RU2366679C2 - Водные дисперсии клеев - Google Patents

Водные дисперсии клеев Download PDF

Info

Publication number
RU2366679C2
RU2366679C2 RU2006112558/04A RU2006112558A RU2366679C2 RU 2366679 C2 RU2366679 C2 RU 2366679C2 RU 2006112558/04 A RU2006112558/04 A RU 2006112558/04A RU 2006112558 A RU2006112558 A RU 2006112558A RU 2366679 C2 RU2366679 C2 RU 2366679C2
Authority
RU
Russia
Prior art keywords
dispersion
groups
polyurethane
acid
sio
Prior art date
Application number
RU2006112558/04A
Other languages
English (en)
Other versions
RU2006112558A (ru
Inventor
Вольфганг АРНДТ (DE)
Вольфганг АРНДТ
Рюдигер МУШ (DE)
Рюдигер Муш
Кнут ПАНСКУС (DE)
Кнут Панскус
Торстен РИШЕ (DE)
Торстен РИШЕ
Ральф ВЕРНЕР (DE)
Ральф Вернер
Вольфганг ХЕННИНГ (DE)
Вольфганг ХЕННИНГ
Original Assignee
Байер Матириальсайенс Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Байер Матириальсайенс Аг filed Critical Байер Матириальсайенс Аг
Publication of RU2006112558A publication Critical patent/RU2006112558A/ru
Application granted granted Critical
Publication of RU2366679C2 publication Critical patent/RU2366679C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/703Isocyanates or isothiocyanates transformed in a latent form by physical means
    • C08G18/705Dispersions of isocyanates or isothiocyanates in a liquid medium
    • C08G18/706Dispersions of isocyanates or isothiocyanates in a liquid medium the liquid medium being water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • C08G2170/80Compositions for aqueous adhesives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

Изобретение относится к водной дисперсии полимеров для получения клеев. Водная дисперсия содержит полиуретановую дисперсию и водную дисперсию диоксида кремния. В качестве полиуретановой дисперсии она содержит полиуретановую дисперсию со средним размером частиц в ней полиуретанового полимера от 60 до 350 нм. В качестве водной дисперсии диоксида кремния используют водную дисперсию диоксида кремния с диаметром частиц SiO2 от 20 до 400 нм. Полимерные дисперсии применяют в качестве клеев для склеивания любых субстратов одинакового или различного типа. Полученные клеевые соединения обладают высокой начальной термической прочностью. 8 з.п. ф-лы, 6 табл.

Description

Изобретение относится к водным дисперсиям полимеров на основе полиуретанов, к способу их получения и их применению.
Клеи на основе полиуретанов преимущественно представляют собой содержащие растворитель клеи, которые наносятся на оба соединяемых субстрата и подсушиваются. Путем последующего соединения обоих субстратов под давлением при комнатной температуре или после термоактивирования получают склеенную структуру с высокой начальной прочностью непосредственно после процесса соединения.
Исходя из соображений экологии существует все возрастающая потребность в подходящих водных дисперсиях клеев, которые могут быть переработаны в соответствующие водные клеевые композиции. Такого рода системы имеют недостаток: после испарения воды начальная термическая прочность сразу после процесса соединения заметно ниже, чем у клеев, содержащих растворители, несмотря на предварительное термоактивирование сухой клеевой пленки.
К настоящему времени известно использование продуктов кремниевой кислоты для различных целей. В то время как твердые SiO2-продукты часто применяются для управления реологическими свойствами, а также в качестве наполнителей или адсорбентов, золи кремниевой кислоты чаще используются в качестве связующего различных неорганических материалов, в качестве полировального материала для полупроводников или в качестве флокулянта в химических реакциях, протекающих в коллоидном состоянии. Например, в ЕР-А 0332928 описано использование полихлоропреновых латексов в присутствии золей кремниевых кислот в качестве пропиточного слоя при изготовлении элементов противопожарной защиты. В FR-A 2341537 и FR-A 2210699 описаны пирогенные кремниевые кислоты в комбинации с полихлоропреновыми латексами для изготовления огнестойких отделок пеной или для повышения качества битумов и в JP-A 06256738 они описаны в комбинации с сополимерами хлоропренакриловая кислота.
В основе данного изобретения лежит задача предоставить водные составы клеев, которые после нанесения на склеиваемые субстраты и соединения имеют высокую начальную термическую прочность, особенно после термоактивирования.
Был обнаружен поразительный факт, что за счет подходящей комбинации полиуретановых дисперсий и водных дисперсий диоксида кремния можно получать клеи, которые после соединения обладают высокой начальной термической прочностью.
Предметом данного изобретения являются водные дисперсии полимеров, содержащие
а) по меньшей мере одну полиуретановую дисперсию со средним диаметром частиц от 60 до 350 нм, предпочтительно от 20 до 80 нм, а также
б) по меньшей мере одну дисперсию диоксида кремния с диаметром частиц SiO2 от 20 до 400 нм, предпочтительно от 30 до 100 нм, наиболее предпочтительно от 40 до 80 нм.
Используемые в данном изобретении полиуретановые дисперсии (а) содержат полиуретаны (А), которые представляют собой продукты реакции следующих компонентов:
А1) полиизоцианатов,
А2) полимерных полиолов и/или полиаминов со средним молекулярным весом от 400 до 8000,
A3) при необходимости, спиртов с одной или несколькими гидроксильными группами, аминов с одной или несколькими аминогруппами или аминоспиртов с молекулярным весом до 400,
а также по меньшей мере одного соединения, выбранного из
А4) соединений, которые имеют по меньшей мере одну ионную или потенциально ионную группу или
А5) гидрофилизированных неионно соединений.
Потенциально ионная группа в смысле данного изобретения - это группа, которая способна образовать ионную группу.
Предпочтительно полиуретаны (А) получают из 7-45 вес.% А1), 50-91 вес.% А2), 0-15 вес.% А5), 0-12 вес.% ионных или потенциально ионных соединений А4), а также, при необходимости, 0-30 вес.% соединений A3), причем сумма А4) и А5) составляет 0,1-27 вес.%, а сумма всех компонентов равна 100 вес.%.
Особенно предпочтительно полиуретаны (А) получают из 10-30 вес.% А1), 65-90 вес.% А2), 0-10 вес.% А5), 3-9 вес.% ионных или потенциально ионных соединений А4), а также, при необходимости, 0-10 вес.% соединений A3), причем сумма А4) и А5) составляет 0,1-19 вес.%, а сумма всех компонентов равна 100 вес.%.
Наиболее предпочтительно полиуретаны (А) получают из 8-27 вес.% А1), 65-85 вес.% А2), 0-8 вес.% А5), 3-8 вес.% ионных или потенциально ионных соединений А4), а также, при необходимости, 0-8 вес.% соединений A3), причем сумма А4) и А5) составляет 0,1-16 вес.%, а сумма всех компонентов равна 100 вес.%.
Подходящими полиизоцианатами (А1) являются ароматические, аралифатические, алифатические и/или циклоалифатические полиизоцианаты. Можно использовать также смеси таких полиизоцианатов. Примерами подходящих полиизоцианатов являются бутилендиизоцианат, гексаметилендиизоцианат (HDI), изофорондиизоцианат (IPDI), 2,2,4-и/или 2,4,4-триметилгексаметилендиизоцианат, изомерные бис(4,4'-изоцианатопиклогексил)метаны или их смеси с любым изомерным составом, изоцианатометил-1,8-октандиизоцианат, 1,4-циклогексилендиизоцианат, 1,4-фенилендиизоцианат, 2,4- и/или 2,6-толуилендиизоцианат, 1,5-нафтилендиизоцианат, 2,4'- или 4,4'-дифенилметандиизоцианат, трифенилметан-4,4',4''-триизоцианат или их производные с уретановой, изоциануратной, аллофанатной, биуретовой, уретдионовой, иминооксадиазиндионовой структурой и их смеси. Предпочтительными являются гексаметилендиизоцианат, изофорондиизоцианат и изомерные бис(4,4'-изоцианатоциклогексил)метаны, а также их смеси.
Предпочтительно речь идет только об алифатических и/или циклоалифатических полиизоцианатах или смесях полиизоцианатов названного типа. Наиболее предпочтительными исходными компонентами (А1) являются полиизоцианаты или смеси полиизоцианатов на основе гексаметилендиизоцианата (HDI), изофорондиизоцианата (IPDI) и/или 4,4'-диизоцианатодициклогексилметана.
Далее в качестве полиизоцианатов (А1) пригодны любые, полученные модифицированием простых алифатических, циклоалифатических, аралифатических и/или ароматических диизоцианатов, синтезированные по меньшей мере из двух диизоцианатов, полиизоцианаты с уретдионовой, изоциануратной, уретановой, аллофанатной, биуретовой, иминооксадиазиндионовой и/или оксадиазинтрионовой структурой, такие как, например, описанные в журнале J.Prakt. Chem, 1994, 336, стр.185-200.
Подходящие полимерные полиолы и полиамины (А2) обладают ОН-функциональностью по меньшей мере от 1,5 до 4, такие как, например, полиакрилаты, сложные полиэфиры, полилактоны, простые полиэфиры, поликарбонаты, сложные полиэфиркарбонаты, полиацетали, полиолефины и полисилоксаны. Предпочтительными являются полиолы с молекулярным весом от 600 до 2500 и ОН-функциональностью от 2 до 3.
Подходящие поликарбонаты, имеющие гидроксильные группы, получены реакцией производных угольной кислоты, например, дифенилкарбоната, диметилкарбоната или фосгена с диолами. В качестве такого типа диолов подходят, например, этиленгликоль, 1,2- и 1,3-пропандиолы, 1,3- и 1,4-бутандиолы, 1,6-гександиол, 1,8-октандиол, неопентилгликоль, 1,4-бисгидроксиметилциклогексан, 2-метил-1,3-пропандиол, 2,2,4-триметилпентандиол-1,3, дипропиленгликоль, полипропиленгликоли, дибутиленгликоль, полибутиленгликоли, бисфенол А, тетрабромбисфенол А, а также модифицированные лактонами диолы. Предпочтительно диольный компонент содержит 40-100 вес.% гександиола, предпочтительно 1,6-гександиола и/или производных гександиола, особенно предпочтительны такие диолы, которые наряду с концевыми ОН-группами имеют группы простого или сложного эфира, например, продукты, которые получены взаимодействием 1 моля гександиола по меньшей мере с 1 молем, предпочтительно 1-2 молями, капролактона по DE-A 1770245 или этерификацией гександиола самим собой до образования ди- или тригексиленгликоля. Получение таких производных известно, например, из DE-A 1570540. Могут использоваться также описанные в DE-A 3717060 простые полиэфиркарбонатдиолы.
Гидроксилполикарбонаты предпочтительно должны иметь линейное строение. Однако, при необходимости, они могут разветвляться за счет встраивания полифункциональных компонентов, в частности низкомолекулярных многоатомных спиртов. Для этого, например, пригодны глицерин, триметилолпропан, гексантриол-1,2,6, бутантриол-1,2,4, триметилолпропан, пентаэритрит, хинит, манит и сорбит, метилгликозид, 1,3,4,6-диангидрогексит.
В качестве простых полиэфирполиолов пригодными являются известные в химии полиуретанов простые полиэфиры политетраметиленгликоля, которые могут быть получены, например, полимеризацией тетрагидрофурана путем катионного раскрытия цикла.
Кроме того, подходящими простыми полиэфирполиолами являются, например, полиэфиры, полученные из некоторых исходных соединений и оксида стирола, пропиленоксида, бутиленоксида или эпихлоргидрина, особенно пропиленоксида.
В качестве сложных полиэфирполиолов пригодными являются, например, известные продукты реакции многоатомных, предпочтительно двухатомных и, при необходимости, дополнительно трехатомных спиртов с многоосновными, предпочтительно двухосновными дикарбоновыми кислотами. Вместо свободных поликарбоновых кислот для получения сложных полиэфиров могут применяться также соответствующие ангидриды поликарбоновых кислот или соответствующие сложные эфиры поликарбоновых кислот и низших спиртов или их смеси. Поликарбоновые кислоты могут быть алифатическими, циклоалифатическими, ароматическими и/или гетероциклическими и, при необходимости, могут иметь атомы галогена в качестве заместителей и/или быть ненасыщенными.
Компоненты (A3) подходят для заканчивания цепи полиуретанового преполимера. Для этого пригодны монофункциональные спирты и амины. Предпочтительными моноспиртами являются алифатические моноспирты с числом атомов углерода от 1 до 18, такие как этанол, н-бутанол, монобутиловый эфир этиленгликоля, 2-этилгексанол, 1-октанол, 1-додеканол или 1-гексадеканол. Предпочтительными моноаминами являются алифатические моноамины, такие как, например, диэтиламин, дибутиламин, этаноламин, N-метилэтаноламин или N,N-диэтаноламин и амины Jeffamin® М-ряда (фирма Huntsman Corp. Europe, Бельгия) или полиэтиленоксиды и полипропиленоксиды с аминогруппами.
Также компонентами (A3) являются полиолы, аминополиолы или полиамины с молекулярным весом меньше 400, которые в большом количестве описаны в соответствующей литературе.
Предпочтительными компонентами (A3) являются, например:
а) алкандиолы и -триоды, такие как этандиол, 1,2- и 1,3-пропандиолы, 1,4- и 2,3-бутандиолы, 1,5-пентандиол, 1,3-диметилпропандиол, 1,6-гександиол, неопентилгликоль, 1,4-циклогександиметанол, 2-метил-1,3-пропандиол, 2-этил-2-бутилпропандиол, триметилпентандиол, изомеры положения диэтилоктандиола, 1,2- и 1,4-циклогександиолы, гидрированный бисфенол А [2,2-бис(4-гидроксициклогексил)пропан], 2,2-диметил-3-гидроксипропиловый эфир 2,2-диметил-3-гидроксипропионовой кислоты, триметилолэтан, триметилолпропан или глицерин,
б) простые эфиродиолы, такие как диэтилендигликоль, триэтиленгликоль, тетраэтиленгликоль, дипропиленгликоль, трипропиленгликоль, 1,3-бутиленгликоль или простой дигидроксиэтиловый эфир гидрохинона,
в) сложные эфиродиолы общих формул (I) и (II)
Figure 00000001
Figure 00000002
в которых
R означает алкиленовый или ариленовый остаток с числом атомов углерода от 1 до 10, предпочтительно от 2 до 6,
х=2-6 и
У=3-5,
такие как, например,
δ-гидроксибутиловый эфир ε-гидроксикапроновой кислоты, ω-гидроксигексиловый эфир γ-гидроксимасляной кислоты, β-гидроксиэтиловый эфир адипиновой кислоты и бис-β-гидроксиэтиловый эфир терефталевой кислоты и
г) ди- и полиамины, такие как 1,2-диаминоэтан, 1,3-диаминопропан, 1,6-диаминогексан, 1,3- и 1,4-фенилендиамины, 4,4'-дифенилметандиамин, изофорондиамин, смесь изомеров 2,2,4- и 2,4,4-триметилгексаметилендиаминов, 2-метилпентаметилендиамин, диэтилентриамин, 1,3- и 1,4-ксилилендиамины, α,α,α',α'-тетраметил-1,3- и -1,4-ксилилендиамины, 4,4-диаминодициклогексилметан, полиэтиленоксиды или полипропиленоксиды с аминогруппами, которые доступны под наименованием Jeffamin® D-ряда (фирма Huntsman Corp.Europe, Бельгия), диэтилентриамин и триэтилентетрамин. В качестве диаминов в смысле изобретения пригодны также гидразин, гидразингидрат и замещенные гидразины, такие как, например, N-метилгидразин, N,N'-диметилгидразин и их гомологи, а также дигидразиды адипиновой, β-метиладипиновой, себациновой, гидракриловой и терефталевой кислот, семикарбазидоалкиленгидразиды, такие как, например, гидразид β-семикарбазидопропионовой кислоты (например, описан в DE-A 1770 591), семикарбазидоалкиленкарбазиновые сложные эфиры, такие как, например, 2-семикарбазидоэтилкарбазиновый сложный эфир (например, описан в DE-A 1918504), или также аминосемикарбазидные соединения, такие как, например, β-аминоэтилсемикарбазидокарбонат (например, описан в DE-A 1902931).
Компонент (А4) содержит ионные группы, которые могут быть катионными или анионными. Действующие как диспергаторы катионные или анионные соединения это такие соединения, которые содержат, например, сульфониевые, аммониевые, фосфониевые, карбоксилатные, сульфонатные, фосфонатные группы или группы, которые могут быть переведены в названные выше группы путем солеобразования (потенциально ионные группы), и могут встраиваться в макромолекулы с помощью реакционноспособных к изоцианатам групп. Предпочтительно подходящими реакционноспособными к изоцианатам группами являются гидроксильные или аминогруппы.
Подходящими ионными или потенциально ионными соединениями (А4) являются моно- и дигидроксикарбоновые кислоты, моно- и диаминокарбоновые кислоты, моно- и дигидроксисульфоновые кислоты, моно- и диаминосульфоновые кислоты, а также моно- и дигидроксифосфоновые кислоты или моно- и диаминофосфоновые кислоты и их соли, такие как диметилолпропионовая кислота, диметилолмасляная кислота, гидроксипивалиновая кислота, N-(2-аминоэтил)-β-аланин, 2-(2-амино-этиламино)-этансульфокислота, 1,2- или 1,3-пропилендиамин-β-этилсульфокислота, этилендиаминпропил- или -бутилсульфокислота, яблочная, лимонная, гликолевая, молочная кислоты, глицин, аланин, таурин, лизин, 3,5-диаминобензойная кислота, продукт присоединения изофорондиизоцианата (IPDI) и акриловой кислоты (ЕР-А 0916647, пример 1) и его соли щелочных металлов и/или аммонийные соли; продукт присоединения бисульфита натрия к бутен-2-диолу-1,4, простой полиэфирсульфонат, пропоксилированный продукт присоединения 2-бутендиола и NaHSO3, например, описанный в DE-A 2446440 (стр.5-9, формулы I-III), а также переводимые в катионные группы структурные элементы, например, такие как N-метилдиэтаноламин, в качестве гидрофильных структурных компонентов. Предпочтительными ионными или потенциально ионными соединениями являются такие соединения, которые имеют карбоксильные или карбоксилатные и/или сульфонатные группы и/или аммониевые группы. Особенно предпочтительными ионными соединениями являются такие соединения, которые содержат карбоксильные и/или сульфонатные группы в качестве ионных или потенциально ионных групп, такие как соли N-(2-аминоэтил)-β-аланина, 2-(2-амино-этиламино)-этансульфокислоты или продукта присоединения IPDI и акриловой кислоты (ЕР-А 0916647, пример 1) а также диметилолпропионовой кислоты.
Предпочтительными гидрофилизирующими неионно соединениями (А5) являются, например, простые полиоксиалкиленовые эфиры, которые содержат по меньшей мере одну гидроксильную группу или одну аминогруппу. Эти простые полиэфиры содержат от 30 вес.% до 100 вес.% этиленоксидных структурных звеньев. Подходят простые полиэфиры линейного строения с функциональность между 1 и 3, а также соединения общей формулы (III)
Figure 00000003
в которой
R1 и R2 означают независимо друг от друга соответственно двухвалентный алифатический, циклоалифатический или ароматический остаток с числом углеродных атомов от 1 до 18, который может прерываться атомом кислорода и/или азота, и
R3 полиэтиленоксидный остаток с алкоксильной группой на конце.
Гидрофилизирующими неионно соединениями являются, например, одноатомные простые полиалкиленоксидполиэфироспирты, содержащие в молекуле в среднем от 5 до 70, предпочтительно от 7 до 55 этиленоксидных звеньев, которые получают известным методом путем алкоксилирования подходящих исходных соединений (например, Ullmanns Encyclopädie der technischen Chemie, изд-во Chemie, 4-е издание, т.19, стр.31-38).
Подходящими исходными соединениями являются, например, насыщенные моноспирты, такие как метанол, этанол, н-пропанол, изо-пропанол, н-бутанол, изо-бутанол, втор.-бутанол, изомерные пентанолы, гексанолы, октанолы и нонанолы, н-деканол, н-додеканол, н-тетрадеканол, н-гексадеканол, н-октадеканол, пиклогексанол, изомерные метилциклогексанолы или гидроксиметилциклогексаны, 3-этил-3-гидроксиметилоксетан или тетагидрофурфуриловый спирт, моноалкиловые эфиры диэтиленгликоля, такие как, например, монобутиловый эфир диэтиленгликоля, ненасыщенные спирты, такие как аллиловый спирт, 1,1-диметилаллиловый спирт или олеиновый спирт, ароматические спирты, такие как фенол, изомерные крезолы или метоксифенолы, аралифатические спирты, такие как бензиловый спирт, анисовый спирт или коричный спирт, вторичные моноамины, такие как диметиламин, диэтиламин, дипропиламин, диизопропиламин, дибутиламин, бис-(2-этилгексил)-амин, N-метил- и N-этилциклогексиламины или дициклогексиламин, а также гетероциклические вторичные амины, такие как морфолин, пирролидин, пиперидин или 1H-пиразол. Предпочтительными исходными соединениями являются насыщенные моноспирты. Наиболее предпочтительно в качестве исходного соединения применяется монобутиловый эфир диэтиленгликоля. Подходящими для реакции алкоксилирования алкиленоксидами являются этиленоксид и пропиленоксид, которые могут использоваться в реакции алкоксилирования в любой последовательности или также в смеси.
В случае простых полиалкиленоксидполиэфироспиртов речь идет либо об индивидуальных полиэтиленоксидполиэфирах, либо о смешанных полиалкиленоксидполиэфирах, алкиленоксидные структурные звенья которых состоят не менее чем на 30 моль.%, предпочтительно не менее чем на 40 мол.%, из этиленоксидных звеньев. Предпочтительными неионными соединениями являются монофункциональные смешанные полиалкиленоксидполиэфиры, которые имеют не менее чем 40 мол.% этиленоксидных звеньев и максимум 60 мол.% пропиленоксидных звеньев.
Для получения полиуретана (А) применяется предпочтительно комбинация неионных (А4) и ионных (А5) гидрофилизирующих средств. Особенно предпочтительны комбинации из неионных и анионных гидрофилизирующих средств.
Получение водного полиуретана (А) может осуществляться в одну или несколько стадий в гомогенной фазе или в несколько стадий отчасти в дисперсной фазе. После полностью или частично осуществленного полиприсоединения происходит стадия диспергирования, эмульгирования или растворения. В заключение, при необходимости, осуществляется последующее полиприсоединение или модификация в дисперсной фазе.
Для получения водного полиуретана (А) могут применяться все известные к настоящему времени способы, такие как способ использования эмульгатора в условиях сдвига, ацетоновый способ, способ получения через преполимер, способ эмульгирования расплава, кетиминовый способ или способ спонтанного диспергирования твердых веществ или производные этих способов. Обзор этих способов содержится в книге Houben-Weyl «Methoden der organischen Chemie» (Методы органической химии) (дополнительные тома к четвертому изданию, т.Е20, H.BartI J.Falbe, Штутгарт, Нью-Йорк, издательство Thieme, 1987, стр.1671-1682). Предпочтительными является способ эмульгирования расплава и ацетоновый способ. Наиболее предпочтителен ацетоновый способ.
Обычно для получения полиуретанового преполимера в реактор помещают все компоненты (А2)-(А5) или часть компонентов (А2)-(А5), которые не имеют первичных или вторичных аминогрупп, и полиизоцианат (А1) и, при необходимости, разбавляют растворителем, смешивающимся с водой, но инертным к изоцианатным группам, однако предпочтительно без растворителя, нагревают до температуры, предпочтительно лежащей в интервале от 50 до 120°.
Подходящими растворителями являются ацетон, бутанон, тетрагидрофуран, диоксан, ацетонитрил, диметиловый эфир дипропиленгликоля и 1 -метил-2-пирролидон, которые могут добавляться не только в начале процесса получения, но, при необходимости, частично также и позже. Предпочтительны ацетон и бутанон. Можно осуществлять реакцию при нормальном или повышенном давлении, например, выше температуры кипения при нормальном давлении растворителя, например ацетона.
Далее для ускорения реакции присоединения изоцианатов можно использовать известные катализаторы, такие как, например, триэтиламин, 1,4-диазабицикло-[2,2,2]-октан, оксид дибутилолова, октоат олова или дибутилоловодилаурат, бис-(2-этилгексаноат) олова или другие металлоорганические соединения, или добавлять их позже. Предпочтителен дибутилоловодилаурат.
Затем добавляются еще не добавленные к началу реакции компоненты (A1), (A2), при необходимости, (A3) и (А4) и/или (А5), которые не имеют первичных или вторичных аминогрупп. При получении полиуретановых преполимеров отношение количества веществ с изоцианатными группами к количеству веществ с группами, реакционноспособными к изоцианатным группам, составляет от 0,90-3, предпочтительно 0,95-2,5, наиболее предпочтительно 1,05-2,0. Взаимодействие компонентов (A1)-(А5) в расчете на общее количество реакционноспособных к изоцианатам групп части (A2)-(А5), которые не содержат первичных или вторичных аминогрупп, происходит частично или полностью, но предпочтительно полностью. Степень превращения обычно контролируют путем отслеживания содержания NCO-групп в реакционной смеси. Для этого можно использовать как спектроскопические измерения, например, как спектры в инфракрасной и ближней инфракрасной областях, определения показателя преломления, так и химические анализы, такие как титрование, отобранных проб. Полиуретановые преполимеры, которые содержат свободные изоцианатные группы, получают в массе или в растворе.
После получения полиуретановых преполимеров или во время получения из (A1) и (A2)-(А5), если это не осуществлялось в исходных молекулах, происходит частичное или полное солеобразование групп, действующих как анионно и/или катионно диспергирующие группы. В случае анионных групп для этого используются основания, такие как аммиак, карбонат или гидрокарбонат аммония, триметиламин, триэтиламин, трибутиламин, диизопропилэтиламин, диметилэтаноламин, диэтилэтаноламин, триэтаноламин, гидроксид калия или карбонат натрия, предпочтительны триэтиламин, триэтаноламин, диметилэтаноламин или диизопропилэтиламин. Количество оснований составляет от 50 до 100%, предпочтительно от 60 до 90% от количества вещества с анионными группами. В случае катионных групп используются диметиловый эфир серной кислоты или янтарная кислота. Если применяются только неионно гидрофилизированные соединения (А5) с группами простых эфиров, стадия нейтрализации опускается. Нейтрализация может осуществляться также одновременно с диспергированием, при котором диспергирующая вода уже содержит нейтрализующее средство.
Возможными анионными компонентами являются (А2), (A3) и (А4), с которыми, при необходимости, могут взаимодействовать еще остающиеся изоцианатные группы. Такое удлинение цепи может происходить при этом либо в растворителе перед диспергированием, во время диспергирования, либо в воде после диспергирования. Если в качестве (А4) используется аминный компонент, удлинение цепи предпочтительно осуществляется перед диспергированием.
Аминные компоненты (А2), (A3) или (А4) могут добавляться к реакционной смеси разбавленными органическим растворителем и/или водой. Предпочтительно используется 70-95 вес.% растворителя и/или воды. Если имеется несколько аминных компонентов, то взаимодействие с ними может происходить в любой последовательности или одновременно за счет добавления смеси.
С целью получения полиуретановой дисперсии (А) полиуретановые преполимеры, при необходимости, при сильном сдвиге, например, при энергичном перемешивании или при использовании струйного диспергатора, вносится либо в воду для диспергирования, либо, наоборот, вода примешивается к преполимерам. Затем, если это еще не произошло в гомогенной фазе, может последовать увеличение молярной массы за счет реакции еще имеющихся, при необходимости, изоцианатных групп с компонентами (А2), (A3). Используемое количество полиамина (А2), (A3) зависит от еще имеющихся, не прореагировавших изоцианатных групп. Взаимодействуют с полиаминами (А2), (A3) предпочтительно 50-100%, наиболее предпочтительно 75-95% количества изоцианатных групп.
При необходимости, органический растворитель можно отогнать. Дисперсии содержат 10-70 вес.%, предпочтительно 25-65 вес.% и наиболее предпочтительно 30-60 вес.% твердого вещества.
Полиуретановые дисперсии согласно данному изобретению могут использоваться отдельно или вместе с известными связующими, вспомогательными веществами и добавками, в частности светостабилизаторами, такими как УФ-абсорберы и стерически затрудненные амины, антиоксиданты, наполнители, а также лаковые вспомогательные вещества, например добавки, препятствующие осаждению, пеногасители и/или смачиватели, средства, способствующие разливу, реактивные разбавители, пластификаторы, катализаторы, вспомогательные растворители и/или загустители и добавки, такие как, например, дисперсии, пигменты, красители или матирующие средства. В частности, без проблем возможны комбинации с полиуретановыми дисперсиями или полиакрилатными дисперсиями, которые могут также содержать гидроксильные группы. Добавки могут добавляться к полиуретановым дисперсиям. согласно данному изобретению непосредственно перед переработкой. Однако возможно также по крайней мере часть добавки добавить перед диспергированием связующего или смеси связующее/смачиватель, либо во время диспергирования. Выбор и дозировка этих веществ, которые могут быть добавлены в виде отдельных компонентов и/или общей смесью, известны специалисту.
Водные дисперсии диоксида кремния известны давно. Они имеют различную структуру в зависимости от процесса получения.
Подходящие дисперсии диоксида кремния б) согласно данному изобретению могут быть получены на основе золя кремниевой кислоты, силикагеля, пирогенных кремниевых кислот или осажденных кремниевых кислот или их смесей.
Золи кремниевых кислот являются коллоидными растворами аморфного диоксида кремния в воде, их также называют золями диоксида кремния, но чаще коротко называют золями кремниевой кислоты. При этом диоксид кремния существует в виде почти сферических частиц с гидроксильными группами на поверхности. Как правило, диаметр коллоидной частицы составляет от 1 до 200 нм, причем коррелирующая с размерами частиц удельная БЭТ-поверхность (определена по методу G.N.Sears, Analytical Chemistry, 1956, 28, №12, 1981-1983) составляет от 15 до 2000 м2/г. Поверхность частиц SiO2 имеет заряд, который компенсируется соответствующим противоионом, введенным в коллоидный раствор для стабилизации. Стабилизованные щелочами золи кремниевых кислот имеют значение рН от 7 до 11,5 и в качестве подщелачивающих средств содержат, например, небольшие количества Na2O, K2O, Li2O, аммиака, органических азотсодержащих оснований, тетраалкиламмонийхлорида или алюминатов щелочных металлов или аммония. Золи кремниевых кислот как полустабильные коллоидные растворы также могут быть слабо кислыми. Далее за счет нанесения на поверхность Al2(ОН)5Сl можно приготовить катионно регулируемые золи кремниевых кислот. Концентрация твердого вещества в золе составляет от 5 до 60 вес.% SiO2.
Процесс получения золей кремниевых кислот в основном проходит стадии обесщелачивания жидкого стекла с помощью ионного обмена, регулирования и стабилизации соответственно нужных размеров частиц SiO2 (либо распределения частиц SiO2 по размерам), устанавливания соответствующей нужной
концентрации SiO2 и, при необходимости, осуществления модификации поверхности частиц SiO2, например, с помощью Al2(ОН)5Сl. Ни в одной из этих стадий процесса частицы SiO2 не теряют состояние коллоидного растворения. Этим объясняется наличие дискретных первичных частиц с высокой эффективностью в качестве связующего.
Под силикагелями понимают коллоидные формованные и неформованные кремниевые кислоты с консистенцией от эластичной до твердой с пористой структурой от более рыхлой до плотной. Кремниевые кислоты существуют в форме высококонденсированных поликремниевых кислот. На поверхности находятся силоксановые и/или силанольные группы. Получают силикагели из жидкого стекла путем взаимодействия с минеральными кислотами.
Далее следует различать пирогенные кремниевые кислоты и осажденные кремниевые кислоты. В случае осажденных кремниевых кислот к имеющейся воде одновременно добавляется жидкое стекло и кислота, например Н2SO4. При этом образуются коллоидные первичные частицы, которые агломерируются в ходе последующей реакции и срастаются в агломераты. Первичные частицы этих кремниевых кислот, существующих в виде твердого вещества, прочно сшиты во вторичные агломераты.
Пирогенные кремниевые кислоты могут быть получены пламенным гидролизом или с помощью метода электрической дуги. Преобладающим методом синтеза пирогенных кремниевых кислот является пламенный гидролиз, при котором тетрахлорсилан разлагается в кислородно-водородном пламени. Образующаяся при этом кремниевая кислота является рентгеноморфной. Пирогенные кремниевые кислоты на своей почти не содержащей пор поверхности имеют заметно меньше ОН-групп по сравнению с осажденными кремниевыми кислотами. Пирогенные кремниевые кислоты, полученные пламенным гидролизом, имеют удельную поверхность от 50 до 600 м2/г (DIN 66131) и размер первичных частиц от 5 до 50 нм; кремниевые кислоты, полученные методом электрической дуги, имеют удельную поверхность от 25 до 300 м2/г (DIN 66131) и размер первичных частиц от 5 до 500 нм.
Другие данные о синтезе и свойствах кремниевых кислот в твердом виде можно найти, например, в книге K.Н.Büchel, H.-H. Moretto, P. Woditsch «Industrielle Anorganische Chemie» («Промышленная неорганическая химия»), издательство Wiley VCH, 1999, глава 5.8.
Если для используемых согласно данному изобретению полимерных дисперсий применяется в качестве выделенного твердого вещества сырье SiO2, такое как, например, пирогенная или осажденная кремниевая кислота, то оно переводится в водную SiO2-дисперсию путем диспергирования.
Для получения дисперсий диоксида кремния используются современные диспергаторы, предпочтительно такие, которые пригодны для создания высоких скоростей сдвига, такие как прибор «Ultratorrax» и дисковый диссольвер.
Предпочтительно используются такие водные дисперсии диоксида кремния, частицы SiO2 которых имеют размеры от 20 до 400 нм, особенно предпочтительно от 30 до 100 нм и наиболее предпочтительно от 40 до 80 нм. Если используется осажденная кремниевая кислота, то с целью измельчения частиц она подвергается размалыванию.
Предпочтительными полимерными дисперсиями согласно данному изобретению являются такие, в которых частицы SiO2 дисперсии диоксида кремния б) существуют в виде отдельных несшитых первичных частиц.
Также предпочтительно, что частицы SiO2 имеют на поверхности гидроксильные группы.
Наиболее предпочтительно в качестве водных дисперсий диоксида кремния используются золи кремниевой кислоты.
Для получения полимерных дисперсий согласно данному изобретению соотношение количеств отдельных компонентов выбирается таким образом, что получающиеся в результате дисперсии содержат от 30 до 60 вес.%, диспергированных полимеров, причем содержание полиуретановой дисперсии (а) составляет от 55 до 99 вес.% и содержание дисперсии диоксида кремния (б) от 1 до 45 вес.%, при этом процентные данные относятся к весу нелетучих компонентов и в сумме составляют 100 вес.%.
Полимерные дисперсии согласно данному изобретению предпочтительно содержат от 70 до 98 вес.% полиуретановой дисперсии (а) и от 2 до 30 вес.% дисперсии золя кремниевой кислоты (б), особенно предпочтительны смеси из 80-93 вес.% дисперсии (а) и 7-20 вес.% дисперсии (б), причем процентные данные относятся к весу нелетучих компонентов и в сумме составляют 100 вес.%.
Полиуретановые дисперсии могут, при необходимости, содержать также другие дисперсии, такие как, например, полиакрилатные, поливинилиденхлоридные, полибутадиеновые, поливинилацетатные, полихлоропреновые или стиролбутадиеновые дисперсии в количестве до 30 вес.%.
В полимерных дисперсиях согласно данному изобретению, при необходимости, содержатся другие вспомогательные средства для клеев и добавки. Например, могут добавляться наполнители, такие как кварцевая мука, кварцевый песок, тяжелый шпат, карбонат кальция, мел, доломит или тальк, при необходимости, вместе со смачивателями, например, полифосфатами, такими как гексаметафосфат натрия, нафталинсульфокислота, аммонийные или натриевые соли полиакриловых кислот, причем наполнители добавляются в количестве от 10 до 60 вес.%, предпочтительно от 20 до 50 вес.%, а смачиватели в количестве от 0,2 до 0,6 вес.%, все добавки в расчете на нелетучие компоненты.
Другими подходящими вспомогательными средствами являются, например, используемые в количестве от 0,01 до 1 вес.% в расчете на нелетучие компоненты органические загустители, такие как производные целлюлозы, альгинаты, крахмал, производные крахмала, полиуретановые загустители или полиакриловая кислота или используемые в количестве от 0,05 до 5 вес.% в расчете на нелетучие компоненты неорганические загустители, такие как, например, бентониты.
Для консервации к клеевым составам согласно данному изобретению могут добавляться также фунгициды. Они применяются в количестве от 0,02 до 1 вес.% в расчете на нелетучие компоненты. Подходящими фунгицидами являются, например, производные фенола и крезолов или оловоорганические соединения.
При необходимости, в полимерную дисперсию согласно данному изобретению могут добавляться также придающие клейкость смолы, такие как, например, немодифицированные и модифицированные природные смолы, такие как сложные эфиры коллофония, углеводородные смолы или синтетические смолы, такие как фталатные смолы, в дисперсном виде (см., например, в книге R.Jordan, R.Hinterwaldner «Klebharze» издательство Hinterwaldner, Мюнхен, 1994, стр.75-115). Предпочтительны дисперсии алкилфенольных и терпенфенольных смол с температурой размягчения выше 70°С, наиболее предпочтительно выше 100°С.
Возможно также использование органических растворителей, таких как, например, толуол, ацетон, ксилол, бутилацетат, метилэтилкетон, этилацетат, диоксан или их смеси, или пластификаторов, например, на основе адипатов, фталатов или фосфатов в количестве от 0,5 до 10 вес. частей в расчете на нелетучие компоненты.
Другим предметом изобретения является способ получения полимерных дисперсий согласно данному изобретению, отличающийся тем, что полиуретановую дисперсию (а) смешивают с дисперсией диоксида кремния (б) и, при необходимости, добавляют обычные клеевые вспомогательные средства и добавки.
Предпочтительный способ получения полимерных дисперсий согласно данному изобретению отличается тем, что сначала полиуретановую дисперсию (а) смешивают с клеевыми вспомогательными средствами и добавками и во время смешивания или после него добавляют золь кремниевой кислоты (б).
Нанесение клеевых составов может осуществляться обычным путем, например, кистью, ракелем, обливанием, распылением, накатыванием или окунанием. Высушивание клеевой пленки может происходить при комнатной температуре или повышенных до 220°С температурах.
Клеевые композиции могут применяться как однокомпонентые или обычным способом при использовании отвердителей.
Полимерные дисперсии согласно данному изобретению могут применяться как клеи, например, для склеивания любых субстратов одинакового или различного типа, таких как древесина, бумага, пластики, текстиль, кожа, резина или неорганические материалы, такие как керамика, фаянс, стекловолокно или цемент.
Примеры 1.1. Использованные вещества
Таблица 1
Полиуретановые дисперсии
Дисперсия Продукт Поставляемая форма Поставщик
А Dispercoll® U 53 40%-ная дисперсия алифатического гидроксилсодержащего сложного полиэфирполиуретана; диаметр частиц 100 нм минимальная температура активирования: 45-55°С, рН 6,0-9,0 Bayer AG, Леверкузен, Германия
Б Dispercoll® U 54 50%-ная дисперсия алифатического гидроксилсодержащего сложного полиэфирполиуретана; диаметр частиц 200 нм минимальная температура активирования: 45-55°С, рН 6,0-9,0 Bayer AG Леверкузен, Германия
Таблица 2
Диоксид кремния
Продукт Поставщик Поставляемая форма Тип
Dispercoll® S 5005 Bayer AG, Леверкузен, Германия Дисперсия золя кремниевой кислоты, 50%-ная, BET 50 м2/г, рН 9, Размер частиц 50 нм Kieselsol (золь кремниевой кислоты)
Dispercoll® S 3030 Bayer AG, Леверкузен, Германия Дисперсия золя кремниевой кислоты, 30%-ная, ВЕТ 300 м2/г, рН 10, Размер частиц 9 нм Kieselsol (золь кремниевой кислоты)
Таблица 3
Отвердитель
Продукт Функция Изготовитель
Desmodur® DN Алифатический изоцианатный отвердитель на основе HDI*), вязкость 1250±300 мПас, содержание NCO 21,8±0,5% Bayer AG, Леверкузен, Германия
*) 90,77 вес.% полимерного гидрофилизированного тримера HDI (гексаметилендиизоцианата) Desmodur® N3600
4,78 вес.% внутреннего эмульгатора, полученного взаимодействием монофункционального спирта со смесью этиленоксид/пропиленоксид, гидроксильное число 40
1.2. Методы измерения
1.2.1 Определение сопротивления отслаиванию на мягком ПВХ после шокового активирования
Испытания осуществляли по EN 1392. На два испытуемых образца мягкого ПВХ (30% диоктилфталата) размером 100×30 мм, которым придана шероховатость с помощью шлифовальной бумаги (зернистость 80), наносили кистью дисперсии с двух сторон на шероховатые поверхности и при комнатной температуре сушили в течение 60 минут. Затем образцы подвергали шоковому активированию: склеиваемые поверхности облучали в течение 10 секунд ИК-излучателем фирмы Funk (Schock-Aktiviergerät 2000) (прибор для шокового активирования). При этом пленка клея нагревается до температуры на поверхности 90±2°С. Склеивание происходит сразу после термоактивирования покрытых клеем испытуемых образцов, при котором активированные поверхности укладываются друг на друга и прессуются в прессе (60 секунд; 4 бар). Испытание на разрыв происходит при комнатной температуре на стандартной разрывной машине. Определяются значения прочности сразу после склеивания и спустя 3 суток. Испытуемые образцы выдерживали при 23°С и относительной влажности 50%.
1.2.2 Определение начальной термической прочности (AWT) на склее буковая древесина/жесткий ПВХ
Материалы:
- Испытуемый образец из буковой древесины 50×150×4 мм
- лист из ПВХ (Renolit 32052096 Strukton; фирмы Worms, Германия) Desmodur® DN
Нанесение клея:
- нанесение клея однокомпонентно с помощью ракеля, 200 µм
Время подсушивания:
- Не менее 3 часов после нанесения клея при комнатной температуре
Условия прессования:
- 10 секунд при температуре соединения 77°С и давлении прессования 4 бар
Условия испытаний в сушильном шкафу
- камерная сушилка с циркуляцией воздуха 80°С, груз 2,5 кг
Осуществление:
Клей наносится однокомпонентно с помощью ракеля (200 µм) на испытуемый образец из древесины. Лист отрезается таким образом, что после трехкратного загибания края общая длина составляет 12 см. Спустя 3 часа после нанесения клея деревянный испытуемый образец соединяется с листом при температуре соединения 77°С и 4 бар эфф. давления, 10 секунд на мембранном прессе.
Сразу после этого соединенные образцы помещают в сушильный шкаф на 3 мин без груза и затем с грузом в 2,5 кг на 5 минут. Для этого испытуемый образец из древесины подвешивается в сушильном шкафу и к нему для закрепления сложенного в три раза листа прикрепляется клеммовое соединение с грузом. После истечения времени груз тотчас удаляется и слоистая композиция освобождается. Измеряется участок отслаивания и указывается в [мм/мин].
1.3 Получение клеевых композиций
Для получения композиций полиуретановая дисперсия помещается в химический стакан. При перемешивании добавляется диоксид кремния. Для двухкомпонентного склеивания 100 весовых частей дисперсии гомогенизируют с 3 весовыми частями эмульгируемого изоцианатного отвердителя в течение не менее 2 минут. Эту смесь можно использовать примерно в течение 2 часов.
Таблица 4
Композиции
Продукт Рецептура (данные в весовых частях)
1 2 3 4 5 6
Полиуретановая дисперсия
А 100 100 100 100 100 100
Б
Тип диоксида кремния
Dispercoll® S 5005 - 26 - - 32,5 -
Dispercoll® S 3030 - 43 - 54,1
1.4 Результаты
1.4.1. Определение сопротивления отслаиванию на мягком ПВХ
Таблица 5
Сопротивление отслаиванию мягкого ПВХ
Пример № Композиция № Desmodur DN [части] Сопротивление отслаиванию сразу [н/мм] Сопротивление отслаиванию спустя 3 суток [н/мм]
1* 1 - 5,0 10,2
2* 1 3 3,5 10,1
3 2 - 6,1 9,5
4 2 3 5,2 9,5
5* 3 - 1,0 1,0
6* 3 3 0,9 2,3
7* 4 - 6,1 8,9
8* 4 3 5,5 8,7
9 5 - 5,5 5,4
10 5 3 5,4 7,0
11* 6 - 1,4 0,2
12* 6 3 1,6 0,8
*: сравнительный пример
Как можно видеть из таблицы 5, добавка Dispercoll® S 5005 влечет за собой неизменно такой же высокий уровень прочности как у полиуретановых дисперсий, не входящих в композицию. Композиция с Dispercoll® S 3030 вызывает характерное ухудшение сопротивления отслаиванию на мягком ПВХ.
1.4.2 Определение начальной термической прочности на склее буковая древесина/жесткий ПВХ
Таблица 6
Начальная термическая прочность
Пример № Композиция № Начальная термическая прочность [мм/мин]
13* 4 9,8
14 5 1,9
15* 6 отклеивание
*: сравнительный пример
Как можно видеть из таблицы 6, добавка Dispercoll® S 5005 вызывает характерное улучшение начальной термической прочности по сравнению с полиуретановыми дисперсиями, не входящими в композицию. Композиция с Dispercoll® S 3030 ведет к полному отклеиванию испытуемых образцов.

Claims (9)

1. Применение водной дисперсии полимеров, содержащей
а) полиуретановую дисперсию со средним размером частиц от 60 до 350 нм, и
б) водную дисперсию диоксида кремния с диаметром частиц SiO2 от 20 до 400 нм
для получения клеев.
2. Применение по п.1, отличающееся тем, что используемые частицы SiO2 имеют диаметр от 30 до 100 нм.
3. Применение по п.1, отличающееся тем, что используемые частицы SiO2 имеют диаметр от 40 до 80 нм.
4. Применение по любому из пп.1-3, отличающееся тем, что используемая водная дисперсия диоксида кремния б) представляет собой водный золь кремниевой кислоты.
5. Применение по любому из пп.1-3, отличающееся тем, что используемые частицы SiO2 имеют на поверхности гидроксильные группы.
6. Применение по любому из пп.1-3, отличающееся тем, что используемые частицы SiO2 существуют в виде отдельных несшитых первичных частиц.
7. Применение по п.6, отличающееся тем, что используемая водная дисперсия диоксида кремния б) представляет собой водный золь кремниевой кислоты.
8. Применение по п.6, отличающееся тем, что используемые частицы SiO2 имеют на поверхности гидроксильные группы.
9. Применение по п.8, отличающееся тем, что используемая водная дисперсия диоксида кремния б) представляет собой водный золь кремниевой кислоты.
RU2006112558/04A 2003-09-18 2004-09-07 Водные дисперсии клеев RU2366679C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10343675A DE10343675A1 (de) 2003-09-18 2003-09-18 Wässrige Klebstoff-Dispersionen
DE10343675.8 2003-09-18

Publications (2)

Publication Number Publication Date
RU2006112558A RU2006112558A (ru) 2007-11-10
RU2366679C2 true RU2366679C2 (ru) 2009-09-10

Family

ID=34305993

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006112558/04A RU2366679C2 (ru) 2003-09-18 2004-09-07 Водные дисперсии клеев

Country Status (17)

Country Link
US (1) US8114931B2 (ru)
EP (1) EP1664227B1 (ru)
JP (1) JP4933895B2 (ru)
KR (1) KR101158133B1 (ru)
CN (1) CN100475925C (ru)
AT (1) ATE448284T1 (ru)
AU (1) AU2004280361B2 (ru)
CA (1) CA2538956C (ru)
DE (2) DE10343675A1 (ru)
ES (1) ES2334572T3 (ru)
HK (1) HK1097290A1 (ru)
MX (1) MXPA06002937A (ru)
PL (1) PL1664227T3 (ru)
RU (1) RU2366679C2 (ru)
TW (1) TWI382073B (ru)
UA (1) UA84168C2 (ru)
WO (1) WO2005035684A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455331C1 (ru) * 2010-12-14 2012-07-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") Экологически безопасный клей-расплав на основе сополимера этилена и винилацетата

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635054B2 (ja) * 2005-01-24 2011-02-16 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド ナノ粒子/ポリウレタンコンボジットの水性分散物
EP1818380A1 (de) * 2006-02-08 2007-08-15 Solvay Infra Bad Hönningen GmbH Dispersionsklebstoff
DE102006021728A1 (de) * 2006-05-09 2007-11-15 Bayer Materialscience Ag Wässrige Dispersionen mit bimodaler Teilchengrößenverteilung
US8071670B2 (en) * 2006-05-11 2011-12-06 Akzo Nobel Chemicals International B.V. Aqueous dispersions of polyvinylacetate and silica, processes for preparing the same, uses therefor and substrates coated and/or bonded therewith
EP2064276A2 (de) * 2006-09-20 2009-06-03 Akzo Nobel Chemicals International B.V. Wässrige siliciumdioxid dispersionen für dicht- und klebstoffformulierungen
ATE552315T1 (de) * 2007-11-20 2012-04-15 Dainippon Ink & Chemicals Wässrige pigmentdispersion und auf wasser basierende pigmenttinte für tintenstrahlaufzeichnung
JP5035202B2 (ja) * 2008-09-30 2012-09-26 豊田合成株式会社 本革材及び自動車の内装品
CN102365333B (zh) * 2009-12-10 2014-05-14 Dic株式会社 聚氨酯树脂组合物、涂覆剂及粘接剂以及使用其获得的固化物及固化物的制造方法
CN102477138B (zh) * 2010-11-27 2013-12-11 中国科学院兰州化学物理研究所 二氧化硅交联形状记忆聚合物材料
JP2014522300A (ja) * 2011-05-25 2014-09-04 ディバーシー・インコーポレーテッド 表面コーティングシステムおよび表面コーティングシステムの使用方法
TWI583701B (zh) 2011-06-21 2017-05-21 拜耳智慧財產有限公司 濃縮含有機聚合物粒子與二氧化矽粒子之水性分散液的方法
US20130101540A1 (en) * 2011-10-21 2013-04-25 Bayer Materialscience Llc Aqueous dispersions of polyurethane and nanoparticles
ITPD20130015A1 (it) * 2013-01-25 2014-07-26 Novotex Italiana S P A Film di rivestimento battistrada per una suola di calzature in materiale polimerico a base poliuretanica
US10640702B2 (en) * 2013-08-01 2020-05-05 Covestro Llc Coated particles and methods for their manufacture and use
JP2016017136A (ja) * 2014-07-08 2016-02-01 Dic株式会社 ウレタン樹脂組成物及びそれを用いた積層体
CN105602513A (zh) * 2015-12-30 2016-05-25 扬州市金鑫电缆有限公司 纵向水密封耐腐蚀船用特种电缆
CN106590506B (zh) * 2016-12-08 2019-07-23 万华化学集团股份有限公司 一种水性真空吸塑胶及其制备方法
CN109021190A (zh) * 2017-06-08 2018-12-18 重庆韩拓科技有限公司 一种高耐热性的纳米改性聚氨酯胶黏剂及其制备方法
CN107699184A (zh) * 2017-09-26 2018-02-16 康菲胶粘剂技术(广东)有限公司 一种水性真空吸塑胶
CN108192555B (zh) * 2018-02-12 2019-02-15 中山爵邦时装科技有限公司 一种粘结剂组合物及其在制衣的应用
EP3763525A1 (en) 2019-07-11 2021-01-13 Bostik Sa One-component heat-activatable polyurethane water-based adhesive composition
EP4058523A1 (en) * 2019-11-13 2022-09-21 Covestro Intellectual Property GmbH & Co. KG Composition, preparation method and application thereof
EP3848423A1 (en) * 2020-01-13 2021-07-14 Covestro Intellectual Property GmbH & Co. KG Composition, preparation method and application thereof
CN111394037B (zh) * 2020-04-01 2022-06-28 牡丹江师范学院 一种耐湿热耐高温水性汽车门护板内饰胶黏剂及其制备方法
CN113801554A (zh) * 2020-06-16 2021-12-17 科思创德国股份有限公司 一种组合物及其制备方法和应用
EP3988595A1 (de) * 2020-10-26 2022-04-27 Covestro Deutschland AG Einsatz von frischsol in formulierungen auf basis von polyurethandispersionen
CN112175567B (zh) * 2020-10-29 2022-12-13 烟台德邦科技股份有限公司 一种耐水解防沉降导电胶及其制备方法
CN114525092A (zh) * 2022-03-16 2022-05-24 哥俩好新材料股份有限公司 一种高触变阻燃水基透明免钉胶及其制备方法
CN114921597B (zh) * 2022-04-12 2023-09-01 浙江通天星集团股份有限公司 一种耐磨耐刮擦无铬鞣沙发皮革的生产方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1770245C3 (de) * 1968-04-23 1979-11-15 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von gegebenenfalls vernetzten Polyurethanen
DE1902932A1 (de) * 1969-01-22 1970-08-20 Bayer Ag Semicarbazidarylamine als Kettenverlaengerungsmittel fuer Elastomerfaeden
FR2210699A2 (en) 1972-12-19 1974-07-12 Boidin Georget Polychloroprene latex binder for sports pitches - contg. bitumen gelling agent, silica and rubber crumbs
US4108814A (en) * 1974-09-28 1978-08-22 Bayer Aktiengesellschaft Aqueous polyurethane dispersions from solvent-free prepolymers using sulfonate diols
FR2341537A1 (fr) 1976-02-23 1977-09-16 Mat Inter Sa Produit cellulaire souple incombustible a base de silicate de soude et son procede de preparation
US4567228A (en) * 1984-05-21 1986-01-28 Ppg Industries, Inc. Aqueous dispersion, internally silylated and dispersed polyurethane resins, and surfaces containing same
US4844976A (en) * 1987-03-09 1989-07-04 Minnesota Mining And Manufacturing Company Retroreflective sheet coated with silica layer
DE3717060A1 (de) * 1987-05-21 1988-12-01 Bayer Ag Polyether-polycarbonat-diole, ihre herstellung und verwendung als ausgangsprodukte fuer polyurethankunststoffe
DE3808275A1 (de) * 1988-03-12 1989-09-21 Bayer Ag Brandschutzelemente
JPH0834828A (ja) * 1994-07-22 1996-02-06 Sekisui Chem Co Ltd 水性接着剤の製造方法
JPH1016130A (ja) * 1996-07-08 1998-01-20 Kawasaki Steel Corp 加工性および加工後耐食性に優れた有機複合被覆鋼板
DE19750186A1 (de) 1997-11-13 1999-05-20 Bayer Ag Hydrophilierungsmittel, ein Verfahren zu dessen Herstellung sowie dessen Verwendung als Dispergator für wäßrige Polyurethan-Dispersionen
US5859118A (en) * 1997-12-17 1999-01-12 Bayer Corporation Aqueous dispersions of polyurethane/ureas containing alkoxysilane groups and colloidal silicas
US6077901A (en) * 1999-05-06 2000-06-20 Bayer Corporation Aqueous compositions containing mixtures of silane-functional resins
JP5358863B2 (ja) * 2000-11-15 2013-12-04 Dic株式会社 ポリウレタン水性分散体
US6825263B2 (en) * 2002-04-08 2004-11-30 Dow Corning Corporation Curable coating compositions from emulsions of elastomeric polymers and polyurethane dispersions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455331C1 (ru) * 2010-12-14 2012-07-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") Экологически безопасный клей-расплав на основе сополимера этилена и винилацетата

Also Published As

Publication number Publication date
PL1664227T3 (pl) 2010-04-30
US20050131109A1 (en) 2005-06-16
AU2004280361A1 (en) 2005-04-21
TWI382073B (zh) 2013-01-11
HK1097290A1 (en) 2007-06-22
ES2334572T3 (es) 2010-03-12
AU2004280361B2 (en) 2010-09-23
EP1664227A1 (de) 2006-06-07
DE10343675A1 (de) 2005-04-14
KR20060083210A (ko) 2006-07-20
KR101158133B1 (ko) 2012-06-19
CA2538956C (en) 2013-01-15
UA84168C2 (en) 2008-09-25
EP1664227B1 (de) 2009-11-11
CN1852961A (zh) 2006-10-25
WO2005035684A1 (de) 2005-04-21
JP4933895B2 (ja) 2012-05-16
RU2006112558A (ru) 2007-11-10
DE502004010359D1 (de) 2009-12-24
JP2007533779A (ja) 2007-11-22
CA2538956A1 (en) 2005-04-21
ATE448284T1 (de) 2009-11-15
MXPA06002937A (es) 2006-05-31
TW200524999A (en) 2005-08-01
US8114931B2 (en) 2012-02-14
CN100475925C (zh) 2009-04-08

Similar Documents

Publication Publication Date Title
RU2366679C2 (ru) Водные дисперсии клеев
RU2527946C2 (ru) Сшиваемые полиуретановые дисперсии
KR101161888B1 (ko) 코팅제 조성물
US20060128885A1 (en) High-solids polyurethane-polyurea dispersions
US20050159575A1 (en) Polyurethane-polyurea dispersions stable to thermal yellowing
KR20100087154A (ko) 분산 접착제 ii
MXPA04006844A (es) Dispersiones acuosas, estabilizadas, de poliuretano-poliurea.
US20050085584A1 (en) Aqueous adhesive dispersions
RU2353628C2 (ru) Однокомпонентные системы для покрытий
JP5586589B2 (ja) ポリカーボネートポリオールに基づくポリウレタン−ポリウレア分散体
US7659338B2 (en) Dispersions
US5852105A (en) Aqueous dispersions comprising a polyurethane, a polyisocyanate and a tertiary alkanolamine
TW200528503A (en) Aqueous adhesive dispersions
CN117677647A (zh) 双组分聚氨酯分散体胶粘剂
CN116472299A (zh) 新鲜溶胶在基于聚氨酯分散体的配制品中的用途
MXPA06007903A (en) Coating agent composition

Legal Events

Date Code Title Description
TZ4A Amendments of patent specification
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110908