RU2383526C2 - Способ получения карбоновых кислот и их производных - Google Patents

Способ получения карбоновых кислот и их производных Download PDF

Info

Publication number
RU2383526C2
RU2383526C2 RU2006141684/04A RU2006141684A RU2383526C2 RU 2383526 C2 RU2383526 C2 RU 2383526C2 RU 2006141684/04 A RU2006141684/04 A RU 2006141684/04A RU 2006141684 A RU2006141684 A RU 2006141684A RU 2383526 C2 RU2383526 C2 RU 2383526C2
Authority
RU
Russia
Prior art keywords
catalyst
mordenite
methanol
range
carbon monoxide
Prior art date
Application number
RU2006141684/04A
Other languages
English (en)
Other versions
RU2006141684A (ru
Inventor
Джон СМИТ Уоррен (GB)
Джон СМИТ Уоррен
Original Assignee
Бп Кемикэлз Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бп Кемикэлз Лимитед filed Critical Бп Кемикэлз Лимитед
Publication of RU2006141684A publication Critical patent/RU2006141684A/ru
Application granted granted Critical
Publication of RU2383526C2 publication Critical patent/RU2383526C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/37Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by reaction of ethers with carbon monoxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Glass Compositions (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Изобретение относится к усовершенствованному способу получения уксусной кислоты и/или ее эфира или ангидрида, который включает контактирование метанола и/или его реакционноспособного производного, выбранного из метилацетата и диметилового эфира, с монооксидом углерода в присутствии катализатора при температуре в интервале от 250 до 600°С и под давлением в интервале от 10 до 200 бар и где содержание йодида в метаноле и/или его реакционноспособном производном, монооксиде углерода и катализаторе составляет меньше 500 час/млн, где катализатор состоит по существу из морденита, который в качестве каркасных элементов включает кремний, алюминий и один или несколько из других элементов, выбранных из галлия и бора, и в котором ионообменом или иным способом введены медь, никель, иридий, родий или кобальт. Способ обеспечивает повышенную селективность в отношении целевого продукта и/или повышенную стабильность катализатора. 21 з.п. ф-лы, 3 табл.

Description

Настоящее изобретение относится к способу получения алифатической карбоновой кислоты и/или ее производных реакцией соответствующего спирта или его реакционноспособного производного с моноксидом углерода в присутствии содержащего металл морденитного катализатора.
Получение уксусной кислоты из метанола и моноксида углерода представляет собой хорошо известный процесс карбонилирования, который проводят в промышленном масштабе. В промышленном масштабе получение уксусной кислоты можно осуществлять как гомогенный жидкофазный процесс, в котором реакцию карбонилирования катализируют растворимым комплексом родия/иодида и алкилиодидом, таким как метилиодид. Основными недостатками этого способа являются применение иодида, которое может привести к проблемам коррозии, и затруднения, связанные с выделением продуктов и каталитических компонентов из единственной фазы. Оба эти недостатка могли бы быть устранены, если бы мог быть разработан гетерогенный газофазный способ с использованием свободного от иодида твердого катализатора.
В GB 1185453 описаны некоторые мультифазные катализаторы, включающие каталитически активный металл, к которому относятся, помимо прочего, медь, родий и иридий, нанесенные на материалы-носители широкого ряда, включая кремнеземы, глиноземы, угли, цеолиты, глины и полимеры. Эти мультифазные катализаторы представлены как те, которые могут быть использованы в гетерогенном газофазном карбонилировании метанола до уксусной кислоты в присутствии галогенидного промотора. Аналогичный способ описан в GB 1277242, хотя ни в одном патенте не приведены примеры применения в таком способе цеолитов.
В US 4612387 описан способ получения монокарбоновых кислот и сложных эфиров, включающий контактирование моноксида углерода с одноатомным спиртом, содержащим от 1 до 4 углеродных атомов, в присутствии кристаллического алюмосиликатного цеолита, обладающего отношением диоксида кремния к оксиду алюминия по меньшей мере примерно 6 и индексом проницаемости в интервале от 1 до 12 под давлением по меньшей мере 1 ат. Наиболее предпочтительные цеолиты в соответствии с этим определением представляют собой ZSM-5, ZSM-11, ZSM-12, ZSM-38 и ZSM-35, причем особенно предпочтителен ZSM-5. В примере VI, эксперимент 30, представлены ссылки на цеолиты морденитного типа, которые обладают индексом проницаемости 0,4, причем показано, что водородная форма не является каталитически эффективной. Предпочтительные цеолиты в предпочтительном варианте модифицируют путем введения металлов группы IB, IIB, IVB или VIII, из которых наиболее предпочтительна медь.
В J.Catalysis, 71, 233-43 (1981) описано применение фотоэлектронной спектроскопии (ЭСХА) для определения активности родиевого морденитного катализатора и других нанесенных на носители родиевых катализаторов в отношении карбонилирования метанола до уксусной кислоты.
В DE 3606169 описан способ получения уксусной кислоты, метилацетата и/или диметилового эфира карбонилированием безводного метанола, метилацетата и/или диметилового эфира в присутствии кобальтсодержащих цеолитов или цеолитов, смешанных с кобальтовыми солями. Такое карбонилирование необязательно проводят в присутствии галогенида. Предпочтительные цеолиты описаны как относящиеся к пентазильному типу, размеры пор которых являются промежуточными между размерами пор цеолита А, с одной стороны, и цеолитов Х и Y, с другой.
Работа в Chemistry Letters, cc.2047-2050 (1984) относится к парофазному карбонилированию метанола в отсутствие галогенового промотора. Таблица 1 этой статьи относится к трем примерам, эксперименты которых проводят при 200°С и под давлением 10 бар, где в качестве катализаторов используют водородный морденит и медный морденит. Во всех трех случаях значения выхода были низкими относительно выхода в аналогичных экспериментах с применением катализатора на основе ZSM-5.
В ЕР 0596632 А1 описан способ получения алифатической карбоновой кислоты введением спирта или его реакционноспособного производного в контакт с моноксидом углерода по существу в отсутствие галогенов или их производного, в присутствии катализатора, состоящего по существу из морденитного цеолита, в который предварительным ионообменом или иным путем вводят медь, никель, иридий, родий или кобальт, характеризующийся тем, что процесс проводят при температуре в интервале от 300 до 600°С и под давлением в интервале от 15 до 200 бар.
Таким образом, все еще сохраняется потребность в разработке усовершенствованного гетерогенного газофазного способа получения карбоновых кислот и/или их производных из спиртов и/или их реакционноспособных производных и моноксида углерода с использованием содержащего металл цеолитного катализатора, который осуществляют при практическом отсутствии галогенов или их производных.
Было установлено, что морденитный цеолит (в дальнейшем обозначен как морденит), который предварительно модифицируют включением в каркас металлов, в дополнение к кремнию и алюминию, обеспечивает повышенную селективность в отношении продукта (в отношении уксусной кислоты или ее производных) и/или повышенную стабильность катализатора.
Соответственно, объектом настоящего изобретения является способ получения алифатической карбоновой кислоты, содержащей (n+1) углеродных атомов, где n обозначает целое число до 6, и/или ее эфира или ангидрида, который включает контактирование алифатического спирта, содержащего n углеродных атомов, или его реакционноспособного производного с моноксидом углерода по существу в отсутствие галогенов или их производных и в присутствии катализатора при температуре в интервале от 250 до 600°С и под давлением в интервале от 10 до 200 бар, характеризующийся тем, что катализатор состоит по существу из морденита, который в качестве каркасных элементов включает кремний, алюминий и один или несколько других элементов, выбранных из галлия, бора и железа, и в который предварительным ионообменом или иным способом введены медь, никель, иридий, родий или кобальт.
В способе по настоящему изобретению используют модифицированный морденитный катализатор в условиях высоких температур и давлений с достижением хороших значений выхода карбоновых кислот и их производных. Было установлено, что повышенная селективность в отношении продукта и повышенная стабильность катализатора могут быть достигнуты с использованием морденита, который предварительно модифицируют добавлением в качестве каркасного элемента одного или нескольких из галлия, бора и железа (модифицирующие каркас элементы), в сравнении с морденитом, обладающим в качестве единственных каркасных элементов кремнием и алюминием.
В способе по настоящему изобретению алифатический спирт или его реакционноспособное производное карбонилируют моноксидом углерода. Способ особенно применим для алифатических спиртов, содержащих до 6, в частности до 3, углеродных атомов. Предпочтительным спиртом является метанол.
Реакционноспособные производные такого спирта, которые можно использовать в качестве альтернативы или в дополнение к этому спирту, включают диалкиловые эфиры, сложные эфиры спирта и алкилгалогениды. Приемлемые реакционноспособные производные метанола, например, включают метилацетат, диметиловый эфир и метилиодид. Может быть также использована смесь спирта и его реакционноспособного производного, например смесь метанола и метилацетата.
В одном варианте, где в качестве спирта предусмотрено применение метанола, метанол можно использовать как таковой, или он может быть получен из источника моноксида углерода и водорода, такого как технически доступный синтез-газ, в присутствии приемлемого катализатора синтеза спирта. Приемлемые катализаторы синтеза метанола описаны, например, в WO 99/38836 и WO 01/07393. Конкретный пример подходящего катализатора синтеза метанола представляет собой катализатор на основе меди/оксида цинка совместно или без алюминиевого промотора. Синтез метанола можно проводить in situ или в реакторе, отделенном от процесса карбонилирования по настоящему изобретению.
Продукт процесса карбонилирования может представлять собой алифатическую карбоновую кислоту и может также включать эфир алифатической карбоновой кислоты. Так, например, когда спиртом является метанол, продукт включает уксусную кислоту и может также включать метилацетат. Сложный эфир можно превращать в алифатическую карбоновую кислоту по известным методам. Способ по настоящему изобретению может быть также осуществлен при синтезе пропионовой кислоты из этанола, а также масляной кислоты из н-пропанола.
Этот процесс можно проводить в присутствии или по существу в отсутствие воды. Когда в качестве исходного материала используют реакционноспособное производное, такое как сложный эфир или простой эфир, в предпочтительном варианте в реакцию вводят также воду. Так, например, в реакцию вводят также воду, когда в качестве исходного материала используют диметиловый эфир, в частности при мольном соотношении вода:диметиловый эфир от больше 0 до меньше или равно 1.
Полагают, что степень чистоты используемого монооксида углерода особо решающего значения на имеет, хотя следует использовать газовые смеси, в которых моноксид углерода является основным компонентом. Может быть допустимым наличие небольших количеств примесей, таких как азот и благородные газы. Кроме того, в способе по настоящему изобретению могут быть также использованы смеси моноксида углерода и водорода в том виде, как их получают реформингом или частичным окислением углеводородов (синтез-газ).
Катализатор, используемый в способе по настоящему изобретению, представляет собой модифицированный морденитный цеолит, в который предварительным ионообменом или иным путем вводят медь, никель, иридий, родий или кобальт. Структура морденита хорошо известна и определена, например, в работе 'Atlas of Zeolite Structure Types' by W.M. Meier and D.H. Olson, опубликованной by Structure Commission of the International Zeolite Association в 1978 г. Она, кроме того, характеризуется индексом проницаемости 0,4 и отношением диоксида кремния к оксиду алюминия в интервале от 8:1 до 20:1. Специалистам в данной области техники хорошо известно, что отношение диоксида кремния к оксиду алюминия может быть увеличено с использованием методов деалюминирования, например гидротермической обработкой или кислотным выщелачиванием морденита. Морденит также обладает характерной порошковой рентгенограммой, которая специалистам в данной области техники в общем известна хорошо. Предпочтительный для осуществления способа по настоящему изобретению морденит обладает отношением диоксида кремния к оксиду алюминия в интервале от 8:1 до 50:1, более предпочтительно в интервале от 10:1 до 30:1, а наиболее предпочтительно в интервале от 15:1 до 25:1.
Модифицирующие каркас элементы (галлий, бор и/или железо) могут быть введены в каркас с помощью любого обычного средства. Так, например, морденит может быть синтезирован с использованием приемлемых предшественников для кремниевых, алюминиевых и галлиевых, железных и/или борных компонентов каркаса, таких как для модифицированного галлием морденита, совместной реакцией в смеси, включающей белую сажу, нитрат галлия и алюминат натрия.
Для осуществления способа по настоящему изобретению в предпочтительном варианте морденит обладает отношением диоксида кремния к оксидам модифицирующих каркас элементов (т.е. в совокупности к оксиду галлия, оксиду бора и оксиду железа) в интервале от 10:1 до 50:1, предпочтительнее в интервале от 20:1 до 50:1, а более предпочтительно в интервале от 30:1 до 40:1.
Предпочтительным модифицирующим каркас элементом является галлий. Таким образом, в предпочтительном варианте морденит обладает отношением диоксида кремния к оксиду галлия в интервале от 10:1 до 50:1, предпочтительнее в интервале от 20:1 до 50:1, а более предпочтительно в интервале от 30:1 до 40:1.
Перед применением в качестве катализатора морденит подвергают ионообмену или иным путем в него вводят медь, никель, родий, иридий или кобальт. Если морденит необходимо подвергнуть ионообмену, то до 80% способных к катионобмену участков на цеолите могут быть подвергнуты ионообмену с заменой, например, ионами Cu2+, Ir3+ или Rh3+ с применением хорошо известной технологии. В предпочтительном варианте оставшиеся катионы в подвергнутом ионообмену мордените приходятся на протоны, вследствие чего процесс ионообмена целесообразно начать с аммониевой или водородной формы.
В качестве альтернативы ионообмену аммониевая или водородная форма морденита может быть пропитана раствором соли металла и в дальнейшем высушена. Если используют аммониевую форму, то после насыщения или ионообмена морденит в предпочтительном варианте кальцинируют. Предпочтительны такие используемые количества, при которых готовят катализатор, содержание металла в котором составляет от 0,5 до 10 мас.% в пересчете на весь катализатор.
В предпочтительном варианте перед применением морденитный катализатор активируют путем, например, выдержки морденитного катализатора в течение по меньшей мере одного часа при повышенной температуре в токе азота, моноксида углерода или водорода.
Способ по настоящему изобретению в предпочтительном варианте осуществляют пропусканием паров метанола и газообразного моноксида углерода через неподвижный или псевдоожиженный слой катализатора, выдерживаемого в условиях требуемых температуры и давления. Такой процесс проводят по существу в отсутствие иодида. Под понятием "по существу" имеют в виду, что содержание иодида в исходных газах и катализаторе составляет меньше 500 част./млн, а предпочтительно меньше 100 част./млн.
Этот процесс проводят при температуре в интервале от 250 до 600°С, предпочтительно от 250 до 400°С, и под давлением в интервале от 10 до 200 бар, предпочтительно от 10 до 150 бар, в частности от 25 до 100 бар.
Молярное отношение моноксида углерода к метанолу в целесообразном варианте находится в интервале от 1:1 до 60:1, предпочтительно от 1:1 до 30:1, наиболее предпочтительно от 2:1 до 10:1. Если его подают в каталитический слой в жидкой форме, среднечасовая скорость подачи жидкости (СЧСЖ) в случае метанола в предпочтительном варианте должна находиться в интервале от 0,5 до 2.
Карбоновая кислота, получаемая согласно способу по настоящему изобретению, может быть удалена в форме пара и после этого конденсирована в жидкость. В дальнейшем карбоновая кислота может быть очищена с применением обычных методов, таких как дистилляция.
Изобретение далее проиллюстрировано со ссылкой на следующие примеры.
Примеры
Синтез морденита
Сравнительный пример А: синтез Ga морденита
Тетраэтиламмонийбромид (ТЭА-Br) (9,47 г) растворяли в 30 г дистиллированной воды и затем добавляли в суспензию 22,26 г белой сажи (Cab-O-Sil) в 150 г дистиллированной воды. Образовавшуюся смесь тщательно перемешивали. В эту суспензию добавляли раствор гидроксида натрия (6,75 г) в 30 г дистиллированной воды и затем смесь перемешивали в течение одного часа. По прошествии этого периода растворением 7,53 г нитрата галлия в 70 г дистиллированной воды готовили раствор нитрата галлия. Далее раствор нитрата галлия добавляли в суспензию диоксида кремния и образовавшийся гель перемешивали в течение еще 1 ч. По стехиометрическим расчетам этот гель представлял собой
25,2SiO2·1,0Ga2O3·5,7Na2O·3,0ТЭА-Br·1054Н2О
Далее гель переносили в автоклав из нержавеющей стали и выдерживали при 150°С в течение 16 дней. По прошествии этого периода автоклав охлаждали и содержимое фильтровали и промывали обильными количествами дистиллированной воды. Затем белый твердый продукт сушили при 120°С в течение ночи.
Рентгенографический анализ показывал, что материал был высококристаллическим и обладал морденитной структурой. Химический анализ показывал, что материал обладал каркасом состава SiO2/Ga2O3=31,1.
Пример 1: синтез Ga/Al морденита "с низким содержанием Al"
Морденитный синтезный гель готовили в соответствии со способом сравнительного примера А, за исключением того, что в реакционную смесь добавляли смесь нитрата галлия и алюмината натрия. Этого добивались добавлением в силикагель с интенсивным перемешиванием раствора нитрата галлия (6,02 г, растворенных в 35 г дистиллированной воды) и раствора алюмината натрия (0,50 г, растворенных в 35 г дистиллированной воды). После перемешивания в течение одного часа образовавшийся гель переносили в автоклав из нержавеющей стали и выдерживали при 150°С в течение 11 дней. По стехиометрическим расчетам этот гель представлял собой
126,4SiO2·4,0Ga2O3·1.0Al2O3·29,6Na2O·15,2ТЭА-Br·5276H2O
По прошествии этого периода автоклав охлаждали и содержимое фильтровали и промывали обильными количествами дистиллированной воды. Далее белый твердый продукт сушили при 120°С в течение ночи.
Рентгенографический анализ показывал, что материал был высококристаллическим и обладал морденитной структурой. Химический анализ показывал, что морденитный цеолит содержал каркасные как галлий, так и алюминий и обладал каркасом состава SiO2/Ga2O3=32,6 и SiO2/Al2O3=102,4.
Пример 2: синтез Ga/Al морденита "с высоким содержанием Al"
В этом примере Ga/Al морденитный цеолит синтезировали с увеличенным количеством каркасного алюминия. Повторяли эксперимент примера 1, за исключением того, что количество добавленного алюмината натрия увеличивали с 0,50 до 2,88 г. По стехиометрическим расчетам этот гель представлял собой
48,5SiO2·1,5Ga2O3·1,0Al2O3·29,6Na2O·15,2ТЭА-Br·5276H2O
Образовавшийся гель выдерживали при 150°С в течение 14 дней. Полученный кристаллический твердый продукт отфильтровывали, промывали обильными количествами воды и сушили при 120°С в течение ночи. Рентгенографический анализ показывал, что материал был высококристаллическим и обладал морденитной структурой. Химический анализ показывал, что морденитный цеолит содержал каркасные как галлий, так и алюминий и обладал каркасом состава SiO2/Ga2O3=39,2 и SiO2/Al2O3=19,4.
Сравнительный пример Б: синтез морденита "с низким содержанием Al"
Морденит "с низким содержанием Al" готовили кислотным выщелачиванием. 30 г технически доступного морденитного цеолита (ex. PQ, CBV20A, SiO2/Al2O3=19,4) кипятили с обратным холодильником в течение 2 ч в растворе соляной кислоты, приготовленном разбавлением 24 мл концентрированной соляной кислоты 76 мл дистиллированной воды. По прошествии этого периода твердый продукт отфильтровывали и промывали обильными количествами дистиллированной воды.
Рентгенографический анализ показывал, что материал был, тем не менее, высококристаллическим и обладал морденитной структурой. Химический анализ показывал, что материал обладал каркасом состава SiO2/Al2O3=36,0.
Сравнительный пример В: Al морденит
В качестве дополнительного сравнительного примера использовали технически доступный морденитный цеолит (ex. PQ, CBV20A, SiO2/Al2O3=19,4).
Приготовление катализатора
Синтезированные мордениты сравнительного примера А и примеров 1 и 2 кальцинировали выдержкой твердых частиц при 550°С в течение 6 ч для удаления органического шаблона. Мордениты сравнительных примеров с А по В и примеров 1 и 2 превращали в аммониевую форму контактированием твердых частиц с 1,5 М раствором нитрата аммония при 80°С в течение 3 ч с последующими фильтрованием и сушкой. Массовое отношение 1,5 М раствора нитрата аммония к мордениту, используемому при ионообменах, составляло 25:1. Процесс инообмена для каждого морденита повторяли три раза.
Мордениты в аммониевой форме превращали в содержавшие введенную медь кислотные формы пропиткой морденитов медьсодержащим раствором с последующим кальцинированием. Все полученные мордениты обладали номинальным содержанием меди приблизит. 7 мас.%.
Следующий процесс со ссылкой на сравнительный пример Б является примером процесса введения меди. 23,04 г аммониевой формы морденита "с низким содержанием Al", полученного в сравнительном примере Б, добавляли в раствор тригидрата нитрата меди (6,33 г) в 140 г дистиллированной воды и интенсивно перемешивали. Раствор выпаривали досуха выдержкой при 80°С. Голубой твердый продукт кальцинировали при 500°С в течение 2 ч. Химический анализ показывал, что материал содержал 6,6 мас.% Cu. Далее катализаторы таблетировали раздавливанием содержавших введенную медь цеолитов под давлением 10 т в инфракрасном прессе, полученную таблетку разрушали и материал просеивали с выделением частиц размерами в интервале от 250 до 850 мкм.
Карбонилирование метанола
Каждый из катализаторов сравнительных примеров с А по В и примеров 1 и 2 использовали для катализа реакции метанола и моноксида углерода в однозаходном микрореакторе высокого давления. Объем используемого катализатора, как правило, составлял 10 мл. С целью обеспечить эффективный предварительный нагрев реагентов перед контактированием с катализатором использовали предварительный слой гранул карбида кремния. Катализаторы активировали в токе азота (100 мл/мин) при 350°С в течение 16 ч, а затем восстанавливали в токе моноксида углерода (200 мл/мин) при 350°С в течение 2 ч. Далее с помощью регулятора обратного давления давление в системе доводили до 25 ат. Скорость потока монооксида углерода доводили до 800 мл/мин и с помощью насоса в реактор подавали метанол (с расходом 0,15 мл/мин). Жидкие и твердые продукты собирали в охлажденной ловушке, тогда как газообразные продукты и реагенты отбирали после регулятора обратного давления.
Каждые три часа отбирали пробы реакционной смеси. Все пробы анализировали с помощью осуществляемой вне технологической линии газовой хроматографии. Содержание диоксида углерода, образовывавшегося в качестве побочного продукта в результате параллельной реакции изменения соотношения оксида углерода и водорода в водяном газе, во всех случаях было относительно низким, находилось в интервале от 1 до 10 мольных % от общего числа молей образовывавшегося продукта.
Результаты экспериментов с карбонилированием представлены в таблицах с 1 по 3.
Таблица 1
Каталитические эксплуатационные свойства Cu/Н-(Ga) морденита и Cu/Н-(Ga, Al) морденитов при карбонилировании метанола
Катализатор Катализатор SiO2/Ga2O3 Катализатор SiO2/Al2O3 Время реакции, ч Превращение МеОН, % Селективность в отношении продукта (С-мольных %)
ДМЭ УВ(I) МеОАс АсОН
Сравнительного примера А 30,6 - 3 92,5 48,5 4,8 31,6 15,1
7 88,7 82,7 1,1 13,5 5,4
Примера 1 32,6 102,4 3 99,5 0,0 22,8 6,9 68,2
6 98,2 1,2 7,5 34,8 52,6
Примера 2 39,2 19,4 3 96,8 2,0 44,8 23,4 29,8
6 97,0 4,2 3,1 49,2 42,9
Реакционная температура: 350°С, манометрическое давление: 25 бар, ССПГ: 4400, СО/МеОН: 9, СЧСЖ: 0,9 (I), УВ означает углеводороды.
Результаты в таблице 1 показывают, что катализатор, обладающий морденитной структурой, содержащий галлий (сравнительный пример А), способен катализировать безиодидное карбонилирование метанола до уксусной кислоты. Однако у катализаторов примеров 1 и 2, у которых в морденитной структуре содержатся как алюминий, так и галлий, могут быть достигнуты намного более высокие значения активности и селективности в отношении получаемых уксусной кислоты и метилацетата. Благотворное влияние применения в морденитном каркасе как алюминия, так и галлия на селективность в отношении продукта дополнительно продемонстрировано в таблице 2.
Таблица 2
Сопоставление значений селективности в отношении продукта в случаях Cu/Н-(Al) морденитов и Cu/H-(Ga, Al) морденитных катализаторов
Катализатор Катализатор SiO2/Ga2O3 Катализатор
SiO2/Al2O3
Селективность в отношении продукта (С-мольных %)
ДМЭ УВ МеОАс АсОН
Примера 2 39,2 19,4 4,2 3,1 49,2 42,9
Сравнительного примера Б - 36,0 60,4 1,1 28,9 6,0
Сравнительного примера В - 20,0 6,7 34,7 17,5 39,3
Время реакции: 6 ч. Реакционная температура: 350°С, манометрическое давление: 25 бар, ССПГ: 4400, СО/МеОН: 9, СЧСЖ: 0,9. Из данных таблицы 2 можно видеть, что с содержащим Ga и Al морденитным катализатором (пример 2) может быть достигнута высокая активность, о чем свидетельствуют низкая селективность в отношении ДМЭ и высокая селективность в отношении получаемых уксусной кислоты и метилацетата, если сравнивать с системой только с алюминием, которая обеспечивает относительно высокие значения селективности в отношении углеводородного побочного продукта при высоком содержании каркасного алюминия и низкую активность (о чем свидетельствует большое количество получаемого ДМЭ) при низком содержании каркасного алюминия.
Таблица 3 показывает, что значительная селективность в отношении уксусной кислоты и метилацетата у катализаторов по настоящему изобретению сохраняется даже после 70 ч применения в процессе.
Таблица 3
Исследование срока службы для примера 1
Время реакции, ч Превращение МеОН, % Селективность в отношении продукта (С-мольных %)
ДМЭ УВ МеОАс АсОН
3 99,5 0,0 22,8 6,9 68,2
6 98,2 1,2 7,5 34,8 52,6
26 93,1 41,2 1,2 39,9 17,5
59 86,4 61,1 0,3 30,4 8,1
68 88,7 77,4 0,7 15,2 6,6
Реакционная температура: 350°С, манометрическое давление: 25 бар, ССПГ: 4400, СО/МеОН: 9, СЧСЖ: 0,9.

Claims (22)

1. Способ получения уксусной кислоты и/или ее эфира или ангидрида, который включает контактирование метанола и/или его реакционноспособного производного, выбранного из метилацетата и диметилового эфира, с монооксидом углерода в присутствии катализатора при температуре в интервале от 250 до 600°С и под давлением в интервале от 10 до 200 бар, и где содержание йодида в метаноле и/или его реакционноспособном производном, монооксиде углерода и катализаторе составляет меньше 500 млн-1, отличающийся тем, что катализатор состоит по существу из морденита, который в качестве каркасных элементов включает кремний, алюминий и один или несколько из других элементов, выбранных из галлия и бора, и в котором ионообменом или иным способом введена медь, никель, иридий, родий или кобальт.
2. Способ по п.1, в котором каркасными элементами являются кремний, алюминий и галлий.
3. Способ по п.1 или 2, в котором в морденит ионообменным или иным способом вводят медь.
4. Способ по п.1 или 2, в котором морденит обладает отношением диоксида кремния к оксиду алюминия в интервале от 10:1 до 30:1.
5. Способ по п.1 или 2, в котором морденит обладает отношением диоксида кремния к оксидам галлия и бора в интервале от 20:1 до 50:1.
6. Способ по п.5, в котором отношение диоксида кремния к оксиду галлия находится в интервале от 20:1 до 50:1.
7. Способ по п.1 или 2, в котором морденит подвергают ионообмену с медью, никелем, иридием, родием или кобальтом.
8. Способ по п.1 или 2, в котором морденит включает до 80% своих способных к обмену участков, подвергнутых ионообмену с медью, никелем, иридием, родием или кобальтом.
9. Способ по п.1 или 2, в котором катализатор обладает содержанием металла от 0,5 до 10 мас.% в пересчете на общую массу катализатора.
10. Способ по п.1 или 2, в котором катализатор перед применением активируют.
11. Способ по п.10, в котором катализатор активируют контактированием катализатора с током азота, монооксида углерода или водорода в течение по меньшей мере одного часа при повышенной температуре.
12. Способ по п.1 или 2, в котором монооксид углерода и пар метанола подают через неподвижный или псевдоожиженный слой катализатора, и где содержание йодида в метаноле, монооксиде углерода и катализаторе составляет меньше 500 млн-1.
13. Способ по п.1 или 2, в котором метанол получают из смеси монооксида углерода и водорода.
14. Способ по п.1 или 2, в котором метанол получают in situ.
15. Способ по п.1 или 2, в котором в качестве реакционноспособного производного используют диметиловый эфир.
16. Способ по п.15, в котором используют смесь метанола и диметилового эфира.
17. Способ по п.15, в котором в качестве исходного материала для процесса используют воду.
18. Способ по п.17, в котором мольное соотношение вода: диметиловый эфир находится в интервале от больше 0 до меньше или равно 1.
19. Способ по п.1 или 2, в котором процесс проводят при практическом отсутствии воды.
20. Способ по п.1 или 2, в котором процесс проводят при температуре в интервале от 250 до 400°С и под давлением в интервале от 10 до 150 бар.
21. Способ по п.1 или 2, в котором молярное отношение монооксида углерода к метанолу находится в интервале от 1:1 до 30:1.
22. Способ по п.1 или 2, в котором среднечасовая скорость подачи жидкости в случае метанола находится в интервале от 0,5 до 2.
RU2006141684/04A 2004-04-28 2005-03-24 Способ получения карбоновых кислот и их производных RU2383526C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0409490.0 2004-04-28
GBGB0409490.0A GB0409490D0 (en) 2004-04-28 2004-04-28 Process

Publications (2)

Publication Number Publication Date
RU2006141684A RU2006141684A (ru) 2008-06-10
RU2383526C2 true RU2383526C2 (ru) 2010-03-10

Family

ID=32408189

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006141684/04A RU2383526C2 (ru) 2004-04-28 2005-03-24 Способ получения карбоновых кислот и их производных

Country Status (16)

Country Link
US (1) US7642372B2 (ru)
EP (1) EP1740525B1 (ru)
JP (1) JP5161565B2 (ru)
KR (1) KR101167542B1 (ru)
CN (1) CN1950321B (ru)
AT (1) ATE542789T1 (ru)
BR (1) BRPI0510374B8 (ru)
CA (1) CA2562392C (ru)
ES (1) ES2379467T3 (ru)
GB (1) GB0409490D0 (ru)
MY (1) MY143471A (ru)
RS (1) RS53631B1 (ru)
RU (1) RU2383526C2 (ru)
TW (1) TWI340739B (ru)
UA (1) UA88901C2 (ru)
WO (1) WO2005105720A1 (ru)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060252959A1 (en) * 2005-05-05 2006-11-09 The Regents Of The University Of California Process for carbonylation of alkyl ethers
US20070020451A1 (en) 2005-07-20 2007-01-25 3M Innovative Properties Company Moisture barrier coatings
GB0601861D0 (en) * 2006-01-30 2006-03-08 Bp Chem Int Ltd Process
GB0607395D0 (en) * 2006-04-12 2006-05-24 Bp Chem Int Ltd Process
GB0607394D0 (en) * 2006-04-12 2006-05-24 Bp Chem Int Ltd Process
CA2671361C (en) 2006-12-15 2014-10-21 The Regents Of The University Of California Process for carbonylation of aliphatic alcohols and/or reactive derivatives thereof
US7507855B2 (en) 2006-12-15 2009-03-24 The Regents Of The University Of California Process for carbonylation of aliphatic alcohols and/or ester derivatives thereof
EP1985362A1 (en) * 2007-04-26 2008-10-29 BP Chemicals Limited Process for the carbonylation of dimethyl ether
EP1985607A1 (en) * 2007-04-26 2008-10-29 BP Chemicals Limited Process for the carbonylation of dimethyl ether
EP1985608A1 (en) * 2007-04-26 2008-10-29 BP Chemicals Limited Process for the carbonylation of dimethyl ether
EP1985606A1 (en) * 2007-04-26 2008-10-29 BP Chemicals Limited Process for the carbonylation of dimethyl ether
US7998762B1 (en) * 2007-11-14 2011-08-16 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
EP2072124A1 (en) 2007-12-19 2009-06-24 BP Chemicals Limited Regeneration of zeolite carbonylation catalysts
EP2072123A1 (en) 2007-12-19 2009-06-24 BP Chemicals Limited Regeneration of zeolite carbonylation catalysts
EP2072125A1 (en) 2007-12-19 2009-06-24 BP Chemicals Limited Ion exchanged mordenite carbonylation catalyst
EP2085375A1 (en) * 2007-12-20 2009-08-05 BP Chemicals Limited Process for the production of acetic acid and/or methyl acetate in the presence of a zeolite of structure type MOR
US8299297B2 (en) * 2008-05-20 2012-10-30 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Process for the production of glycolic acid
EP2174713A1 (en) * 2008-10-13 2010-04-14 BP Chemicals Limited Dealumination process
EP2177499A1 (en) 2008-10-13 2010-04-21 BP Chemicals Limited Carbonylation process
EP2199272A1 (en) * 2008-11-27 2010-06-23 BP Chemicals Limited Carbonylation process
EP2198963A1 (en) * 2008-12-10 2010-06-23 BP Chemicals Limited Bound mordenite zeolite carbonylation catalyst
AU2012335633B2 (en) * 2011-11-10 2017-03-30 Pioneer Energy Synthesis of high caloric fuels and chemicals
US9421522B2 (en) * 2011-12-28 2016-08-23 Eastman Chemical Company Iridium catalysts for carbonylation
UA120086C2 (uk) * 2013-03-08 2019-10-10 Бп Кемікалз Лімітед Спосіб карбонілювання
TW201446731A (zh) 2013-03-08 2014-12-16 Bp Chem Int Ltd 羰基化催化劑及方法
JP5918190B2 (ja) * 2013-10-05 2016-05-18 ザ レジェンツ オブ ザ ユニバーシティ オブ カリフォルニア 脂肪族アルコール及び/又はその反応性誘導体のカルボニル化方法
CN109476579B (zh) 2016-04-19 2021-11-02 英力士乙酰英国有限公司 生产乙酸甲酯的羰基化工艺
WO2018004994A1 (en) 2016-07-01 2018-01-04 Res Usa, Llc Fluidized bed membrane reactor
WO2018004992A1 (en) 2016-07-01 2018-01-04 Res Usa, Llc Conversion of methane to dimethyl ether
US10189763B2 (en) 2016-07-01 2019-01-29 Res Usa, Llc Reduction of greenhouse gas emission
GB201705882D0 (en) 2017-04-12 2017-05-24 Bp Chem Int Ltd Process
CN110963947A (zh) * 2019-12-23 2020-04-07 张家港格瑞特化学有限公司 一种表面活性剂的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612238A (en) * 1977-07-18 1986-09-16 Allied Corporation Fiber reinforced multi-ply stampable thermoplastic sheet
NZ195461A (en) * 1979-11-27 1983-06-14 British Petroleum Co Producing oxygenated hydrocarbon product containing ethanol
US4377504A (en) * 1981-05-01 1983-03-22 Phillips Petroleum Company Cracking catalyst improvement with gallium compounds
US4612387A (en) 1982-01-04 1986-09-16 Air Products And Chemicals, Inc. Production of carboxylic acids and esters
GB9008038D0 (en) * 1990-04-09 1990-06-06 Univ Manchester Gallium zeolites
GB9223170D0 (en) 1992-11-05 1992-12-16 British Petroleum Co Plc Process for preparing carboxylic acids
JP4882147B2 (ja) * 2000-11-20 2012-02-22 東ソー株式会社 新規mor型メタロアルミノシリケートの製造方法
US7465822B2 (en) * 2005-05-05 2008-12-16 Bp Chemicals Ltd. Process for carbonylation of alkyl ethers
US20060252959A1 (en) * 2005-05-05 2006-11-09 The Regents Of The University Of California Process for carbonylation of alkyl ethers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.FRICKE ET Al. «Incorporation of Gallium into Zeolites: syntheses, properties and catalytic application», CHEMICAL REVIEW, v.100, 2000, pp.2303-2405. *

Also Published As

Publication number Publication date
EP1740525B1 (en) 2012-01-25
ES2379467T3 (es) 2012-04-26
JP2007534732A (ja) 2007-11-29
UA88901C2 (ru) 2009-12-10
EP1740525A1 (en) 2007-01-10
GB0409490D0 (en) 2004-06-02
US20080091046A1 (en) 2008-04-17
BRPI0510374B1 (pt) 2015-05-05
CA2562392C (en) 2012-08-21
RS53631B1 (en) 2015-04-30
RU2006141684A (ru) 2008-06-10
BRPI0510374A (pt) 2007-11-06
CN1950321B (zh) 2011-02-23
RS20060606A (en) 2008-09-29
CN1950321A (zh) 2007-04-18
WO2005105720A1 (en) 2005-11-10
ATE542789T1 (de) 2012-02-15
MY143471A (en) 2011-05-31
KR20070002072A (ko) 2007-01-04
KR101167542B1 (ko) 2012-07-20
BRPI0510374B8 (pt) 2016-09-13
CA2562392A1 (en) 2005-11-10
JP5161565B2 (ja) 2013-03-13
TW200535129A (en) 2005-11-01
TWI340739B (en) 2011-04-21
US7642372B2 (en) 2010-01-05

Similar Documents

Publication Publication Date Title
RU2383526C2 (ru) Способ получения карбоновых кислот и их производных
RU2453528C2 (ru) Способ получения продуктов карбонилирования
TWI473650B (zh) Mor類型沸石之選擇性脫鋁
RU2454398C2 (ru) Способ получения карбоновых кислот и/или их производных
KR101709050B1 (ko) 메틸 아세테이트를 제조하기 위한 카르보닐화 방법
US8809573B2 (en) Carbonylation process
JPH06192165A (ja) 脂肪族カルボン酸の製造方法および脂肪族アルコールのカルボニル化用触媒
EP2251083A1 (en) Carbonylation catalyst and process
WO2009077739A1 (en) Regeneration of zeolite carbonylation catalysts
US20100274045A1 (en) Carbonylation process for the production of methyl acetate

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200325