RU2408655C2 - Композиции и способы, предназначенные для уменьшения выбросов nox в ходе каталитического крекинга с псевдоожиженным катализатором - Google Patents

Композиции и способы, предназначенные для уменьшения выбросов nox в ходе каталитического крекинга с псевдоожиженным катализатором Download PDF

Info

Publication number
RU2408655C2
RU2408655C2 RU2006140261/04A RU2006140261A RU2408655C2 RU 2408655 C2 RU2408655 C2 RU 2408655C2 RU 2006140261/04 A RU2006140261/04 A RU 2006140261/04A RU 2006140261 A RU2006140261 A RU 2006140261A RU 2408655 C2 RU2408655 C2 RU 2408655C2
Authority
RU
Russia
Prior art keywords
catalyst
composition
oxide
reducing
metal
Prior art date
Application number
RU2006140261/04A
Other languages
English (en)
Other versions
RU2006140261A (ru
Inventor
Джордж ЯЛУРИС (US)
Джордж ЯЛУРИС
Майкл Скотт ЗИБАРТ (US)
Майкл Скотт ЗИБАРТ
Ксинджин ЧЖАО (US)
Ксинджин ЧЖАО
Original Assignee
В.Р.Грейс Энд Ко.-Конн.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/824,913 external-priority patent/US7304011B2/en
Application filed by В.Р.Грейс Энд Ко.-Конн. filed Critical В.Р.Грейс Энд Ко.-Конн.
Publication of RU2006140261A publication Critical patent/RU2006140261A/ru
Application granted granted Critical
Publication of RU2408655C2 publication Critical patent/RU2408655C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • C10G11/182Regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/405Limiting CO, NOx or SOx emissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к способам уменьшения выбросов NOx в ходе процесса каталитического крекинга с использованием композиций для восстановления NOx. Описан способ уменьшения выбросов NOx из зоны регенерации в ходе процесса каталитического крекинга углеводородного сырья в присутствии псевдоожиженного катализатора с получением низкомолекулярных компонентов, включающий а) контактирование углеводородного сырья в ходе процесса крекинга с псевдоожиженным катализатором (FCC), в котором происходит выброс NOx из зоны регенерации установки каталитического крекинга (FCCU), работающей в условиях FCC в присутствии циркулирующего FCC крекирующего катализатора и мелкозернистой композиции катализатор/добавка, восстанавливающей NOx, со средним размером частиц более 45 мкм, содержащей (i) по меньшей мере, 10% масс. NOx восстанавливающего цеолитсодержащего компонента, выбранного из группы, состоящей из цеолита-бета, МСМ-49, морденита, МСМ-56, цеолита-L и их смесей, и (ii) 5-50% масс. неорганического связующего вещества, выбранного из группы, состоящей из оксида алюминия, оксида кремния, алюмосиликата, фосфата алюминия их смесей; и b) уменьшение количества выбросов NOx из зоны регенерации FCCU. Описана также композиция катализатора крекинга в псевдоожиженном слое (FCC), включающая (а) FCC крекирующий компонент, подходящий для катализа крекинга углеводородов в условиях FCC, и (b) мелкодисперсную композицию катализатор/добавка, восстанавливающую NOx, описанную выше. Описан также способ уменьшения выбросов NOx из зоны регенерации в ходе жидкофазного каталитического крекинга углеводородного сырья в компоненты меньшей молекулярной массы, включающий контактирование углеводородного сырья с катализатором крекинга при повышенной температуре, в ходе которого образуются низкомолекулярные углеводороды, причем катализатор крекинга содержит описанную выше композицию. Технический результат - способ уменьшения выбросов NOx из зоны регенерации в ходе процесса каталитического крекинга углеводородного сырья в присутствии описанного катализатора и мелкозернистой композиции катализатор/добавка обеспечивает уменьшение выбросов NOx и контроль образования NOx без изменения или влияния на конверсию углеводорода или выхода продуктов крекинга, образующихся в ходе процесса FCC. 3 н. и 41 з.п. ф-лы, 5 табл., 1 ил.

Description

Ссылки на родственные заявки
Настоящая заявка является частичным продолжением заявки на патент США с серийным номером 10/824913, поданной 15 апреля 2004 г.
Область техники
Изобретение относится к композициям для восстановления NOx и способу их использования с целью уменьшения выбросов NOx в процессах химической переработки нефти, в особенности в процессах каталитического крекинга с псевдоожиженным катализатором (FCC). Изобретение в особенности относится к композициям для восстановления NOx и способу их применения, предусматривающему уменьшение содержания NOx в газе, отходящем из регенератора установки каталитического крекинга с псведоожиженным слоем катализатора (FCCU) в ходе FCC процесса, не сопровождающегося значительным изменением конверсии углеводородного сырья или выхода ценных продуктов крекинга.
Предшествующий уровень техники
В последние годы в США и других странах наблюдается большая обеспокоенность по поводу загрязнения воздуха в результате промышленных выбросов токсичных оксидов азота, серы и углерода. В качестве ответных мер правительственные учреждения ввели ограничения на допустимые выбросы одного или нескольких из указанных выше загрязняющих веществ, причем наблюдается явная тенденция к возрастающему ужесточению регламента.
NOx или оксиды азота, содержащиеся в потоках дымового газа, выходящего из регенераторов каталитического крекинга с псевдоожиженным катализатором (FCC), представляют собой распространенную проблему. На установках каталитического крекинга с псевдоожиженным катализатором (FCCUs) перерабатывается тяжелое углеводородное сырье, содержащее соединения азота, часть которых содержится в коксе на поверхности катализатора, подаваемого в регенератор. Часть такого коксового азота в конечном счете превращается в выделяющийся NOx в FCC регенераторе или расположенном ниже СО бойлере. Таким образом, на всех FCCUs, перерабатывающих азотсодержащее сырье, сталкиваются с проблемой, касающейся выбросов NOx при регенерации катализатора.
В процессе FCC частицы катализатора непрерывно циркулируют между зоной каталитического крекинга и зоной регенерации катализатора. В ходе регенерации отложения кокса на частицах катализатора в зоне крекинга удаляют при повышенной температуре в результате окисления кислородсодержащим газом, таким как воздух. Удаление кокса восстанавливает активность каталитических частиц до уровня, обеспечивающего возможность их повторного использования в реакции крекинга. В общем случае при сжигании кокса в условиях дефицита кислорода регенераторный дымовой газ характеризуется высоким отношением СО/СO2 и низким содержанием NOx, тогда как при сжигании в условиях избытка кислорода дымовой газ имеет высокое содержание NOx и пониженное содержание СО. Таким образом, СО и NOx или смеси таких загрязнителей выбрасываются с дымовыми газами в различных количествах в зависимости от таких факторов, как скорость подачи сырья, содержание азота в сырье, конструкция регенератора, режим работы регенератора и состав каталитической композиции.
Предпринимались различные попытки ограничения количества NOx газов в выбросах с FCCU в результате обработки NOx газов после их образования, например доочистки газовых потоков, содержащих NOx, как описано в US 4434147, 4778664, 4735927, 4798813, 4855115, 5413699 и 5547648.
Другой подход основан на изменении режима работы регенератора на режим парциального горения и последующей обработке предшественников NOx, содержащихся в дымовом газе перед их превращением в NOx, он описан в US 5173278, 5240690, 5372706, 5413699, 5705053, 5716514 и 5830346.
Еще один подход заключается в изменении режима работы регенератора, в том, что касается уменьшения выбросов NOx, как описано, например, в US 5382352, или модификации используемого промотора сжигания СО, как описано в US 4199435, 4812430 и 4812431. В US 5908804 предложен способ обогащения воздуха кислородом в регенераторе, работающем в режиме парциального горения.
Для уменьшения выбросов NOx были предприняты попытки использования различных присадок. В US 6379536, 6280607, 6129834 и 6143167 описывается использование композиций, восстанавливающих NOx, предназначенных для уменьшения выбросов NOx из FCCU регенератора. В US 6165933 и 6358881 также описывается композиция, восстанавливающая NOx, которая промотирует горение СО в ходе стадии регенерации FCC катализатора при одновременном уменьшении количества NOx, выделяющегося на стадии регенерации. Композиции, восстанавливающие NOx, раскрытые в указанных патентах, могут использоваться в качестве добавки, которая циркулирует совместно с FCC катализатором или вводится в качестве составной части FCC катализатора.
В US 4973399 и 4980052 описывается уменьшение выбросов NOx из регенератора FCCU путем введения в циркулирующую часть катализатора крекинга отдельных частиц, содержащих загруженный медью цеолит.
Многие известные присадки, используемые для регулирования выбросов NOx, вызывают значительное уменьшение конверсии углеводородного сырья или выхода ценных продуктов крекинга, например бензина, легких олефинов и сжиженных нефтяных газов (LPG) при повышенном коксообразовании. Чрезвычайно желательной характеристикой NOx присадок, добавляемых в FCCU, является отсутствие влияния на выход продуктов крекинга или изменение общей конверсии. Обычно режим работы FCCU оптимизируют исходя из конструкции установки, типа сырья и катализатора с целью получения разнообразных продуктов крекинга и максимизации рентабельности переработки. Перечень продуктов основывается на эффективной модели конкретного режима нефтепереработки. Так, например, в пиковый сезон летнего вождения автомобиля многие владельцы нефтеперерабатывающих заводов желают максимально увеличить производство бензина, тогда как в зимний сезон желательно максимизировать производство печного топлива. В других случаях для нефтеперерабатывающего завода может оказаться благоприятным производство легких олефиновых продуктов, которые могут быть проданы на открытом рынке или использованы в качестве сырья для дочерних нефтехимических заводов.
В том случае, когда добавка, восстанавливающая NOx, увеличивает образование кокса в FCCU, может не хватать воздуха для сгорания избыточного кокса, что может приводить к снижению производительности установки. Если добавка увеличивает выход малоценного нефтяного газа, то может понижаться производительность по более ценным продуктам. Повышение количества сухого газа может превосходить способность установки к его переработке, что приводит к снижению количества перерабатываемого сырья. Хотя использование добавки, повышающей производительность по легким олефинам, может оказаться желательным в случае ценности таких продуктов для производителя и наличия оборудования, необходимого для получения легких углеводородов, такая добавка может понижать рентабельность в том случае, когда цель состоит в максимальной производительности по бензину. Легкие олефины обычно производятся на FCCU за счет бензина. Добавка, увеличивающая конверсию, может оказаться нежелательной в том случае, если она влияет на выходы продукта, вызывает ограничения, связанные с оборудованием для установки, и/или уменьшает производительность установки по обрабатываемому сырью.
Следовательно, любое изменение режима работы FCCU, неблагоприятно влияющее на номенклатуру продукта или способность обработки сырья с желаемой скоростью, может ухудшать рентабельность нефтепереработки. В связи с этим существует необходимость в разработке композиций, регулирующих содержание NOx и не оказывающих значительного влияния на общую конверсию.
Раскрытие сущности изобретения
Авторы изобретения обнаружили, что введение цеолитного компонента, восстанавливающего NOx, совместно с катализатором каталитического крекинга, в особенности катализатора каталитического крекинга, содержащего активный цеолит Y-типа, циркулирующего в установке каталитического крекинга с псевдоожиженным катализатором (FCCU) в ходе процесса крекинга (FCC), обеспечивает прекрасный контроль образования NOx без заметного изменения или влияния на конверсию углеводорода или выход продуктов крекинга, образующихся в ходе процесса FCC.
В соответствии с изобретением предлагаются новые композиции восстановления NOx. Обычно такие композиции включают мелкозернистое вещество, содержащее частицы цеолитного компонента, восстанавливающего NOx. Согласно предпочтительному варианту осуществления изобретения частицы цеолита, восстанавливающего NOx, связаны с неорганическим связующим веществом. Предпочтительное связующее вещество включает оксид кремния, оксид алюминия или алюмосиликат. Предпочтительный цеолит, восстанавливающий NOx, может быть подвергнут ионному обмену на водород, аммоний, щелочной металл и их комбинации. Предпочтительный щелочной металл представляет собой натрий, калий и их комбинации.
Согласно одному из аспектов изобретения предусматриваются новые цеолитсодержащие композиции, восстанавливающие NOx, которые добавляют в циркулирующий поток катализатора каталитического крекинга в виде отдельного мелкодисперсного компонента с целью уменьшения выбросов NOx из FCCU регенератора в ходе процесса FCC.
Согласно другому аспекту изобретения предусматриваются новые композиции, восстанавливающие NOx, включающие цеолит, восстанавливающий NOx, введенный в качестве совместного компонента FCC катализатора, предпочтительно содержащего активный крекирующий компонент на базе цеолита Y.
В соответствии с еще одним аспектом изобретения предусматриваются новые композиции, снижающие выбросы NOx из FCCU регенератора в ходе процесса FCC, практически не влияющие на конверсию углеводорода и выход продуктов крекинга нефти, а также минимизирующие образование кокса.
Другой аспект изобретения относится к способу уменьшения содержания NOx в газах, отходящих из FCCU регенератора в ходе FCC процесса, с использованием композиций, восстанавливающих NOx, согласно изобретению.
Еще один аспект изобретения относится к разработке усовершенствованных процессов FCC, направленных на уменьшение содержания NOx в газах, отходящих из FCCU регенератора, без существенного влияния на конверсию углеводородов или выход нефтяных продуктов, полученных в ходе FCC процесса.
Эти и другие аспекты изобретения подробно описаны ниже.
Описание чертежей
На чертеже представлен графический вид зависимости эффективности Присадки А, Присадки В, Присадки С, Присадки D и Присадки Е, полученных в примерах 1, 2, 3, 4 и 5 соответственно, на уменьшение выбросов NOx из DCR регенератора от времени действия установки в том случае, когда добавки смешивали с равновесным катализатором крекинга (свойства которого представлены в таблице 2), содержащим 0,25% масс. платинового промотора, СР-3® (полученного от Grace Davison, Columbia, MD, и дезактивированного с использованием методики Cycling Propylene Steaming, описанной в примере 6).
Раскрытие сущности изобретения
Хотя известны некоторые оксиды азота, которые относительно устойчивы в окружающих условиях, для целей изобретения используется NOx, представляющий собой оксид азота, диоксид азота (главные токсичные оксиды азота), а также N2O4, N2O5 и их смеси.
Изобретение основано на открытии того, что использование некоторых цеолитсодержащих композиций, восстанавливающих NOx, совместно с псевдоожиженным катализатором каталитического крекинга (FCC), предпочтительно катализатором, включающим цеолит Y-типа, оказывается очень эффективным для уменьшений выбросов NOx из FCCU регенератора в условиях процесса FCC без существенного изменения конверсии углеводородного сырья или выхода продуктов крекинга. Композиции изобретения обычно содержат мелкозернистое вещество, содержащее частицы цеолитного компонента, восстанавливающего NOx. Согласно предпочтительному варианту осуществления изобретения частицы цеолита, восстанавливающего NOx, связаны с неорганическим связующим веществом. Новые композиции, восстанавливающие NOx, могут добавляться в циркулирующий поток катализатора крекинга в виде отдельных частиц или вводятся в виде совместного компонента в катализатор крекинга.
В контексте изобретения фраза «существенное изменение конверсии углеводородного сырья или выхода продуктов крекинга» обозначает альтернативу, предусматривающую (i) относительное изменение менее чем на 30%, предпочтительно менее чем на 20% и наиболее предпочтительно менее чем на 10% в выходе LCO (легких циклических масел), кубовых остатков и бензина в комбинации с LPG по сравнению с базисным выходом указанных или родственных продуктов или (ii) относительное изменение менее чем на 10%, предпочтительно менее чем на 6,5% и наиболее предпочтительно менее чем на 5% в конверсии углеводородного сырья по сравнению с базовой конверсией. Конверсия определяется выражением 100х (1-выход кубовых остатков - выход LCO). В том случае, когда композицию, восстанавливающую NOx, используют в качестве отдельной добавки базовое значение относится к конверсии или выходу продукта в FCCU, работающей с использованием такого же или близкого по составу сырья при таких же или близких технологических и реакционных условиях, но до добавления присадки согласно изобретению в катализатор. В том случае, когда композиция, восстанавливающая NOx, интегрируется или включается в частицы катализатора крекинга с целью получения интегральной каталитической системы восстановления NOx, существенное изменение конверсии углеводорода или выхода продуктов крекинга определяют с использованием базисного значения, определяемого как средняя конверсия или выход продукта на такой же или аналогичной FCCU, работающей на таком же или аналогичном сырье при таких же или аналогичных реакционных или технологических условиях в присутствии инвентарного катализатора крекинга, включающего такую же или аналогичную каталитическую композицию, что и композиция для восстановления NOx, за исключением того, что композиция для восстановления NOx заменяется в катализаторе крекинга на матричный компонент, такой как каолин или другой наполнитель. Указанные выше процентные изменения получены из статистического анализа DCR технологических данных.
Согласно изобретению цеолиты, используемые в качестве цеолитного компонента, восстанавливающего NOx, включают цеолиты с размером пор 3-7,2 ангстрем и молярным соотношением между SiO2 и Аl2О3 менее 500, предпочтительно менее 250, наиболее предпочтительно менее 100. Предпочтительный цеолитный компонент для восстановления NOx представляет собой цеолит, выбранный из группы, состоящей из ZSM-11, цеолита бета, МСМ-49, морденита, МСМ-56, цеолита-L, цеолита Rho, эррионита, шабазита, клиноптилолита, МСМ-22, МСМ-35, МСМ-61, оффретита, цеолита A, ZSM-12, ZSM-23, ZSM-18, ZSM-22, ZSM-57, ZSM-61, ZK-5, NaJ, Nu-87, Cit-1, SSZ-35, SSZ-48, SSZ-44, SSZ-23, дакиардита, мерлиноита, ловдарита, левина, ломонтита, эпистильбита, гмелинита, жисмондита, канкринита, брюстерита, стильбита, паулингита, гускрикита, натролита, омега или их смесей. Согласно наиболее предпочтительному варианту осуществления изобретения цеолитный компонент, восстанавливающий NOx, представляет собой цеолит, выбранный из группы, состоящей из цеолита бета, МСМ-49, морденита, МСМ-56, цеолита-L, цеолита Rho, эррионита, шабазита, клиноптилолита, МСМ-22, оффретита, А, ZSM-12, ZSM-23, омега и их смесей.
Согласно предпочтительному варианту осуществления изобретения цеолит для восстановления NOx характеризуется площадью поверхности, по меньшей мере, 100 м2/г, предпочтительно, по меньшей мере, 200 м2/г и наиболее предпочтительно, по меньшей мере, 300 м2/г. Согласно другому варианту осуществления изобретения цеолит для восстановления NOx подвергают ионному обмену на материал, выбранный из группы, состоящей из водорода, аммония, щелочного металла и их комбинаций, перед введением в связующее вещество или в FCC катализатор. Предпочтительный щелочной металл выбирают из группы, состоящей из натрия, калия и их смесей.
Цеолит для восстановления NOx может необязательно содержать стабилизирующие количества, например, до 25% масс. стабилизирующего металла (или иона металла), предпочтительно вводимого в поры цеолита. Без конкретных ограничений подходящие стабилизирующие металлы включают металлы, выбранные из группы, состоящей из элементов 2А, 3В, 4В, 5В, 6В, 7В, 8В, 3А, 4А, 5А групп периодической системы элементов и лантаноидов, Ag и их смесей. Предпочтительные стабилизирующие металлы выбирают из группы элементов 3В, 2А, 2В, 3А периодической системы и лантаноидов, а также из их смесей. Наиболее предпочтительные стабилизирующие металлы выбирают из группы, состоящей из лантана, алюминия, магния, цинка и их смесей. Металл может вводиться в поры цеолита, восстанавливающего NOx, любым способом, известным в данной области, например ионным обменом, пропиткой и т.п. В контексте изобретения термин «периодическая система» относится к периодической системе элементов, опубликованной American Chemical Society.
Количество цеолита, восстанавливающего NOx, используемого в композициях изобретения, состоящих из катализатора и добавки, будет изменяться в зависимости от нескольких факторов без конкретных ограничений, включающих способ объединения цеолита, восстанавливающего NOx, с катализатором крекинга, а также типом такого катализатора. Согласно одному из вариантов осуществления изобретения рассматриваемые композиции включают мелкозернистый материал, полученный в результате связывания частиц цеолитного компонента, восстанавливающего NOx, с помощью стандартного неорганического связующего вещества. Количество цеолитного компонента, восстанавливающего NOx, присутствующего в композициях изобретения, составляет, по меньшей мере, 10, предпочтительно, по меньшей мере, 30, более предпочтительно, по меньшей мере, 40 и наиболее предпочтительно, по меньшей мере, 50 массовых процентов в расчете на общую массу композиции. Композиция, состоящая из катализатора и добавки согласно изобретению, содержит 10-85, предпочтительно 30-80, наиболее предпочтительно 40-75% масс. цеолитного компонента, восстанавливающего NOx, в расчете на общую массу указанной композиции.
Связующие материалы, используемые для получения композиций изобретения, включают любое неорганическое связующее, обеспечивающее связывание порошкообразного цеолита с образованием частиц, обладающих свойствами, обеспечивающими их использование в FCUU в условиях FCC процесса. Без конкретных ограничений типичные неорганические связующие материалы, используемые для получения композиций изобретения, включают оксид алюминия, оксид кремния, алюмосиликат, фосфат алюминия и т.п., а также их смеси. Предпочтительно связующее вещество выбирают из группы, стоящей из оксида алюминия, оксида кремния, алюмосиликата. Более предпочтительное связующее вещество представляет собой оксид алюминия. Еще более предпочтительно связующее вещество представляет собой оксид алюминия, пептизированный в присутствии кислоты или основания. Наиболее предпочтительно связующее вещество представляет собой золь алюминия или хлоргидрол алюминия. Обычно содержание связующего вещества в мелкозернистых композициях, содержащих систему катализатор/добавка, составляет 5-50% масс., предпочтительно 10-30% масс., наиболее предпочтительно 15-25% масс. от массы композиции катализатор/добавка согласно изобретению.
Без конкретных ограничений необязательные материалы, присутствующие в композициях изобретения, включают наполнители (например, каолин) или матричные материалы (например, оксид алюминия, оксид кремния, алюмосиликат, оксид иттрия, оксид лантана, оксид церия, оксид неодима, оксид самария, оксид европия, оксид гадолиния, оксид титана, оксид циркония, оксид празеодима, а также их смеси). Дополнительные материалы используют в количествах, которые не оказывают заметного отрицательного влияния на свойства композиций, уменьшающих выбросы NOx из FCCU регенератора в условиях FCC процесса, конверсию углеводородного сырья или выход продуктов крекинга. Как правило, добавки составляют не более 70% масс. от массы композиции. Предпочтительно, чтобы композиции изобретения составляли, по существу, из цеолита, восстанавливающего NOx, и неорганического связующего вещества.
Мелкозернистые композиции согласно изобретению, содержащие систему катализатор/добавка, характеризуются размером частиц, достаточным для обеспечения циркуляции композиции в FCCU, происходящей одновременно с циркуляцией катализатора крекинга в процессе FCC. Частицы композиции изобретения обычно имеют средний размер более 45 мкм. Предпочтительный средний размер частиц составляет 50-200 мкм, наиболее предпочтительно 55-150 мкм, еще более предпочтительно 55-150 мкм, еще более предпочтительно 60-120 мкм. Композиции изобретения обычно характеризуются индексом истирания по Davison (DI) менее 50, предпочтительно менее 20, наиболее предпочтительно менее 15.
Хотя изобретение не ограничивается каким-либо конкретным способом получения, обычно композиции для восстановления NOx получают формированием водной суспензии, содержащей цеолит, восстанавливающий NOx, необязательно цеолитные компоненты, неорганическое связующее вещество и необязательно связующие материалы в достаточном количестве для содержания, по меньшей мере, 10,0% масс. цеолита, восстанавливающего NOx, и, по меньшей мере, 5,0% масс. связующего материала в конечной композиции цеолит/добавка, после чего водную суспензию сушат распылением суспензии с получением частиц. Высушенные распылением частицы необязательно сушат при достаточной температуре и в течение достаточного времени для удаления летучих компонентов, например при 90-320°С в течение 0,5-24 часов. Согласно предпочтительному варианту осуществления изобретения водную суспензию, содержащую цеолит, восстанавливающий NOx, измельчают до распылительной сушки с целью уменьшения среднего размера частиц материалов, содержащихся в суспензии, до 10 мкм или менее, предпочтительно 5 мкм или менее, наиболее предпочтительно до 3 мкм или менее. При необходимости водный шлам можно измельчать до или после введения связующих и/или матричных материалов.
Высушенную распылением композицию можно прокаливать при температуре и в течение времени, достаточных для удаления летучих компонентов и обеспечения достаточной твердости связующего материала для его использования в FCCU в условиях процесса FCC, предпочтительно при 320-900°С в течение 0,5-6 часов.
Высушенную или прокаленную композицию промывают или подвергают ионному обмену с помощью водного раствора аммиака, или соли аммония (например, сульфата, нитрата, хлорида, карбоната, фосфата аммония и т.п.), или неорганической либо органической кислоты (например, серной, азотной, фосфорной, хлористоводородной, уксусной, муравьиной и т.п.) с целью уменьшения количества щелочного металла, например натрия или калия, в готовом продукте. Сыпучие композиции изобретения циркулируют в FCCU в виде отдельных добавок совместно с катализатором крекинга. Обычно композиция, содержащая систему катализатор/добавка, используется в количестве, по меньшей мере, 0,1% масс. в расчете на массу катализатора FCC. Предпочтительное количество композиции катализатор/добавка составляет 0,1-75% масс., наиболее предпочтительно 1-50% масс. от количества FCC катализатора. Согласно изобретению отдельные композиции мелкозернистый катализатор/добавка могут вводиться в FCCU традиционным способом, например подаваться совместно с катализатором в регенератор или каким-либо иным традиционным способом.
Согласно второму варианту осуществления цеолит, восстанавливающий NOx, интегрируют или вводят в частицы катализатора крекинга с получением составной каталитической системы восстановления NOx. В соответствии с рассматриваемым вариантом осуществления изобретения цеолит, восстанавливающий NOx, может добавляться в катализатор на любой стадии приготовления катализатора до распылительной сушки суспензии катализатора крекинга с получением псевдоожиженного катализатора крекинга независимо от проведения каких-либо дополнительных необязательных или необходимых стадий обработки, требующихся для завершения получения катализатора крекинга. Не ограничивая способ введения цеолитного компонента, восстанавливающего NOx, и необязательных цеолитов в катализатор крекинга каким-либо конкретным способом получения такого катализатора, в обычной практике цеолитный компонент восстановления NOx, дополнительные цеолиты, цеолит катализатора крекинга, обычно USY- или REUSY-типа, и любые матричные материалы суспендируют в воде. Полученную суспензию измельчают до среднего размера твердых частиц менее 10 мкм, предпочтительно менее 5 мкм, наиболее предпочтительно менее 3 мкм. Измельченную суспензию объединяют с подходящим связующим материалом, например связующим на основе золя оксида кремния, и необязательным матричным материалом, например глиной. После этого суспензию перемешивают и сушат распылением с получением катализатора. Высушенный распылением катализатор необязательно промывают с использованием водного раствора гидроксида аммония, соли аммония, неорганической или органической кислоты и воды с целью удаления нежелательных солей. Промытый катализатор может быть подвергнут ионному обмену с помощью водорастворимой соли редкоземельного металла, например хлоридов, нитратов редкоземельных металлов и т.п.
Согласно другому варианту цеолитный компонент восстановления NOx, необязательно дополнительные цеолиты, цеолитный компонент катализатора крекинга, любые матричные материалы, водорастворимую соль редкоземельного металла, глину и связующий золь оксида алюминия суспендируют в воде и перемешивают. Суспензию измельчают и сушат распылением. Высушенный распылением катализатор прокаливают при 250-900°C. Затем высушенный распылением катализатор может быть подвергнут необязательной промывке с использованием водного раствора гидроксида аммония, соли аммония, неорганической или органической кислоты и воды с целью удаления нежелательных солей. Необязательно после промывки катализатор может быть подвергнут ионному обмену с использованием водорастворимой соли редкоземельного металла в соответствии с любым из известных способов.
При встраивании в частицы FCC катализатора цеолитный компонент восстановления NOx присутствует в количестве, по меньшей мере, 0,1% масс. от массы частицы FCC катализатора. Предпочтительное количество используемого цеолитного компонента восстановления NOx составляет 0,1-60% масс., наиболее предпочтительно 1-40% масс. от массы частиц FCC катализатора.
Комплексный FCC катализатор обычно содержит цеолитный компонент восстановления NOx совместно с цеолитным компонентом катализатора крекинга, неорганическими связующими материалами и необязательными матрицами, наполнителями и другими дополнительными компонентами, такими как ловушки металлов (например, ловушками Ni и V). Цеолитный компонент катализатора крекинга, обычно Y-, USY- или REUSY-типа, обеспечивает большую часть крекирующей активности и обычно присутствует в количестве 10-75, предпочтительно 15-60 и наиболее предпочтительно 20-50% масс. в расчете на общую массу композиции. Неорганические связующие материалы, используемые для получения составных каталитических композиций, согласно изобретению включают любой неорганический материал, способный связывать компоненты комплексного катализатора с получением частиц, обладающих свойствами, подходящими для использования в FCCU в условиях FCC процесса. Без конкретных ограничений неорганические связующие материалы включают оксид алюминия, оксид кремния, алюмосиликат, фосфат алюминия т.п., а также их смеси. Предпочтительное связующее вещество выбирают из группы, состоящей из оксида алюминия, оксида кремния и алюмосиликата. Обычное количество связующего материала в комплексной каталитической композиции составляет менее 50% масс. в расчете на общую массу каталитической композиции. Предпочтительно, чтобы неорганические связующие материалы присутствовали в комплексном катализаторе в количестве 5-45% масс., более предпочтительно 10-30% масс. и наиболее предпочтительно 15-25% масс. в расчете на общую массу композиции.
Без конкретных ограничений необязательные матричные материалы, присутствующие в каталитических композициях изобретения, включают оксид алюминия, алюмосиликат, такие редкоземельные оксиды, как оксид лантана, оксиды переходных металлов, например оксид титана, оксид циркония и оксид марганца, такие оксиды 2 группы, как оксиды магния и бария, такие глины, как каолин, а также их смеси. Матричные компоненты и/или наполнители обычно присутствуют в комплексном катализаторе в количестве менее 50% масс. в расчете на общую массу каталитической композиции. Предпочтительно, чтобы матрицы и/или наполнители присутствовали в количестве 1-45% масс. в расчете на общую массу каталитической композиции.
Размер частиц и износные свойства комплексного катализатора оказывают влияние на флюидизационные характеристики установки и определяют удерживание катализатора в промышленной FCC установке. Комплексная каталитическая композиция согласно изобретению обычно характеризуется средним размером частиц 45-200 мкм, более предпочтительно 50-150 мкм. Износные свойства комплексного катализатора, определяемые коэффициентом истирания Davison (DI), характеризуются значением DI менее 50, более предпочтительно менее 20 и наиболее предпочтительно менее 15.
Согласно предпочтительному варианту осуществления изобретения катализатор FCC крекинга содержит цеолит Y-типа. Цеолит, восстанавливающий NOx, может добавляться в виде отдельных дополнительных частиц в циркулирующий поток катализатора крекинга или непосредственно внедряться в катализатор крекинга, содержащий цеолит Y-типа в виде интегрального компонента. В любом случае, предпочтительно, чтобы цеолит, восстанавливающий NOx, присутствовал в количестве, достаточном для обеспечения в комплексном катализаторе согласно изобретению соотношения между количеством цеолита, восстанавливающего NOx, и цеолита типа Y меньше 2, предпочтительно меньше 1.
Область изобретения также охватывает введение дополнительных цеолитных компонентов в композиции катализатор/добавка. Дополнительный цеолитный компонент может представлять собой любой цеолит, не оказывающий нежелательного влияния на характеристики реакции восстановления NOx и не вызывающий значительного изменения конверсии углеводорода или выхода продуктов крекинга в ходе FCC. Предпочтительный дополнительный цеолитный компонент представляет собой цеолит, выбранный из группы, состоящей из ферриерита, ZSM-5, ZSM-35 и их смесей. Дополнительный цеолитный компонент можно использовать в любом количестве, не оказывающем отрицательного влияния на характеристики реакции восстановления NOx в присутствии цеолитных композиций, с целью уменьшения выбросов NOx и сохранения конверсии углеводорода и выхода продуктов крекинга на уровне значений, полученных при использовании катализатора крекинга, не содержащего систему катализатор восстановления NOx/добавка. Обычно дополнительный цеолитный компонент используют в количестве 1-80, предпочтительно 10-70% масс. от массы композиции катализатор/добавка. При использовании цеолита, восстанавливающего NOx, в качестве интегрального компонента катализатора предпочтительно использовать дополнительный цеолитный компонент в количестве 0,1-60, наиболее предпочтительно 1-40% масс. от массы каталитической композиции.
FCC процесс включает крекинг тяжелого углеводородного сырья с образованием легких продуктов в результате контакта сырья, в ходе процесса крекинга с циклической рециркуляцией катализатора, с циркулирующим псведоожиженным катализатором крекинга, состоящим из частиц со средним размером 50-150 мкм, предпочтительно 60-120 мкм. Каталитический крекинг такого относительно высокомолекулярного углеводородного сырья приводит к образованию углеводородного продукта с более низкой молекулярной массой. Важные стадии циклического FCC процесса предусматривают следующие операции:
(i) каталитический крекинг сырья в зоне каталитического крекинга, обычно в вертикальной зоне крекинга, работающей в условиях каталитического крекинга, в результате контактирования сырья с источником тепла, регенерацию катализатора крекинга с образованием отходящего потока, содержащего продукты крекинга и отработанный катализатор, содержащий кокс и удаляемые отпаркой углеводороды;
(ii) отвод отходящего потока и его разделение в одном или нескольких циклонах на паровую фазу, обогащенную продуктом крекинга, и фазу, обогащенную твердым материалом, содержащую отработанный катализатор;
(iii) отвод газовой фазы в качестве продукта и ее фракционирование в основной колонне FCC и связанных с ней вспомогательных колоннах с получением газа и жидких продуктов крекинга, включающих бензин;
(iv) отпаривание отработанного катализатора с целью удаления окклюдированных на его поверхности углеводородов, после чего отпаренный катализатор подвергают окислительной регенерации в зоне регенерации с получением горячего регенерированного катализатора, который далее возвращают в зону крекинга с целью крекирования дополнительных количеств сырья.
Традиционные FCC катализаторы включают цеолитсодержащие катализаторы с фожазитным крекирующим компонентом, описанные в обзоре Venuto and Habib, Fluid Catalytic Cracking with zeolite catalysts, Marcel Dekker, New York, 1979, ISBN 0-8247-6870-1, а также в многочисленных других источниках, таких как Sedehbeigi, Fluid Catalytic Cracking Handbook, Golf Publ. Co. Houston, 1995, ISBN 0-88415-290-1. Предпочтительный FCC катализатор содержит в качестве активного крекирующего компонента цеолит Y-типа. Согласно особенно предпочтительному варианту осуществления изобретения FCC катализаторы состоят из связующего материала, обычно представляющего собой оксид кремния, оксид алюминия или алюмосиликат, цеолита Y в качестве активного компонента, одного или нескольких матричных оксидов алюминия и/или алюмосиликатов и таких наполнителей, как каолин. Цеолит типа Y может присутствовать в одной или нескольких формах и может быть подвергнут ультрастабилизации и/или обработан такими стабилизирующими катионами, как катионы любого редкоземельного металла.
Типичные FCC процессы проводят при температуре 480-600°С при температурах регенерации катализатора в интервале 600-800°С. Как хорошо известно в данной области техники, зона регенерации катализатора может состоять из одного или множества реакторных сосудов. Композиции согласно изобретению могут использоваться для FCC переработки любого типичного углеводородного сырья. Подходящие виды сырья включают нефтяные дистилляты или остатки сырой нефти с интервалом кипения 150-900°С, предпочтительно 200-800°С, которые после каталитического крекинга образуют бензин или другой нефтяной продукт. Каталитическому крекингу может подвергаться синтетическое сырье с температурой кипения в интервале 200-800°С, такое как минеральное масло, битуминозный песок или горючий сланец.
Для удаления кокса с поверхности катализатора в зону регенерации вводят кислород или воздух. Эту операцию осуществляют с помощью подходящего барботажного устройства, расположенного на днище регенерационной зоны, либо дополнительное количество кислорода вводят в разбавленную или плотную фазу в зоне регенерации.
Композиции катализатор/добавка согласно изобретению резко уменьшают, например, по меньшей мере, на 10%, предпочтительно, по меньшей мере, на 20% выбросы NOx в поток газов из FCCU регенератора в ходе регенерации катализатора, и при этом сохраняются значения конверсии углеводородного сырья или выхода продуктов крекинга, например бензина и легких олефинов, полученных с использованием катализатора крекинга. В некоторых случаях с помощью композиции и способа изобретения легко достигается степень восстановления NOx порядка 90% или более без существенного влияния на выходы продуктов крекинга или конверсию сырья. Однако, как должно быть понятно специалисту, степень восстановления NOx будет зависеть от таких факторов, как состав и количество используемых добавок, конструкция и способ работы установки каталитического крекинга, включающие без конкретных ограничений содержание кислорода и распределение воздуха в регенераторе, глубину каталитического слоя в регенераторе, режим работы отпарной колонны и температура регенератора, характеристики крекируемого углеводородного сырья и наличие других каталитических добавок, которые могут влиять на химические реакции и режим работы регенератора. Таким образом, поскольку FCCU отличаются друг от друга в некоторых или всех перечисленных аспектах, можно ожидать, что эффективность способа изобретения будет меняться при переходе от одной установки к другой. Кроме этого, NOx восстанавливающие композиции изобретения препятствуют значительному коксообразованию в ходе FCCU процесса.
Область изобретения также предусматривает использование восстанавливающей NOx композиции в отдельности или совместно с одной или несколькими дополнительными композициями, восстанавливающими NOx, с целью более эффективного восстановления NOx, чем при использовании указанных композиций в отдельности. Предпочтительный дополнительный NOx восстанавливающий компонент представляет собой нецеолитный материал, т.е. материал, не содержащий или содержащий незначительное (т.е. менее 5% масс., предпочтительно менее 1% масс.) количество цеолита.
Согласно изобретению один из классов нецеолитных материалов, подходящих для совместного использования с композициями, восстанавливающими NOx, включает NOx восстанавливающие композиции, содержащие благородный металл, такие как раскрыты и описаны в US 6660683 В1, содержание которого включено в описание в качестве ссылки. Составы такого типа обычно включают мелкодисперсную смесь (1) кислотного оксида металла, практически не содержащего цеолита (предпочтительно содержащего оксид кремния и оксид алюминия, наиболее предпочтительно содержащего, по меньшей мере, 1% масс. оксида алюминия); (2) щелочного металла (по меньшей мере, 0,5% масс., предпочтительно 1-15% масс.), щелочноземельного металла (по меньшей мере, 0,5% масс., предпочтительно 0,5-50% масс.) и их смесей; (3) по меньшей мере, 0,1% масс. оксида металла, аккумулирующего кислород (предпочтительно оксида церия); и (4), по меньшей мере, 0,1 ч./млн благородного металла (предпочтительно Pt, Pd, Rh, Ir, Os, Ru, Re и их смеси). Предпочтительные композиции материалов такого типа включают (1) кислотный оксид, содержащий, по меньшей мере, 50% масс. оксида алюминия и не содержащий цеолит; (2) по меньшей мере, 0,5% масс щелочного и/или щелочноземельного металла или их смеси; (3) 1-25% кислород-аккумулирующего оксида переходного или редкоземельного металла (предпочтительно оксида церия) и (4), по меньшей мере, 0,1 ч./млн благородного металла, выбранного из группы, состоящей из Pt, Rh, Ir и их смесей, причем все процентные соотношения приведены в расчете на общую массу композиции катализатор окисления/добавка.
Другой тип нецеолитных материалов, подходящих для совместного использования с NOx восстанавливающими композициями согласно изобретению, включает промотор дожига низких концентраций NOx и СО, раскрытый и описанный в US 6165933 и 6358881, полное содержание которых включено в настоящее описание в качестве ссылки. Обычно композиции промотора дожига низких концентраций NOx и СО включают (1) кислотный оксидный носитель; (2) щелочной и/или щелочноземельный металл или их смеси; (3) оксид переходного металла, обладающий кислород-аккумулирующей способностью; и (4) палладий. Кислотный оксидный носитель предпочтительно содержит алюмосиликат. Предпочтительным аккумулятором кислорода является оксид церия. Предпочтительная NOx восстанавливающая композиция включает (1) кислотный металлооксидный носитель, содержащий, по меньшей мере, 50% масс. оксида алюминия; (2) 1-10 масс. частей в расчете на оксид металла, по меньшей мере, одного щелочного металла, щелочноземельного металла или их смесей; (3) по меньшей мере, 1 масс. часть СеO2 и (4) 0,01-5 масс. частей Pd, причем все массовые части компонентов (2)-(4) приведены в расчете на 100 масс. частей кислотного металлооксидного носителя.
Еще один тип нецеолитных материалов, подходящих для совместного использования с NOx восстанавливающими композициями согласно изобретению, включает NOx восстанавливающие композиции, раскрытые и описанные в US 6379536, 6280607 B1, 6143167 и 6129834, полное содержание которых включено в настоящее описание в качестве ссылки. В общем случае композиции, восстанавливающие NOx, включают (1) кислотный оксидный носитель; (2) щелочной и/или щелочноземельный металл или их смеси; (3) оксид переходного металла, обладающий кислород-аккумулирующей способностью; и (4) переходный металл, выбранный из группы IB и IIВ Периодической таблицы элементов. Предпочтительный кислотный оксидный носитель содержит, по меньшей мере, 50% масс. оксида алюминия и алюмосиликата. Оксид церия служит предпочтительным кислород-аккумулирующим материалом. Согласно предпочтительному варианту осуществления изобретения NOx восстанавливающие композиции включают (1) кислотный оксидный носитель, содержащий, по меньшей мере, 50% масс. оксида алюминия; (2) 1-10% масс. в расчете на оксид металла, щелочного металла, щелочноземельного металла или их смесей; (3) по меньшей мере, 1% масс. СеО2 и (4) 0,01-5,0% масс. переходного металла в расчете на оксид Сu или Ag, причем все массовые части компонентов (2)-(4) приведены в расчете на 100 масс. частей кислотного металлооксидного носителя.
Другой тип нецеолитных материалов, подходящих для совместного использования с NOx восстанавливающими композициями согласно изобретению, включает добавки на основе магний-алюминиевой шпинели, используемые ранее для удаления оксидов серы из FCC регенератора. Примеры патентов, в которых раскрывается и описывается такой тип материалов, включают US 4963520, 4957892, 4957718, 4790982, 4471070, 4472532, 4476245, 4728635, 4830840, 4904627, 4428827, 5371055, 4495304, 4642178, 4469589, 4758418, 4522937, 4472267 и 44950305, полное содержание которых включено в настоящее описание в качестве ссылки. Предпочтительные композиции такого типа включают, по меньшей мере, одну металлсодержащую шпинель, содержащую первый и второй металл, причем валентность второго металла выше валентности первого металла, по меньшей мере, один компонент на основе третьего металла, отличного от первого и второго металлов, и, по меньшей мере, один компонент на основе четвертого металла, отличного от первого, второго и третьего металлов, причем третий металл выбирают из группы, состоящей из металлов IB, IIB, VIA групп, редкоземельных металлов, металлов платиновой группы и их смесей, а четвертый металл выбирают из группы, состоящей из железа, никеля, титана, хрома, марганца, кобальта, германия, олова, висмута, молибдена, сурьмы, ванадия и их смесей. Предпочтительная металлсодержащая шпинель содержит магний в качестве первого металла и алюминий в качестве второго металла, причем атомное соотношение между количеством магния и алюминия составляет, по меньшей мере, 0,17. Третий металл рассматриваемой шпинели предпочтительно представляет собой металл, выбранный из группы, состоящей из металлов платиновой группы, редкоземельных металлов и их смесей. Третий металлический компонент предпочтительно присутствует в количестве 0,001-20% масс. в расчете на элементный третий металл, а четвертый металлический компонент присутствует в количестве 0,001-10% масс. в расчете на элемент.
Другие нецеолитные материалы, используемые совместно с добавками, восстанавливающими NOx, согласно изобретению, без конкретных ограничений включают цинксодержащие катализаторы, подобные раскрытым и описанным в US 5002654; добавки, восстанавливающие NOx, на основе сурьмы, такие как раскрытые и описанные в US 4988432; добавки на основе перовскитных шпинелей, раскрытые и описанные в US 5364517 и 5565181; гидротальцитный катализатор и дополнительные композиции, раскрытые и описанные в US 4889615, 4946581, 4952382, 5114691, 5114898, 6479421 B1 и международной публикации WO 95/03876; а также дополнительные композиции промотора дожига NOx, описанные, например, в US 4290878; причем содержание каждого из перечисленных патентов включено в настоящее описание в качестве ссылки.
Кроме этого, область изобретения включает совместное использование композиций, восстанавливающих NOx, согласно изобретению и композиций для удаления NOx, раскрытых и описанных в международной патентной публикации WO 03/046112 А1 и международной патентной публикации WO 2004/033091 А1, полное содержание которых включено в настоящее описание в качестве ссылки. Такая композиция, предназначенная для удаления NOx, обычно содержит (i) кислотный оксидный носитель, (ii) оксид церия, (iii) оксид лантаноида, отличный от оксида церия, и (iv) необязательно, по меньшей мере, один оксид переходного металла, выбранный из IB и IIВ групп Периодической таблицы, благородных металлов и их смесей.
При использовании дополнительных нецеолитных композиций восстановления NOx их применяют в количестве, достаточном для улучшенного восстановления NOx, по сравнению с отдельным использованием композиций катализатор/добавка. Дополнительные нецеолитные композиции обычно используют в количестве до 50% масс. от массы FCC катализатора. Предпочтительно, чтобы нецеолитную композицию использовали в количестве до 30% масс., наиболее предпочтительно до 10% масс. от массы FCC катализатора. Дополнительную NOx восстанавливающую композицию можно смешивать с FCC катализатором в виде отдельной добавки. С другой стороны, композиция для дополнительного восстановления NOx может вводиться в FCC катализатор в качестве интегрального компонента катализатора.
Объем изобретения также предусматривает совместное использование композиций катализатор/добавка согласно изобретению и других добавок, традиционно используемых в FCC процессе, например добавок, восстанавливающих SOx, добавок, восстанавливающих серу, содержащуюся в бензине, промоторов сжигания СО, добавок для получения легких олефинов и т.п.
Объем изобретения никоим образом не ограничивается приведенными ниже примерами. В примерах описывается приготовление систем катализатор/добавки, используемых в способе изобретения, и приводится оценка способа изобретения в плане восстановления NOx в процессе каталитического крекинга. Приведенные примеры являются специальной иллюстрацией заявленного изобретения. Однако следует иметь в виду, что изобретение не ограничивается специальными деталями, описанными в примерах.
Если специально не оговорено, то все части и проценты, приведенные в примерах, а также в оставшейся части описания, относящиеся к составу или концентрациям твердого материала, даны в массовом выражении. Концентрации газовых смесей даны в объемном выражении, если не указано особо.
Подразумевается, что любой числовой диапазон, приведенный в описании или формуле изобретения, например, относящийся к конкретному множеству свойств, единицам измерений, условиям, физическим состояниям или процентам, на который ссылаются в описании, точно и буквально отражает любое численное значение в указанном интервале, включая любое подмножество чисел внутри указанного интервала.
ПРИМЕРЫ
Пример 1
Композицию, содержащую 40% МСМ-49 и 40% глины, связанной с 20% золя оксида кремния (Добавка А), готовили следующим образом. Водную суспензию, содержащую 25% МСМ-49 (SiO/Аl2О3=18), измельчали в мельнице Drais. Измельченную суспензию МСМ-49 (4880 г) объединяли с 1200 г глины Natka (в расчете на сухое вещество) и 6000 г связующего из золя оксида кремния (10% твердых веществ). Связующее из золя оксида кремния получали из силиката натрия и кислых квасцов. Затем катализатор сушили в распылительной сушилке Bowen. Полученный высушенный продукт промывали раствором сульфата аммония и затем водой с получением катализатора с содержанием Na2O менее 0,1% масс. Свойства полученного катализатора представлены в таблице 1.
Пример 2
Композицию, содержащую 40% бета и 40% глины, связанной с 20% золя оксида кремния (Добавка В), готовили следующим образом. Водную суспензию, содержащую 21% цеолита бета (SiO/Аl2О3=28), измельчали в мельнице Drais. Измельченную суспензию цеолита бета (5670 г) объединяли с 1200 г глины Natka (в расчете на сухое вещество) и 6000 г связующего из золя оксида кремния (10% твердых веществ). Связующее из золя оксида кремния получали из силиката натрия и кислых квасцов. Затем катализатор сушили в распылительной сушилке Bowen. Полученный высушенный продукт промывали раствором сульфата аммония и затем водой с получением катализатора, содержащего менее 0,1% масс. Na2O. Свойства полученного катализатора представлены в таблице 1.
Пример 3
Композицию, содержащую 40% морденита и 40% глины, связанной с 20% золя оксида кремния (Добавка С), готовили следующим образом. Водную суспензию, содержащую 21% морденита (SiO/Al2O3=19), измельчали в мельнице Drais. Измельченную суспензию морденита (3850 г) объединяли с 800 г глины Natka (в расчете на сухое вещество) и 4000 г связующего из золя оксида кремния (10% твердых веществ). Связующее из золя оксида кремния получали из силиката натрия и кислых квасцов. Затем катализатор сушили в распылительной сушилке Bowen. Полученный высушенный продукт промывали раствором сульфата аммония и затем водой с получением катализатора, содержащего менее 0,1% масс. Nа2О. Свойства полученного катализатора представлены в таблице 1.
Пример 4
Композицию, содержащую 40% цеолита L и 40% глины, связанной с 20% золя оксида кремния (Добавка D), готовили следующим образом. Водную суспензию, содержащую 25% цеолита L (SiO/Al2O3=6), измельчали в мельнице Drais. Измельченную суспензию цеолита L (5050 г) объединяли с 1200 г глины Natka (в расчете на сухое вещество) и 6000 г связующего из золя оксида кремния (10% твердых веществ). Связующее из золя оксида кремния получали из силиката натрия и кислых квасцов. Затем катализатор сушили в распылительной сушилке Bowen. Полученный высушенный продукт промывали раствором сульфата аммония и затем водой с получением катализатора, содержащего менее 0,1% масс. Na2O. Свойства полученного катализатора представлены в таблице 1.
Пример 5
Композицию, содержащую 40% МСМ-56 и 40% глины, связанной с 20% золя оксида кремния (Добавка Е), готовили следующим образом. Водную суспензию, содержащую 21,8% МСМ-56 (SiO/Al2O3=19), измельчали в мельнице Drais. Измельченную суспензию МСМ-56 (5765 г) объединяли с 1200 г глины Natka (в расчете на сухое вещество) и 6000 г связующего из золя оксида кремния (10% твердых веществ). Связующее из золя оксида кремния получали из силиката натрия и кислых квасцов. Затем катализатор сушили в распылительной сушилке Bowen. Полученный высушенный продукт промывали раствором сульфата аммония и затем водой с получением катализатора с содержанием Na2O менее 0,1% масс. Свойства полученного катализатора представлены в таблице 1.
Таблица 1
Свойства Добавок А-Е
Состав при 1750°F % масс. Добавка А Добавка В Добавка С Добавка D Добавка E
5,68 3,72 4,76 5,11 5,09
SiO2 % масс. 75,9 75,1 76,3 70,5 75,4
Аl2O3 % масс. 23,0 22,8 22,4 17,0 22,2
RE2O3 % масс. 0,02 0,02 0,19 0,01 0,01
Na2O % масс. <0,023 0,027 0,020 0,023 0,022
Fe % масс. 0,44 0,44 0,43 0,23 0,42
TiO2 % масс. 0,96 0,95 1,10 0,52 0,02
K2O % масс. 1,681
SA м2 244 238 269 258 218
Цеолит м2 182 174 224 196 124
Матрица м2 62 64 45 62 94
(SA - удельная поверхность)
Пример 6
Способность добавок А-Е к уменьшению выбросов NO из FCC установки оценивали с использованием вертикального циркуляционного реактора Davison (DCR). Описание конструкции DCR опубликовано в следующих работах: G.W.Young, G.D.Weatherbee, and S.W.Davey, "Simulating Commercial FCCU yields with Davison Circulating Riser (DCR) pilot plan unit", National Refiners Association (NPRA) Paper AM88-52; G.W. Young, "Realistic Assessment of FCC Catalyst Performance in the Laboratory", in Fluid Catalytic Cracking: Science and Technology, J.S. Magee and M.M. Mitchell, Jr. Eds., Studies in Surface Science and Catalysis, Volume 76, p.257, Elsevier Science Publishers B.V., Amsterdam, 1993, ISBN 0-444-89037. Работу DCR начинали с загрузки в установку 1800 г равновесного катализатора, свойства которого приведены в следующей ниже таблице 2. Свойства тестируемых добавок приведены выше, в таблице 1. В проводимом тесте использовали промышленное FCC сырье, свойства которого приведены ниже в таблице 3.
Таблица 2
Свойства равновесного катализатора, используемого в DCR испытании
SiO2 % масс. 50,9
Аl2O3 % масс. 45,5
RE2O3 % масс. 0,37
Na2O % масс. 0,37
Fe % масс. 0,6
TiO2 % масс. 1,2
MgO % масс. 0,319
Ni ч./млн 681
V ч./млн 1160
SA м2 188
Цеолит м2 128
Матрица м2 60
Таблица 3
Свойства сырья, используемого в DCR испытании
Плотность по API при 60°F 23,2
Сера, % масс. 0,023
Общий азот, % масс. 0,13
Основной азот, % масс. 0,0378
Углерод по Conradson, % масс. 0,03
Fe, ч./млн 0,7
Na, ч./млн 0,7
К фактор 11,4
Модельная дистилляция, % об., °F
5 453
20 576
40 660
60 743
80 838
FBP 1153
(FBP - температура выкипания)
Реакцию в DCR проводили с 1% избытком O2 в регенераторе при температуре 1300°F (705°С). После стабилизации технологического режима базовые данные по выбросу NO собирали с использованием on-line Lear-Siegler SO2/NO анализатора (SM8100A). После этого в систему DCR вводили 100 г катализатора, состоящего из 4,725 г промышленного образца промотора сгорания на основе Pt (CP®-3), предварительно дезактивированного в течение 20 часов при 1450°F (788°C) без добавления Ni или V с использованием Cyclic Propylene Steaming метода (CPS) и равновесного катализатора. Описание метода CPS приведено в работе L.T.Boock, T.F.Petti и J.A.Rudesill "Contaminant-Metal Deactivation and Metal-Dehydrogenation Effects During Cyclic Propylene Steaming of Fluid Catalytic Cracking Catalysts", Deactivation and Testing of Hydrocarbon Processing Catalysts, ASC Symposium Series 634, p.171 (1996), ISBN 0-8412-3411-6.
После выхода установки вновь на стабильный режим собирали данные по выбросу NO. После этого в DCR вводили 210 г испытуемой добавки совместно с 0,525 г промотора дожига СО на основе Pt. Полученные результаты представлены ниже в таблице 4.
Как следует из таблицы и чертежа, добавки А-Е оказывают значительное влияние на уменьшение выбросов NO из DCR регенератора. Как следует из данных, представленных в таблице 5, рассматриваемые добавки особенно эффективны в отношении уменьшения выбросов NO, что не сопровождается заметным влиянием на выход продуктов крекинга.
Таблица 4
Уменьшение выброса NO из регенератора циркуляционного вертикального реактора Davison (DCR) при использовании цеолитсодержащих добавок (TOS представляет собой продолжительность работы установки со времени добавления Pt промотора дожига СО)
Добавка Содержание, % TOS (ч) Скорость потока газа (л/ч) NO (ч./млн) Степень восстановления NO (%)
ЕСАТ 888 32
СР-3, CPS 0,25 1 889 156
Добавка А 10 4 906 63 60
ЕСАТ 886 49
СР-3, CPS 0,25 1,3 884 148
Добавка В 10 4 917 56 62
ЕСАТ 864 27
СР-3, CPS 0,25 1,3 877 124
Добавка С 10 4 912 81 35
ЕСАТ 887 19
СР-3, CPS 0,25 1,2 877 125
Добавка D 10 4 913 97 22
ЕСАТ 878 39
СР-3, CPS 0,25 1,4 872 152
Добавка Е 10 4 864 109 28
(ЕСАТ- равновесный FCC катализатор)
Figure 00000001

Claims (44)

1. Способ уменьшения выбросов NOx из зоны регенерации в ходе процесса каталитического крекинга углеводородного сырья в присутствии псевдоожиженного катализатора с получением низкомолекулярных компонентов, включающий а) контактирование углеводородного сырья в ходе процесса крекинга с псевдоожиженным катализатором (FCC), в котором происходит выброс NOx из зоны регенерации установки каталитического крекинга (FCCU), работающей в условиях FCC в присутствии циркулирующего FCC крекирующего катализатора и мелкозернистой композиции катализатор/добавка, восстанавливающей NOx, со средним размером частиц более 45 мкм, содержащей (i) по меньшей мере, 10 мас.% NOx восстанавливающего цеолитсодержащего компонента, выбранного из группы, состоящей из цеолита-бета, МСМ-49, морденита, МСМ-56, цеолита-L и их смесей, и (ii) 5-50 мас.% неорганического связующего вещества, выбранного из группы, состоящей из оксида алюминия, оксида кремния, алюмосиликата, фосфата алюминия их смесей; и b) уменьшение количества выбросов NOx из зоны регенерации FCCU.
2. Способ по п.1, в котором NOx восстанавливающий цеолитный компонент подвергают ионному обмену на катион, выбранный из группы, состоящей из водорода, аммония, щелочного металла и их комбинаций.
3. Способ по п.1, в котором NOx восстанавливающий цеолитный компонент дополнительно включает, по меньшей мере, один стабилизирующий металл, предпочтительно выбранный из группы, состоящей из элементов групп 2А, 3В, 4В, 5В, 6В, 7В, 8В, 2В, 3А, 4А, 5А и группы лантаноидов Периодической системы химических элементов, Ag и их смесей, более предпочтительно из группы, состоящей из лантана, алюминия, магния, цинка и их смесей.
4. Способ по п.3, в котором стабилизирующий металл вводят в поры цеолитного компонента, восстанавливающего NOx.
5. Способ по п.1, в котором цеолитный компонент, восстанавливающий NOx, имеет молярное соотношение между SiO2 и Аl2О3 меньшим 500.
6. Способ по п.1, дополнительно включающий взаимодействие углеводородного сырья, по меньшей мере, с одной дополнительной композицией, восстанавливающей NOx.
7. Способ по п.6, в котором дополнительная композиция, восстанавливающая NOx, представляет собой нецеолитную композицию, предпочтительно содержащую (1) кислотный оксид металла, практически несодержащий цеолита; (2) металлический компонент, определяемый, как оксид, выбранный из группы, состоящей из щелочного металла, щелочноземельного металла и их смесей; (3) оксид металла, аккумулирующий кислород; и (4) по меньшей мере, один благородный металл.
8. Способ по п.6, в котором дополнительная композиция, восстанавливающая NOx, а) представляет собой промотор дожига низких концентраций NOx и СО, включающий (1) кислотный оксидный носитель;
(2) щелочной металл и/или щелочноземельный металл, либо их смеси; (3) оксид переходного металла, обладающий способностью аккумулировать кислород; и (4) палладий; или b) включает (1) носитель из кислотного оксида обычно из кислотного оксида металла; (2) щелочной металл и/или щелочноземельный металл, либо их смеси; (3) оксид переходного металла, обладающий способностью аккумулировать кислород; и (4) переходный металл, выбранный из IB и IIВ групп Периодической таблицы и их смеси;
или с) включает, по меньшей мере, одну металлсодержащую шпинель, которая содержит первый металл и второй металл, валентность которого выше валентности первого металла, по меньшей мере, один третий металл, отличающийся от первого и второго металлов и, по меньшей мере, один четвертый металл, отличающийся от первого, второго и третьего металлов, причем третий металл выбирают из группы, состоящей из металлов IB Группы, металлов IIВ Группы, металлов VI Группы, редкоземельных металлов, металлов платиновой группы и их смесей, а четвертый металл выбирают из группы, состоящей из железа, никеля, титана, хрома, марганца, кобальта, германия, олова, висмута, молибдена, сурьмы, ванадия и их смесей.
9. Способ по п.8, в котором металлсодержащая шпинель включает магний в качестве первого металла и алюминий в качестве второго металла.
10. Способ по п.8, в котором третий металлический компонент в металлсодержащей шпинели выбирают из группы, состоящей из металла платиновой группы, редкоземельных металлов и их смесей.
11. Способ по п.8, в котором третий металлический компонент присутствует в количестве 0,001-20 мас.% в расчете на элементный третий металл.
12. Способ по п.8, в котором четвертый металлический компонент присутствует в количестве 0,001-10 мас.% в расчете на четвертый элементный металл.
13. Способ по п.6, в котором дополнительная добавка, восстанавливающая NOx, представляет собой (i) катализатор на основе цинка, или (ii) добавку на основе сурьмы, или (iii) добавку на основе шпинели перовскитного типа, или (iv) композицию, содержащую гидротальцит.
14. Способ по п.6, в котором дополнительная добавка, восстанавливающая NOx, включает (i) кислотный оксид металла, (ii) оксид церия, (iii) оксид лантаноида, отличного от оксида церия, и (iv) необязательно, по меньшей мере, один оксид переходного металла, выбранный из металлов IB и IIВ групп Периодической системы элементов, благородных металлов и их смесей.
15. Способ по п.1, в котором мелкодисперсная композиция катализатор/добавка включает дополнительный цеолит, отличающийся от цеолита, восстанавливающего NOx, предпочтительно цеолит выбирают из группы, состоящей из ферриерита, ZSM-5, ZSM-35 и их смесей.
16. Способ по п.15, в котором дополнительный цеолит присутствует в количестве 1-80 мас.% в расчете на массу композиции, предпочтительно в количестве 10-70 мас.% в расчете на массу композиции.
17. Способ по п.1, в котором количество NOx восстанавливающего цеолитного компонента, присутствующего в композиции катализатор/добавка, составляет, по меньшей мере, 30% от массы композиции, предпочтительно, по меньшей мере, 40% от массы композиции, и еще более предпочтительно, по меньшей мере, 50% от массы композиции.
18. Способ по п.1, в котором количество NOx восстанавливающего цеолитного компонента, присутствующего в композиции катализатор/добавка, составляет 10-85 мас.% от массы композиции, предпочтительно 30-80 мас.% от массы композиции, и еще более предпочтительно 40-75 мас.% от массы композиции.
19. Способ по п.1, в котором неорганическое связующее вещество в частицах добавки композиции выбирают из группы, состоящей из оксида кремния, оксида алюминия, алюмосиликата и их смесей, более предпочтительно неорганическое связующее вещество представляет собой оксид алюминия, еще более предпочтительно оксид алюминия представляет собой (i) пептизированный в присутствии кислоты или основания оксид алюминия или (ii) хлорогидрол алюминия.
20. Способ по п.1, в котором количество неорганического связующего вещества, присутствующего в частицах композиции катализатор/добавка, составляет 10-30% от массы композиции, предпочтительно 15-25% от массы композиции.
21. Способ по п.1, в котором композиция, обычно композиция катализатор/добавка, дополнительно включает матричный материал, выбранный из группы, состоящей из оксида алюминия, оксида кремния, алюмосиликата, оксида титана, оксида циркония, оксида иттрия, оксида лантана, оксида церия, оксида неодима, оксида самария, оксида европия, оксида гадолиния, оксида празеодима и их смесей.
22. Способ по п.21, в котором матричный материал присутствует в количестве менее 70 мас.%.
23. Способ по п.1, в котором частицы композиции, восстанавливающей NOx, имеют средний размер частиц 50-200 мкм, предпочтительно 55-150 мкм.
24. Способ по п.1, в котором частицы композиции, восстанавливающей NOx, имеют индекс истирания по Davison (DI) менее 50, предпочтительно DI менее 20, еще более предпочтительно DI менее 15.
25. Способ по п.1, в котором катализатор крекинга, обычно компонент FCC катализатора крекинга, включает цеолит Y-типа.
26. Способ по п.25, в котором количество композиции катализатор/добавка в катализаторе является достаточным для обеспечения соотношения между количеством цеолитного компонента, восстанавливающего NOx, и количеством цеолита Y во всем катализаторе, меньше 2, предпочтительно меньше 1.
27. Способ по п.1, в котором уменьшение выделения NOx (стадию (b)) проводят без существенного изменения конверсии углеводородного сырья или выхода продуктов крекинга по сравнению с конверсией углеводородного сырья или выходом продуктов крекинга в присутствии одного катализатора крекинга.
28. Способ по п.1, дополнительно включающий извлечение катализатора крекинга обычно со стадии контактирования и обработку использованного катализатора в зоне регенерации с целью его восстановления.
29. Способ по п.28, в котором катализатор крекинга и частицы композиции катализатор/добавка псевдоожижают в ходе контактирования с углеводородным сырьем.
30. Способ по п.29, в котором катализатор крекинга псевдоожижают в ходе взаимодействия с углеводородным сырьем.
31. Композиция катализатора крекинга в псевдоожиженном слое (FCC), включающая (а) FCC крекирующий компонент, подходящий для катализа крекинга углеводородов в условиях FCC, и (b) мелкодисперсную композицию катализатор/добавка, восстанавливающую NOx, охарактеризованную в любом из пп.1-16.
32. Композиция катализатора по п.31, в которой количество NOx восстанавливающего цеолитного компонента, присутствующего в композиции катализатор/добавка, составляет, по меньшей мере, 30% от массы композиции, предпочтительно, по меньшей мере, 40% от массы композиции, и еще более предпочтительно, по меньшей мере, 50% от массы композиции.
33. Композиция катализатора по п.31, в которой количество NOx восстанавливающего цеолитного компонента, присутствующего в композиции катализатор/добавка, составляет 10-85 мас.% от массы композиции, предпочтительно 30-80 мас.% от массы композиции, и еще более предпочтительно 40-75 мас.% от массы композиции.
34. Композиция катализатора по п.31, в которой неорганическое связующее вещество в частицах добавки композиции выбирают из группы, состоящей из оксида кремния, оксида алюминия, алюмосиликата и их смесей, более предпочтительно неорганическое связующее вещество представляет собой оксид алюминия, еще более предпочтительно оксид алюминия представляет собой (i) пептизированный в присутствии кислоты или основания оксид алюминия или (ii) хлорогидрол алюминия.
35. Композиция катализатора по п.32, которая дополнительно включает матричный материал, выбранный из группы, состоящей из оксида алюминия, оксида кремния, алюмосиликата, оксида титана, оксида циркония, оксида иттрия, оксида лантана, оксида церия, оксида неодима, оксида самария, оксида европия, оксида гадолиния, оксида празеодима и их смесей.
36. Композиция катализатора по п.35, которая содержит матричный материал в количестве менее 70 мас.%.
37. Композиция катализатора по п.31, в которой частицы композиции, восстанавливающей NOx, имеют средний размер частиц 50-200 мкм, предпочтительно 55-150 мкм.
38. Композиция катализатора по п.31, в которой частицы композиции, восстанавливающей NOx, имеют индекс истирания по Davison (DI) менее 50, предпочтительно DI менее 20, еще более предпочтительно DI менее 15.
39. Композиция катализатора по п.31, в которой катализатор крекинга, обычно компонент FCC катализатора крекинга, включает цеолит Y-типа.
40. Композиция катализатора по п.32, в которой количество композиции катализатор/добавка в катализаторе является достаточным для обеспечения соотношения между количеством цеолитного компонента, восстанавливающего NOx, и количеством цеолита Y во всем катализаторе, меньше 2, предпочтительно меньше 1.
41. Способ уменьшения выбросов NOx из зоны регенерации в ходе жидкофазного каталитического крекинга углеводородного сырья в компоненты меньшей молекулярной массы, включающий контактирование углеводородного сырья с катализатором крекинга при повышенной температуре, в ходе которого образуются низкомолекулярные углеводороды, причем катализатор крекинга содержит композицию по п.31.
42. Способ по п.41, в котором катализатор крекинга, обычно компонент FCC катализатора крекинга, включает цеолит Y-типа.
43. Способ по п.41, дополнительно включающий извлечение катализатора крекинга обычно со стадии контактирования и обработку использованного катализатора в зоне регенерации с целью его восстановления.
44. Способ по п.41, в котором катализатор крекинга и частицы композиции катализатор/добавка псевдоожижают в ходе контактирования с углеводородным сырьем.
RU2006140261/04A 2004-04-15 2005-04-15 Композиции и способы, предназначенные для уменьшения выбросов nox в ходе каталитического крекинга с псевдоожиженным катализатором RU2408655C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/824,913 US7304011B2 (en) 2004-04-15 2004-04-15 Compositions and processes for reducing NOx emissions during fluid catalytic cracking
US10/824,913 2004-04-15
US10/909,709 US20050232839A1 (en) 2004-04-15 2004-08-02 Compositions and processes for reducing NOx emissions during fluid catalytic cracking
US10/909,709 2004-08-02

Publications (2)

Publication Number Publication Date
RU2006140261A RU2006140261A (ru) 2008-05-27
RU2408655C2 true RU2408655C2 (ru) 2011-01-10

Family

ID=34967218

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006140261/04A RU2408655C2 (ru) 2004-04-15 2005-04-15 Композиции и способы, предназначенные для уменьшения выбросов nox в ходе каталитического крекинга с псевдоожиженным катализатором

Country Status (14)

Country Link
US (2) US20050232839A1 (ru)
EP (1) EP1747062A1 (ru)
JP (1) JP4974883B2 (ru)
KR (1) KR101180175B1 (ru)
AR (1) AR050581A1 (ru)
AU (1) AU2005233199B2 (ru)
BR (1) BRPI0509938B1 (ru)
CA (1) CA2563499C (ru)
IL (1) IL178309A (ru)
MX (1) MXPA06011795A (ru)
NO (1) NO20065266L (ru)
RU (1) RU2408655C2 (ru)
SG (1) SG152232A1 (ru)
WO (1) WO2005099898A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2648072C2 (ru) * 2013-02-05 2018-03-22 Родиа Операсьон Осажденная прокаленная композиция на основе оксида циркония и оксида церия
RU2788751C1 (ru) * 2019-10-04 2023-01-24 Релианс Индастрис Лимитид Каталитическая композиция fcc и способ ее получения

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752875B2 (ja) * 2005-03-24 2015-07-22 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット FCCUにおけるNOx排気を制御する方法
SG169976A1 (en) * 2005-04-27 2011-04-29 Grace W R & Co Compositions and processes for reducing nox emissions during fluid catalytic cracking
WO2006118700A1 (en) 2005-04-29 2006-11-09 W.R. Grace & Co.-Conn. Nox reduction compositions for use in partial burn fcc processes
US7678735B2 (en) * 2005-11-28 2010-03-16 Engelhard Corporation FCC additive for partial and full burn NOx control
JP4948863B2 (ja) * 2006-03-22 2012-06-06 一般財団法人石油エネルギー技術センター 接触分解触媒及びその製造方法並びに炭化水素油の接触分解方法
GB0609783D0 (en) * 2006-05-17 2006-06-28 Magnesium Elektron Ltd Improved oxygen storage component
US20070286782A1 (en) * 2006-06-08 2007-12-13 Chevron U.S.A. Inc. Reduction of oxides of nitrogen in a gas stream using molecular sieve ssz-75
US7381676B1 (en) * 2007-01-16 2008-06-03 Exxonmobil Chemical Patents Inc. Catalyst composition and its use thereof in aromatics alkylation
DE102008028760B9 (de) * 2008-06-17 2010-09-30 Zylum Beteiligungsgesellschaft Mbh & Co. Patente Ii Kg Verfahren zur Abtrennung von NOx aus einem epoxidhaltigen Gasstrom
US20110230333A1 (en) * 2010-03-16 2011-09-22 Uop Llc Olefin Cracking Catalyst and Manufacturing Process
WO2011115746A1 (en) 2010-03-18 2011-09-22 W. R. Grace & Co.-Conn. Process for making improved catalysts from clay-derived zeolites
BR112012023536B1 (pt) 2010-03-18 2018-06-12 W.R. Grace & Co. -Conn. Composição catalisadora para craqueamento catalítico de hidrocarbonetos para maximizar a produção de olefinas leves e processo de craqueamento catalítico de hidrocarbonetos
WO2011115745A1 (en) * 2010-03-18 2011-09-22 W. R. Grace & Co.-Conn. Process for making improved zeolite catalysts from peptized aluminas
CN102631933B (zh) * 2011-02-14 2014-02-26 中国石油化工股份有限公司 一种脱除烟气中no的催化剂及其制备方法
US20130034482A1 (en) * 2011-08-05 2013-02-07 Chevron U.S.A Inc. Reduction of oxides of nitrogen in a gas stream using molecular sieve ssz-23
SG11201404945XA (en) * 2012-02-23 2014-09-26 Johnson Matthey Process Technologies Inc Process of removing nox from flue gas
US8512674B1 (en) 2012-03-01 2013-08-20 Chevron U.S.A. Inc. Preparation of molecular sieve SSZ-23
CN104549421B (zh) * 2013-10-28 2017-06-23 中国石油化工股份有限公司 一种催化裂化催化剂及其制备方法
EP3474989A1 (en) 2016-06-24 2019-05-01 Albemarle Corporation Mesoporous zsm-22 for increased propylene production
CN106902802A (zh) * 2017-03-31 2017-06-30 中石化炼化工程(集团)股份有限公司 一种添加剂及其制备方法与应用
KR20200026792A (ko) 2017-04-10 2020-03-11 릴라이언스 인더스트리즈 리미티드 Fcc 촉매 첨가제 및 그의 제조 방법
CN107262106A (zh) * 2017-07-03 2017-10-20 中石化炼化工程(集团)股份有限公司 一种催化剂及其制备方法和应用
JP7114688B2 (ja) 2017-07-05 2022-08-08 中国石油化工股▲ふん▼有限公司 COおよびNOxの排出を低減可能な組成物、その製造方法および使用、並びに流動接触分解法
US10760005B2 (en) 2017-07-19 2020-09-01 Korea Advanced Institute Of Science And Technology Particle including atomic-scale channel, method of preparing the same, and catalyst including the same
CN109382146B (zh) * 2017-08-11 2021-08-03 中国石油天然气股份有限公司 一种fcc平衡剂复活改性方法
CN111099624B (zh) * 2018-10-25 2021-11-30 中国石油化工股份有限公司 硅锗stf沸石分子筛的制备方法
US11332678B2 (en) 2020-07-23 2022-05-17 Saudi Arabian Oil Company Processing of paraffinic naphtha with modified USY zeolite dehydrogenation catalyst
US11274068B2 (en) 2020-07-23 2022-03-15 Saudi Arabian Oil Company Process for interconversion of olefins with modified beta zeolite
US11420192B2 (en) 2020-07-28 2022-08-23 Saudi Arabian Oil Company Hydrocracking catalysts containing rare earth containing post-modified USY zeolite, method for preparing hydrocracking catalysts, and methods for hydrocracking hydrocarbon oil with hydrocracking catalysts
US11154845B1 (en) 2020-07-28 2021-10-26 Saudi Arabian Oil Company Hydrocracking catalysts containing USY and beta zeolites for hydrocarbon oil and method for hydrocracking hydrocarbon oil with hydrocracking catalysts
US11142703B1 (en) * 2020-08-05 2021-10-12 Saudi Arabian Oil Company Fluid catalytic cracking with catalyst system containing modified beta zeolite additive
US11618858B1 (en) 2021-12-06 2023-04-04 Saudi Arabian Oil Company Hydrodearylation catalysts for aromatic bottoms oil, method for producing hydrodearylation catalysts, and method for hydrodearylating aromatic bottoms oil with hydrodearylation catalysts

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892801A (en) 1955-12-13 1959-06-30 Gen Electric Catalysts
US3036973A (en) 1958-11-21 1962-05-29 Hoffmann La Roche Racemization catalyst and process for the manufacture thereof
US3364136A (en) 1965-12-10 1968-01-16 Mobil Oil Corp Novel cyclic catalytic process for the conversion of hydrocarbons
US3129252A (en) 1960-12-29 1964-04-14 Gen Aniline & Fihn Corp Purification of butynediol
US3184417A (en) 1960-12-29 1965-05-18 Gen Aniline & Film Corp Method of preparing a copper modified nickel catalyst composition
SE331321B (ru) * 1968-09-20 1970-12-21 Asea Ab
US3617488A (en) 1969-12-19 1971-11-02 Sigmund M Csicsery Hydrotreating catalyst comprising clay-type aluminosilicate component and a crystalline zeolitic molecular sieve component, and process using said catalyst
US3894940A (en) * 1973-11-15 1975-07-15 Grace W R & Co Hydrocarbon cracking catalysts with promoter mixtures
US4199435A (en) * 1978-12-04 1980-04-22 Chevron Research Company NOx Control in cracking catalyst regeneration
US4290878A (en) 1978-12-08 1981-09-22 Chevron Research Company NOx control in platinum-promoted complete combustion cracking catalyst regeneration
US4521298A (en) * 1980-07-18 1985-06-04 Mobil Oil Corporation Promotion of cracking catalyst octane yield performance
JPS5761085A (en) 1980-07-29 1982-04-13 Atlantic Richfield Co Conversion of hydrocarbon
US4642178A (en) * 1980-07-29 1987-02-10 Katalistiks, Inc. Process for conversion of hydrocarbons
US4495305A (en) * 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
US4758418A (en) * 1980-07-29 1988-07-19 Union Carbide Corporation Process for combusting solid sulfur-containing material
US4957892A (en) 1980-07-29 1990-09-18 Uop Process for combusting solid sulfur containing material
US4472267A (en) 1980-07-29 1984-09-18 Atlantic Richfield Company Catalyst and process for conversion of hydrocarbons
US4495304A (en) * 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
US4434147A (en) * 1981-10-05 1984-02-28 Chevron Research Company Simultaneous sulfur oxide and nitrogen oxide control in FCC units using cracking catalyst fines with ammonia injection
US4513091A (en) * 1983-02-14 1985-04-23 Mobil Oil Corporation Hydrothermal zeolite activation
US4472532A (en) 1982-11-29 1984-09-18 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4522937A (en) * 1982-11-29 1985-06-11 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4476245A (en) 1982-11-29 1984-10-09 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4471070A (en) 1982-11-29 1984-09-11 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4428827A (en) * 1983-01-24 1984-01-31 Uop Inc. FCC Sulfur oxide acceptor
US4818509A (en) * 1984-03-23 1989-04-04 Mobil Oil Corporation Continuous process for manufacturing crystalline zeolites in continuously stirred backmixed crystallizers
US4582815A (en) * 1984-07-06 1986-04-15 Mobil Oil Corporation Extrusion of silica-rich solids
GB8420205D0 (en) * 1984-08-09 1984-09-12 British Petroleum Co Plc Selective dealumination of zeolites
US5011272A (en) * 1984-12-21 1991-04-30 Canon Kabushiki Kaisha Compact zoom lens
US4735927A (en) * 1985-10-22 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
US4778664A (en) 1986-03-10 1988-10-18 The Dow Chemical Company Process for the removal of NO from fluid streams using a water soluble polymeric chelate of a polyvalent metal
US5102530A (en) * 1986-03-21 1992-04-07 W. R. Grace & Co.-Conn. Cracking catalysts with octane enhancement
US4898846A (en) * 1986-03-21 1990-02-06 W. R. Grace & Co.-Conn. Cracking catalysts with octane enhancement
US4708786A (en) 1986-03-26 1987-11-24 Union Oil Company Of California Process for the catalytic cracking of nitrogen-containing feedstocks
US4747935A (en) * 1986-03-26 1988-05-31 Union Oil Company Of California Process for the catalytic cracking of feedstocks containing nitrogen
US4728635A (en) * 1986-04-07 1988-03-01 Katalistiks International Inc. Alkaline earth metal spinels and processes for making
US4790982A (en) 1986-04-07 1988-12-13 Katalistiks International, Inc. Metal-containing spinel composition and process of using same
US4798813A (en) * 1986-07-04 1989-01-17 Babcock-Hitachi Kabushiki Kaisha Catalyst for removing nitrogen oxide and process for producing the catalyst
CA1295598C (en) * 1986-07-29 1992-02-11 Makoto Imanari Process for removing nitrogen oxides from exhaust gases
US4797266A (en) * 1986-08-07 1989-01-10 Shell Oil Company Method of preparation of a combined ZSM-5-ferrierite aluminosilicate
US4985384A (en) * 1986-08-25 1991-01-15 W. R. Grace & Co-Conn. Cracking catalysts having aromatic selectivity
FR2607128B1 (fr) * 1986-11-21 1989-04-28 Inst Francais Du Petrole Nouvelles ferrierites, leur procede de preparation et leur utilisation
US4866019A (en) * 1987-01-13 1989-09-12 Akzo N.V. Catalyst composition and absorbent which contain an anionic clay
US4904627A (en) * 1987-03-13 1990-02-27 Uop Alkaline earth metal spinel/kaolin clays and processes for making
US4830840A (en) * 1987-03-13 1989-05-16 Uop Process for removing sulfur oxide and nitrogen oxide
US4810369A (en) * 1987-05-07 1989-03-07 Union Oil Company Of California Process for the catalytic cracking of feedstocks containing high levels of nitrogen
US4880521A (en) * 1987-05-07 1989-11-14 Union Oil Company Of California Process for the cracking of feedstocks containing high levels of nitrogen
US4812430A (en) * 1987-08-12 1989-03-14 Mobil Oil Corporation NOx control during multistage combustion
US4812431A (en) * 1987-08-12 1989-03-14 Mobil Oil Corporation NOx control in fluidized bed combustion
US4957718A (en) 1987-11-24 1990-09-18 Uop Process for reducing emissions of sulfur oxides and composition useful in same
US4898662A (en) * 1987-12-09 1990-02-06 Mobil Oil Corp. Catalytic cracking process using high equilibrium activity additive catalyst
US4826799A (en) * 1988-04-14 1989-05-02 W. R. Grace & Co.-Conn. Shaped catalyst and process for making it
US4895994A (en) * 1988-04-14 1990-01-23 W. R. Grace & Co.-Conn. Shaped catalysts and processes
JPH0763631B2 (ja) * 1988-04-18 1995-07-12 トヨタ自動車株式会社 排気ガス浄化用触媒の製造方法
GB8904409D0 (en) 1989-02-27 1989-04-12 Shell Int Research Process for the conversion of a hydrocarbonaceous feedstock
US5371055A (en) 1988-07-07 1994-12-06 W. R. Grace & Co.-Conn. Increasing metal-tolerance of FCC catalyst by sulfur oxide removal
GB8820358D0 (en) 1988-08-26 1988-09-28 Shell Int Research Process for catalytic cracking of hydrocarbon feedstock
US4980052A (en) 1988-12-05 1990-12-25 Mobil Oil Corporation Catalytic cracking of hydrocarbons
US4889615A (en) 1988-12-06 1989-12-26 Mobil Oil Corporation Additive for vanadium capture in catalytic cracking
US5145815A (en) 1989-08-10 1992-09-08 Uop Regeneration of zeolitic molecular sieves with sulfur oxide absorption on soda-lime bed
CA2024154C (en) 1989-08-31 1995-02-14 Senshi Kasahara Catalyst for reducing nitrogen oxides from exhaust gas
US4973399A (en) * 1989-11-03 1990-11-27 Mobil Oil Corporation Catalytic cracking of hydrocarbons
JPH07106300B2 (ja) 1989-12-08 1995-11-15 財団法人産業創造研究所 燃焼排ガス中の窒素酸化物除去法
AU634005B2 (en) * 1989-12-21 1993-02-11 Tosoh Corporation Catalyst for and method of purifying oxygen-excess exhaust gas
US4988432A (en) * 1989-12-28 1991-01-29 Mobil Oil Corporation Reducing NOx emissions with antimony additive
US5002654A (en) * 1989-12-28 1991-03-26 Mobil Oil Corporation Reducing NOx emissions with zinc catalyst
US4988654A (en) * 1989-12-29 1991-01-29 Chevron Research Company Dual component cracking catalyst with vanadium passivation and improved sulfur tolerance
US5002653A (en) * 1989-12-29 1991-03-26 Chevron Research Company Catalytic cracking process with vanadium passivation and improved
US5260240A (en) 1989-12-29 1993-11-09 Chevron Research And Technology Company Process for the demetallization of FCC catalyst
US5114898A (en) * 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Layered double hydroxide sorbents for the removal of SOx from flue gas and other gas streams
US5114691A (en) * 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Process using sorbents for the removal of SOx from flue gas
US5037538A (en) * 1990-02-26 1991-08-06 Mobil Oil Corporation Catalytic cracking process with isolated catalyst for conversion of NO.sub.x
US5350501A (en) * 1990-05-22 1994-09-27 Union Oil Company Of California Hydrocracking catalyst and process
CA2044893C (en) 1990-06-20 1998-11-03 Senshi Kasahara Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
US5236877A (en) * 1990-12-04 1993-08-17 W. R. Grace & Co.-Conn. Dual zeolite fluid cracking catalyst composition for improved gasoline octane
US5206196A (en) * 1990-12-18 1993-04-27 Tosoh Corporation Catalyst for purifying exhaust gas
US5208198A (en) * 1990-12-18 1993-05-04 Tosoh Corporation Catalyst for purifying exhaust gas
US5130012A (en) * 1991-01-24 1992-07-14 Mobil Oil Corporation Process and apparatus for reducing NOx emissions from high-efficiency FFC regenerators
US5173278A (en) 1991-03-15 1992-12-22 Mobil Oil Corporation Denitrification of flue gas from catalytic cracking
US5260043A (en) 1991-08-01 1993-11-09 Air Products And Chemicals, Inc. Catalytic reduction of NOx and carbon monoxide using methane in the presence of oxygen
JP3086015B2 (ja) 1991-08-07 2000-09-11 トヨタ自動車株式会社 排気ガス浄化用触媒
US5374349A (en) * 1991-09-11 1994-12-20 Union Oil Company Of California Hydrocracking process employing catalyst containing zeolite beta and a pillared clay
US5174980A (en) 1991-10-04 1992-12-29 Mobil Oil Corp. Synthesis of crystalline ZSM-35
US5190736A (en) * 1991-10-18 1993-03-02 Mobil Oil Corporation Synthesis of crystalline ZSM-35
JPH05123578A (ja) * 1991-11-06 1993-05-21 Nippon Oil Co Ltd 炭化水素転化触媒の製造方法
US5171553A (en) 1991-11-08 1992-12-15 Air Products And Chemicals, Inc. Catalytic decomposition of N2 O
WO1993010044A1 (en) * 1991-11-20 1993-05-27 The Dow Chemical Company Process of growing crystalline microporous solids in a fluoride-containing, substantially non-aqueous growth medium
US5785947A (en) * 1991-12-18 1998-07-28 Chevron U.S.A. Inc. Preparation of zeolites using organic template and amine
US5328590A (en) * 1992-02-27 1994-07-12 Union Oil Company Of California Hydrocracking process using a catalyst containing zeolite beta and a layered magnesium silicate
US5547648A (en) 1992-04-15 1996-08-20 Mobil Oil Corporation Removing SOx, NOX and CO from flue gases
US5240690A (en) * 1992-04-24 1993-08-31 Shell Oil Company Method of removing NH3 and HCN from and FCC regenerator off gas
US5268089A (en) 1992-06-24 1993-12-07 Mobil Oil Corporation FCC of nitrogen containing hydrocarbons and catalyst regeneration
US5316661A (en) 1992-07-08 1994-05-31 Mobil Oil Corporation Processes for converting feedstock organic compounds
DE69316287T2 (de) * 1992-08-25 1998-07-23 Idemitsu Kosan Co Katalysator zur Reinigung von Abgasen
US5382352A (en) * 1992-10-20 1995-01-17 Mobil Oil Corporation Conversion of NOx in FCC bubbling bed regenerator
US5294332A (en) * 1992-11-23 1994-03-15 Amoco Corporation FCC catalyst and process
US5364517A (en) 1993-02-19 1994-11-15 Chevron Research And Technology Company Perovskite-spinel FCC NOx reduction additive
US5372706A (en) 1993-03-01 1994-12-13 Mobil Oil Corporation FCC regeneration process with low NOx CO boiler
JP3185448B2 (ja) * 1993-03-11 2001-07-09 日産自動車株式会社 排気ガス浄化用触媒
US5407652A (en) 1993-08-27 1995-04-18 Engelhard Corporation Method for decomposing N20 utilizing catalysts comprising calcined anionic clay minerals
US5413699A (en) * 1993-10-14 1995-05-09 Mobil Oil Corporation FCC process with fines tolerant SCR reactor
EP0655277A1 (en) * 1993-11-01 1995-05-31 Csir Amorphous aluminosilicate catalyst
US5510306A (en) * 1993-12-29 1996-04-23 Shell Oil Company Process for isomerizing linear olefins to isoolefins
DE69519243T2 (de) 1994-02-15 2001-03-08 Tokyo Gas Co Ltd Verfahren und Katalysator zur Reinigung von NOx-enthaltenden Abgasen
US5689000A (en) * 1994-07-01 1997-11-18 Monsanto Company Process for preparing carboxylic acid salts and catalysts useful in such process
CA2156464C (en) * 1994-09-30 1999-07-20 Raghu K. Menon Reduction of emissions from fcc regenerators
US5599520A (en) * 1994-11-03 1997-02-04 Garces; Juan M. Synthesis of crystalline porous solids in ammonia
KR0136893B1 (ko) * 1994-11-03 1998-04-25 강박광 선택적 촉매환원에 의한 배기가스중의 질소산화물의 제거방법
RU2177468C2 (ru) * 1994-11-23 2001-12-27 Эксон Кемикэл Пейтентс Инк. Способ конверсии углеводородов с использованием связанного цеолитом цеолитного катализатора
US5741468A (en) * 1994-12-28 1998-04-21 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
US6165933A (en) * 1995-05-05 2000-12-26 W. R. Grace & Co.-Conn. Reduced NOx combustion promoter for use in FCC processes
US6129834A (en) * 1995-05-05 2000-10-10 W. R. Grace & Co. -Conn. NOx reduction compositions for use in FCC processes
US5968466A (en) * 1995-06-07 1999-10-19 Asec Manufacturing Copper-silver zeolite catalysts in exhaust gas treatment
US5716514A (en) * 1995-08-30 1998-02-10 Mobil Oil Corporation FCC NOx reduction by turbulent/laminar thermal conversion
US5705053A (en) * 1995-08-30 1998-01-06 Mobil Oil Corporation FCC regenerator NOx reduction by homogeneous and catalytic conversion
US5744686A (en) * 1995-09-20 1998-04-28 Uop Process for the removal of nitrogen compounds from an aromatic hydrocarbon stream
WO1997015528A1 (en) * 1995-10-24 1997-05-01 The Dow Chemical Company Process of modifying the porosity of aluminosilicates and silicas, and mesoporous compositions derived therefrom
US6033641A (en) * 1996-04-18 2000-03-07 University Of Pittsburgh Of The Comonwealth System Of Higher Education Catalyst for purifying the exhaust gas from the combustion in an engine or gas turbines and method of making and using the same
EP0958050A1 (en) * 1996-05-29 1999-11-24 Exxon Chemical Patents Inc. Metal-containing zeolite catalyst, preparation thereof and use for hydrocarbon conversion
DE19723949A1 (de) * 1997-06-06 1998-12-10 Basf Ag Verfahren zur Regenerierung eines Zeolith-Katalysators
US6090271A (en) * 1997-06-10 2000-07-18 Exxon Chemical Patents Inc. Enhanced olefin yields in a catalytic process with diolefins
AU1620299A (en) * 1997-12-03 1999-06-16 Exxon Chemical Patents Inc. Catalyst comprising a zeolite partially coated with a second zeolite, its use for hydrocarbon conversion
JPH11300208A (ja) * 1998-04-21 1999-11-02 Idemitsu Kosan Co Ltd 接触分解触媒
HUP0103359A3 (en) * 1998-08-03 2003-01-28 Shell Int Research Process for the preparation of a catalyst composition and combined catalyst compositions and using them and process for converting the raw materials of hydrocarbon
US6177381B1 (en) * 1998-11-03 2001-01-23 Uop Llc Layered catalyst composition and processes for preparing and using the composition
KR100284936B1 (ko) * 1998-12-31 2001-04-02 김충섭 촉매 활성 귀금속 담지 제올라이트계 탈질 촉매의 제조 방법
US6309758B1 (en) * 1999-05-06 2001-10-30 W. R. Grace & Co.-Conn. Promoted porous catalyst
TW553772B (en) * 1999-07-31 2003-09-21 Degussa Fixed bed catalysts
JP2003518434A (ja) * 1999-12-28 2003-06-10 コーニング インコーポレイテッド ゼオライト/アルミナ触媒支持体組成物およびその製造方法
US6555492B2 (en) * 1999-12-29 2003-04-29 Corning Incorporated Zeolite/alumina catalyst support compositions and method of making the same
US20020038051A1 (en) * 2000-02-18 2002-03-28 Degussa-Huls Ag Raney copper
US6376708B1 (en) * 2000-04-11 2002-04-23 Monsanto Technology Llc Process and catalyst for dehydrogenating primary alcohols to make carboxylic acid salts
JP4703818B2 (ja) * 2000-06-20 2011-06-15 株式会社アイシーティー 排気ガス浄化用触媒および排気ガス浄化方法
EP1166853A1 (en) * 2000-06-22 2002-01-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying catalyst
US6770251B2 (en) * 2000-06-28 2004-08-03 Ict. Co., Ltd. Exhaust gas purifying catalyst
EP1174173B1 (en) * 2000-07-17 2013-03-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying catalyst
US6538169B1 (en) * 2000-11-13 2003-03-25 Uop Llc FCC process with improved yield of light olefins
US20020094314A1 (en) * 2000-11-27 2002-07-18 National Institute Of Advanced Industrial Science And Technology Method for the reduction and removal of nitrogen oxides
US6558533B2 (en) * 2001-04-13 2003-05-06 W.R. Grace & Co.-Conn Process for sulfur removal from hydrocarbon liquids
US6759358B2 (en) * 2001-08-21 2004-07-06 Sud-Chemie Inc. Method for washcoating a catalytic material onto a monolithic structure
US20030073566A1 (en) * 2001-10-11 2003-04-17 Marshall Christopher L. Novel catalyst for selective NOx reduction using hydrocarbons
US6858556B2 (en) * 2002-02-25 2005-02-22 Indian Oil Corporation Limited Stabilized dual zeolite single particle catalyst composition and a process thereof
US6660683B1 (en) * 2002-10-21 2003-12-09 W.R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes
US20050100494A1 (en) * 2003-11-06 2005-05-12 George Yaluris Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
US7304011B2 (en) * 2004-04-15 2007-12-04 W.R. Grace & Co. -Conn. Compositions and processes for reducing NOx emissions during fluid catalytic cracking

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2648072C2 (ru) * 2013-02-05 2018-03-22 Родиа Операсьон Осажденная прокаленная композиция на основе оксида циркония и оксида церия
RU2788751C1 (ru) * 2019-10-04 2023-01-24 Релианс Индастрис Лимитид Каталитическая композиция fcc и способ ее получения

Also Published As

Publication number Publication date
RU2006140261A (ru) 2008-05-27
US20090068079A1 (en) 2009-03-12
US20050232839A1 (en) 2005-10-20
CA2563499A1 (en) 2005-10-27
CA2563499C (en) 2014-05-27
NO20065266L (no) 2007-01-15
AU2005233199A1 (en) 2005-10-27
EP1747062A1 (en) 2007-01-31
KR20070004842A (ko) 2007-01-09
JP2007532764A (ja) 2007-11-15
KR101180175B1 (ko) 2012-09-05
US7641787B2 (en) 2010-01-05
IL178309A0 (en) 2007-02-11
JP4974883B2 (ja) 2012-07-11
BRPI0509938B1 (pt) 2016-03-08
AR050581A1 (es) 2006-11-08
AU2005233199B2 (en) 2011-06-09
MXPA06011795A (es) 2007-01-16
IL178309A (en) 2011-07-31
WO2005099898A1 (en) 2005-10-27
BRPI0509938A (pt) 2007-09-25
SG152232A1 (en) 2009-05-29

Similar Documents

Publication Publication Date Title
RU2408655C2 (ru) Композиции и способы, предназначенные для уменьшения выбросов nox в ходе каталитического крекинга с псевдоожиженным катализатором
US9931595B2 (en) Ferrierite composition for reducing NOx emissions during fluid catalytic cracking
EP1446462B1 (en) Nox reduction composition for use in fcc process
TWI382875B (zh) 減低流體觸媒裂解期間NOx排放之組成物及方法
US7902106B2 (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process
JP5383184B2 (ja) 流動接触分解時にNOx排出物を低減する組成物および方法
US20050163691A1 (en) NOx reduction composition for use in FCC processes
US20050100493A1 (en) Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
TWI396589B (zh) 用於減低流體觸媒裂解期間之NOx排放之組成物及方法
TWI395614B (zh) 用於減低流體觸媒裂解期間之NOx排放之鎂鹼沸石

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170416