RU2366040C2 - Способ получения соединений металл-стекло, металл-металл и металл-керамика - Google Patents

Способ получения соединений металл-стекло, металл-металл и металл-керамика Download PDF

Info

Publication number
RU2366040C2
RU2366040C2 RU2007124072/09A RU2007124072A RU2366040C2 RU 2366040 C2 RU2366040 C2 RU 2366040C2 RU 2007124072/09 A RU2007124072/09 A RU 2007124072/09A RU 2007124072 A RU2007124072 A RU 2007124072A RU 2366040 C2 RU2366040 C2 RU 2366040C2
Authority
RU
Russia
Prior art keywords
metal
glass
oxide
coating
compounds
Prior art date
Application number
RU2007124072/09A
Other languages
English (en)
Other versions
RU2007124072A (ru
Inventor
Карстен Агерстед НИЛЬСЕН (DK)
Карстен Агерстед НИЛЬСЕН
Метте СОЛВЭНГ (DK)
Метте СОЛВЭНГ
Петер Халвор ЛАРСЕН (DK)
Петер Халвор ЛАРСЕН
Original Assignee
Текникал Юниверсити Оф Денмарк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Текникал Юниверсити Оф Денмарк filed Critical Текникал Юниверсити Оф Денмарк
Publication of RU2007124072A publication Critical patent/RU2007124072A/ru
Application granted granted Critical
Publication of RU2366040C2 publication Critical patent/RU2366040C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/04Joining glass to metal by means of an interlayer
    • C03C27/042Joining glass to metal by means of an interlayer consisting of a combination of materials selected from glass, glass-ceramic or ceramic material with metals, metal oxides or metal salts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/04Joining glass to metal by means of an interlayer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C29/00Joining metals with the aid of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Fuel Cell (AREA)
  • Gasket Seals (AREA)
  • Ceramic Products (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Изобретение относится к способу получения металлостеклянных и металлокерамических соединений и соединений металл-металл, используемых в твердооксидных топливных элементах. Согласно изобретению соединения получают с использованием смеси порошков матричного стекла и оксида металла. Добавление к стеклу, используемому в композитных спаях, некоторых компонентов, например MgO, влияющих на его вязкость и смачивающую способность, обеспечивает местное изменение свойств стекла вблизи границы раздела с металлом при одновременном приближении объемных свойств стекла, в том числе повышении коэффициента теплового расширения, к свойствам остальных компонентов спая. Техническим результатом является высокая производительность, долговечность и безопасность работы топливных элементов. 3 н. и 13 з.п. ф-лы, 9 ил., 2 табл.

Description

Настоящее изобретение относится к способу получения металлостеклянных и металлокерамических соединений и соединений металл-металл. Подобные соединения могут быть использованы, в частности, в твердооксидных топливных элементах (ТОТЭ).
Планарные ТОТЭ обычно представляют собой пакет из множества отдельных ячеек, каждая из которых содержит два электрода, между которыми помещают электролит. Электроды каждой отдельной ячейки контактируют с токовыми коллекторами, образующими последовательное электрическое соединение между ними. Для обеспечения высоких производительности, долговечности и безопасности работы топливных элементов большое значение имеет создание газонепроницаемых спаев.
Для получения спаев в ТОТЭ предпочтительно применение стекол, поскольку их физические и химические свойства могут варьироваться в широких пределах. В указанных целях проводились исследования многих стекол и стеклокерамических составов, в том числе щелочных силикатов, щелочных алюмосиликатов, щелочноземельных силикатов, щелочных алюмоборосиликатов, фосфатных и боросиликатных стекол. Однако, несмотря на перспективные результаты исследований данных стекол, ни одно из них не оказалось полностью удовлетворительным по своим механическим свойствам, в том числе вязкости и близости величины коэффициента теплового расширения к соответствующей величине для металла, в сочетании с химической совместимостью, в том числе смачивающей и адгезионной способностью.
Композитные спаи, содержащие кристаллический наполнитель, диспергированный в матричном стекле, например щелочном боросиликатном или натриевом алюмосиликатном, оказались многообещающими с точки зрения точного соответствия коэффициентов теплового расширения припоя и спаиваемой поверхности. При этом при рабочей температуре подобные материалы обладают приемлемыми значениями вязкости.
Однако при этом остается нерешенной проблема адгезии припоев к металлическим поверхностям, и в частности, адгезии припоев к коррозионным пленкам, образующимся на поверхности металла, поскольку состав и свойства последних зависят от рабочей температуры, состава и микроструктуры основного металла.
В заявке США US2004060967A1, Yang, Z; Coyle, C.A.; Baskaran, S.; Chick, LA. "Making metal-to-metal and metal-to-ceramic interconnections for use in high temperature electrochemical devices by forming bond coat on first metal part, applying sealing material to bond coat, and adhering second part to sealing material" было показано, что связывание металла со стеклянным припоем может быть достигнуто путем формирования моноэлементного металлического связующего покрытия из М=Fe, Ni или Со или, в предпочтительном исполнении, композиционного покрытия из М-CrAIY, на металлической поверхности до нанесения припоя и присоединения остальных частей спая. Полагают, что для осуществления связывания покрытия важное значение имеет содержание оксида алюминия, образующегося как из связующего покрытия, так из покрываемого металла.
Хорошо известно, что оксиды металлов (V, Fe, Ni, Cu, Co и Mo) являются составляющими так называемых грунтовочных покрытий при соединении стеклообразных эмалей со сплавами железа и отличаются способностью частично окислять металлическое железо с образованием стеклообразных или смешанных оксидных фаз, которые часто характеризуются образованием дендритов, содержащих металлы в различной степени окисления (Donald I.W., Preparation, properties and chemistry of glass and glass-ceramic-to-metal seals and coatings, J. Mat. Sci., 28 (1996), p.2841-2886, and Eppler R.A., Glazes and glass coatings, The American Ceramic Society, Westerville, Ohio (2000)).
Ввиду недостатков существующего уровня техники целью настоящего изобретения является изготовление металлостеклянных и металлокерамических соединений и соединений металл-металл, используемых в том числе в ТОТЭ, при помощи которых можно соединять между собой граничащие фазы с образованием прочной связи между ними.
Указанная цель достигается способом изготовления металлостеклянных и металлокерамических соединений и соединений металл-металл, при этом данный способ обеспечивает соединение граничащих фаз с образованием прочной связи между ними независимо от состава используемого металлического сплава и образование защитной оксидной пленки в процессе использования, и отличается тем, что указанные соединения изготавливают с желаемой толщиной слоя, получаемого из порошков стекла и оксида металла, предпочтительно из частиц определенных размеров и в смеси со связующим, далее называемого стеклянным соединительным слоем, причем изготовление соединения проводят при повышенных температурах в контролируемых условиях, где порошок оксида металла выбирают из следующей группы:
- 0-10% оксида бора со средним размером зерен d50<2 мкм;
- 0-10% оксида магния со средним размером зерен d50<2 мкм;
- 0-8% оксидов натрия и калия со средним размером зерен d50<2 мкм;
- 1-10% оксида марганца со средним размером зерен d50<1,5 мкм;
- 1-10% оксида никеля со средним размером зерен d50<1,5 мкм;
- 0-10% оксида ванадия со средним размером зерен d50<1,5 мкм;
- 0-5% оксида кобальта со средним размером зерен d50<1,5 мкм;
- 0-5% оксида молибдена со средним размером зерен d50<1,5 мкм;
- 0-5% оксида меди со средним размером зерен d50<1,5 мкм.
Указанная цель также достигается способом изготовления металлостеклянных и металлокерамических соединений и соединений металл-металл, характеризующимся тем, что указанные соединения изготавливают из смеси, содержащей порошок матричного стекла и порошок оксида металла размером зерен 5 мкм или менее.
Предпочтительные варианты реализации настоящего изобретения изложены в зависимых пунктах формулы изобретения.
Настоящее изобретение поясняется ниже со ссылками на чертежи, где:
На Фиг.1 показана общая идея и способ.
На Фиг.2А-2Е показаны способы изготовления соединений и конкретные варианты реализации способа.
На Фиг.3А-3В показано нестандартный вариант реализации способа.
Далее более подробно излагается описание настоящего изобретения.
Согласно настоящему изобретению в качестве матричного стекла используют порошок матричного стекла с высоким коэффициентом теплового расширения. Материал порошка предпочтительно выбирают из группы, включащей щелочные алюмосиликатные (NAS), щелочноземельные алюмоборосиликатные (CAS) и фосфатные (MAP) стекла, к которым добавляют оксиды металлов, например магния, с целью влияния на локальную смачивающую способность. Слой стекла, содержащий подобные материалы, далее называется стеклянным соединительным слоем.
Сообщалось, что соединения, содержащие натриевые алюмосиликатные стекла (NAS), обладают особенно высокой химической стабильностью и медленной скоростью кристаллизации (Holand W. and Beall G., Glass-Ceramic Technology, The American Ceramic Society, Westerville, Ohio (2002)), и доказано, что образующееся недокристаллизованное стекло особенно пригодно для применения в спаях, подвергающихся действию больших перепадов температур, например быстрых циклических переходов от комнатной температуры до рабочих температур, близких к точке размягчения стекла.
Щелочные алюмосиликатные стекла (NAS), пригодные для использования в настоящем изобретении, содержат 10-25 мол.% оксида натрия, 40-80 мол.% диоксида кремния, 5-20 мол.% оксида алюминия, а также, возможно, 0-10 мол.% оксида бора, 0-10 мол.% оксида магния, 0-10 мол.% оксида кальция, 0-10 мол.% оксида бария, 0-2 мол.% фтора и 0-5 мол.% оксида фосфора.
Щелочноземельные алюмоборосиликатные стекла (CAS), пригодные для использования в настоящем изобретении, содержат 40-80 мол.% диоксида кремния, 5-20 мол.% оксида алюминия, 20-45 мол.% оксида кальция, а также, возможно, 0-5 мол.% оксида натрия, 0-10 мол.% оксида бора, 0-10 мол.% оксида магния, 0-2 мол.% оксида бария, 0-2 мол.% фтора и 0-5 мол.% оксида фосфора.
Фосфатные стекла (MAP), пригодные для использования в настоящем изобретении, содержат 5-25 мол.% оксида алюминия, 10-30 мол.% оксида магния, 5-20 мол.% оксида кальция, 40-60 мол.% оксида фосфора, а также, возможно, 0-5 мол.% оксида натрия, 0-12 мол.% диоксида кремния, 0-10 мол.% оксида бора, 0-5 мол.% оксида бария и 0-2 мол.% фтора.
В Табл.1 показано содержание основных компонентов матричных стекол, как указано выше.
Таблица 1
Компонент Содержание, мол.%
NAS MAP CAS
Оксид натрия 10-25 0-5 0-5
Диоксид кремния 40-80 0-12 40-70
Оксид алюминия 5-20 5-25 5-20
Оксид бора 0-10 0-10 0-10
Оксид магния 0-10 10-30 0-10
Оксид кальция 0-10 5-20 20-45
Оксид бария 0-10 0-5 0-2
Фтор 0-2 0-2 0-2
Оксид фосфора 0-5 40-60 0-5
Соединения образуют хромсодержащую защитную пленку, обладающую микроструктурой и составом, зависящим от природы сплава. С целью контроля смачивания защитной пленки композиционной частью спая и ее адгезии к ней предложено покрывать коллекторы специальными покрытиями, образующими химически совместимую со спаиваемыми материалами и прочно соединяющую их поверхность раздела. Кроме того, собственные свойства стекла, используемого в композитной части спая, предложено подвергать местному искажению в районе поверхности раздела путем добавления некоторых соединений, например, МgО, чтобы регулировать вязкость стекла и его смачивающую способность и одновременно сохранить его объемные свойства, в том числе высокий коэффициент теплового расширения матричного стекла по отношению к компонентам спая. Состав матричного стекла предложено выбирать так, чтобы после связывания и частичной кристаллизации стеклянной композиционной части спая и стеклянного соединительного слоя сохранялось значительное количество остаточной стеклофазы.
Размер зерен порошка матричного стекла, используемого в настоящем изобретении, предпочтительно составляет 0,05-100 мкм, еще более предпочтительно 0,05-50 мкм, наиболее предпочтительно 0,05-30 мкм.
Размер зерен порошка оксида металла, используемого в сочетании с порошком матричного стекла в настоящем изобретении, составляет не более 5 мкм, предпочтительно 0,05-5 мкм, еще более предпочтительно 0,05-3 мкм, наиболее предпочтительно 0,05-1,5 мкм.
Согласно настоящему изобретению, связывание компонентов проводят при повышенной температуре, зависящей от конкретно используемых компонентов, в частности порошка матричного стекла. Предпочтительно использовать температуры в интервале 400-1100°С. Кроме того, значение температуры связывания предпочтительно должно превышать температуру стеклования используемого стекла на 200-400°С, еще более предпочтительно на 250-350°С.
Для обеспечения оптимальной силы связывания соединений осуществляют контроль условий связывания первичным нагревом стыка от комнатной температуры до 550°С с одновременной подачей воздуха с целью окисления органического связующего. Затем при более высоких температурах перпендикулярно стыку прикладывают давление, обычно в пределах 0,1-1000 кПа, предпочтительно 10-400 кПа, причем давление поддерживают постоянным в течение всего процесса связывания, длительность которого обычно составляет 0,1-10 ч.
До нанесения смеси порошков матричного стекла и оксида металла на металлическую поверхность последнюю предпочтительно покрывают металлическим покрытием. Указанное покрытие может быть сплавлено с поверхностью путем нагрева до высоких температур, предпочтительно 750-950°С, в течение относительно короткого времени, предпочтительно 0,5-5 ч, в контролируемой атмосфере, причем парциальные давления кислорода и азота в последней составляют менее примерно 10-20 бар.
В качестве альтернативного варианта перед нанесением смеси порошков матричного стекла и оксида металла на металлическую поверхность возможно нанесение на последнюю покрытия из оксида переходного металла путем распыления или погружения.
Совместное действие оксидов переходных металлов, в особенности оксидов кобальта, никеля и марганца, которые предпочтительно используют в качестве покрытия поверхности металлических частей, и стеклянного соединительного слоя позволяет получать грунтовочные покрытия с различными свойствами, используемые в том числе в конструкции ТОТЭ для обеспечения прочного связывания металлических деталей со смежными с ними деталями в виде стеклокомпозитных частей спая, других металлических и керамических частей. Также возможно добавление небольших количеств оксидов переходных металлов к матричному стеклу.
Конкретные соединения получают путем покрытия композиционной части спая суспензией из дисперсного оксида металла. Покрытие можно наносить, например, погружением или распылением.
Примерами оксидов металлов, добавляемых к порошку матричного стекла с целью регулирования его смачивающей способности являются оксиды бора, магния, натрия, калия и ванадия, с особым предпочтением оксидов бора, магния и натрия. Примерами оксидов металлов, добавляемых к порошку матричного стекла или, предпочтительно, в качестве покрытия поверхности металлической части с целью регулирования связывающей способности стекла и его адгезионных свойств, являются оксиды марганца, никеля, кобальта, молибдена, меди или их смеси. Предпочтительно использовать оксиды марганца, никеля и кобальта, особенно предпочтительно - оксиды никеля и кобальта.
Кроме того, в одном из предпочтительных вариантов реализации соединения изготавливают как смесь порошков матричного стекла и оксида металла в связующем.
Далее настоящее изобретение иллюстрируется подробно изложенными примерами, которыми, однако, оно не ограничивается.
Примеры
Металлические материалы были разделены на 3 группы. К первой группе относили материалы, образующие двойную защитную пленку из оксида хрома и хромомарганцевой шпинели (например, сплав Crofer 22 APU компании Krupp-Thyssen). Ко второй группе относили материалы, образующие защитную пленку из оксида хрома (например, сплав Sandvik OYC44). К третьей группе относили материалы, образующие защитную пленку из оксида алюминия (например, сплав железа с хромом). Материалам для токовых коллекторов на основе ферритной хромистой стали перед нанесением покрытий на поверхность придавали необходимую форму. В случае нанесения металлических покрытий, за исключением покрытий из никеля, с поверхности токовых коллекторов перед нанесеним покрытий удаляли оксиды путем промывки образцов в ультразвуковой ванне, содержащей водный раствор HF и НNО3, с последующими промывкой этанолом и сушкой на воздухе при 60°С. Другие виды покрытий наносили после обезжиривания поверхности металла ацетоном и сушки на воздухе при 60°С.
Получение образцов смесей стекол
Образцы силикатных стекол получали путем плавления Nа2СО3, SiO2, Аl2О3, В2О3, МgО, NaF и СаСО3 аналитической чистоты в платиновом тигле при 1500°С в течение 4 ч. Образцы охлаждали, разбивали, повторно расплавляли и подвергали размолу до размера зерен d50 менее 5 мкм согласно результатам измерений на анализаторе размера частиц Beckman Coulter L/S. Фосфатные стекла получали путем смешения МgНРО4×3Н2О, Аl(РО3)3, Н3ВО3 и SiO2 аналитической чистоты в шаровой мельнице и плавления полученной смеси в алюминиевом тигле при 1500°С в течение 30 мин при перемешивании. Полученные образцы охлаждали, разбивали и подвергали размолу в порошок с d50<5 мкм. Тонкие стеклянные пленки толщиной в сухом состоянии 5-45 мкм получали методом трафаретной печати стеклянного порошка или его смеси с порошками оксидов металлов. Стеклянную пленку толщиной порядка 200-400 мкм получали пленочным литьем стеклянных порошков или их смесей с порошками оксидов металлов. Толстые участки стеклокомпозитных спаев со значением коэффициента теплового расширения, близким к соответствующей величине для сталей, получали с использованием порошка МgО с размером зерен d, составляющим 90-200 мкм, или порошка металла (сплава Fe-Cr) с d=10-200 мкм, которые смешивали с порошком стекла в течение 18 ч. Смесь вносили в графитовые формы и спекали при 750°С и парциальном давлении кислорода рO2, меньшем 3×10-9 атм. Спеченные спаи обрабатывали с pелью получения гладких параллельных поверхностей. Характеристики трех полученных образцов стекла представлены в Табл.2.
Таблица 2
Характеристики полученных образцов стекол
Вещество Содержание, мол.%
Стекло №1 (NAS) Стекло №2 (MAP) Стекло №3 (CAS)
Оксид натрия 17,8 - 0,5
Диоксид кремния 72,8 8,0 39,4
Оксид алюминия 9,4 15,0 10,1
Оксид бора - 2,0 4,5
Оксид магния - 30,0 4,6
Оксид кальция - - 40,1
Фтор - - 0,8
Оксид фосфора - 55,0 -
Пример 1
Сплав Crofer 22 APU (Фиг.2А, с) методом трафаретной печати покрывали слоем стекла №3 в смеси с 4% МgО и 0,5% Со3О4 с получением стеклянного соединительного слоя (Фиг.2А, b). Для получения композиционной части спая (Фиг.2А, а) стекло №3 смешивали с 72% металлического порошка (сплав Fe-Сr, 90 мкм <d<120 мкм). Металл и композиционную часть спая соединяли под давлением 400 кПа при 950°С в течение 4 ч, после чего спай охлаждали до 750°С, подвергали старению в течение 500 ч при указанной температуре и двукратному циклическому тепловому нагружению с охлаждением до комнатной температуры.
Пример 2
Сплав Sandvik OYC44 (Фиг.2В, с) покрывали слоем металлического никеля номинальной толщиной 0,1 мкм (Фиг.2, d) и методом трафаретной печати наносили слой стекла №1 в смеси с 2% порошка МgО (d<1,1 мкм) с получением стеклянного соединительного слоя (Фиг.2В, b). Для получения композиционной части спая (Фиг.2В, а) стекло №1 смешивали с 55% крупнодисперсного МgО. Металл и композиционную часть спая соединяли под давлением 400 кПа при 950°С в течение 4 ч и охлаждали до 750°С в смеси аргона и водорода. При данной температуре спай подвергали старению в течение 500 ч и двукратному циклическим тепловому нагружению с охлаждением до комнатной температуры.
Пример 3
Сплав Sandvik OYC44 (Фиг.2В, с) покрывали слоем металлического марганца номинальной толщиной 0,1 мкм (Фиг.2В, d) и подвергали предварительному прогреву в атмосфере аргона при парциальном давлении кислорода рO2, меньшем 10-20 атм, с целью сплавления покрытия с поверхностью. После охлаждения до комнатной температуpы на металлическое покрытие методом трафаретной печати наносили слой стекла №3 в смеси с 10% МgО (d<1,3 мкм) и 1% Na2O (d<2 мкм) с получением стеклянного соединительного слоя (Фиг.2В, b). Для получения композиционной части спая (Фиг.2В, а) стекло №3 смешивали с 79% порошка стали SS316. Металл и композиционную часть спая соединяли под давлением 400 кПа при 950°С в течение 4 ч и охлаждали до 750°С в смеси аргона и водорода. При данной температуре спай подвергали старению в течение 500 ч и двукратному циклическим тепловому нагружению с охлаждением до комнатной температуры.
Пример 4
Сплав Crofer 22 APU (Фиг.2В, с) покрывали слоем металлического кобальта (Фиг.2В, d) и подвергали предварительному прогреву до 900°С в течение 2 ч в атмосфере аргона при парциальном давлении кислорода рO2, меньшем 10-20 атм, с целью сплавления покрытия с поверхностью. После охлаждения до комнатной температуpы на металлическое покрытие методом трафаретной печати наносили тонкий слой стекла №1 в смеси с 20% МgО с получением стеклянного соединительного слоя (Фиг.2В, b). Для получения композиционной части спая (Фиг.2В, а) стекло №1 смешивали с 55% крупнодисперсного МgО. Металл и композиционную часть спая нагревали на воздухе до 400°С и соединяли под давлением 400 кПа при 950°С в течение 4 ч и охлаждали до 750°С в смеси аргона и водорода. При данной температуре спай подвергали старению в течение 500 ч и двукратному циклическим тепловому нагружению с охлаждением до комнатной температуры.
Пример 5
Сплав Sandvik OYC44 (Фиг.2В, с) покрывали слоем металлического марганца (Фиг.2В, d) и подвергали предварительному прогреву до 850°С в течение 0,5 ч в атмосфере аргона при парциальном давлении кислорода рO2, меньшем 10-20 атм, с целью сплавления покрытия с поверхностью. После охлаждения до комнатной температpры на металлическое покрытие методом трафаретной печати наносили слой стекла №1 в смеси с 2% МgО толщиной 45 мкм с получением стеклянного соединительного слоя (Фиг.2В, b). Для получения композиционной части спая (Фиг.2В, а) стекло №1 смешивали с 55% крупнодисперсного МgО. Металл и композиционную часть спая прогревали на воздухе при 400°С, после чего соединяли под давлением 400 кПа при 750°С в течение 4 ч. Затем спай охлаждали до 550°С, подвергали старению в течение 500 ч при указанной температуре и двукратному циклическим тепловому нагружению с охлаждением до комнатной температуры.
Пример 6
Сплав Crofer 22 APU (Фиг.2С, с) покрывали слоем оксида кобальта толщиной 5 мкм (Фиг.2С, е). На поверхность покрытия методом трафаретной печати наносили слой стекла №1 в смеси с 5% МgО с получением стеклянного соединительного слоя (Фиг.2С, b). Для получения композиционной части спая (Фиг.2С, а) стекло №1 смешивали с 55% крупнодисперсного МgО. Металл и композиционную часть спая прогревали на воздухе при 400°С и соединяли под давлением 400 кПа при 950°С в течение 4 ч, после чего спай охлаждали до 750°С, подвергали старению в течение 500 ч при указанной температуре и двукратному циклическим тепловому нагружению с охлаждением до комнатной температуры.
Пример 7
Сплав Sandvik OYC44 (Фиг.2D, с) покрывали слоем металлического марганца (Фиг.20, d) и подвергали предварительному прогреву до 850°С в течение 0,5 ч в атмосфере аргона при парциальном давлении кислорода рO2, меньшем 10-20 атм, с целью сплавления покрытия с поверхностью. Затем на металл наносили шликерное покрытие из оксида кобальта (Фиг.20, е) толщиной 10 мкм и прогревали металл на воздухе при 500°С в течение 0,5 ч для плавления и окисления покрытия. После охлаждения до комнатной температуры на слой оксида кобальта методом трафаретной печати наносили слой смеси стекла №1 с 2% МgО с размером зерен d, меньшим 1,1 мкм, и 4% В2O3 с d<0,8 мкм с получением стеклянного соединительного слоя (Фиг.20, b). Для получения композиционной части спая (Фиг.20, а) стекло №1 смешивали с 55% крупнодисперсного МgО. Металл и композиционную часть спая соединяли под давлением 400 кПа при 880°С в течение 4 ч, охлаждали до 750°С, подвергали старению в течение 500 ч при указанной температуре и двукратному циклическим тепловому нагружению с охлаждением до комнатной температуры.
Пример 8
Сплав Sandvik OYC44 (Фиг.2В, с) покрывали слоем металлического никеля (Фиг.2В, d) номинальной толщиной 0,1 мкм. На покрытие методом трафаретной печати наносили слой толщиной 45 мкм, состоящий из стекла №3 в смеси с 10% МgО и 2% Na2O, с получением стеклянного соединительного слоя (Фиг.2В, b). Для получения композиционной части спая (Фиг.2В, а) стекло №3 смешивали с 70 об.% металлического порошка (сталь SS316, 50 мкм <d<140 мкм). Металл и композиционную часть спая соединяли на воздухе под давлением 400 кПа при 950°С в течение 4 ч и охлаждали до 750°С в смеси аргона и водорода. При данной температуре спай подвергали старению в течение 500 ч и двукратному циклическому тепловому нагружению с охлаждением до комнатной температуры.
Пример 9
Сплав Sandvik OYC44 (Фиг.3А, с) путем распыления покрывали слоем оксида никеля (Фиг.3А, е, d25<1,5 мкм), диспергированного в связующем. На высушенное покрытие методом трафаретной печати наносили слой толщиной 45 мкм, состоящий из стекла №3 в смеси с 3% МgО и 4% Na2O, с получением стеклянного соединительного слоя (Фиг.3А, b). Керамику из алюмомагниевой шпинели нарезали на прямоугольные фрагменты, которые шлифовали с получением плоских параллельных поверхностей (Фиг.3А, h). Металл и керамическую часть спая соединяли под 950°С в смеси аргона и водорода, подвергали старению в течение 500 ч при данной температуре и двукратному циклическому тепловому нагружению с охлаждением до комнатной температуры.
Пример 10
Стекло №1 (см. Табл.2) смешивали с 55% крупнодисперсного МgО (Фиг.2Е-1, а). Полученный порошок смешивали с органическим связующим (раствор парафина в этаноле). Из полученной смеси одноосным прессованием получали композиционную часть спая. Порошок марганцевомагниевой шпинели (MgMn2O4, d50=2 мкм) смешивали с органическим связующим путем диспергирования. Затем композиционную часть спая покрывали суспензией шпинели (Фиг.2Е-1, е) путем макания. Сплав Crofer 22 APU (Фиг.2Е-1, с) и покрытую поверхность композиционной части спая соединяли под давлением примерно 10 кПа, нагревали до 900°С, повышали нагрузку до 40 кПа при той же температуре и выдерживали 2 ч. Затем температуру снижали до 750°С, после чего спай подвергали старению в течение 500 ч при данной температуре и двукратному циклическому тепловомут нагружению с охлаждением до комнатной температуры.
Пример 11
Стекло №1 (см. Табл.2) смешивали с 55% крупнодисперсного МgО (Фиг.2Е-2, а). Полученный порошок смешивали с органическим связующим (раствор парафина в этаноле). Из полученной смеси одноосным прессованием получали композиционную часть спая. Порошок марганцевомагниевой шпинели (MgMn2O4, d50=2 мкм) смешивали с органическим связующим путем диспергирования. Затем композиционную часть спая покрывали суспензией шпинели (Фиг.2Е-2, е) путем макания. Сплав Crofer 22 APU (Фиг.2Е-2, с) покрывали слоем металлического кобальта (25 мкм/см2, Фиг.2Е-2, d) и подвергали предварительному прогреву до 900°С в течение 2 ч в атмосфере аргона при парциальном давлении кислорода рO2, меньшем 10-20 атм, с целью сплавления покрытия с поверхностью. После охлаждения до комнатной температуpы металл и покрытую поверхность композиционной части спая соединяли под давлением примерно 10 кПа, нагревали до 900°С, повышали нагрузку до 40 кПа при той же температуре и выдерживали 2 ч. Затем температуру снижали до 750°С, подвергали спай старению в течение 500 ч при данной температуре и двукратному циклическому тепловому нагружению с охлаждением до комнатной температуры.
Пример 12
Сплав Sandvik OYC44 (Фиг.3В, с) покрывали слоем металлического никеля (Фиг.3В, d) номинальной толщиной 0,1 мкм и методом трафаретной печати наносили на полученную поверхность слой оксида кобальта (Фиг.3В, е) толщиной 5 мкм. Сплав Crofer 22 APU (Фиг.3В, g) методом трафаретной печати покрывали слоем толщиной 15 мкм, состоящим из стекла №3 в смеси с МgО и Со3O4, с получением стеклянного соединительного слоя (Фиг.3В, b). Между двумя металлическими частями в качестве стеклянного соединительного слоя помещали литую пленку толщиной 200 мкм, состоящую из стекла №3 в смеси с МgО, Na2O и СаО. Сборку соединяли под давлением 400 кПа при 750°С в течение 4 ч на воздухе и охлаждали до 50°С. Полученный спай подвергали старению в течение 500 ч при указанной температуре и двукратному циклическому тепловому нагружению с охлаждением до комнатной температуры.
Пример 13
Сплав Crofer 22 APU (Фиг.2А, с) методом трафаретной печати покрывали слоем толщиной 15 мкм, состоящим из стекла №2 в смеси с 5% Со3O4 с размером зерен d менее 1,5 мкм с получением стеклянного соединительного слоя (Фиг.2А, b). Для получения композиционной части спая (Фиг.2А, а) стекло №2 смешивали с 79% металлического порошка (сплав OYC44). Металл и композиционную часть спая соединяли под давлением 200 кПа при 700°С в течение 4 ч и охлаждали до 550°С. Спай подвергали старению в течение 500 ч при данной температуре и двукратному циклическому тепловому нагружению с охлаждением до комнатной температуры.
Пример 14
Сплав Sandvik OYC44 (Фиг.20, с) покрывали слоем металлического марганца (Фиг.20, d) и подвергали предварительному прогреву до 850°С в течение 0,5 ч в смеси аргона и водорода при парциальном давлении кислорода рO2, меньшем 10-20 атм, с целью сплавления покрытия с поверхностью. Затем на металл наносили шликерное покрpтие из оксида кобальта (Фиг.20, е) толщиной 10 мкм и прогревали металл на воздухе до 800°С в течение 0,5 ч для плавления и окисления покрытия. После охлаждения до комнатной температуры на покрытую поверхность металла методом трафаретной печати наносили слой толщиной 45 мкм, состоящий из стекла №2 в смеси с 2% МgО, с получением стеклянного соединительного слоя (Фиг.2D, b). Для получения композиционной части спая (Фиг.2D, а) стекло №2 смешивали с 55% крупнодисперсного МgО. Металл и композиционную часть спая соединяли под давлением 100 кПа при 700°С в течение 4 ч и охлаждали до 550°С. Спай подвергали старению в течение 500 ч при данной температуре и двукратному циклическому тепловому нагружению с охлаждением до комнатной температуры.
Для специалиста в данной области является очевидным, что настоящее изобретение в вышеизложенном виде может быть подвергнуто различным изменениям как по форме, так и в деталях. Предполагается, что подобные изменения будут рассматриваться как включаемые в объем формулы изобретения, представленной ниже.

Claims (16)

1. Способ получения металлостеклянных и металлокерамических соединений и соединений металл-металл, обеспечивающий соединение граничащих фаз с образованием прочной связи между ними независимо от состава металлического сплава и образования в процессе использования защитной оксидной пленки, отличающийся тем, что указанные соединения изготавливают с желаемой толщиной слоя, получаемого из смеси порошков матричного стекла и оксида металла, причем получение соединения проводят при повышенной температуре в контролируемых условиях, а порошок оксида металла выбирают из группы, включающей:
0-10% оксида бора со средним размером зерен d50<2 мкм;
0-10% оксида магния со средним размером зерен d50<2 мкм;
0-8% оксидов натрия и калия со средним размером зерен d50<2 мкм;
1-10% оксида марганца со средним размером зерен d50<1,5 мкм;
1-10% оксида никеля со средним размером зерен d50<1,5 мкм;
0-10% оксида ванадия со средним размером зерен d50<1,5 мкм;
0-5% оксида кобальта со средним размером зерен d50<1,5 мкм;
0-5% оксида молибдена со средним размером зерен d50<1,5 мкм;
0-5% оксида меди со средним размером зерен d50<1,5 мкм, при этом перед нанесением порошка матричного стекла в смеси с оксидом металла на поверхность металлической части соединения на последнюю наносят металлическое покрытие или покрытие из оксида переходного металла.
2. Способ по п.1, отличающийся тем, что указанные соединения изготавливают с использованием порошка матричного стекла с добавлением порошков оксидов металлов в связующем в сочетании с нанесением металлического покрытия на поверхность металлической части, причем перед нанесением стеклянного соединительного слоя указанное покрытие сплавляют с поверхностью путем нагревания в контролируемой атмосфере.
3. Способ по п.1, отличающийся тем, что указанные соединения изготавливают с использованием порошка матричного стекла с добавлением порошков оксидов металлов со связующим в сочетании с нанесением покрытия из оксида металла на металлическую часть соединения, причем указанное покрытие наносят перед нанесением стеклянного соединительного слоя.
4. Способ по п.1, отличающийся тем, что указанные соединения изготавливают с использованием порошка матричного стекла с добавлением порошков оксидов металлов со связующим в сочетании с нанесением металлического покрытия на поверхность металлической части, которые сплавляют с поверхностью путем нагревания в контролируемой атмосфере перед нанесением покрытия из оксида металла на металлическую часть, причем указанное покрытие наносят перед соединением металла со стеклянным соединительным слоем.
5. Способ по п.1, отличающийся тем, что указанные соединения изготавливают путем нанесения покрытия на композитную часть соединения из суспензии, в которой диспергирован оксид металла.
6. Способ по п.1, отличающийся тем, что указанные соединения изготавливают путем нанесения покрытия на композитную часть соединения из суспензии, в которой диспергирован оксид металла, в сочетании с нанесением металлического покрытия на поверхность металлической части, при этом покрытия сплавляют с поверхностью металлической части путем нагревания в контролируемой атмосфере перед соединением металла и композитной части соединения.
7. Способ по любому из пп.1-6, отличающийся тем, что количество материала стеклянного соединительного слоя на единицу площади выбирают так, чтобы оно было достаточным для полного растворения хромсодержащей защитной пленки, образующейся на металлических частях.
8. Способ по любому из пп.1-6, отличающийся тем, что матричное стекло выбирают из щелочноземельных алюмосиликатных стекол, состав которых отвечает эвтектической кристаллизации, натриевых алюмосиликатных стекол, состав которых лежит в поле первичной кристаллизации альбита, и магниевых алюмофосфатных стекол.
9. Способ по любому из пп.1-6, отличающийся тем, что указанные металлические покрытия окисляют in situ после нанесения с последующим контролем состава пленки на поверхности металлической части, причем указанные покрытия изготавливают из марганца, никеля или кобальта.
10. Способ по п.9, отличающийся тем, что указанные металлические покрытия изготавливают из следующих материалов:
марганца в количестве менее 80 мкг/см2;
никеля в количестве менее 90 мкг/см2;
кобальта в количестве менее 40 мкг/см2.
11. Способ по п.8, отличающийся тем, что в композиционных стеклянных соединениях используют матричное стекло, характеризующееся медленной или эвтектической кристаллизацией, для сохранения пластичности при рабочих температурах, превышающих температуру стеклования стекла.
12. Способ по любому из п.10 или 11, отличающийся тем, что к указанному матричному стеклу добавляют материалы с высоким коэффициентом теплового расширения для приближения коэффициента теплового расширения композиционного материала соединения к коэффициенту теплового расширения подложки.
13. Способ по п.12, отличающийся тем, что указанный материал с высоким коэффициентом теплового расширения обладает размером зерен, достаточно малым для предотвращения образования большого числа микротрещин в соединении, но достаточно большим для предотвращения чрезмерно сильного протекания его реакции с матричным стеклом и его растворения в последнем.
14. Способ по п.12, отличающийся тем, что указанный материал с высоким коэффициентом теплового расширения имеет размер зерен d, составляющий от 10 до 200 мкм.
15. Применение компонентов металлостеклянных соединений, полученных по любому из пп.1-6, 8-10, 12-14, для связывания металлов со стеклянными композитами и металлов с керамическими и металлическими компонентами.
16. Способ получения металлостеклянных, металлокерамических соединений и соединений металл-металл, отличающийся тем, что указанные соединения получают с использованием порошка матричного стекла в смеси с порошком оксида металла размером зерен 5 мкм и менее, при этом перед нанесением порошка матричного стекла в смеси с оксидом металла на поверхность металлической части соединения на последнюю наносят металлическое покрытие или покрытие из оксида переходного металла.
RU2007124072/09A 2004-12-28 2005-12-23 Способ получения соединений металл-стекло, металл-металл и металл-керамика RU2366040C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200402011 2004-12-28
DKPA200402011 2004-12-28

Publications (2)

Publication Number Publication Date
RU2007124072A RU2007124072A (ru) 2009-02-10
RU2366040C2 true RU2366040C2 (ru) 2009-08-27

Family

ID=36062513

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007124072/09A RU2366040C2 (ru) 2004-12-28 2005-12-23 Способ получения соединений металл-стекло, металл-металл и металл-керамика

Country Status (10)

Country Link
US (1) US8002166B2 (ru)
EP (1) EP1844512B1 (ru)
JP (2) JP5639737B2 (ru)
KR (1) KR100886882B1 (ru)
CN (1) CN100568598C (ru)
AU (1) AU2005321530B2 (ru)
CA (1) CA2594168C (ru)
NO (1) NO20073274L (ru)
RU (1) RU2366040C2 (ru)
WO (1) WO2006069753A1 (ru)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1784888A2 (en) 2004-06-10 2007-05-16 Technical University of Denmark Solid oxide fuel cell
RU2366040C2 (ru) * 2004-12-28 2009-08-27 Текникал Юниверсити Оф Денмарк Способ получения соединений металл-стекло, металл-металл и металл-керамика
AU2006205885B2 (en) * 2005-01-12 2009-05-14 Technical University Of Denmark A method for shrinkage and porosity control during sintering of multilayer structures
KR100940160B1 (ko) * 2005-01-31 2010-02-03 테크니칼 유니버시티 오브 덴마크 산화환원 안정 양극
EP1844517B1 (en) 2005-02-02 2010-04-21 Technical University of Denmark A method for producing a reversible solid oxid fuel cell
DK1760817T3 (da) * 2005-08-31 2013-10-14 Univ Denmark Tech Dtu Reversibel fastoxidbrændselscellestak og fremgangsmåde til fremstilling af samme
ATE550802T1 (de) * 2006-11-23 2012-04-15 Univ Denmark Tech Dtu Methode zur herstellung von reversiblen festoxid- zellen
US8197979B2 (en) * 2006-12-12 2012-06-12 Corning Incorporated Thermo-mechanical robust seal structure for solid oxide fuel cells
EP2104172A1 (en) * 2008-03-20 2009-09-23 The Technical University of Denmark A composite glass seal for a solid oxide electrolyser cell stack
ES2411079T3 (es) * 2008-04-07 2013-07-04 Topsoe Fuel Cell A/S Apilamiento de pilas de combustible de óxidos sólidos, proceso para la preparación del mismo y uso de un vidrio e en él
KR100901087B1 (ko) * 2008-08-11 2009-06-08 소우섭 미세분말이 부착된 유리구조체 및 그 제조방법
US8858745B2 (en) * 2008-11-12 2014-10-14 Applied Materials, Inc. Corrosion-resistant bonding agents for bonding ceramic components which are exposed to plasmas
ES2423589T3 (es) 2009-03-13 2013-09-23 Topsoe Fuel Cell A/S Apilamiento de pilas de combustible
CN101514277B (zh) * 2009-04-01 2011-11-30 北京化工大学 具有低膨胀系数的耐高温粘合剂
FR2947540B1 (fr) 2009-07-03 2012-01-06 Commissariat Energie Atomique Compositions de verre pour joints d'appareils fonctionnant a de hautes temperatures et procede d'assemblage les utilisant.
CN102713012B (zh) * 2009-10-06 2016-02-10 托普索公司 用于固体氧化物电解电池(soec)堆的密封玻璃
US9267184B2 (en) 2010-02-05 2016-02-23 Ati Properties, Inc. Systems and methods for processing alloy ingots
FR2958283B1 (fr) 2010-04-01 2014-07-04 Commissariat Energie Atomique Compositions de verres vitroceramiques pour joints d'appareils fonctionnant a de hautes temperatures et procede d'assemblage les utilisant.
US10207312B2 (en) 2010-06-14 2019-02-19 Ati Properties Llc Lubrication processes for enhanced forgeability
US8789254B2 (en) * 2011-01-17 2014-07-29 Ati Properties, Inc. Modifying hot workability of metal alloys via surface coating
CN103128181A (zh) * 2011-11-23 2013-06-05 苏州工业园区协诚精密五金有限公司 薄型金属板连接接合柱的固定结构
TWI463710B (zh) * 2012-10-05 2014-12-01 Subtron Technology Co Ltd 接合導熱基板與金屬層的方法
WO2014100376A1 (en) 2012-12-19 2014-06-26 Praxair Technology, Inc. Method for sealing an oxygen transport membrane assembly
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
CN104276839B (zh) * 2013-07-12 2016-05-18 中国科学院上海硅酸盐研究所 陶瓷玻璃化的封接方法
CN104276838B (zh) * 2013-07-12 2016-01-06 中国科学院上海硅酸盐研究所 陶瓷与金属双玻璃化的封接方法
CN104347438A (zh) * 2013-08-06 2015-02-11 鸿富锦精密工业(深圳)有限公司 玻璃基板与金属基板的结合方法
WO2015054228A2 (en) 2013-10-07 2015-04-16 Praxair Technology, Inc. Ceramic oxygen transport membrane array reactor and reforming method
WO2015160609A1 (en) 2014-04-16 2015-10-22 Praxair Technology, Inc. Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (igcc)
US10087101B2 (en) 2015-03-27 2018-10-02 Goodrich Corporation Formulations for oxidation protection of composite articles
US10441922B2 (en) 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
DE102015220395A1 (de) 2015-10-20 2017-04-20 Bayerische Motoren Werke Aktiengesellschaft Rußpartikelsensor
US10118823B2 (en) 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
JP2019502648A (ja) * 2015-12-21 2019-01-31 プラクスエア・テクノロジー・インコーポレイテッド セラミック部品、金属部品、及びガラス封止材を含む装置並びにその装置の形成プロセス
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
CN109070014A (zh) 2016-04-01 2018-12-21 普莱克斯技术有限公司 含催化剂的氧气传送膜
JP6605721B2 (ja) * 2016-05-06 2019-11-13 住友精密工業株式会社 燃料電池の製造方法および燃料電池
US10465285B2 (en) * 2016-05-31 2019-11-05 Goodrich Corporation High temperature oxidation protection for composites
US10377675B2 (en) 2016-05-31 2019-08-13 Goodrich Corporation High temperature oxidation protection for composites
US10508206B2 (en) 2016-06-27 2019-12-17 Goodrich Corporation High temperature oxidation protection for composites
DE102016214742A1 (de) * 2016-08-09 2018-02-15 Siemens Aktiengesellschaft Verfahren zum Fügen von Werkstoffen und Werkstoffverbund
US10767059B2 (en) 2016-08-11 2020-09-08 Goodrich Corporation High temperature oxidation protection for composites
US10010876B2 (en) 2016-11-23 2018-07-03 Praxair Technology, Inc. Catalyst for high temperature steam reforming
US10526253B2 (en) 2016-12-15 2020-01-07 Goodrich Corporation High temperature oxidation protection for composites
JP2018129245A (ja) * 2017-02-10 2018-08-16 Toto株式会社 燃料電池セルユニット及び燃料電池セルスタック
CN107010849B (zh) * 2017-05-10 2020-06-16 北京工业大学 钼组玻璃与可伐合金的激光焊接工艺方法
CN107342377A (zh) * 2017-07-20 2017-11-10 东莞威胜储能技术有限公司 一种中高温电池
CN107470081A (zh) * 2017-08-07 2017-12-15 苏州雾联医疗科技有限公司 一种雾化片用金属网片
DE102017216422B3 (de) * 2017-09-15 2019-01-03 Schott Ag Hochdehnendes Fügeglas mit verbesserter Wasserbeständigkeit und seine Anwendungen
US11136238B2 (en) 2018-05-21 2021-10-05 Praxair Technology, Inc. OTM syngas panel with gas heated reformer
US11046619B2 (en) 2018-08-13 2021-06-29 Goodrich Corporation High temperature oxidation protection for composites
CN110972418B (zh) * 2018-09-30 2022-01-07 比亚迪股份有限公司 电子设备壳体、电子设备和复合体
US11634213B2 (en) 2018-11-14 2023-04-25 Goodrich Corporation High temperature oxidation protection for composites
JP6684341B1 (ja) * 2018-12-27 2020-04-22 日本碍子株式会社 接合体
CN112845906B (zh) * 2021-02-02 2023-04-18 四川中雅科技有限公司 一种化成箔接箔方法
US12065380B2 (en) 2021-11-16 2024-08-20 Goodrich Corporation High temperature oxidation protection for carbon-carbon composites

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023492A (en) * 1958-11-19 1962-03-06 Gen Electric Metalized ceramic member and composition and method for manufacturing same
GB1313795A (en) 1969-04-21 1973-04-18 Minnesota Mining & Mfg Powdered metal filter
US4218985A (en) 1972-08-10 1980-08-26 Jones Allen Jr Steering and stabilization apparatus for torpedo
US4472223A (en) * 1982-10-06 1984-09-18 Emerson Electric Co. Method of forming glass seal
US4702971A (en) 1986-05-28 1987-10-27 Westinghouse Electric Corp. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
US5058799A (en) * 1986-07-24 1991-10-22 Zsamboky Kalman F Metallized ceramic substrate and method therefor
US4957673A (en) 1988-02-01 1990-09-18 California Institute Of Technology Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells and method for fabrication thereof
JPH0219406A (ja) 1988-07-05 1990-01-23 Nippon Steel Corp 鉄多孔体の製造方法
JPH0616897Y2 (ja) * 1988-07-19 1994-05-02 日本電気株式会社 ガラス封着体
US5021304A (en) 1989-03-22 1991-06-04 Westinghouse Electric Corp. Modified cermet fuel electrodes for solid oxide electrochemical cells
EP0424732A1 (de) 1989-10-27 1991-05-02 Asea Brown Boveri Ag Stromübertragungselemente für stapelförmig angeordnete Hochtemperatur-Brennstoffzellen und Verfahren zu deren Herstellung
EP0446680A1 (de) * 1990-03-15 1991-09-18 Asea Brown Boveri Ag Stromkollektor zur Stromführung zwischen benachbarten stapelförmig angeordneten Hochtemperatur-Brennstoffzellen
US5162167A (en) * 1990-09-11 1992-11-10 Allied-Signal Inc. Apparatus and method of fabricating a monolithic solid oxide fuel cell
DK167163B1 (da) 1991-02-13 1993-09-06 Risoe Forskningscenter Fastoxidbraendselscelle til oxidation af ch4
JPH05135787A (ja) 1991-03-28 1993-06-01 Ngk Insulators Ltd 固体電解質膜の製造方法及び固体電解質型燃料電池の製造方法
JP3151933B2 (ja) 1992-05-28 2001-04-03 株式会社村田製作所 固体電解質型燃料電池
DE4237602A1 (de) 1992-11-06 1994-05-11 Siemens Ag Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung
US5368667A (en) 1993-01-29 1994-11-29 Alliedsignal Inc. Preparation of devices that include a thin ceramic layer
DK94393D0 (da) 1993-08-18 1993-08-18 Risoe Forskningscenter Fremgangsmaade til fremstilling af calciumdoteret lanthanchromit
US5592686A (en) 1995-07-25 1997-01-07 Third; Christine E. Porous metal structures and processes for their production
JP3547062B2 (ja) * 1995-10-26 2004-07-28 東燃ゼネラル石油株式会社 燃料電池用封止材料
US5670270A (en) 1995-11-16 1997-09-23 The Dow Chemical Company Electrode structure for solid state electrochemical devices
DE19547700C2 (de) 1995-12-20 1998-09-17 Forschungszentrum Juelich Gmbh Elektrodensubstrat für eine Brennstoffzelle
US5702837A (en) * 1996-02-05 1997-12-30 Alliedsignal Inc. Bonding materials for anode to anode bonding and anode to interconnect bonding in solid oxide fuel cells
AUPN876896A0 (en) 1996-03-18 1996-04-18 Ceramic Fuel Cells Limited An electrical interconnect for a planar fuel cell
JP3599894B2 (ja) 1996-04-03 2004-12-08 株式会社フジクラ 固体電解質型燃料電池の燃料電極
AU3110197A (en) 1996-11-11 1998-06-03 Gorina, Liliya Fedorovna Method for manufacturing a single unit high temperature fuel cell and its components: a cathode, an electrolyte, an anode, a current conductor, and interface and insulating layers
DE19650704C2 (de) * 1996-12-06 2000-09-14 Forschungszentrum Juelich Gmbh Verbindungselement für Brennstoffzellen
DE19710345C1 (de) * 1997-03-13 1999-01-21 Forschungszentrum Juelich Gmbh Werkstoff für elektrische Kontaktschichten zwischen einer Elektrode einer Hochtemperatur-Brennstoffzelle und einem Verbindungselement
US6210612B1 (en) 1997-03-31 2001-04-03 Pouvair Corporation Method for the manufacture of porous ceramic articles
DE19782271B4 (de) 1997-04-30 2009-04-02 Dow Global Technologies, Inc., Midland Sauerstoffverbundelektroden/Elektrolyt-Struktur und Verfahren zu deren Herstellung
US6099985A (en) 1997-07-03 2000-08-08 Gas Research Institute SOFC anode for enhanced performance stability and method for manufacturing same
ATE198519T1 (de) 1997-09-11 2001-01-15 Sulzer Hexis Ag Elektrochemisch aktives element zu einer festoxidbrennstoffzelle
US5908713A (en) 1997-09-22 1999-06-01 Siemens Westinghouse Power Corporation Sintered electrode for solid oxide fuel cells
JP3408732B2 (ja) 1997-11-07 2003-05-19 三菱重工業株式会社 燃料電池用基体材
US6410160B1 (en) 1998-05-04 2002-06-25 Colorado School Of Mines Porous metal-containing materials, method of manufacture and products incorporating or made from the materials
DE19836132B4 (de) 1998-08-10 2006-11-23 Siemens Ag Hochtemperatur-Festelektrolyt-Brennstoffzelle (SOFC) für einen weiten Betriebstemperaturbereich
US6458170B1 (en) 1998-12-03 2002-10-01 The Regents Of The University Of California Method for making thin, flat, dense membranes on porous substrates
EP1010675B1 (en) * 1998-12-15 2009-02-18 Topsoe Fuel Cell A/S High temperature sealing material
US6248468B1 (en) 1998-12-31 2001-06-19 Siemens Westinghouse Power Corporation Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell
US6589680B1 (en) 1999-03-03 2003-07-08 The Trustees Of The University Of Pennsylvania Method for solid oxide fuel cell anode preparation
JP4207218B2 (ja) 1999-06-29 2009-01-14 住友電気工業株式会社 金属多孔体とその製造方法及びそれを用いた金属複合材
US6682842B1 (en) 1999-07-31 2004-01-27 The Regents Of The University Of California Composite electrode/electrolyte structure
US6605316B1 (en) 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
DK174654B1 (da) 2000-02-02 2003-08-11 Topsoe Haldor As Faststofoxid brændselscelle og anvendelser heraf
JP2001335388A (ja) 2000-03-22 2001-12-04 Toto Ltd セラミックス膜および固体電解質型燃料電池
US6743395B2 (en) * 2000-03-22 2004-06-01 Ebara Corporation Composite metallic ultrafine particles and process for producing the same
DE10014403A1 (de) 2000-03-24 2001-09-27 Wolfgang Kochanek Verfahren zur Fertigung von Metallteilen
CA2614620C (en) 2000-05-10 2010-02-02 Alberta Research Council Inc. Production of hollow ceramic membranes by electrophoretic deposition
DE10025108A1 (de) 2000-05-20 2001-11-29 Forschungszentrum Juelich Gmbh Hochtemperaturwerkstoff
JP2002015755A (ja) 2000-06-30 2002-01-18 Honda Motor Co Ltd リン酸型燃料電池の製造方法
WO2002009116A1 (en) 2000-07-25 2002-01-31 Bae Systems High-performance high-density cmos sram cell
GB2368450B (en) 2000-10-25 2004-05-19 Imperial College Fuel cells
US8007954B2 (en) 2000-11-09 2011-08-30 The Trustees Of The University Of Pennsylvania Use of sulfur-containing fuels for direct oxidation fuel cells
JP3674840B2 (ja) 2000-11-28 2005-07-27 日産自動車株式会社 燃料電池用スタック及びその製造方法
US6878651B2 (en) * 2000-12-01 2005-04-12 Ford Global Technologies, Llc Glass compositions for ceramic electrolyte electrochemical conversion devices
FR2817860B1 (fr) 2000-12-07 2003-09-12 Air Liquide Procede de preparation d'un materiau ceramique de faible epaisseur a gradient de porosite superficielle controle, materiau ceramique obtenu, cellule electrochimique et membrane ceramique le comprenant
US6863209B2 (en) * 2000-12-15 2005-03-08 Unitivie International Limited Low temperature methods of bonding components
US20020127455A1 (en) 2001-03-08 2002-09-12 The Regents Of The University Of California Ceria-based solid oxide fuel cells
US7709124B2 (en) 2001-04-10 2010-05-04 Northwestern University Direct hydrocarbon fuel cells
JP3841149B2 (ja) 2001-05-01 2006-11-01 日産自動車株式会社 固体電解質型燃料電池用単セル
AT4810U1 (de) 2001-05-31 2001-11-26 Plansee Ag Stromsammler für sofc-brennstoffzellen
FR2826956B1 (fr) 2001-07-04 2004-05-28 Air Liquide Procede de preparation d'une composition ceramique de faible epaisseur a deux materiaux, composition obtenue, cellule electrochimique et membrane la comprenant
US6772501B2 (en) 2001-07-23 2004-08-10 Itn Energy Systems, Inc. Apparatus and method for the design and manufacture of thin-film electrochemical devices
US7147544B2 (en) * 2001-08-02 2006-12-12 3M Innovative Properties Company Glass-ceramics
CN1409427A (zh) 2001-09-18 2003-04-09 中国科学技术大学 一种中温固体氧化物燃料电池pen多层膜及其制造方法
US6653009B2 (en) 2001-10-19 2003-11-25 Sarnoff Corporation Solid oxide fuel cells and interconnectors
JP2003132906A (ja) 2001-10-24 2003-05-09 Nissan Motor Co Ltd 燃料電池用単セル及び固体電解質型燃料電池
DE10161538B4 (de) 2001-12-10 2004-09-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Träger für eine elektrochemische Funktionseinheit einer Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzelle
US6893762B2 (en) 2002-01-16 2005-05-17 Alberta Research Council, Inc. Metal-supported tubular micro-fuel cell
US6824907B2 (en) 2002-01-16 2004-11-30 Alberta Reasearch Council, Inc. Tubular solid oxide fuel cell stack
US8114551B2 (en) 2002-03-04 2012-02-14 Sulzer Hexis Ag Porous structured body for a fuel cell anode
GB2386126B (en) 2002-03-06 2006-03-08 Ceres Power Ltd Forming an impermeable sintered ceramic electrolyte layer on a metallic foil substrate for solid oxide fuel cell
JP3922063B2 (ja) 2002-03-25 2007-05-30 住友電気工業株式会社 金属多孔体及びそれを用いた固体高分子型燃料電池
EP1624520B1 (en) 2002-03-27 2011-08-24 Topsøe Fuel Cell A/S Thin film solid oxide fuel cell (SOFC) and its method of production
AU2003256251A1 (en) 2002-04-24 2003-11-10 The Regents Of The University Of California Planar electrochemical device assembly
KR101067226B1 (ko) 2002-05-29 2011-09-22 산요덴키가부시키가이샤 고체 산화물 연료 전지
JP2005529464A (ja) 2002-06-06 2005-09-29 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア セラミックアノード及びそれを生産する方法
US6843960B2 (en) 2002-06-12 2005-01-18 The University Of Chicago Compositionally graded metallic plates for planar solid oxide fuel cells
US20030232230A1 (en) 2002-06-12 2003-12-18 Carter John David Solid oxide fuel cell with enhanced mechanical and electrical properties
US20030235752A1 (en) 2002-06-24 2003-12-25 England Diane M. Oxygen getters for anode protection in a solid-oxide fuel cell stack
JP3976181B2 (ja) 2002-07-19 2007-09-12 東邦瓦斯株式会社 固体酸化物燃料電池単セル及びこれを用いた固体酸化物燃料電池
CA2440288A1 (en) 2002-09-10 2004-03-10 Alberta Research Council Inc. Crack-resistant anode-supported fuel cell
US6843406B2 (en) * 2002-09-27 2005-01-18 Battelle Memorial Institute Gas-tight metal/ceramic or metal/metal seals for applications in high temperature electrochemical devices and method of making
JP4009179B2 (ja) 2002-10-30 2007-11-14 京セラ株式会社 燃料電池セル及び燃料電池
US6921582B2 (en) 2002-12-23 2005-07-26 General Electric Company Oxidation-resistant coatings bonded to metal substrates, and related articles and processes
DE10302122A1 (de) 2003-01-21 2004-07-29 Elringklinger Ag Dichtungsaufbau für eine Brennstoffzelle bzw. einen Elektrolyseur sowie Verfahren zu dessen Herstellung und Brennstoffzelle bzw. Elektrolyseur aufweisend den Dichtungsaufbau
JP4438295B2 (ja) * 2003-01-21 2010-03-24 三菱マテリアル株式会社 燃料電池
US6958196B2 (en) 2003-02-21 2005-10-25 Trustees Of The University Of Pennsylvania Porous electrode, solid oxide fuel cell, and method of producing the same
GB2422479B (en) 2003-04-15 2006-12-13 Ceres Power Ltd Solid oxide fuel cell with a novel substrate and a method for fabricating the same
JP4027836B2 (ja) 2003-04-16 2007-12-26 東京瓦斯株式会社 固体酸化物形燃料電池の作製方法
EP1671385B1 (en) 2003-09-10 2013-01-02 BTU International, Inc. Process for solid oxide fuel cell manufacture
UA83400C2 (ru) 2003-12-02 2008-07-10 Нанодайнемікс, Інк. Твердооксидные топливные элементы с керметным электролитом и метод их получения
JP4696470B2 (ja) * 2004-05-13 2011-06-08 三菱マテリアル株式会社 燃料電池
EP1784888A2 (en) 2004-06-10 2007-05-16 Technical University of Denmark Solid oxide fuel cell
US20060024547A1 (en) 2004-07-27 2006-02-02 David Waldbillig Anode supported sofc with an electrode multifunctional layer
RU2366040C2 (ru) * 2004-12-28 2009-08-27 Текникал Юниверсити Оф Денмарк Способ получения соединений металл-стекло, металл-металл и металл-керамика
US8168347B2 (en) * 2004-12-30 2012-05-01 Delphi Technologies Inc. SOFC assembly joint spacing
AU2006205885B2 (en) 2005-01-12 2009-05-14 Technical University Of Denmark A method for shrinkage and porosity control during sintering of multilayer structures
KR100940160B1 (ko) 2005-01-31 2010-02-03 테크니칼 유니버시티 오브 덴마크 산화환원 안정 양극
EP1844517B1 (en) 2005-02-02 2010-04-21 Technical University of Denmark A method for producing a reversible solid oxid fuel cell
US8021795B2 (en) * 2005-04-07 2011-09-20 General Electric Company Method for manufacturing solid oxide electrochemical devices
WO2006125177A2 (en) * 2005-05-19 2006-11-23 Massachusetts Institute Of Technology Electrode and catalytic materials
ATE550802T1 (de) 2006-11-23 2012-04-15 Univ Denmark Tech Dtu Methode zur herstellung von reversiblen festoxid- zellen
CN100512500C (zh) 2006-11-27 2009-07-08 华为技术有限公司 处理呼叫的方法和业务控制设备及呼叫处理系统

Also Published As

Publication number Publication date
JP5639737B2 (ja) 2014-12-10
AU2005321530A1 (en) 2006-07-06
KR100886882B1 (ko) 2009-03-05
JP2008525304A (ja) 2008-07-17
CA2594168C (en) 2011-02-22
RU2007124072A (ru) 2009-02-10
AU2005321530B2 (en) 2009-01-08
NO20073274L (no) 2007-09-25
EP1844512B1 (en) 2017-04-19
WO2006069753A1 (en) 2006-07-06
CN101103478A (zh) 2008-01-09
CN100568598C (zh) 2009-12-09
EP1844512A1 (en) 2007-10-17
US8002166B2 (en) 2011-08-23
CA2594168A1 (en) 2006-07-06
US20080142148A1 (en) 2008-06-19
KR20070100955A (ko) 2007-10-15
JP2013224262A (ja) 2013-10-31

Similar Documents

Publication Publication Date Title
RU2366040C2 (ru) Способ получения соединений металл-стекло, металл-металл и металл-керамика
CA2627786C (en) Braze system with matched coefficients of thermal expansion
JP5503017B2 (ja) Sofcスタック用の薄く細粒で完全高密度のガラス−セラミックスシール
JP5787928B2 (ja) バリウムおよびストロンチウム不含のガラス質もしくはガラスセラミックの接合材料ならびにそれらの使用
JP2008516881A (ja) ガラス及びガラスセラミックシーラント組成物
WO2014049119A1 (en) Method of producing a joined product
US5538810A (en) Corrosion resistant ceramic materials
US20040129370A1 (en) Joining material
EP0975554A1 (en) Glass ceramic material and its use as means for joining different types of material and as support
US3175937A (en) Method of bonding metals using borosilicate glasses
CN117510073B (zh) 基于复合型密着剂的搪玻璃底釉及其制备方法
US4447283A (en) Adhesive for ceramic articles and method for adhesion thereof
US5194298A (en) Method of preparing corrosion resistant composite materials
CN1059186C (zh) 一种陶瓷高温密封粘接方法
US5679464A (en) Joined product of heat-resisting alloys and method for joining heat-resisting alloys
Gross et al. Glass-ceramic composite as a new sealing material for SOFCs
JP2023095017A (ja) マグネシウム合金部材および該マグネシウム合金部材に好適な無鉛低融点ガラス組成物
Glass et al. Silicon nitride joining for high temperature applications
JPS638267A (ja) ZrO↓2・Al↓2O↓3・SiO↓2・Li↓2O系低膨張性溶射材料

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141224