RU2388777C2 - Применение полисилазанов для покрытия металлических полос - Google Patents
Применение полисилазанов для покрытия металлических полос Download PDFInfo
- Publication number
- RU2388777C2 RU2388777C2 RU2007121680/04A RU2007121680A RU2388777C2 RU 2388777 C2 RU2388777 C2 RU 2388777C2 RU 2007121680/04 A RU2007121680/04 A RU 2007121680/04A RU 2007121680 A RU2007121680 A RU 2007121680A RU 2388777 C2 RU2388777 C2 RU 2388777C2
- Authority
- RU
- Russia
- Prior art keywords
- coating
- polysilazane
- metal
- coating material
- hydrogen
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1241—Metallic substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/60—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
- C08G77/62—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/16—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/122—Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/14—Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
- C23C18/143—Radiation by light, e.g. photolysis or pyrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12556—Organic component
- Y10T428/12569—Synthetic resin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12681—Ga-, In-, Tl- or Group VA metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Изобретение относится к применению полисилазанов для получения рулонного покрытия металлических полос. Техническая задача - разработка материала, применимого для осуществления способа рулонного покрытия, свето- и атмосферостойкого, предотвращающего коррозию и царапание металла. Предложен материал покрытия для металлов, содержащий раствор или смесь полисилазанов общей формулы ! - -(SiR'R''-NR''')n-, в которой R', R'' и R''' означают одинаковые или различные радикалы, которые независимо друг от друга представляют собой водород или незамещенный, или замещенный алкил-, арил-, винил- или (триалкоксисилил)алкильный радикал, причем n является целым числом и таким, при котором полисилазан имеет величину среднечисленной молекулярной массы в диапазоне от 150 до 150000 г/моль, в растворителе, и, по меньшей мере, один катализатор. Указанный раствор содержит от 1 до 50 мас.% полисилазана. Предложен также способ непрерывного нанесения указанного покрытия на металлические полосы и металл или металлическая полоса с нанесенным покрытием. 3 н. и 11 з.п. ф-лы.
Description
Область техники, к которой относится изобретение
Настоящее изобретение относится к применению полисилазанов для покрытия металлических полос способом рулонного покрытия.
Уровень техники
Тонкие металлические полосы, выполненные, например, из алюминия, стали или цинка, обычно покрывают способом рулонного покрытия. В этом технологическом процессе материал покрытия наносят при помощи вальцов, либо путем напыления его на металлическую полосу (''рулон''), затем материал покрытия отверждают посредством нагревания в сушильной секции, после чего металлические полосы с нанесенным покрытием сматывают в рулоны. Требования, предъявляемые к таким материалам покрытия, заключаются, главным образом, в высокой механической деформируемости, так как металлические полосы подвергают обработке на станке, приводя их в последующую форму только после покрытия, а также в быстром отверждении материала покрытия при высоких температурах, поскольку эти полосы пропускают с высокой скоростью через установки для рулонного покрытия. В типичном случае процесс отверждения происходит при значениях температуры печи 200-350°С, при этом достигаемая пиковая температура металла (ПТМ) имеет значения примерно 160-260°С (Rompp Lexikon Lacke и Druckfarben, Georg Thieme Verlag, Stuttgart, 1998).
Материалы покрытия, которые обычно используют в рулонном покрытии, состоят из систем органических связующих материалов, например, таких, как полиэфирные смолы, эпоксидные смолы, акриловые смолы, полиуретановые смолы или фторполимеры; в некоторых случаях необходимо использовать два различных материала покрытия: один в качестве грунтовки, а другой в качестве наружного слоя, с тем, чтобы соответствовать определенным требованиям (особенно, в отношении коррозионной стойкости покрытия).
Одним недостатком известных материалов для покрытия является их низкая устойчивость к разрушению под влиянием атмосферных воздействий ввиду их органической природы, в результате связующая матрица со временем разрушается, особенно в случае применения на открытом воздухе.
Еще одним недостатком известных систем покрытия является низкое сопротивление царапанию, поскольку эти покрытия должны обладать по возможности большей эластичностью, чтобы обеспечивать механическую обработку металлической полосы.
Химическая стойкость традиционных систем связующих материалов также оставляет желать лучшего, когда они подвергаются воздействию растворителей, либо кислотных или щелочных веществ, таких, которые встречаются в случае применения на открытом воздухе в результате, например, выпадения кислотного дождя или загрязнения фекалиями птиц.
Из литературы известно, что полисилазановые покрытия способны защищать металлы от коррозии; однако к настоящему моменту раскрыты лишь такие способы покрытия, в которых процесс отверждения необходимо выполнять в течение относительно длительного периода времени и которые, следовательно, оказываются непригодными для реализации способа рулонного покрытия.
В документе JP 2001172795 содержится описание поверхностной герметизации анодированного алюминия полисилазаном, который за счет обработки при высокой температуре превращается в пленку диоксида кремния. В Примере 1 на алюминий напыляют покрытие полисилазаном, состав которого не уточнен, затем подвергают сушке при температуре 80°С в течение 30 минут, с последующим прокаливанием при температуре 400°С в течение двух часов. Такая трудоемкая процедура отверждения при высокой температуре делает данный способ непригодными для нанесения рулонного покрытия.
В документе US 6627559 предложено использовать систему покрытия, содержащую полисилазаны, которая обеспечивает антикоррозионную защиту. Данная система имеет, по меньшей мере, два слоя, которые включают в себя различные смеси полисилазанов. Здесь важно изготовить такой состав смеси полисилазанов по отношению к структуре слоя, который позволяет получать покрытия без трещин. В приведенных примерах эти слои наносят на стальные диски методом центрифугирования и, после того, как нанесен один слой, систему подвергают отверждению при температуре 300°С в течение одного часа. Процесс такого рода непригоден для выполнения быстрого покрытия металлов способом рулонного покрытия, из-за того, что, с одной стороны, время отверждения оказывается слишком большим, а с другой стороны, потребуется многократный проход через установку для нанесения покрытий.
В документе WO 2004/039 904 описано применение полисилазанового раствора для покрытия разнообразных подложек. В примерах 7-13 этого документа показано получение антикоррозионного слоя на алюминии. Указанный полисилазановый раствор наносят заливкой, и полученное покрытие подвергают отверждению путем нагревания при температуре 120°С в течение одного часа. Следовательно, этот процесс непригоден для выполнения рулонного покрытия металлических полос.
Цель настоящего изобретения заключается в разработке такого покрытия, применимого для осуществления способа рулонного покрытия, которое позволяет получать очень надежную защиту от коррозии, является исключительно светостойким, не разрушается под влиянием атмосферных воздействий, и, кроме того, предотвращает царапание металла.
Неожиданно было обнаружено, что высококачественные рулонные покрытия можно производить с использованием полисилазанов посредством кратковременного отверждения при высоких температурах, причем эти покрытия получаются очень прочными и в то же время достаточно гибкими, обладающими (даже при механическом напряжении) очень хорошим сцеплением с металлической полосой, и, таким образом, удовлетворяют предъявляемые к ним требования.
Соответственно настоящее изобретение обеспечивает материал покрытия, пригодный для покрытия металлов, содержащий раствор полисилазана или смеси полисилазанов формулы 1:
где R', R'' и R''' означают одинаковые или разные радикалы, и независимо друг от друга представляют собой водород или незамещенный, или замещенный алкил-, арил-, винил- или (триалкоксисилил)алкильный радикал, причем n является целым числом и таким, при котором полисилазан имеет величину среднечисленной молекулярной массы в диапазоне от 150 до 150000 г/моль, в растворителе, и, по меньшей мере, один катализатор.
Особенно подходящими являются полисилазаны, в которых R', R'' и R''' независимо друг от друга представляют собой радикал из группы, состоящей из водорода, метила, этила, пропила, изопропила, бутила, изобутила, третичного бутила, фенила, винила, 3-(триэтоксисилил)пропила и 3-(триметоксисилил)пропила.
В одном предпочтительном варианте для покрытия согласно изобретению используются пергидрополисилазаны формулы 2:
где n является целым числом, причем таким, при котором полисилазан имеет величину среднечисленной молекулярной массы в диапазоне от 150 до 150000 г/моль, и содержит растворитель и катализатор.
Еще в одном предпочтительном варианте покрытие согласно изобретению содержит полисилазаны формулы 3:
где R', R'', R''', R*, R** и R*** независимо друг от друга означают водород или незамещенный, или замещенный алкил-, арил-, винил- или (триалкоксисилил)алкильный радикал; n и p являются целыми числами, причем n имеет такое значение, при котором величина среднечисленной молекулярной массы полисилазана находится в диапазоне от 150 до 150000 г/моль.
Особое предпочтение отдается соединениям, в которых:
- R', R''' и R*** представляют собой водород, a R'', R* и R** означают метил;
- R', R''' и R*** означают водород, R'' и R* являются метилом, а R** представляет собой винил;
- R', R''', R* и R*** означают водород, а R'' и R** представляют собой метил. Подобным образом предпочтение отдается использованию полисилазанов формулы (4)
где R', R'', R''', R*, R**, R***, R1, R2 и R3 независимо друг от друга представляют собой водород или незамещенный, или замещенный алкил-, арил-, винил- или (триалкоксисилил)алкильный радикал; n, р и q являются целыми числами, причем n имеет такое значение, при котором величина среднечисленной молекулярной массы полисилазана находится в диапазоне от 150 до 150000 г/моль.
Особое предпочтение отдается соединениям, в которых R', R''' и R*** представляют собой водород, R'', R*, R** и R2 означают метил, R3 является (триэтоксисилил)пропилом, а R1 является алкилом или водородом.
Обычно доля полисилазана в растворе составляет от 1 до 50 мас.% полисилазана, предпочтительно эта доля составляет от 3 до 30 мас.% и еще более предпочтительно - от 5 до 20 мас.%.
Подходящие растворители для полисилазанового состава включают в себя, в частности, органические растворители, которые не содержат воды и реакционноспособных групп (таких как гидроксильные или аминогруппы). К таковым относятся, например, алифатические или ароматические углеводороды, галоидированные углеводороды, сложные эфиры, такие как этилацетат или бутилацетат, кетоны, такие как ацетон или метилэтилкетон, простые эфиры, такие как тетрагидрофуран или дибутиловый эфир, а также моно- и простые полиалкиленгликоль-диалкиловые эфиры (глимы), либо смеси этих растворителей.
Дополнительными компонентами полисилазанового состава могут быть добавки, которые, например, оказывают влияние на вязкость состава, смачивание подложки, образование пленки, или испарительную характеристику, либо регулируют содержание неорганических наночастиц, например, таких как SiO2, TiO2, ZnO, ZrO2 или Al2O3.
В качестве катализаторов могут быть использованы, например, органические амины, кислоты или металлы или соли металлов, либо смеси этих соединений.
Катализатор целесообразно использовать в количестве от 0,001% до 10%, в частности от 0,01% до 6%, но наиболее целесообразно от 0,1% до 3% относительно массы полисилазана.
Примерами аминных катализаторов являются: аммиак, метиламин, диметиламин, триметиламин, этиламин, диэтиламин, триэтиламин, н-пропиламин, изопропиламин, ди-н-пропиламин, диизопропиламин, три-н-пропиламин, н-бутиламин, изобутиламин, ди-н-бутиламин, диизобутиламин, три-н-бутиламин, н-пентиламин, ди-н-пентиламин, три-н-пентиламин, дициклогексиламин, анилин, 2,4-диметилпиридин, 4,4-триметиленбис(1-метилпиперидин), 1,4-диазабицикло[2.2.2]октан, N,N-диметилпиперазин, цис-2,6-диметилпиперазин, транс-2,5-диметилпиперазин, 4,4-метиленбис(циклогексиламин), стеариламин, 1,3-ди(4-пиперидил)пропан, N,N-диметилпропаноламин, N,N-диметилгексаноламин, N,N-диметилоктаноламин, N,N-диэтилэтаноламин, 1-пиперидинэтанол и 4-пиперидинол.
Примерами органических кислот являются уксусная кислота, пропионовая кислота, масляная кислота, валериановая кислота и капроновая кислота.
Примерами металлов и соединений металлов, используемых в качестве катализаторов, являются: палладий, ацетат палладия, ацетилацетонат палладия, пропионат палладия, никель, ацетилацетонат никеля, порошок серебра, ацетилацетонат серебра, платина, ацетилацетонат платины, рутений, ацетилацетонат рутения, карбонилы рутения, золото, медь, ацетилацетонат меди, ацетилацетонат алюминия и трис(этилацетоацетат) алюминия.
В зависимости от используемой системы катализатора присутствие влаги или кислорода может оказывать определенное влияние на отверждение покрытия. Например, путем выбора соответствующей системы катализатора можно добиться быстрого отверждения при высокой или низкой влажности воздуха, либо при высоком или низком содержании кислорода. Квалифицированному специалисту хорошо известны эти факторы, и, применив надлежащие способы оптимизации процесса, соответственно будут отрегулированы условия окружающей среды.
Далее изобретение предлагает способ покрытия металлических полос раствором полисилазана с использованием процесса рулонного покрытия.
Способ рулонного покрытия подробно изложен в литературе, например, в Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, 1998. Упомянутое издание приведено здесь в качестве подробной ссылки. Специалисту в этой области техники хорошо известно проведение и оптимизация данного процесса. Поэтому здесь не приводится более подробное описание этого способа согласно изобретению.
Наконец, изобретение обеспечивает металлические полосы с покрытием в соответствии с настоящим изобретением.
Основанное на полисилазане покрытие, предлагаемое настоящим изобретением, наносят с использованием обычного процесса рулонного покрытия: иными словами, нанесение на рулон происходит по выбору или посредством валика, или путем напыления, или путем покрытия в погружной ванне. Нанесение может производиться или на одну сторону рулона, или на его лицевую и обратную сторону одновременно. Затем полосы поступают в сушильную секцию.
Перед нанесением основного покрытия можно сначала нанести грунтовочный слой покрытия, который может способствовать улучшению сцепления полисилазановой пленки с металлической полосой. Типичными грунтовочными покрытиями являются те, которые основаны на силанах, например, такие как 3-аминопропилтриэтоксисилан, 3-глицидилоксипропилтриэтоксисиланы, 3-меркаптопропилтриметоксисиланы, винилтриэтоксисиланы, 3-метакрилоилоксипропилтриметоксисиланы, N-(2-аминоэтил)-3-аминопропилтриметоксисиланы, бис(3-триэтоксисилилпропил)амины, N-(н-бутил)-3-аминопропилтриметоксисиланы и N-(2-аминоэтил)-3-аминопропилметилдиметоксисиланы.
Полисилазаны можно отверждать при высокой температуре за очень короткий промежуток времени, что обеспечивает достаточное отверждение в сушильной секции. Поскольку полисилазаны обладают высокой температурной стабильностью, то можно применять более высокие значения температуры отверждения, чем в случае традиционных систем покрытия. Единственными ограничениями этой температуры являются те, которые налагаются свойствами термической деформируемости металлической полосы.
Отверждение полисилазанового покрытия в процессе рулонного покрытия предпочтительно проводят при температуре печи от 150 до 500°С, предпочтительно при температуре от 180 до 350°С, еще более предпочтительно при температуре от 200 до 300°С. Время сушки обычно выбирают в пределах от 10 до 120 секунд в зависимости от толщины пленки. В соответствии с толщиной и свойствами металлической полосы, а также с конструкцией сушильной секции, пиковая температура металла (ПТМ) здесь достигает значения в диапазоне от 100 до 400°С, преимущественно от 150 до 300°С, еще более преимущественно от 200 до 260°С. Помимо отверждения обыкновенной сушкой можно также использовать способ радиационной сушки, основанной на технологии излучения в инфракрасной или в ближней инфракрасной области спектра. В таком случае эти сушилки работают в диапазоне длин волн от 12 до 1,2 микрометра или от 1,2 до 0,8 микрометра соответственно. Типичные значения интенсивности облучения лежат в диапазоне от 5 до 1000 кВт/м2.
После покрытия составом полисилазана может следовать дополнительная обработка с целью уменьшения поверхностной энергии покрытия. С помощью этого средства можно по желанию воссоздавать гидрофильную, гидрофобную или олеофобную поверхности, которые влияют на склонность материала к загрязнению.
Металлами, предпочтительно используемыми для нанесения полисилазановых покрытий, являются, например, следующие: алюминий, сталь, оцинкованная сталь, цинк, магний, титан или сплавы этих металлов. Эти металлы или металлические полосы могут подвергаться предварительной обработке, например, посредством хроматирования, либо без нанесения хроматных покрытий, анодирования или вакуумного напыления металлооксидных пленок.
С полисилазановым покрытием, предлагаемым настоящим изобретением, можно получать очень надежную защиту от коррозии при значительно более тонком слое покрытия, чем в случае применения традиционных материалов для выполнения рулонного покрытия. Отвержденное полисилазановое покрытие обычно имеет толщину слоя величиной от 0,1 до 10 микрометров, преимущественно от 0,5 до 5 микрометров, еще более преимущественно от 1 до 3 микрометров. Пониженный расход материала, достигаемый таким путем, экологически благоприятен, поскольку уменьшается количество используемого растворителя. Более того, отпадает потребность в грунтовочном покрытии, поскольку сам по себе этот тонкий полисилазановый слой покрытия уже обеспечивает достаточно высокий защитный эффект.
В силу органической природы, это покрытие оказывается чрезвычайно устойчивым против разрушения под влиянием атмосферных воздействий и ультрафиолетовых лучей.
Рулоны с покрытием, нанесенным в соответствии с изобретением, можно использовать для очень широкого круга задач, например, в строительном секторе, при конструировании транспортных средств или в производстве бытовых электроприборов. Такие рулоны покрытого материала могут использоваться, например, в качестве элементов для облицовки стен или потолков, оконных профилей, роликовых ставней, рефлекторов, компонентов для конструкций кузовов, либо компонентов бытовых электроприборов.
Примеры
Используемые пергидрополисилазаны являются продукцией фирмы Clariant Japan K.K. Используемый растворитель является ди-н-бутиловым эфиром (с маркировкой NL). В качестве катализатора раствор содержит пропионат палладия, 0,75 мас.% относительно массы пергидрополисилазана.
В приведенных ниже примерах условия отверждения выбраны совместимыми с условиями в установке рулонного покрытия.
В приведенных примерах указанное количественное содержание компонентов выражено в мас.%.
Пример 1 (Нанесение покрытия на алюминиевую панель)
Алюминиевую панель толщиной 0,5 мм опускают в погружной аппарат, заполненный 20%-ным раствором пергидрополисилазана NL120A-20 (фирма Clariant, Япония), и извлекают со скоростью 120 см/мин. Непосредственно после покрытия панель вводят в сушильную печь с активным вентилированием, предварительно нагретую до температуры 250°С, и панель выдерживают в течение 60 секунд. За это время пиковая температура металла (ПМТ) достигает значения 240°С. В результате после охлаждения получают чистое, прозрачное и свободное от трещин покрытие.
Пример 2 (Нанесение покрытия на алюминиевую панель)
Алюминиевую панель толщиной 0,5 мм опускают в погружной аппарат, наполненный 10%-ным раствором пергидрополисилазана NL120A-20 (фирмы Clariant, Япония), и извлекают со скоростью 120 см/мин. Непосредственно после покрытия панель вводят в сушильную печь с активным вентилированием, предварительно нагретую до температуры 250°С, и панель выдерживают в течение 30 секунд. За это время пиковая температура металла (ПМТ) достигает значения 240°С. В результате после охлаждения получают чистое, прозрачное и свободное от трещин покрытие.
Пример 3 (Нанесение покрытия на анодированную алюминиевую панель)
Анодированную алюминиевую панель толщиной 0,5 мм опускают в погружной аппарат, наполненный 20%-ным раствором пергидрополисилазана NL120A-20 (фирмы Clariant, Япония), и извлекают со скоростью 120 см/мин. Непосредственно после покрытия панель вводят в сушильную печь с активным вентилированием, предварительно нагретую до температуры 250°С, и панель выдерживают в течение 60 секунд. За это время пиковая температура металла (ПМТ) достигает значения 240°С. В результате после охлаждения получают чистое, прозрачное и свободное от трещин покрытие.
Пример 4 (Нанесение покрытия на алюминиевую панель с модифицированной поверхностью)
Алюминиевую панель толщиной 0,5 мм, на поверхность которой заранее нанесена оксидная пленка из TiO2 и SiO2, опускают в погружной аппарат, наполненный 20%-ным раствором пергидрополисилазана NL120A-20 (фирмы Clariant, Япония), и извлекают со скоростью 120 см/мин. Непосредственно после покрытия панель вводят в сушильную печь с активным вентилированием, предварительно нагретую до температуры 250°С, и панель выдерживают в течение 60 секунд. За это время пиковая температура металла (ПМТ) достигает значения 240°С. В результате после охлаждения получают чистое, прозрачное и свободное от трещин покрытие.
Пример 5 (Отверждение покрытия алюминиевой панели с модифицированной поверхностью посредством инфракрасного облучения)
Алюминиевую панель толщиной 0,5 мм, на поверхность которой заранее нанесена оксидная пленка из TiO2 и SiO2, опускают в погружной аппарат, наполненный 20%-ным раствором пергидрополисилазана NL120A-20 (фирмы Clariant, Япония), и извлекают со скоростью 120 см/мин. Непосредственно после покрытия панель облучают с нижней стороны в сушильной печи с источником инфракрасного излучения (вольфрамовые лампы накаливания) в течение 50 секунд. За это время пиковая температура металла (ПМТ) достигает значения 240°C. В результате после охлаждения получают чистое, прозрачное и свободное от трещин покрытие.
Пример 6 (Нанесение покрытия на цинковую панель)
Цинковую панель толщиной 0,8 мм опускают в погружной аппарат, наполненный 10%-ным раствором пергидрополисилазана NL120A-20 (фирмы Clariant, Япония), и извлекают со скоростью 120 см/мин. Непосредственно после покрытия панель вводят в сушильную печь с активным вентилированием, предварительно нагретую до температуры 260°С, и панель выдерживают в течение 30 секунд. За это время пиковая температура металла (ПМТ) достигает значения 230°С. В результате после охлаждения получают чистое, прозрачное и свободное от трещин покрытие.
Пример 7 (Нанесение покрытия на цинковую панель)
Цинковую панель толщиной 0,8 мм опускают в погружной аппарат, наполненный 20%-ным раствором пергидрополисилазана NL120A-20 (фирмы Clariant, Япония), и извлекают со скоростью 120 см/мин. Непосредственно после покрытия панель вводят в сушильную печь с активным вентилированием, предварительно нагретую до температуры 260°С, и панель выдерживают в течение 60 секунд. За это время пиковая температура металла (ПМТ) достигает значения 240°С. В результате после охлаждения получают чистое, прозрачное и свободное от трещин покрытие.
Пример 8 (Нанесение покрытия на цинковую панель)
Цинковую панель толщиной 0,8 мм опускают в погружной аппарат, наполненный 20%-ным раствором пергидрополисилазана NL120A-20 (фирмы Clariant, Япония) и 10%-ным раствором полиметилсилазана в петролейном эфире (приготовленном способом, изложенным в примере 1 патента US 6329487), в соотношении 2,83:1, и извлекают со скоростью 120 см/мин. Непосредственно после покрытия панель вводят в сушильную печь с активным вентилированием, предварительно нагретую до температуры 260°С, и панель выдерживают в течение 60 секунд. За это время пиковая температура металла (ПМТ) достигает значения 240°С. В результате после охлаждения получают чистое, прозрачное и свободное от трещин покрытие.
Пример 9 (Испытание на коррозионную стойкость)
Коррозионную стойкость покрытых цинковых панелей из примеров 6-8 испытывают в изменяющейся атмосфере водоконденсата (KFW) в соответствии с международным стандартным методом ISO 6270-4. Состояние образцов оценивают по истечении длительности 25 циклов воздействия. Получены следующие результаты.
Пример № | Визуальная оценка |
6 | белая окалина не образуется |
7 | белая окалина не образуется |
8 | белая окалина не образуется |
Цинковая панель (без нанесенного покрытия) | сильное образование белой окалины |
Пример 10 (Определение сопротивления царапанию)
Сопротивление царапанию определяют, подвергая образец многократному воздействию (пять возвратно-поступательных движений) стальной стружкой сорта 00 с силой 3 Ньютона. Степень царапания оценивали визуально по следующей шкале качества материала: очень хорошее (нет царапин), хорошее (мало царапин), удовлетворительное (значительное количество царапин), адекватное (сильно поцарапанный образец) и недостаточное (очень глубокие/сильные царапины).
Пример № | Сопротивление царапанию |
1 | очень хорошее |
2 | хорошее |
3 | хорошее |
4 | хорошее |
5 | хорошее |
6 | хорошее |
7 | очень хорошее |
8 | удовлетворительное |
Алюминиевая панель (без нанесенного покрытия) | недостаточное |
Цинковая панель (без нанесенного покрытия) | от адекватного до недостаточного |
Пример 11 (Прочность сцепления)
Прочность сцепления покрытия определяют испытанием на поперечный разрез в соответствии со стандартным методом DIN EN ISO 2409, при этом прочность сцепления оценивают по шкале от 0 баллов (наилучший показатель) до 5 баллов (наихудший показатель).
Пример № | Прочность сцепления |
1 | GT 0 |
2 | GT 0 |
3 | GT 0 |
4 | GT 0 |
5 | GT 0 |
6 | GT 0 |
7 | GT 0 |
8 | GT 0 |
Claims (14)
1. Материал покрытия для металлов с помощью способа рулонного покрытия, содержащий раствор полисилазана или смесь полисилазанов формулы (1)
где R', R'' и R''' означают одинаковые или разные радикалы, и независимо друг от друга представляют собой водород или незамещенный, или замещенный алкил-, арил-, винил- или (триалкоксисилил)алкильный радикал, причем n является целым числом и таким, при котором полисилазан имеет величину среднечисленной молекулярной массы в диапазоне от 150 до 150000 г/моль, в растворителе, и, по меньшей мере, один катализатор, и раствор полисилазана содержит от 1 до 50 мас.% полисилазана.
где R', R'' и R''' означают одинаковые или разные радикалы, и независимо друг от друга представляют собой водород или незамещенный, или замещенный алкил-, арил-, винил- или (триалкоксисилил)алкильный радикал, причем n является целым числом и таким, при котором полисилазан имеет величину среднечисленной молекулярной массы в диапазоне от 150 до 150000 г/моль, в растворителе, и, по меньшей мере, один катализатор, и раствор полисилазана содержит от 1 до 50 мас.% полисилазана.
2. Материал покрытия по п.1, отличающийся тем, что R', R'' и R''' независимо друг от друга представляют собой радикал из группы, состоящей из водорода, метила, этила, пропила, изопропила, бутила, изобутила, третичного бутила, фенила, винила, 3-(триэтоксисилил)пропила и 3-(триметоксисилил)пропила.
4. Материал покрытия по п.1, отличающийся тем, что полисилазан имеет формулу (3)
где R' R'', R''', R*, R** и R*** независимо друг от друга представляют собой водород или незамещенный, или замещенный алкил-, арил-, винил- или (триалкоксисилил)алкильный радикал; n и p являются целыми числами, причем n имеет такое значение, при котором величина среднечисленной молекулярной массы полисилазана находится в диапазоне от 150 до 150000 г/моль.
где R' R'', R''', R*, R** и R*** независимо друг от друга представляют собой водород или незамещенный, или замещенный алкил-, арил-, винил- или (триалкоксисилил)алкильный радикал; n и p являются целыми числами, причем n имеет такое значение, при котором величина среднечисленной молекулярной массы полисилазана находится в диапазоне от 150 до 150000 г/моль.
5. Материал покрытия по п.4, отличающийся тем, что
R', R''' и R*** означают водород, a R'', R* и R** представляют собой метил;
R', R''' и R*** означают водород, R'' и R* являются метилом, а R** представляет собой винил; или
R' R''', R* и R*** означают водород, а R'' и R** представляют собой метил.
R', R''' и R*** означают водород, a R'', R* и R** представляют собой метил;
R', R''' и R*** означают водород, R'' и R* являются метилом, а R** представляет собой винил; или
R' R''', R* и R*** означают водород, а R'' и R** представляют собой метил.
6. Материал покрытия по п.1, отличающийся тем, что полисилазан имеет формулу (4)
где R', R'', R''', R*, R**, R***, R1, R2 и R3 независимо друг от друга представляют собой водород или незамещенный, или замещенный алкил-, арил-, винил- или (триалкоксисилил)алкильный радикал; n, p и q являются целыми числами, причем n имеет такое значение, при котором величина среднечисленной молекулярной массы полисилазана находится в диапазоне от 150 до 150000 г/моль.
где R', R'', R''', R*, R**, R***, R1, R2 и R3 независимо друг от друга представляют собой водород или незамещенный, или замещенный алкил-, арил-, винил- или (триалкоксисилил)алкильный радикал; n, p и q являются целыми числами, причем n имеет такое значение, при котором величина среднечисленной молекулярной массы полисилазана находится в диапазоне от 150 до 150000 г/моль.
7. Материал покрытия по п.6, отличающийся тем, что R', R''' и R*** представляют собой водород, R'', R*, R** и R2 являются метилом, R3 означает (триэтоксисилил)пропил, а R' является алкилом или водородом.
8. Материал покрытия по п.1, отличающийся тем, что раствор пергидрополисилазана содержит катализатор в количестве от 0,001 до 10 мас.%.
9. Материал покрытия по п.1, отличающийся тем, что используемыми катализаторами являются органические амины, кислоты, металлы, соли металлов или смеси этих соединений.
10. Материал покрытия, по меньшей мере, по одному из предыдущих пунктов, отличающийся тем, что используемыми растворителями являются безводные органические растворители, которые не содержат реакционноспособных групп.
11. Способ непрерывного нанесения покрытия на металлические полосы способом рулонного покрытия, отличающийся тем, что раствор, содержащий полисилазан или смесь полисилазанов формулы (1)
где R', R'' и R''' означают одинаковые или разные радикалы, и независимо друг от друга представляют собой водород или незамещенный, или замещенный алкил-, арил-, винил-или (триалкоксисилил)алкильный радикал, причем n является целым числом и таким, при котором полисилазан имеет величину среднечисленной молекулярной массы в диапазоне от 150 до 150000 г/моль, в растворителе, и, по меньшей мере, один катализатор наносят на металлическую полосу, а затем указанное покрытие отверждают при температуре от 150 до 500°С, или путем использования облучения в инфракрасной или в ближней инфракрасной области спектра.
где R', R'' и R''' означают одинаковые или разные радикалы, и независимо друг от друга представляют собой водород или незамещенный, или замещенный алкил-, арил-, винил-или (триалкоксисилил)алкильный радикал, причем n является целым числом и таким, при котором полисилазан имеет величину среднечисленной молекулярной массы в диапазоне от 150 до 150000 г/моль, в растворителе, и, по меньшей мере, один катализатор наносят на металлическую полосу, а затем указанное покрытие отверждают при температуре от 150 до 500°С, или путем использования облучения в инфракрасной или в ближней инфракрасной области спектра.
12. Металл или металлическая полоса с нанесенным материалом покрытия, по меньшей мере, по одному из пп.1-10.
13. Металл или металлическая полоса по п.12, отличающиеся тем, что металл содержит сплавы алюминия, стали, оцинкованной стали, цинка, магния или титана.
14. Металл или металлическая полоса по п.12, отличающиеся тем, что перед нанесением покрытия металлическую полосу предварительно обрабатывают посредством хроматирования либо без нанесения хроматных покрытий, посредством анодирования или вакуумного напыления металлооксидных пленок.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004054661A DE102004054661A1 (de) | 2004-11-12 | 2004-11-12 | Verwendung von Polysilazanen zur Beschichtung von Metallbändern |
DE102004054661.4 | 2004-11-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2007121680A RU2007121680A (ru) | 2008-12-20 |
RU2388777C2 true RU2388777C2 (ru) | 2010-05-10 |
Family
ID=35448238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007121680/04A RU2388777C2 (ru) | 2004-11-12 | 2005-10-25 | Применение полисилазанов для покрытия металлических полос |
Country Status (20)
Country | Link |
---|---|
US (2) | US8247037B2 (ru) |
EP (1) | EP1817387B1 (ru) |
JP (1) | JP5178199B2 (ru) |
KR (1) | KR101186811B1 (ru) |
AR (1) | AR051667A1 (ru) |
AT (1) | ATE474029T1 (ru) |
AU (1) | AU2005304100B2 (ru) |
BR (1) | BRPI0517817B1 (ru) |
CA (1) | CA2587504C (ru) |
DE (2) | DE102004054661A1 (ru) |
DK (1) | DK1817387T3 (ru) |
ES (1) | ES2345829T3 (ru) |
MX (1) | MX2007005778A (ru) |
NO (1) | NO338300B1 (ru) |
PL (1) | PL1817387T3 (ru) |
PT (1) | PT1817387E (ru) |
RU (1) | RU2388777C2 (ru) |
TW (1) | TWI427126B (ru) |
WO (1) | WO2006050813A1 (ru) |
ZA (1) | ZA200703265B (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2767238C1 (ru) * | 2021-03-23 | 2022-03-17 | Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") | Способ получения предкерамических волокнообразующих олигоорганосилазанов |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005051755A1 (de) * | 2005-10-27 | 2007-05-10 | Clariant International Limited | Verfahren zur Verbesserung der Korrosionsbeständigkeit und Lichtechtheit von gefärbten Aluminiumoxidschichten |
DE102006008308A1 (de) * | 2006-02-23 | 2007-08-30 | Clariant International Limited | Polysilazane enthaltende Beschichtungen zur Vermeidung von Zunderbildung und Korrosion |
DE102007023094A1 (de) * | 2007-05-16 | 2008-11-20 | Clariant International Ltd. | Farbpigmentierte Lackzusammensetzung mit hoher Deckkraft, erhöhter Kratzbeständigkeit und easy to clean Eigenschaften |
DE102008044769A1 (de) * | 2008-08-28 | 2010-03-04 | Clariant International Limited | Verfahren zur Herstellung von keramischen Passivierungsschichten auf Silizium für die Solarzellenfertigung |
US9533918B2 (en) * | 2011-09-30 | 2017-01-03 | United Technologies Corporation | Method for fabricating ceramic material |
US9935246B2 (en) | 2013-12-30 | 2018-04-03 | Cree, Inc. | Silazane-containing materials for light emitting diodes |
GB2530074A (en) * | 2014-09-12 | 2016-03-16 | Inmarsat Global Ltd | Mobile communication system |
EP3548543A1 (en) * | 2016-12-02 | 2019-10-09 | Merck Patent GmbH | Method for preparing an optoelectronic device from a crosslinkable polymer composition |
DE102018206452A1 (de) * | 2018-04-26 | 2019-10-31 | Evonik Degussa Gmbh | Siliciumbasierte Schutzschichten für Bauteile photoelektrochemischer Zellen |
CN115996971A (zh) * | 2020-06-26 | 2023-04-21 | 可隆工业株式会社 | 硅氮烷类化合物、包含其的涂料组合物、具有涂层的透光膜和包括透光膜的显示设备 |
WO2021261889A1 (ko) * | 2020-06-26 | 2021-12-30 | 코오롱인더스트리 주식회사 | 실라잔계 화합물, 이를 포함하는 코팅용 조성물, 코팅층을 갖는 광투과성 필름 및 광투과성 필름을 포함하는 표시장치 |
WO2022061410A1 (en) * | 2020-09-24 | 2022-03-31 | Nanokote Pty Ltd | Coating process |
CN116669864A (zh) * | 2020-12-23 | 2023-08-29 | 东华隆股份有限公司 | 皮膜形成方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4929704A (en) | 1988-12-20 | 1990-05-29 | Hercules Incorporated | Isocyanate- and isothiocyanate-modified polysilazane ceramic precursors |
US5032649A (en) | 1989-11-27 | 1991-07-16 | Hercules Incorporated | Organic amide-modified polysilazane ceramic precursors |
CA2079990C (en) | 1991-10-07 | 2003-12-09 | Joanne M. Schwark | Peroxide-substituted polysilazanes |
JP3307471B2 (ja) * | 1993-02-24 | 2002-07-24 | 東燃ゼネラル石油株式会社 | セラミックコーティング用組成物及びコーティング方法 |
JP3449798B2 (ja) * | 1994-10-14 | 2003-09-22 | 東燃ゼネラル石油株式会社 | SiO2被覆プラスチックフィルムの製造方法 |
JPH10212114A (ja) * | 1996-11-26 | 1998-08-11 | Tonen Corp | SiO2系セラミックス膜の形成方法 |
JP3904691B2 (ja) * | 1997-10-17 | 2007-04-11 | Azエレクトロニックマテリアルズ株式会社 | ポリシラザン含有組成物及びシリカ質膜の形成方法 |
US6329487B1 (en) | 1999-11-12 | 2001-12-11 | Kion Corporation | Silazane and/or polysilazane compounds and methods of making |
JP5291275B2 (ja) | 2000-07-27 | 2013-09-18 | 有限会社コンタミネーション・コントロール・サービス | コーティング膜が施された部材及びコーティング膜の製造方法 |
US6534184B2 (en) | 2001-02-26 | 2003-03-18 | Kion Corporation | Polysilazane/polysiloxane block copolymers |
US6652978B2 (en) | 2001-05-07 | 2003-11-25 | Kion Corporation | Thermally stable, moisture curable polysilazanes and polysiloxazanes |
US6756469B2 (en) | 2001-07-18 | 2004-06-29 | Kion Corporation | Polysilazane-modified polyamine hardeners for epoxy resins |
JP2003170060A (ja) * | 2001-12-10 | 2003-06-17 | Nippon Light Metal Co Ltd | 光触媒機能を有する表面処理製品 |
AU2003207855A1 (en) * | 2002-02-05 | 2003-09-02 | Gencell Corporation | Silane coated metallic fuel cell components and methods of manufacture |
JP2004155834A (ja) | 2002-11-01 | 2004-06-03 | Clariant Internatl Ltd | ポリシラザン含有コーティング液 |
PL374997A1 (en) * | 2002-11-01 | 2005-11-14 | Clariant International Ltd | Polysilazane-containing coating solution |
DE10318234A1 (de) * | 2003-04-22 | 2004-11-25 | Clariant Gmbh | Verwendung von Polysilazan zur Herstellung von hydrophob- und oleophobmodifizierten Oberflächen |
DE10320180A1 (de) | 2003-05-07 | 2004-06-24 | Clariant Gmbh | Verwendung von Polysilazan als permanenter Anlaufschutz für Bedarfsgegenstände aus Silber und Silberlegierungen sowie für versilberte Bedarfsgegenstände |
DE102004001288A1 (de) | 2004-01-07 | 2005-08-11 | Clariant International Limited | Hydrophile Beschichtung auf Polysilazanbasis |
-
2004
- 2004-11-12 DE DE102004054661A patent/DE102004054661A1/de not_active Withdrawn
-
2005
- 2005-10-12 TW TW094135568A patent/TWI427126B/zh not_active IP Right Cessation
- 2005-10-25 DK DK05797328.1T patent/DK1817387T3/da active
- 2005-10-25 PT PT05797328T patent/PT1817387E/pt unknown
- 2005-10-25 ES ES05797328T patent/ES2345829T3/es active Active
- 2005-10-25 EP EP05797328A patent/EP1817387B1/de not_active Not-in-force
- 2005-10-25 KR KR1020077013220A patent/KR101186811B1/ko active IP Right Grant
- 2005-10-25 RU RU2007121680/04A patent/RU2388777C2/ru not_active IP Right Cessation
- 2005-10-25 JP JP2007540529A patent/JP5178199B2/ja not_active Expired - Fee Related
- 2005-10-25 BR BRPI0517817-7A patent/BRPI0517817B1/pt not_active IP Right Cessation
- 2005-10-25 AT AT05797328T patent/ATE474029T1/de active
- 2005-10-25 DE DE502005009919T patent/DE502005009919D1/de active Active
- 2005-10-25 PL PL05797328T patent/PL1817387T3/pl unknown
- 2005-10-25 US US11/667,654 patent/US8247037B2/en not_active Expired - Fee Related
- 2005-10-25 MX MX2007005778A patent/MX2007005778A/es active IP Right Grant
- 2005-10-25 AU AU2005304100A patent/AU2005304100B2/en not_active Ceased
- 2005-10-25 WO PCT/EP2005/011426 patent/WO2006050813A1/de active Application Filing
- 2005-10-25 CA CA2587504A patent/CA2587504C/en not_active Expired - Fee Related
- 2005-11-11 AR ARP050104722A patent/AR051667A1/es not_active Application Discontinuation
-
2007
- 2007-04-20 ZA ZA200703265A patent/ZA200703265B/xx unknown
- 2007-06-11 NO NO20072989A patent/NO338300B1/no not_active IP Right Cessation
-
2012
- 2012-07-12 US US13/547,219 patent/US20120276410A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2767238C1 (ru) * | 2021-03-23 | 2022-03-17 | Акционерное общество "Государственный Ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (АО "ГНИИХТЭОС") | Способ получения предкерамических волокнообразующих олигоорганосилазанов |
Also Published As
Publication number | Publication date |
---|---|
WO2006050813A1 (de) | 2006-05-18 |
AU2005304100A1 (en) | 2006-05-18 |
US8247037B2 (en) | 2012-08-21 |
US20080014461A1 (en) | 2008-01-17 |
PL1817387T3 (pl) | 2010-12-31 |
JP5178199B2 (ja) | 2013-04-10 |
TW200626686A (en) | 2006-08-01 |
MX2007005778A (es) | 2007-07-19 |
AU2005304100B2 (en) | 2012-03-08 |
BRPI0517817B1 (pt) | 2017-10-10 |
BRPI0517817A (pt) | 2008-10-21 |
DE102004054661A1 (de) | 2006-05-18 |
TWI427126B (zh) | 2014-02-21 |
NO20072989L (no) | 2007-06-11 |
PT1817387E (pt) | 2010-09-02 |
ES2345829T3 (es) | 2010-10-04 |
CA2587504A1 (en) | 2006-05-18 |
ZA200703265B (en) | 2008-08-27 |
US20120276410A1 (en) | 2012-11-01 |
JP2008519870A (ja) | 2008-06-12 |
DE502005009919D1 (de) | 2010-08-26 |
DK1817387T3 (da) | 2010-10-25 |
RU2007121680A (ru) | 2008-12-20 |
EP1817387B1 (de) | 2010-07-14 |
KR101186811B1 (ko) | 2012-10-02 |
EP1817387A1 (de) | 2007-08-15 |
KR20070086078A (ko) | 2007-08-27 |
NO338300B1 (no) | 2016-08-08 |
ATE474029T1 (de) | 2010-07-15 |
CA2587504C (en) | 2012-09-11 |
AR051667A1 (es) | 2007-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2388777C2 (ru) | Применение полисилазанов для покрытия металлических полос | |
EP2483494B1 (en) | Highly reflective roofing system | |
TWI415912B (zh) | 金屬和聚合物表面用之聚矽氮烷塗料 | |
JP3182107B2 (ja) | 機能性塗装品とその製造方法および用途 | |
WO1999052986A1 (fr) | Procede permettant de former un film de revetement inorganique hydrophile et composition de revetement inorganique | |
US20110041913A1 (en) | Use of Hydrophobic Solvent-Based Pigment Preparations in Electronic Displays | |
US8178630B2 (en) | Inorganically modified polyester binder preparation, process for production and use thereof | |
JP2008520773A (ja) | ポリシラザンに基づく被覆剤及びフィルム、特にポリマーフィルムを被覆するためのこれの使用 | |
JP6914935B2 (ja) | 低放射率を有する被覆ポリマー基材を製造する方法 | |
CN111936583B (zh) | 混合组合物 | |
KR100895197B1 (ko) | 기능성 실란 경화형 우레탄 변성 폴리실록산 도료 조성물 | |
JP3245522B2 (ja) | 塗料組成物 | |
JP3245521B2 (ja) | 塗料組成物 | |
JP3245519B2 (ja) | 塗料組成物 | |
JP3245520B2 (ja) | 塗料組成物 | |
US6617039B1 (en) | Nitrogen-free compounds as adhesion promoters for silicon-based scratch-resistant coatings on polycarbonate | |
JP4374807B2 (ja) | 親水性塗膜及び親水性塗膜の塗装方法 | |
EP2521755B1 (en) | Corrosion protection coatings and methods of making the same | |
JPH1161042A (ja) | 高親水性無機塗料、それを用いた塗装品およびそれらの用途 | |
JPH10287846A (ja) | 機能性無機塗料、それを用いた塗装品およびそれらの用途 | |
US8236203B2 (en) | Corrosion protection coatings and methods of making the same | |
JP2017095591A (ja) | 撥液性コーティング組成物、撥液性コーティング膜および撥液性コーティング膜の形成方法 | |
JP2000086975A (ja) | 耐汚染性コーティング用樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20120606 |
|
PD4A | Correction of name of patent owner | ||
PD4A | Correction of name of patent owner | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191026 |