RU2430116C1 - Способ полимеризации и сополимеризации олефиновых олигомеров - Google Patents

Способ полимеризации и сополимеризации олефиновых олигомеров Download PDF

Info

Publication number
RU2430116C1
RU2430116C1 RU2010103074/04A RU2010103074A RU2430116C1 RU 2430116 C1 RU2430116 C1 RU 2430116C1 RU 2010103074/04 A RU2010103074/04 A RU 2010103074/04A RU 2010103074 A RU2010103074 A RU 2010103074A RU 2430116 C1 RU2430116 C1 RU 2430116C1
Authority
RU
Russia
Prior art keywords
reaction
trimerization
olefin
ethylene
catalyst
Prior art date
Application number
RU2010103074/04A
Other languages
English (en)
Other versions
RU2010103074A (ru
Inventor
Тимур Михайлович ЗИЛЬБЕРШТЕЙН (RU)
Тимур Михайлович Зильберштейн
Максим Владимирович Липских (RU)
Максим Владимирович Липских
Алексей Александрович Носиков (RU)
Алексей Александрович Носиков
Георгий Викторович Несын (RU)
Георгий Викторович Несын
Original Assignee
Закрытое Акционерное Общество "Сибур Холдинг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2010103074/04A priority Critical patent/RU2430116C1/ru
Application filed by Закрытое Акционерное Общество "Сибур Холдинг" filed Critical Закрытое Акционерное Общество "Сибур Холдинг"
Priority to MX2012006595A priority patent/MX339766B/es
Priority to JP2012551117A priority patent/JP5485415B2/ja
Priority to KR1020127021840A priority patent/KR101449636B1/ko
Priority to EA201290604A priority patent/EA020804B1/ru
Priority to CA2770520A priority patent/CA2770520C/en
Priority to PCT/RU2011/000049 priority patent/WO2011093748A1/ru
Priority to CN201180004345.9A priority patent/CN102596408B/zh
Priority to IN1854DEN2012 priority patent/IN2012DN01854A/en
Priority to US13/575,902 priority patent/US8921251B2/en
Priority to EP11737349.8A priority patent/EP2529832B1/en
Publication of RU2010103074A publication Critical patent/RU2010103074A/ru
Application granted granted Critical
Publication of RU2430116C1 publication Critical patent/RU2430116C1/ru
Priority to ZA2012/01223A priority patent/ZA201201223B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к области полимеризации и сополимеризации олефинов с целью получения ценных полимерных продуктов, таких как линейный полиэтилен низкой плотности, полигексен и т.д. Описан способ получения олефинового олигомера, полученного по реакции тримеризации из олефинового мономера с 2-6 атомами углерода с помощью каталитической системы тримеризации. Каталитическую систему готовят смешением источника хрома, азотсодержащего лиганда и алкилалюминия. При этом алкилалюминий подвергают СВЧ-облучению с частотой 0,3-20 ГГц в течение 0,5-20 мин. Технический результат - повышение эффективности проведения реакции тримеризации при низком давлении олефинового мономера. 7 з.п. ф-лы.

Description

Изобретение относится к области полимеризации и сополимеризации олефинов с целью получения ценных полимерных продуктов, таких как линейный полиэтилен низкой плотности, полигексен и т.д., исходя из легкого олефинового мономера, например этилена. Для этого такой олефиновый мономер подвергают реакции тримеризации с целью получения олефинового олигомера, который затем подвергают реакции полимеризации или сополимеризации.
Существует возможность тримеризации олефинового соединения с помощью высокоактивной каталитической системы (Патент США №6800702), образующейся из соли хрома СrСl3(ТГФ)3 и дифосфазанового лиганда формулы R2PN(Alk)PR2, где R=(2-метоксифенил), Аlk=метил или другой алкил, а также метилалюмоксана (МАО), в соотношении Сr:лиганд:МАО=1:1:300. Это позволяет проводить реакцию, в случае тримеризации этилена, при низком давлении этилена, с возможной одновременной или последующей полимеризацией или сополимеризацией образующегося олефинового олигомера. Активность каталитической системы тримеризации при 8 бар достигает 175300 г/(г Сr·ч). Недостатком данного способа является использование значительного избытка дорогого реагента МАО для приготовления данной каталитической системы, а также использование дорогих дифосфазановых соединений в качестве компонентов каталитической системы тримеризации. Так, при пересчете результата при 20 бар на количество используемого алюминия активность каталитической системы при 8 бар составляет 1125 г/(г Аl·ч).
Наиболее близким к настоящему изобретению является способ тримеризации олефинового мономера с образованием олефинового олигомера, который затем может быть подвергнут полимеризации и/или сополимеризации, описанный в патенте РФ №2104088. Каталитическая система, описанная в этом изобретении, состоит из соли хрома, такой как этилгексаноат хрома (III), пиррольного соединения, например 2,5-диметилпиррола, алкилалюминия, например триэтилалюминия (ТЭА) и галогенсодержащего соединения, например GeCl4 или AlEt2Cl. В патенте описывается также возможность проведения реакции тримеризации олефина с последующей либо одновременной сополимеризацией образующегося олефинового олигомера и олефинового соединения. Максимальная активность катализатора в примерах, приведенных в патенте, составляет 66400 г/(г Сr·ч) при давлении 550 psi, или 37,4 бар этилена. Соотношение Сr:Аl составляет 1:15. Таким образом, активность каталитической системы в пересчете на количество алюминия составляет 8525 г/(г Аl·ч). Однако для проведения реакции тримеризации этилена используют сравнительно высокое давление. Хотя возможно проведение реакции и при существенно более низком давлении вплоть до атмосферного, предпочтительным по данному способу является использование давления не менее 12 бар этилена, иначе скорость реакции и производительность каталитической системы падает до низкого уровня. Как известно из статьи в Applied Catalysis A: General, том 193 (2000), с.29-38, скорость реакции тримеризации для каталитической системы на основе хрома пропорциональна давлению этилена во второй степени. Таким образом, активность катализатора при снижении давления с 37,4 бар до 12 бар снизится примерно в 10 раз, а при снижении давления до 8 бар - в 21 раз и составит около 400 г/(г Аl·ч). Недостатком данного способа является необходимость использования повышенного давления этилена из-за низкой эффективности катализатора тримеризации этилена при низком давлении этилена. Это, в свою очередь, ведет к повышенным капитальным затратам на оборудование.
Задачей данного изобретения является проведение процесса полимеризации или сополимеризации олефинов, полученных по реакции тримеризации или со-тримеризации олефиновых мономеров, с высокой эффективностью при низком давлении олефинового мономера.
Поставленная задача решается путем использования СВЧ-облучения алкилалюминия, входящего в состав каталитической системы тримеризации. Благодаря этому усовершенствованию, достигается повышенная активность катализатора тримеризации, позволяющая производить реакцию тримеризации олефинового мономера, содержащего от 2 до 6 атомов углерода, с последующей либо одновременной полимеризацией или сополимеризацией, при низком давлении олефинового мономера. При этом обеспечивается более высокая скорость образования олефинового олигомера, чем скорость образования олефинового олигомера с использованием каталитической системы, приготовленной без использования СВЧ-облучения, по способу, описанному в патенте РФ №2104088. Таким образом, по сравнению с наиболее близким аналогом возможно эффективное проведение реакции при более низком давлении, чем в случае использования каталитической системы тримеризации, описанной в этом аналоге. Это снижает капитальные затраты на оборудование при промышленной реализации данного способа.
В качестве катализатора реакции полимеризации можно использовать различные катализаторы, известные из текущего уровня техники, такие как титан-магниевые катализаторы, ванадиевые катализаторы, хромовые катализаторы, циркониевые катализаторы и другие, активируемые алкилалюминиевыми соединениями и/или галогеналкилалюминиевыми соединениями.
Способ проведения реакции полимеризации может быть любым известным из текущего уровня техники. Возможно проведение реакции полимеризации в суспензионном, растворном или газофазном режиме. Реакцию полимеризации можно проводить после проведения реакции тримеризации с предварительным выделением образовавшегося олефинового олигомера. В другом варианте данного изобретения реакция тримеризации и реакция полимеризации могут протекать одновременно. В последнем случае обычно происходит сополимеризация образующегося олефинового олигомера и исходного олефинового мономера.
При реализации данного изобретения необходимо использование СВЧ-излучения (микроволнового излучения) для активации компонентов каталитической системы тримеризации в ходе ее приготовления. Можно использовать СВЧ-излучение различных частот, вызывающее описанные в данном изобретении эффекты. Предпочтительно использование излучения частотой от 0,3 до 20 ГГц. Особенно предпочтительно излучение с частотой 2,45 ГГц, которое не создает радиопомех и широко используется в бытовых и промышленных источниках СВЧ-излучения.
Все операции по приготовлению каталитической системы тримеризации желательно проводить в условиях, исключающих контакт компонентов каталитической системы с водой и кислородом воздуха. Особенно рекомендуется избегать контакта с влагой и кислородом для алкилалюминия и каталитической системы тримеризации после смешения всех ее компонентов, включая алкилалюминий.
В качестве источника хрома может выступать любое органическое или неорганическое соединение хрома, либо смесь таких соединений. Степень окисления хрома в указанных соединениях может варьироваться от 0 до 6. В общем случае источник хрома имеет формулу СrХn, где заместители Х могут быть одинаковыми либо различными и могут представлять собой органический или неорганический остаток, а n принимает целые значения от 1 до 6. Органические остатки могут содержать от 1 до 20 атомов углерода в одном остатке и выбираются из группы, включающей алкоксигруппу, алкилкарбоксильный, кетонный остатки, пирролид и амидный фрагмент. Неорганические остатки в качестве примеров включают галогениды, сульфаты и/или оксиды, но не ограничиваются ими. Примеры соединений хрома включают в себя, например, хлорид хрома (III), ацетат хрома (III), трис-этилгексаноат хрома (III), ацетилацетонат хрома (III), пирролид хрома (III), ацетат хрома (II), но не ограничиваются ими.
Для увеличения селективности каталитической системы тримеризации по гексену-1 предпочтительно использовать галогенсодержащие соединения в качестве дополнительного компонента каталитической системы тримеризации общей формулы RmXn, где R - органический или неорганический радикал, Х - фтор, хлор, бром или йод, m+n>0. Примерами таких соединений могут служить AlEt2Cl, AlEtCl2, СНСl3.
Азотсодержащим лигандом может быть органическое соединение, включающее в себя фрагмент пиррольного кольца, то есть пятичленное ароматическое кольцо с одним атомом азота. Примеры азотсодержащих лигандов включают в себя пиррол, 2,5-диметилпиррол, пирролид лития C4H4NLi, 2-этилпиррол, индол, 2-метилиндол, 4,5,6,7-тетрагидроиндол, но не ограничиваются ими. Наиболее предпочтительно использование пиррола или 2,5-диметилпиррола.
Алкилалюминий может представлять собой алкилалюминиевое соединение, галогенированное алкилалюминиевое соединение, алкоксиалкилалюминиевое соединение и их смеси. Для улучшения селективности предпочтительно использование не контактировавших с водой (не гидролизованных) указанных соединений. Если желаемым продуктом является каталитическая система тримеризации, то алкилалюминий должен включать как минимум одно негидролизованное соединение, представленное общими формулами АlR3, AlR2X, AlRX2, AlR2OR, AlRXOR и/или Аl2R3Х3, где R - алкильная группа, Х - атом галогена. Примеры таких соединений включают, но не ограничиваются ими, триэтилалюминий, диэтилалюминийхлорид, трипропилалюминий, триизобутилалюминий, диэтилалюминий этоксид и/или этилалюминийсесквихлорид. Наиболее предпочтительным алкилалюминиевым соединением является триэтилалюминий или смесь триэтилалюминия и диэтилалюминийхлорида.
Предпочтительно алкилалюминий, а также, возможно, галогенид, возможно в виде раствора в углеводородном растворителе, подвергают действию СВЧ-излучения, а затем смешивают с источником хрома и азотсодержащим лигандом. Добавление галогенида не является обязательным, но обеспечивает лучшие результаты. В ходе облучения необходимо, чтобы облучаемое вещество или смесь веществ находилась в сосуде, прозрачном для СВЧ-излучения, например в стеклянном, фторопластовом, полипропиленовом. Мощность излучения и время воздействия излучения может быть любым. Однако для достижения лучших результатов рекомендуется, чтобы время облучения составляло от 30 секунд до 20 минут, а номинальная мощность СВЧ-облучения - от 100 Вт до 50000 Вт на 1 г используемого алкилалюминия в пересчете на элементарный алюминий. Обычно такое облучение не приводит к нагреву алкилалюминия или его раствора более чем на 10 градусов. Облучение длительностью свыше 20 минут обычно не дает дополнительных преимуществ для свойств получаемой каталитической системы тримеризации. Облучение длительностью менее 30 секунд может оказаться недостаточным для существенного изменения свойств алкилалюминия и, возможно, галогенида, которое в свою очередь обуславливает недостаточное увеличение активности и/или селективности получаемой затем каталитической системы.
Время между окончанием облучения и началом смешения алкилалюминия, а также, возможно, галогенида, с источником хрома и азотсодержащим лигандом предпочтительно минимизировать. Желательно, чтобы указанное время составляло менее 1 минуты. В случае если это время составляет более 3 минут, свойства получаемой каталитической системы могут ухудшиться по сравнению с системой, приготовленной из СВЧ-облученного алкилалюминия, который был добавлен менее чем через минуту после окончания облучения. В частности, может снизиться активность получаемой каталитической системы. В случае если время между окончанием облучения и началом смешения составляет более 20 минут, практически отсутствует разница между использованием для приготовления каталитической системы СВЧ-облученного алкилалюминия и алкилалюминия, который не подвергался облучению.
Обычно для получения каталитической системы для тримеризации 1 моль хрома из расчета на элементарный хром может быть смешан с 1-50 моль азотсодержащего лиганда и 1-100 моль алкилалюминия из расчета на элементарный алюминий в избытке ненасыщенного углеводорода. Если используется источник галогенида, его количество обычно составляет 1-100 моль из расчета на элемент (галоген). Предпочтительно использование 1 моля хрома из расчета на элементарный хром, смешиваемого с 2-8 моль азотсодержащего лиганда, и 10-30 моль алюминия из расчета на элементарный алюминий, в избытке ненасыщенного углеводорода. Если присутствует источник галогена, его количество предпочтительно составляет от 1 до 20 моль галогенида из расчета на элементарный галоген.
Способ проведения реакции полимеризации или сополимеризации может быть любым известным из текущего уровня техники. Ввиду использования гомогенного катализатора тримеризации по данному способу, предпочтительным является проведение реакции полимеризации/сополимеризации в суспензионном или растворном режиме. Как вариант, перед реакцией полимеризации олефиновый олигомер или несколько олефиновых олигомеров могут быть отделены от других компонентов реакционной смеси реакции тримеризации, перед контактом олефиновых олигомеров с катализатором полимеризации. В другом варианте данного изобретения реакция тримеризации и реакция полимеризации могут протекать одновременно и в одном реакторе. В последнем случае обычно происходит сополимеризация образующегося олефинового олигомера и исходного олефинового мономера.
Предпочтительно, чтобы катализатор тримеризации контактировал с олефиновым мономером раньше, чем катализатор полимеризации, чтобы обеспечить присутствие олефинового олигомера в реакционной смеси в желаемой концентрации до начала реакции полимеризации. Однако допустим и такой вариант проведения процесса, когда в реакционную смесь, включающую олефиновый мономер, до начала реакции вносят олефиновый олигомер для создания его начальной концентрации, а затем добавляют катализатор тримеризации и катализатор полимеризации.
Другим вариантом проведения процесса является внесение дополнительного олефинового мономера, содержащего 2-6 атомов углерода, например этилена, пропилена или гексена-1, до начала реакции полимеризации и/или в ходе реакции полимеризации.
При использовании в качестве олефинового мономера этилена, при реализации данного изобретения получают преимущественно гексен-1 в качестве олефинового олигомера. Последующая сополимеризация его с этиленом, с предварительным выделением гексена-1 или без такого выделения, приводит к образованию сополимеров этилена и гексена-1. При реализации данного изобретения, путем варьирования условий реакций тримеризации и полимеризации, в том числе варьирования соотношения компонентов, могут быть получены сополимеры этилена с различным содержанием бутильных заместителей в полимерной цепи. При включении в полимерную цепь гексена-1 в количестве от 0,01% до 100% по массе могут быть получены различные по своим физическим свойствам материалы, от пластиков различной плотности до эластомеров. Наиболее ценный из возможных получаемых материалов - линейный полиэтилен низкой плотности (ЛПЭНП), находящий широкое применение как материал для производства упаковки и других целей. Обычно к ЛПЭНП в данной области техники относят сополимеры этилена и гексена-1 с плотностью от 0,91 до 0,93 г/см3.
Данное изобретение иллюстрируется рядом нижеследующих примеров. В описании использованы следующие сокращения:
ТЭА - триэтилалюминий
ДЭАХ - диэтилалюминийхлорид
Сr(ЕН)3 - 2-этилгексаноат хрома (III)
ДМП - 2,5-диметилпиррол
Пример 1.
В круглодонную колбу объемом 50 мл помещают 13,9 мг Сr(ЕН)3 и 13,8 мг ДМП. Добавляют 5 мл толуола, заполняют колбу сухим азотом. Раствор ТЭА в гептане с концентрацией 216 мг/мл в количестве 0,58 мл смешивают с 0,35 мл раствора ДЭАХ в гептане с концентрацией 120 мг/мл. Полученный раствор подвергают СВЧ-облучению в течение 6 минут при номинальной мощности 400 Вт. Затем, не позже чем через 30 секунд после окончания облучения, прибавляют полученную смесь к Сr(ЕН)3 и ДМП в толуоле. Через 15 минут растворитель упаривают в вакууме при комнатной температуре. Для приготовления раствора катализатора остаток в колбе разбавляют 4 мл н-гептана.
В реактор объемом 2 л добавляют 700 мл н-гептана. При перемешивании 800 об/мин дозируют 20,0 л этилена через расходомер. Нагревают реактор до 80°С и добавляют приготовленный раствор катализатора в гептане. В ходе реакции поддерживают температуру 80°С, давление 8 бар добавлением этилена через расходомер, перемешивают реакционную смесь со скоростью 1000 об/мин.
Через 1 час поглощение этилена составляет 55,6 г, активность катализатора тримеризации - 37 кг/(г Сr·ч) или 1427 г/(г Аl·ч). Концентрация гексена-1 в пробе из реактора 9,5%.
Затем давление в реакторе снижают до 4 бар, добавляют 1 л водорода, 1,5 мл раствора ТЭА в гептане с концентрацией 216 мг/мл. Реактор охлаждают до 65°С и вносят 29 мг суспензии титан-магниевого катализатора ТС-115 в 4 мл н-гептана. В ходе реакции поддерживают температуру 65°С. Через 30 минут давление в реакторе снижают до атмосферного и выгружают реакционную смесь из реактора. Полученный полимер отфильтровывают и высушивают в вакууме. Получают 41 г полимера.
В ИК-спектре полученного полимера наблюдается полоса при 1377 см-1, указывающая на наличие алкильных заместителей в цепи полимера.
Пример показывает, что с помощью каталитической системы тримеризации, полученной по усовершенствованному способу, может быть получен гексен-1 из этилена при низком давлении этилена, и полученный гексен-1 может быть сополимеризован с этиленом в том же реакторе.
Пример 2.
В круглодонную колбу объемом 50 мл помещают 111,0 мг Сr(ЕН)3 и 66,0 мг ДМП. Добавляют 5 мл толуола, заполняют колбу сухим азотом.
Раствор ТЭА в гептане с концентрацией 216 мг/мл в количестве 1,9 мл смешивают с 5,0 мл раствора ДЭАХ в гептане с концентрацией 24,1 мг/мл. Полученный раствор подвергают СВЧ-облучению в течение 6 минут при номинальной мощности 400 Вт. Затем, не позже чем через 30 секунд после окончания облучения, прибавляют полученную смесь к Сr(ЕН)3 и ДМП в толуоле. Через 15 минут растворитель упаривают в вакууме при комнатной температуре. Для приготовления раствора катализатора остаток в колбе разбавляют 8 мл н-гептана.
В реактор объемом 2 л добавляют 750 мл циклогексана. Дозируют 39,7 л этилена и 250 мл водорода через расходомеры. Нагревают реактор до 80°С. Давление в реакторе при 80°С перед началом реакции составляет 16,4 бар. В реактор добавляют приготовленный раствор катализатора в гептане. В ходе реакции поддерживают температуру 80°С, давление 8 бар добавлением этилена через расходомер, перемешивают реакционную смесь со скоростью 1000 об/мин. Через 2 часа после добавления катализатора добавляют 1 мл бутилового спирта для остановки реакции. Поглощение этилена составляет 299 г (37,4 кг/г Сr).
Реакционную смесь фракционируют путем перегонки на лабораторной ректификационной колонне. С верха колонны собирают фракцию с температурой паров 64-65,5°С. Содержание гексена-1 составляет 96%, прочих олефинов - 0,7%, циклогексана - 3%. Полученный гексен-1 используют как исходное вещество для получения полигексена.
Для проведения форполимеризации готовят два раствора: 1) 55 мл гептана, 4 мл раствора ДЭАХ в гептане с концентрацией 97 мг/мл, 7 мл гексена-1 и 2) 15 мл гептана, 2 мл раствора ДЭАХ, 1,2 мл суспензии катализатора - микросферического треххлористого титана (0,47 г/л ТiСl3). Растворы смешивают. Затем через 1 час добавляют объединенный раствор к 100 мл ранее полученного гексена-1 в пластиковой емкости. Оставляют реакционную смесь на 2 дня при комнатной температуре. Затем извлекают твердый полимер из емкости, измельчают и высушивают на воздухе в течение 5 дней. Получают 57 г полигексена в виде прозрачной эластичной массы.
Пример показывает, что выделенный из реакционной смеси тример этилена (гексен-1) может служить в качестве мономера для проведения реакции полимеризации.
Пример 3.
В круглодонную колбу объемом 50 мл помещают 9,5 мг Сr(ЕН)3 и 28,1 мг ДМП. Добавляют 5 мл толуола, заполняют колбу сухим азотом.
Раствор ТЭА в гептане с концентрацией 216 мг/мл в количестве 1,45 мл смешивают с 1,0 мл раствора ДЭАХ в гептане с концентрацией 24,1 мг/мл. Полученный раствор подвергают СВЧ-облучению в течение 6 минут при номинальной мощности 400 Вт. Затем, не позже чем через 30 секунд после окончания облучения, прибавляют полученную смесь к Сr(ЕН)3 и ДМП в толуоле. Через 15 минут растворитель упаривают в вакууме при комнатной температуре. Для приготовления раствора катализатора остаток в колбе разбавляют 8 мл н-гептана.
В реактор объемом 2 л добавляют 700 мл циклогексана. Нагревают реактор до 80°С. Добавляют этилен в реактор до давления 19 бар. В реактор добавляют приготовленный раствор катализатора в гептане. В ходе реакции поддерживают температуру 80°С, давление 20 бар добавлением этилена через расходомер, перемешивают реакционную смесь со скоростью 800 об/мин. Через 30 минут после добавления катализатора снижают давление в реакторе до атмосферного и охлаждают реактор до 0°С. В пробе из реактора содержится 13,3% гексена-1 и 0,5% смеси деценов. Поглощение этилена перед снижением давления составляет 88,0 г (88 кг/г Сr). Добавляют 10 мл раствора ДЭАХ в гептане с концентрацией 24,1 мг/мл и 1 мл суспензии катализатора - микросферического треххлористого титана (0,47 г/л TiCl3). Реакцию полимеризации останавливают через 2 часа добавлением 5 мл изопропанола. Растворитель упаривают, остаток высушивают на воздухе в течение 7 дней, затем при 10 мбар и 50°С в течение 24 часов. Получают 42 г эластичного полимера со средневесовой молекулярной массой 8,76·106, дисперсией 7,7.
Пример показывает, что после получения смеси олигомеров этилена с преобладанием гексена-1 она может быть полимеризована в том же реакторе.

Claims (8)

1. Способ полимеризации или сополимеризации олефинового олигомера, полученного по реакции тримеризации из олефинового мономера, содержащего 2-6 атомов углерода, с помощью каталитической системы для реакции тримеризации, приготовленной по способу, включающему смешение источника хрома, азотсодержащего лиганда и алкилалюминия, отличающийся тем, что каталитическая система для реакции тримеризации приготовлена способом, включающим в себя СВЧ-облучение алкилалюминия с частотой от 0,3 ГГц до 20 ГГц, а СВЧ-облучение алкилалюминия проводят в течение от 0,5 до 20 мин.
2. Способ по п.1, отличающийся тем, что частоту СВЧ-облучения выбирают равной 2,45 ГГц.
3. Способ по п.1, отличающийся тем, что в ходе приготовления катализатора тримеризации добавляют источник галогенида формулы RmXn, где R - органический или неорганический радикал, Х - фтор, хлор, бром или йод, m+n>0.
4. Способ по любому из пп.1-3, отличающийся тем, что для сополимеризации с олефиновым олигомером добавляют олефиновый мономер, содержащий от 2 до 6 атомов углерода.
5. Способ по п.4, отличающийся тем, что олефиновый мономер представляет собой этилен, пропилен, бутен-1 или гексен-1.
6. Способ по любому из пп.1-3 и 5, отличающийся тем, что один или несколько олефиновых олигомеров, образовавшихся по реакции тримеризации, выделяют из реакционной смеси реакции тримеризации перед проведением реакции полимеризации.
7. Способ по любому из пп.1-3 и 5, отличающийся тем, что содержит пиррольное кольцо, а алкилалюминий представляет собой триалкилалюминий.
8. Способ по п.7, отличающийся тем, что азотсодержащий лиганд представляет собой 2,5-диметилпиррол, а триалкилалюминий представляет собой триэтилалюминий.
RU2010103074/04A 2010-01-29 2010-01-29 Способ полимеризации и сополимеризации олефиновых олигомеров RU2430116C1 (ru)

Priority Applications (12)

Application Number Priority Date Filing Date Title
RU2010103074/04A RU2430116C1 (ru) 2010-01-29 2010-01-29 Способ полимеризации и сополимеризации олефиновых олигомеров
IN1854DEN2012 IN2012DN01854A (ru) 2010-01-29 2011-01-28
KR1020127021840A KR101449636B1 (ko) 2010-01-29 2011-01-28 올레핀의 (공-)삼량체화를 위한 촉매 시스템 및 방법 및 올레핀 올리고머의 (공-)중합반응
EA201290604A EA020804B1 (ru) 2010-01-29 2011-01-28 Каталитическая система для (со)тримеризации олефинов, способ (со)тримеризации олефинов и способ (со)полимеризации олефиновых олигомеров
CA2770520A CA2770520C (en) 2010-01-29 2011-01-28 Catalyst system and processes for the (co-)trimerization of olefins and the (co-)polymerization of olefin oligomers
PCT/RU2011/000049 WO2011093748A1 (ru) 2010-01-29 2011-01-28 Каталитическая система и способы (со-)-тримеризации олефинов и (со-)-полимеризации олефиновых олигомеров
MX2012006595A MX339766B (es) 2010-01-29 2011-01-28 Sistema catalizador y procesos para la (co-) trimerizacion de olefinas y la (co-) polimerizacion de oligomeros de olefina.
JP2012551117A JP5485415B2 (ja) 2010-01-29 2011-01-28 オレフィンの(共)三量体化用触媒系、その調製方法ならびにその触媒系を用いるオレフィンの(共)三量体化用およびオレフィンオリゴマーの(共)重合用プロセス
US13/575,902 US8921251B2 (en) 2010-01-29 2011-01-28 Catalyst system and processes for the (co-) trimerization of olefins and the (co-) polymerization of olefin oligomers
EP11737349.8A EP2529832B1 (en) 2010-01-29 2011-01-28 Catalyst system and processes for the (co-)trimerization of olefins and the (co-)polymerization of olefin oligomers
CN201180004345.9A CN102596408B (zh) 2010-01-29 2011-01-28 用于烯烃的(共-)三聚和烯烃低聚物的(共-)聚合的催化剂体系和方法
ZA2012/01223A ZA201201223B (en) 2010-01-29 2012-02-17 Catalyst system and processes for the (co-)trimerization of olefins and the (co-)polymerization of olefin oligomers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010103074/04A RU2430116C1 (ru) 2010-01-29 2010-01-29 Способ полимеризации и сополимеризации олефиновых олигомеров

Publications (2)

Publication Number Publication Date
RU2010103074A RU2010103074A (ru) 2011-08-10
RU2430116C1 true RU2430116C1 (ru) 2011-09-27

Family

ID=44319560

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010103074/04A RU2430116C1 (ru) 2010-01-29 2010-01-29 Способ полимеризации и сополимеризации олефиновых олигомеров

Country Status (12)

Country Link
US (1) US8921251B2 (ru)
EP (1) EP2529832B1 (ru)
JP (1) JP5485415B2 (ru)
KR (1) KR101449636B1 (ru)
CN (1) CN102596408B (ru)
CA (1) CA2770520C (ru)
EA (1) EA020804B1 (ru)
IN (1) IN2012DN01854A (ru)
MX (1) MX339766B (ru)
RU (1) RU2430116C1 (ru)
WO (1) WO2011093748A1 (ru)
ZA (1) ZA201201223B (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682668C1 (ru) * 2015-03-27 2019-03-20 Мицубиси Кемикал Корпорейшн СПОСОБ ДЛЯ ПРОИЗВОДСТВА НИЗКОМОЛЕКУЛЯРНОГО ПОЛИМЕРА α-ОЛЕФИНА
WO2020263113A1 (en) * 2019-06-26 2020-12-30 Public Joint Stock Company "Sibur Holding" The method of reducing polymer deposits on the surfaces of the reactor equipment in the olefin oligomerization process
WO2021133202A1 (en) * 2019-12-27 2021-07-01 Public Joint Stock Company "Sibur Holding" Transition metal oxocarboxylate composition and method for preparing thereof
RU2801281C2 (ru) * 2018-04-27 2023-08-07 Чайна Петролеум Энд Кемикал Корпорейшн Полипропиленовая смола с привитым полярным мономером, способ ее получения и ее применение
US11926687B2 (en) 2018-04-27 2024-03-12 China Petroleum & Chemical Corporation Polar monomer grafted polypropylene resin, preparation method therefor and application thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550841B2 (en) * 2004-02-20 2017-01-24 Chevron Phillips Chemical Company Lp Methods of preparation of an olefin oligomerization catalyst
RU2471762C1 (ru) * 2011-06-22 2013-01-10 Открытое акционерное общество "СИБУР Холдинг" (ОАО "СИБУР Холдинг") Способ выделения продуктов олигомеризации олефинов и разложения остатков катализатора олигомеризации
CN103102237B (zh) * 2011-11-09 2015-02-11 中国石油化工股份有限公司 一种提高乙烯三聚催化剂性能的方法
KR101482962B1 (ko) * 2014-03-05 2015-01-15 아주대학교산학협력단 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 올레핀 중합방법
EP2918705B1 (en) 2014-03-12 2017-05-03 Rolls-Royce Corporation Coating including diffusion barrier layer including iridium and oxide layer and method of coating
CN107207384B (zh) * 2014-12-23 2021-03-23 公共型股份公司希布尔控股 制备烯烃的低聚物的方法
MX2017008374A (es) 2014-12-23 2018-04-24 Sibur Holding Public Joint Stock Co Metodos de precipitacion de polimero y catalizador organometalico desactivado en una reaccion de oligomerizacion de olefinas.
US10508065B2 (en) 2014-12-23 2019-12-17 Public Joint Stock Company “SIBUR Holding” Methods of preparing oligomers of an olefin
MX2019005549A (es) * 2016-11-14 2019-07-04 Sibur Holding Public Joint Stock Co Sistema catalizador usado en la oligomerizacion de olefinas y metodo para la oligomerizacion de olefinas.
CN110498873A (zh) * 2018-05-17 2019-11-26 中国石油天然气股份有限公司 一种烷基铝氧烷的预处理方法、茂金属催化剂的制备方法及烯烃聚合方法
RU2749903C1 (ru) * 2020-09-24 2021-06-18 Общество с ограниченной ответственностью "Транснефть-Синтез" (ООО "Транснефть-Синтез") Способ получения основ полиолефиновых противотурбулентных присадок

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962182A (en) 1972-11-21 1976-06-08 Aerojet-General Corporation Imide oxirane reactions
GB1530445A (en) * 1976-01-09 1978-11-01 British Petroleum Co Polymerisation catalyst
US5451645A (en) * 1989-08-10 1995-09-19 Phillips Petroleum Company Process for olefin polymerization
CA2087578C (en) * 1993-01-19 1998-10-27 William Kevin Reagen Preparing catalyst for olefin polymerization
RU2104088C1 (ru) 1993-02-03 1998-02-10 Филлипс Петролеум Компани Способ получения каталитической системы для тримеризации, олигомеризации или полимеризации олефинов (варианты) и способ тримеризации, олигомеризации или полимеризации олефинов с использованием полученной каталитической системы
TW298593B (ru) * 1993-02-12 1997-02-21 Hoechst Ag
JP3890628B2 (ja) 1996-06-17 2007-03-07 東ソー株式会社 1−ヘキセンの製造方法
JP2000176291A (ja) 1998-12-17 2000-06-27 Tosoh Corp エチレンの三量化反応触媒及びそれを用いたエチレンの三量化反応方法
US6455648B1 (en) 1999-12-29 2002-09-24 Chevron Phillips Chemical Company Lp Olefin production
RU2169167C1 (ru) * 2000-02-07 2001-06-20 Общество с ограниченной ответственностью "Компания "РОТАН" Способ получения низших олефинов
GB0016895D0 (en) * 2000-07-11 2000-08-30 Bp Chem Int Ltd Olefin oligomerisation
DE10200740A1 (de) * 2002-01-11 2003-08-07 Borealis Tech Oy Copolymere von alpha-Olefinen und funktionellen Monomeren, deren Herstellung und deren Verwendung
US7384886B2 (en) 2004-02-20 2008-06-10 Chevron Phillips Chemical Company Lp Methods of preparation of an olefin oligomerization catalyst
EP1721913A1 (en) * 2005-05-09 2006-11-15 Total Petrochemicals Research Feluy Microwave-promoted creation of catalytic species
JP4826366B2 (ja) 2006-06-30 2011-11-30 住友ベークライト株式会社 環状オレフィン系ポリマーの製造方法
JP5084391B2 (ja) 2006-07-28 2012-11-28 株式会社半導体エネルギー研究所 半導体装置
KR101450925B1 (ko) * 2006-12-27 2014-10-14 미쓰비시 가가꾸 가부시키가이샤 폴리올레핀의 제조 방법 및 폴리올레핀 그리고 직사슬형 저밀도 폴리에틸렌 제조 원료용 1-헥센

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682668C1 (ru) * 2015-03-27 2019-03-20 Мицубиси Кемикал Корпорейшн СПОСОБ ДЛЯ ПРОИЗВОДСТВА НИЗКОМОЛЕКУЛЯРНОГО ПОЛИМЕРА α-ОЛЕФИНА
RU2801281C2 (ru) * 2018-04-27 2023-08-07 Чайна Петролеум Энд Кемикал Корпорейшн Полипропиленовая смола с привитым полярным мономером, способ ее получения и ее применение
US11926687B2 (en) 2018-04-27 2024-03-12 China Petroleum & Chemical Corporation Polar monomer grafted polypropylene resin, preparation method therefor and application thereof
WO2020263113A1 (en) * 2019-06-26 2020-12-30 Public Joint Stock Company "Sibur Holding" The method of reducing polymer deposits on the surfaces of the reactor equipment in the olefin oligomerization process
RU2801571C2 (ru) * 2019-06-26 2023-08-11 Публичное акционерное общество "СИБУР Холдинг" Способ снижения отложений полимера на поверхностях реакторного оборудования в процессе олигомеризации олефинов
WO2021133202A1 (en) * 2019-12-27 2021-07-01 Public Joint Stock Company "Sibur Holding" Transition metal oxocarboxylate composition and method for preparing thereof

Also Published As

Publication number Publication date
CA2770520A1 (en) 2011-08-04
WO2011093748A1 (ru) 2011-08-04
US20120302715A1 (en) 2012-11-29
EP2529832B1 (en) 2017-09-13
RU2010103074A (ru) 2011-08-10
US8921251B2 (en) 2014-12-30
MX2012006595A (es) 2012-08-17
CA2770520C (en) 2015-10-27
KR20120132626A (ko) 2012-12-06
IN2012DN01854A (ru) 2015-08-21
ZA201201223B (en) 2013-01-30
WO2011093748A4 (ru) 2011-09-22
JP5485415B2 (ja) 2014-05-07
KR101449636B1 (ko) 2014-10-13
MX339766B (es) 2016-06-08
EA201290604A1 (ru) 2013-01-30
EA020804B1 (ru) 2015-01-30
EP2529832A1 (en) 2012-12-05
EP2529832A4 (en) 2013-07-24
CN102596408B (zh) 2015-03-11
CN102596408A (zh) 2012-07-18
JP2013517938A (ja) 2013-05-20

Similar Documents

Publication Publication Date Title
RU2430116C1 (ru) Способ полимеризации и сополимеризации олефиновых олигомеров
Sun et al. Ethylene polymerization by 2-iminopyridylnickel halide complexes: synthesis, characterization and catalytic influence of the benzhydryl group
US4163831A (en) High efficiency titanate catalyst for polymerizing olefins
CA1225096A (en) Long chain branching in polyolefins from ziegler- natta catalysts
JPH0145485B2 (ru)
NO310706B1 (no) Fremgangsmåte til å stabilisere et katalysatorsystem for fremstilling av olefin, og fremgangsmåte for å fremstille olefiner
CZ287405B6 (en) Process for preparing catalyst system and use thereof
CA2527357A1 (en) Process for the preparation of a catalyst component and components therefrom obtained
US5932670A (en) Polymerization catalysts and processes therefor
GB2115826A (en) Olefin polymerisation catalyst and process for the polymerisation of alpha-olefins
RU2471762C1 (ru) Способ выделения продуктов олигомеризации олефинов и разложения остатков катализатора олигомеризации
RU2412002C1 (ru) Способ получения каталитической системы для олигомеризации олефинов и способ олигомеризации олефинов
Hayatifar et al. Room-temperature polymerization of β-pinene by niobium and tantalum halides
Forte et al. Ethylene polymerization using novel titanium catalytic precursors bearing N, N‐dialkylcarbamato ligands
RU2636660C2 (ru) Катализатор, предназначенный для полимеризации олефинов, способ его получения и применение
Carlini et al. Ethylene polymerization by bis (salicylaldiminate) nickel (II)/aluminoxane catalysts
US4208304A (en) Catalyst system for producing ethylene polymers
Xiao et al. 2-(1-Aryliminopropylidene) quinolylcobalt (ii) dichlorides: synthesis, characterization and catalytic behaviour towards ethylene
RU2104088C1 (ru) Способ получения каталитической системы для тримеризации, олигомеризации или полимеризации олефинов (варианты) и способ тримеризации, олигомеризации или полимеризации олефинов с использованием полученной каталитической системы
US20090209714A1 (en) Catalyst Components for the Polymerization of Olefins
KR102218257B1 (ko) 올레핀 올리고머화에 사용되는 촉매 시스템 및 올레핀 올리고머화 방법
NO143351B (no) Fremgangsmaate for lavtrykkspolymerisering av etylen, samt katalysator for anvendelse ved fremgangsmaaten
US4670526A (en) Process for activation of titanium and vanadium catalysts useful in ethylene polymerization
CA1042008A (en) Nickel bis-diorgano-orthophosphate catalyst compositions
US11117846B2 (en) Catalyst system for olefin oligomerization and method for preparing olefin oligomer by using same

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PD4A Correction of name of patent owner