris буфера (pH 7,8, 4°С). Мочевину добавляют к раствору до тех пор, пока конечная концентрация не достигнет 6 моль/л, и раствор тщательно перемешивают. Раствор центрифугируют при 8000 об/мин с удалением осадка и затем фильтруют фильтром с 0,45 мкм.
(2) Первая DEAE анионообменная хроматография
Первую DEAE колонку уравновешивают Tris буфером (pH 7,8), содержащим 8 моль/л мочевины. Раствор из стадии (1) загружают в DEAE колонку при скорости потока 1 мл/мин. Для элюирования колонки используют Tris буфер (pH 7,8, проводимость 3,5 мс/см) с 8 моль/л мочевины. АроА-1 элюируется. Объем элюции составляет 20 мл. Для элюирования колонки используют Tris буфер (pH 7,8, проводимость 59,2 мс/см) и элюируются примеси.
(3) Вторая DEAE анионообменная хроматография
Процедуры аналогичны указанным в примере 1. Результаты очистки показаны на фиг.7.
ПРИМЕР 4. Очистка ароА-1 в лабораторных условиях
Исходные материалы включают: 60 г фракция плазмы IV, две 1500 мл ионообменные колонки (от Shanghai Jinhua Chromatography Equipment Cooperaration), среда для анионообменной хроматографии, а именно DEAE Sepharose FF (от GE Healthcare), насос и ультрафиолетовый детектор (от Shanghai Jinhua Chromatography Equipment Corporation), и оборудование для определения проводимости, а именно АКТА EXPLORER 100 (от GE Healthcare).
(1) предварительная подготовка фракции плазмы крови IV
60 г фракции IV растворяют в 100 мл Tris буфера (pH 7,8, 4°С). Мочевину добавляют к раствору до тех пор, пока конечная концентрация не достигнет 6 моль/л, и раствор тщательно перемешивают, центрифугируют при 8000 об/мин с удалением осадка и затем фильтруют 0,45 мкм фильтром.
(2) Первая DEAE анионообменная хроматография
Первую DEAE колонку уравновешивают Tris буфером (pH 7,8), содержащим 6 моль/л мочевины. Раствор из стадии (1) загружают в DEAE колонку при скорости потока 10 мл/мин. Для элюирования колонки используют Tris буфер (pH 7,8, проводимость 3,7 мс/см) с 8 моль/л мочевины. АроА-1 элюируется. Объем элюции составляет 10 мл. Для элюирования колонки используют Tris буфер (pH 7,8, проводимость 80,3 мс/см) и элюируются примеси.
(3) Вторая DEAE анионообменная хроматография
АроА-1, элюированный в стадии (2) (pH 7,8, проводимость 3,7 мс/см), содержащий ароА-1, мочевину и следовое количество примеси, разбавляли водой 5-кратно и загружали в DEAE колонку при скорости потока 10 мл/мин. АроА-1 и следовое количество примеси связывались в колонке, и мочевина оставалась в растворе и вытекала в качестве элюата.
Tris буфер без мочевины (pH 7,8, проводимость 12.2 мс/см) используют для элюирования колонки и из колонки элюируются примеси. Затем используют Tris буфер без мочевины (pH 7,8, проводимость 50,4 мс/см) для элюирования колонки, в результате элюируется ароА-1.
Результаты SDS-PAGE электрофореза показаны на фиг.5. Результаты показывают, что чистый ароА-1 также может быть получен в лабораторных условиях.
ПРИМЕР 5. Определение протеина ароА-1
АроА-1 протеин, очищенный в примере 1, определяют с помощью набора для определения ароА-1, полученного от Shanghai SUN Biotech Co. LTD.
10 мкл очищенного протеина добавляют к 1 мл ароА-1 антисыворотке, и затем инкубируют при температуре 37°С в течение 15 минут. После инкубации раствор определяют посредством определения абсорбции при длине волны 505 нм. Результаты показывают, что этим протеином является ароА-1.
ПРИМЕР 6. Определение протеина ароА-1
Используя способ, описанный в примере 5, ароА-1 протеины из примеров 2 и 3, соответственно, и ароА-1 протеин из примера 4 определяют с помощью набора для определения ароА-1 от Shanghai SUN Biotech Co. LTD.
Получены аналогичные результаты.
Для специалистов ясно и очевидно, что варианты и воплощения, проиллюстрированные и описанные здесь, могут выполняться, не выходя за сущность и объем настоящего изобретения. Соответственно, необходимо понимать, что вышеприведенное описание является только иллюстративным, и истинные сущность и объем изобретения будут определяться представленной далее формулой изобретения.

Claims (26)

1. Способ очистки аполипопротеина А-1, включающий стадии:
a) смешивание фракции плазмы IV с раствором 1-8 М мочевины, формируя подготовительный раствор фракции IV;
b) загрузка подготовительного раствора, полученного на стадии а), в первую колонку для анионообменной хроматографии, и последующее элюирование с буфером I, содержащим 1-8 М мочевину, имеющим проводимость 1-4 мс/см, с получением элюента I, который главным образом содержит ароА-1 протеин;
c) загрузка элюента I во вторую колонку для анионной хроматографии, сначала элюирование буфером II, имеющим проводимость 1-15 мс/см, и затем элюирование буфером III, имеющим проводимость 30-100 мс/см, с получением чистого ароА-1 протеина.
2. Способ по п.1, в котором фракцию плазмы IV получают с помощью способа низкотемпературного фракционирования этанолом.
3. Способ по п.1, в котором буфер II включает 0-1 М мочевину.
4. Способ по п.1, в котором буфер III включает 0-1 М мочевину.
5. Способ по п.1, в котором концентрация мочевины в стадии а) и b) составляет 3-8 М.
6. Способ по п.1, в котором концентрация мочевины в стадии а) и b) составляет 5-7 М.
7. Способ по п.1, в котором проводимость буфера I составляет 2-4 мс/см, проводимость буфера II составляет 7-15 мс/см и проводимость буфера III составляет 70-95 мс/см.
8. Способ по п.1, в котором проводимость буфера I составляет 2,5-3,6 мс/см, проводимость буфера II составляет 9-12 мс/см, проводимость буфера III составляет 80-90 мс/см.
9. Способ по п.1, в котором каждая колонка для анионообменной хроматографии является одной из 1) высокоэффективной колонкой для ионообменной хроматографии и 2) низкоэффективной колонкой для ионообменной хроматографии.
10. Способ по п.1, в котором каждая колонка для анионообменной хроматографии является одной из 1) колонкой для QAE ионного обмена и 2) колонкой для DEAE ионного обмена.
11. Способ по п.1, в котором массовое соотношение фракции IV в стадии а) и мочевины составляет 1:30-300.
12. Способ по п.1, в котором массовое соотношение фракции IV в стадии а) и мочевины составляет 1:90-240.
13. Способ по п.1, в котором массовое соотношение фракции IV в стадии а) и мочевины составляет 1:150-210.
14. Способ по п.1, в котором буферы I, II, III стадий b) и с) содержат, по меньшей мере, одну соль, выбранную из группы, включающей NaCl, KCl, MgCl2 и CaCl2.
15. Способ по п.1, в котором буферы элюирования I, II, III стадий b) и с) содержат NaCl.
16. Способ по п.1, в.котором между стадиями а) и b) центрифугируют подготовительный раствор фракции IV с удалением осадков и затем фильтруют.
17. Способ по п.16, котором подготовительный раствор фракции IV центрифугируют при скорости 6000-10000 об/мин и фильтруют с помощью мембраны, имеющей размер пор 0,2-0,6 мкм.
18. Способ по п.1, в котором между стадиями а) и b) наибольшее количество примесей илюируют с помощью буфера IV, имеющего проводимость 4,5-70 мс/см.
19. Способ по п.18, в котором буфер IV содержит 0-1 М мочевину.
20. Способ по п.18, в котором буфер IV содержит, по меньшей мере, одну соль, выбранную из группы, включающей NaCl, KCl, MgCl2 и CaCl2.
21. Способ по п.18, в котором буфер IV содержит NaCl.
22. Способ по п.1, в котором рН буферов I, II и III составляет 7,2-8,5.
23. Способ по п.1, в котором буферы I, II и III содержат Tris буфер.
24. Способ по п.1, в котором рН буферов I, II и III составляет 7,5-8.
25. Способ по п.1, в котором рН буферов I, II и III составляет 7,8.
26. Способ по п.1, дополнительно содержащий после стадии с), по меньшей мере, одну ультрафильтрацию чистого ароА-1 протеин, добавление стабилизатора к чистому ароА-1 протеину и лиофилизацию чистого ароА-1 протеина.
RU2009127816/04A 2006-12-20 2007-09-19 Способ очистки аполипопротеина а-1 RU2453555C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610147503A CN100586958C (zh) 2006-12-20 2006-12-20 高纯度载脂蛋白a-i的制备方法
CN200610147503.7 2006-12-20

Publications (2)

Publication Number Publication Date
RU2009127816A RU2009127816A (ru) 2011-01-27
RU2453555C2 true RU2453555C2 (ru) 2012-06-20

Family

ID=39565747

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009127816/04A RU2453555C2 (ru) 2006-12-20 2007-09-19 Способ очистки аполипопротеина а-1

Country Status (13)

Country Link
EP (1) EP2125861B1 (ru)
JP (1) JP2010513480A (ru)
KR (1) KR101363106B1 (ru)
CN (1) CN100586958C (ru)
AU (1) AU2009202827B8 (ru)
BR (1) BRPI0721238B8 (ru)
CA (1) CA2673516C (ru)
EG (1) EG26516A (ru)
MX (1) MX2009006766A (ru)
MY (1) MY154897A (ru)
RU (1) RU2453555C2 (ru)
TW (1) TWI357347B (ru)
WO (1) WO2008088403A2 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120177610A1 (en) * 2007-09-19 2012-07-12 Kieu Hoang Manufacturing and Purification Processes of Complex Protein found in Fraction IV to make a separated Apo, Transferrin , and Alpha 1 Anti strepsin (A1AT) or A combined Transferrin / Apo/Human Albumin/A1AT and all new found proteins
CN102127165B (zh) * 2010-01-15 2013-09-04 上海莱士血液制品股份有限公司 一种从血浆组分四沉淀中制备高纯ApoA-I的生产工艺
TR201903209T4 (tr) * 2010-06-30 2019-03-21 Csl Ltd Yeniden yapılandırılan yüksek yoğunluğa sahip bir lipoprotein formülasyonu ve bunun üretim yöntemi.
CN102731642B (zh) * 2011-04-14 2014-01-29 上海莱士血液制品股份有限公司 从人血浆组分四沉淀制备高纯Apoa-I的生产工艺
US20140087419A1 (en) * 2011-04-28 2014-03-27 Riken Method for making biological material transparent and use thereof
CN107300496B (zh) 2011-05-20 2020-11-24 国立研究开发法人理化学研究所 生物材料用透明化试剂、及其利用
CN103703015B (zh) 2011-08-25 2019-07-05 霍夫曼-拉罗奇有限公司 阳离子和阴离子交换层析法
CN103505720A (zh) * 2012-06-30 2014-01-15 复旦大学 载脂蛋白a-i在制备预防和治疗肝病代谢综合征药物中的用途
US9534029B2 (en) 2012-10-03 2017-01-03 Csl Behring Ag Method of purifying proteins
US10267714B2 (en) 2013-08-14 2019-04-23 Riken Composition for preparing biomaterial with excellent light-transmitting property, and use thereof
CN107033237B (zh) * 2017-05-11 2021-07-20 深圳市卫光生物制品股份有限公司 一种人血浆载脂蛋白a-i的分离纯化方法
CN110590935B (zh) * 2019-09-23 2024-01-30 华兰生物工程重庆有限公司 人血白蛋白去除多聚体工艺
CN111153985B (zh) * 2020-01-20 2023-06-13 宁波赛珀生物技术有限公司 血清载脂蛋白a-ii的分离纯化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1752187A3 (ru) * 1990-12-11 1992-07-30 А.Б.Сигалов Способ делипидировани лиофилизированных липопротеинов высокой плотности из сыворотки крови человека
US5525472A (en) * 1991-06-26 1996-06-11 Bio-Technology General Corp. Method for production and purification or recombinant Apolipoprotein E from bacteria
US6423830B1 (en) * 1996-08-23 2002-07-23 Esperion Therapeutics, Inc. Process for purifying apolipoprotein A or apolipoprotein E
EP0813541B1 (en) * 1995-03-03 2003-05-14 Esperion Therapeutics Inc. Process for producing a protein

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010939A2 (en) * 2002-07-30 2004-02-05 Esperion Therapeutics, Inc. Methods of using non-human animal apoliprotein a-i protein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1752187A3 (ru) * 1990-12-11 1992-07-30 А.Б.Сигалов Способ делипидировани лиофилизированных липопротеинов высокой плотности из сыворотки крови человека
US5525472A (en) * 1991-06-26 1996-06-11 Bio-Technology General Corp. Method for production and purification or recombinant Apolipoprotein E from bacteria
EP0813541B1 (en) * 1995-03-03 2003-05-14 Esperion Therapeutics Inc. Process for producing a protein
US6423830B1 (en) * 1996-08-23 2002-07-23 Esperion Therapeutics, Inc. Process for purifying apolipoprotein A or apolipoprotein E

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. Mezdour «Anion-exchange fast protein liquid chromatographic characterization and purification of apolipoproteins A-I, A-II, C-I, C-II, C-III 0 , C-III 1 , C-III 2 and E from human plasma», Journal of Chromatography B: Biomedical Sciences and Applications, 1987, v. 414, p.35-45. *

Also Published As

Publication number Publication date
EG26516A (en) 2014-01-08
CN101205250A (zh) 2008-06-25
RU2009127816A (ru) 2011-01-27
AU2009202827A8 (en) 2012-03-08
CA2673516C (en) 2013-10-08
CN100586958C (zh) 2010-02-03
AU2009202827A1 (en) 2009-08-06
JP2010513480A (ja) 2010-04-30
WO2008088403A2 (en) 2008-07-24
KR20090116706A (ko) 2009-11-11
MY154897A (en) 2015-08-28
EP2125861A4 (en) 2011-02-02
TWI357347B (en) 2012-02-01
BRPI0721238B8 (pt) 2021-05-25
BRPI0721238B1 (pt) 2018-05-29
AU2009202827B2 (en) 2011-12-15
TW200922675A (en) 2009-06-01
CA2673516A1 (en) 2008-07-24
AU2009202827B8 (en) 2012-03-08
EP2125861B1 (en) 2014-07-16
EP2125861A2 (en) 2009-12-02
BRPI0721238A2 (pt) 2015-06-23
MX2009006766A (es) 2009-08-12
KR101363106B1 (ko) 2014-02-13
WO2008088403A3 (en) 2008-11-06

Similar Documents

Publication Publication Date Title
RU2453555C2 (ru) Способ очистки аполипопротеина а-1
JP6456376B2 (ja) 組換えタンパク質の精製方法
KR101769634B1 (ko) 재조합 adamts13 및 기타 단백질을 정제하는 방법, 그리고 이들의 조성물
JP3262128B2 (ja) 蛋白質の精製方法
CN103998456B (zh) 用于蛋白质的混合式色谱纯化的固相
JP2013519652A (ja) 単一ユニット抗体精製
EP1963367A2 (en) Polishing steps used in multi-step protein purification processes
JP6788533B2 (ja) 陰イオン交換クロマトグラフィによるタンパク質の精製方法
US8013122B2 (en) Method of purifying apolipoprotein A-1
CA2233552A1 (en) Source of apolipoprotein e and method of isolating apolipoprotein e
Fan et al. Directing membrane chromatography to manufacture α1-antitrypsin from human plasma fraction IV
NO874231L (no) Rensing av rekombinant tumornekrosefaktor.
FI119377B (fi) Menetelmä tekijän IX valmistamiseksi biologisista lähteistä
JP2023515123A (ja) アダリムマブのnon-protein a精製方法
CN103328000A (zh) 用于从含有凝血因子的溶液中减少和/或除去FXI和FXIa的方法
CN105738628A (zh) 一种纯化羊抗人血浆载脂蛋白a-i多克隆抗体的方法
CZ291708B6 (cs) Způsob výroby přípravků obsahujících faktor IX a/nebo X
Cedervall et al. Rapid and facile purification of apolipoprotein AI from human plasma using thermoresponsive nanoparticles
Kong et al. An automatic system for multidimensional integrated protein chromatography
JP2014529330A (ja) 単一ユニットクロマトグラフィー抗体精製
CA1151542A (en) Process for preparing the third component of the complement from human blood plasma
Ostrihoňová et al. Recombinant human erythropoietin separation using a cation-exchange multimodal adsorbent
Vaskó et al. Development and Comparison of Alternative Methods for the Purification of Adalimumab Directly from Harvested Cell Culture Fluid
Vaskó et al. Razvoj i usporedba alternativnih metoda pročišćavanja adalimumaba izravno iz suspenzije stanične kulture
JP3891635B2 (ja) ガングリオシド定量法及びそれに使用する定量キット