RU2324537C2 - Способ получения каталитически активных слоистых силикатов - Google Patents

Способ получения каталитически активных слоистых силикатов Download PDF

Info

Publication number
RU2324537C2
RU2324537C2 RU2005113302/04A RU2005113302A RU2324537C2 RU 2324537 C2 RU2324537 C2 RU 2324537C2 RU 2005113302/04 A RU2005113302/04 A RU 2005113302/04A RU 2005113302 A RU2005113302 A RU 2005113302A RU 2324537 C2 RU2324537 C2 RU 2324537C2
Authority
RU
Russia
Prior art keywords
metal
catalytically active
supports
atoms
copper
Prior art date
Application number
RU2005113302/04A
Other languages
English (en)
Other versions
RU2005113302A (ru
Inventor
Дитрих КОХ (DE)
Дитрих КОХ
Киснадут КЕСОРЕ (DE)
Киснадут КЕСОРЕ
А. А. Г. Томлинсон (It)
А. А. Г. Томлинсон
Original Assignee
Ико Минералз Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ико Минералз Гмбх filed Critical Ико Минералз Гмбх
Publication of RU2005113302A publication Critical patent/RU2005113302A/ru
Application granted granted Critical
Publication of RU2324537C2 publication Critical patent/RU2324537C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/049Pillared clays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/712Integrated with dissimilar structures on a common substrate formed from plural layers of nanosized material, e.g. stacked structures

Abstract

Предметом изобретения является способ получения каталитически активных слоистых силикатов с одним или несколькими промежуточными слоями, в частности, глин с межслоевыми распорками из Al и/или Ti, для очистки отработавших газов. При этом на этапе образования межслоевых опор в слоистый силикат добавляют раствор металла и полученную смесь на этапе сушки/кальцинирования нагревают с образованием поддерживающих промежуточный слой опор из атомов металла. После этого к полученному сухому веществу добавляют в сухом виде каталитически активную соль переходного металла. В заключение приготовленную сухую смесь нагревают до температуры свыше 300°С, в результате чего атомы каталитически активного переходного металла внедряются в промежуточный слой, и одновременно происходит кальцинирование сухой смеси. В качестве раствора металла применяют, в частности, раствор алюминия, титана, железа, меди, хрома. В качестве каталитически активной соли металла применяют, в частности, нитрат или сульфат меди, титана, лантана. Заявленный способ позволяет достаточно просто получать каталитически активные слоистые силикаты без образования выбросов, 14 з.п.ф-лы, 1 табл., 1 ил.

Description

Изобретение относится к способу получения каталитически активных слоистых силикатов с одним или несколькими промежуточными слоями, в частности, глин с межслоевыми опорами из Al и/или Ti (Al-, Ti-pillared clays).
Катализаторы, в частности катализаторы "Denox", служащие для удаления окислов азота (NOx) из отработанных газов, широко применяются в автомобилях для обработки отработанных газов. В случае каталитического дожигания катализаторы состоят из носителя с активным покрытием и вибростойкой, теплоизолированной опоры в корпусе. В качестве носителей применяются гранулят и спеченные из Al2O3 монолиты. Активный каталитический слой состоит из небольшого количества благородных металлов (Pt, Rh, Pd) и обладает известной чувствительностью к свинцу.
Такие автомобильные катализаторы или катализаторы тройного или выборочного действия положительно зарекомендовали себя и служат для того, чтобы на первом этапе снизить содержание NO с образованием NH3. Затем, на втором этапе, после подачи вторичного воздуха происходит почти полное окисление СО и НС. При этом также сгорает NH3, образуя NO.
Подобные катализаторы применяются с давних пор, однако, с точки зрения экологии и медицины они не являются полностью безупречными. Это было установлено лишь в ходе последних исследований, проведенных в отношении бензиновых и дизельных двигателей для автомобилей, и нашло отражение в результатах изучения автомобильных выбросов и в действующем законодательстве. Объясняется это тем, что с течением времени в этих катализаторах происходит отслоение активного каталитического слоя, состоящего, например, из платины, и его выброс в атмосферу воздуха. Вследствие этого в организме человека происходит накопление платины, о возможных отрицательных последствиях которого пока еще не существует ясности. Во всяком случае имеется необходимость в создании катализаторов, не образующих выбросы.
Кроме того, лишь недавно появилось сообщение, согласно которому под действием окиси углерода в катализаторах на платиновой основе образуются токсичные компоненты. Такие компоненты способны вызывать мутации клетки (см. "Chemical and Engineering News", июль 2002 г., стр.8).
Из уровня техники известны обсуждения альтернативных каталитических проектов, например, на основе цеолитов. Эти цеолиты обрабатываются переходными металлами. Правда, и в этом случае отмечено образование вредных для здоровья побочных продуктов, например HCNO. Кроме того, указанные катализаторы не обладают требуемой стойкостью к воде, оксидам серы и тяжелым металлам.
В уровне техники, взятом за основу в настоящем изобретении, описано получение каталитически активных слоистых силикатов, так называемых глин с межслоевыми опорами (pillared clays), и типичных цеолитовых катализаторов, причем компенсирующие заряд катионы заменяются в промежуточных слоях соответствующих слоистых силикатов более крупными неорганическими катионами гидроксиметаллов. Это происходит большей частью в водном растворе. После этого полученное вещество сушат и кальцинируют (см. статью R.Q.Long и R.T.Yang "The promoting role of rare earth oxides on Fe-exchanged TiO2-pillared clay for selective catalytic reduction on nitric oxide by ammonia" (Положительное влияние редкоземельных оксидов на глину с замещенным железом и межслоевыми опорами из TiO2 для выборочного каталитического восстановления окиси азота аммонием); Applied Catalysis В (Практические катализы В): Environmetal, №27, 2000 г., стр.87-95. С точки зрения осуществления способ является сложным.
В источнике информации "Preparation of acidic forms of montmorillonite clay via solid-state ion-exchange reactions" (Получение кислых форм монтмориллонитовой глины посредством твердофазных ионообменных реакций), М.Crocker и др. (Catalysis Letters, №15, 1992 г., стр.339-345) затронут вопрос о возможности проведения твердофазного ионного обмена в монтмориллоните. Для этого при комнатной температуре измельчают нитрат соответствующего металла вместе с соответствующей глиной. Для проведения ионного обмена предложены, в принципе, два способа: ультразвуковая обработка и нагрев. Судя по результатам замеров, при нагреве ионный обмен не происходит.
В основу изобретения положена техническая задача разработать способ получения каталитически активных слоистых силикатов, с помощью которых возможно просто получать основное каталитическое вещество, практически не образующее выбросов.
Для решения этой задачи предметом изобретения служит способ получения каталитически активных слоистых силикатов, в частности нанокомпозитных слоистых силикатов с одним или несколькими промежуточными слоями, в частности глин с межслоевыми опорами из Al и/или Ti, в котором в слоистый силикат вводится раствор металла, преимущественно поликатионный раствор металла, и затем проводится сушка смеси с образованием поддерживающих промежуточный слой опор из атомов металла, после чего в приготовленное таким образом сухое вещество вводится соль металла, в частности, переходного металла, с получением сухой смеси, и в заключение сухая смесь нагревается предпочтительно до температуры свыше 300°С, в результате чего атомы металла или переходного металла внедряются в промежуточный слой с выделением газа и одновременно происходит кальцинирование сухой смеси.
В качестве каталитически активных слоистых силикатов применяются, как правило, так называемые нанокомпозитные слоистые силикаты, т.е. такие слоистые силикаты, в которых происходит описанный твердофазный ионный обмен или внедрение атомов металла или переходного металла в нанометрическом диапазоне. То же относится и к образованию опор из атомов металла, поддерживающих соответствующий промежуточный слой. Имеются в виду преимущественно оксиды или полиоксиды металлов, т.е. в принципе соединения металлов (с содержанием кислорода), обеспечивающие поддержание за счет образования опор в соответствующем промежуточном слое.
Для образования промежуточного слоя в слоистый силикат вводят раствор соответствующего металла или поликатионный раствор металла или ионный комплексный раствор металла, и затем смесь сушат с образованием опор (Pillars), поддерживающих соответствующий промежуточный слой, кальцинируют и в случае необходимости переводят в форму аммония. Это проводится, как правило, в щелочной среде, причем для приготовления раствора металла применяют в большинстве случаев натровый щелок.
При описанной мокрой химической модификации слоистого силиката выделяют содержащийся в растворе гидроксид натрия или алюминия, при этом ионы или комплексные ионы металла осаждаются в промежуточных слоях или на поверхности слоистых силикатов. После сушки они образуют в промежуточном слое опоры нанометрического диапазона. В результате промежуточные слои или промежутки между слоями силиката не только расширяются, но и задается их определенное положение.
Выяснилось, что в качестве раствора металла можно оптимально использовать раствор алюминия и/или титана и/или железа. Наряду с этим могут также применяться растворы меди и/или хрома или смесь полиоксидов этих металлов. В принципе, для этого могут применяться, в частности, любые переходные металлы в чистом виде или в качестве смесей. Предпочтительно применять хлорид титана в сочетании с гидроксидом натрия. То же относится и к сочетанию хлорида железа с гидроксидом натрия. Если соответствующие растворы солей алюминия (в данном случае: соли хлорида алюминия) смешать в воде с натровым щелоком или гидроксидом натрия (NaOH), то образуется, например, гидроксид алюминия (Al(ОН)3). В этом случае из раствора выводится обычно малорастворимый гидроксид алюминия.
В любом случае описанная мокрая химическая модификация слоистого силиката ведет к тому, что присутствующие в растворе атомы металла (например, атомы алюминия, железа, титана и др.) осаждаются в промежуточном слое или слоях слоистых силикатов и после сушки образуют поддерживающие промежуточный слой опоры из атомов металла. Таким образом, промежутки между слоями силиката не только расширяются, но и задаются определенным образом.
В этой связи необходимо дополнительно отметить, что в качестве каталитически активного слоистого силиката могут применяться также отдельно приготовленные смеси. Так, например, возможно последующее приготовление смеси из глин с межслоевыми опорами из алюминия и титана. Таким образом, в полученном сухом веществе или смеси учитывается разное каталитическое действие, с одной стороны, например, опор из атомов титана с медным покрытием и, с другой стороны, опор из атомов алюминия с медным покрытием. В первом случае, т.е. когда применяются образованные атомами титана опоры с медным покрытием, достигается особо эффективное каталитическое действие в низкотемпературном диапазоне, в то время как образованные атомами алюминия опоры с медным покрытием особенно эффективны при высоких температурах. Следовательно, смешением слоистых силикатов для приготовления сухого вещества, прошедших разные процессы образования опор, можно достигнуть оптимального каталитического действия в широком температурном диапазоне. Сухое вещество, приготовленное из обоих прошедших разную предварительную обработку слоистых силикатов, подвергается затем вместе с солью металла или переходного металла, как было описано, твердофазной/твердофазной реакции. Если в данном случае применяется соль меди, то образуется описанное покрытие или происходит внедрение атомов меди в промежуточный слой.
Эти атомы металла или переходного металла, которыми являются, как правило, атомы меди, первично ответственны - вместе с ранее образованными опорами из атомов металла - за каталитическое действие. В результате применения соли переходного металла или его атомов не только удается поддерживать на низком уровне расходы, связанные с получением такого каталитически активного слоистого силиката, но при этом также, особенно применительно к меди, не присутствует (более) опасность того, что под действием высокой температуры в катализаторе она улетучится и попадет в окружающую среду. В этом состоит очевидное отличие от ранее применявшихся благородных металлов, таких как платина.
Само собой разумеется, что процессу сушки могут предшествовать разные другие этапы способа. Так, например, изобретением предусматривается, чтобы смесь из слоистого силиката и первого катионного комплексного раствора полигидроксида после добавки раствора металла сначала промывалась, затем фильтровалась и после этого медленно нагревалась, например, до температуры 100°С, причем реакция образования гидратизированных наноопор или опор из атомов металла протекает при комнатной температуре.
Напротив, последующий процесс сушки проводится в условиях быстрого или резкого повышения температуры от около 100°С (например, 100°С приблизительно за 10 или более минут) до около 500°С (или более), в результате чего в соответствующем промежуточном слое образуются описанные опоры из атомов металла. Действительно в промежуточных слоях происходит даже более или менее выраженная миграция опор из атомов металла, причем по окончании сушки отмечается равномерное распределение в промежуточных слоях дегидратизированных, т.е. при необходимости освобожденных от воды и гидроксида (натрия) опор из атомов металла. При этом имеется прямая связь между термической дегидратизацией и последующей рекомбинацией опор из атомов металла. Такая рекомбинация является, в основном, необратимой.
Было установлено, что модифицированный таким образом слоистый силикат сохраняет необходимую температурную стойкость до около 100°С и может использоваться в качестве катализатора.
После образования опор из атомов металла в промежуточных слоях слоистый силикат путем кислотной обработки приводится в катионное состояние, а путем щелочной обработки - в анионное, затем промывается и сушится.
Однако в промежуточный слой, образованный с помощью опор из атомов металла, необходимо предварительно ввести каталитически активные катионы большей частью в виде ионов переходных металлов, например, титана, железа, кобальта, никеля, меди, цинка и др. В принципе, также возможно применять в этом случае катионы из атомов непереходных металлов, т.е. металлов главных групп, таких как, например, натрий, калий, рубидий и др. Возможны также лантан и ионы благородных металлов, например, золота и серебра, которые в виде солей могут добавляться, как правило, в небольших концентрациях в соли переходных металлов. Эти ионы (благородных) металлов могут обеспечивать одновременно легирование большей частью внедренных ионов переходных металлов.
Особенно положительно зарекомендовало себя в этом случае внедрение катионов меди в соответствующие промежуточные слои, поскольку эти катионы способны разлагать при повышенной температуре окиси азота (NOx) преимущественно на азот (N2) и кислород (О2). При этом, в принципе, также возможно дополнительно использовать восстановитель, например метан. В любом случае главной целью является выборочное каталитическое химическое восстановление газов NOx с помощью разных восстановителей, таких, например, как НС и/или СО и/или NH3.
Если описывать подробно, то металл в качестве соли металла перемешивают в сухом виде с сухим веществом, приготовленным ранее из слоистых силикатов с опорами из атомов металла. При этом положительно зарекомендовали себя в качестве солей металлов, в частности, нитрат меди (Cu(NO3)2), ацетат меди и сульфат меди (II) (CuSO4). При необходимости указанная сухая смесь измельчается и затем (в сухом виде) нагревается, в частности, в основном до температуры свыше 300°С, как правило, до температуры от 450 до 700°С. В результате происходит разложение соли металла или соли меди с высвобождением окисей азота (диоксида азота (NO2) или диоксида серы (SO2) в приведенном примере. В зависимости от образовавшихся опор из атомов металла может происходить твердофазный обмен и/или покрытие промежуточных слоев и/или внутренних/наружных поверхностей необходимыми атомами металла или группами этих атомов.
Таким образом, неиспользованными пока остаются атомы или ионы металла или меди и/или группы атомов металла или меди, которые преимущественно внедряются в промежуточный слой. Оставшиеся атомы или ионы металла или группы атомов металла покрывают наружные поверхности. Следовательно, по меньшей мере, частично происходит тепловая замена компенсирующих заряд катионов в промежуточных слоях слоистых силикатов упомянутыми выше атомами или ионами металлов, способствующими в значительной степени каталитическому действию полученного слоистого силиката. При этом в промежуточных слоях происходит, в основном, равномерное распределение атомов металла.
В противоположность известным способам изготовление каталитически активных слоистых силикатов происходит особенно просто, так как отпадает необходимость в растворе металла или переходного металла, смешиваемого с заранее модифицированным сухим веществом. Следовательно, согласно изобретению не требуются фильтрование и обработка указанного раствора, поскольку готовят сухую смесь. Кроме того, при обязательном нагреве указанной сухой смеси одновременно происходит кальцинирование, т.е. при этом также отпадает необходимость в дополнительной отдельной операции, предусмотренной в уровне техники. Как известно, при кальцинировании удаляется, возможно, содержащаяся в сухой смеси кристаллизационная вода или другие растворители и одновременно разлагается двуокись углерода.
Полученное вещество или конечный продукт может подвергаться незначительному увлажнению для того, чтобы он мог оптимально принять при необходимости любую форму после добавления связующего вещества или пластификатора. В качестве связующего вещества могут применяться вода, оксид алюминия или керамический материал. Конечный продукт легко формуется и обрабатывается, например, экструзией. Таким образом, можно получать простые монолитные структуры или так называемые гранулы, т.е. небольшие формованные изделия, пригодные для непосредственного использования в качестве катализаторов для автомобильных отработанных газов. Однако дополнительно требуется, чтобы полученный при этом экструдат или формованные изделия предварительно подвергались нагреву и сушке.
Монолитные структуры и гранулы обеспечивают преимущество, заключающееся в том, что они являются каталитически активными по всему своему объему. Иначе обстоит дело, когда приготовленный описанным способом каталитически активный слоистый силикат используется в виде слоя в сочетании с (инертным) носителем, как, например, защитное покрытие. Такое покрытие может быть получено, например, капельным нанесением раствора слоистого силиката, согласно изобретению, на носитель. Ввиду того, что атомы металла распределены в промежуточных слоях в виде крупных ячеек, то отсутствует опасность того, что при использовании такого носителя с покрытием в качестве катализатора могут произойти во время работы нежелательные процессы спекания, снижающие каталитическое действие. Это преимущество становится еще более значимым, если применять монолитные катализаторы из слоистого силиката или гранул, согласно изобретению, т.е. из более или менее крупнозернистого гранулята.
В качестве слоистого силиката могут, в принципе, применяться двухслойные минералы, такие как каолинит или алюмосиликаты. Однако, согласно изобретению, предпочтительно применять трехслойные или даже четырехслойные минералы. Пригодным трехслойным минералом проявил себя монтмориллонит или бентонит. Другие эффективные меры указаны в 15 пунктах формулы изобретения.
Пример
В качестве исходного материала применяли бентонит, в частности кальциевый бентонит с основным компонентом монтмориллонит, состоящий из около 57 вес.% SiO2, около 23 вес.% Al2О3, около 3 вес.% Fe2О3 и около 10 вес.% Н2О. Этот исходный материал тонко измельчили для увеличения удельной внутрикристаллической поверхности. В результате тонкого измельчения эффективность приготовленного основного материала катализатора повысилась.
После этого проводилось так называемое "образование распорок" (Pillaring), т.е. мокрое химическое внедрение атомов металла для создания распорок в обоих промежуточных слоях используемого трехслойного минерала. Предварительно тонкоизмельченный минеральный порошок диспергировали в воде, что, однако, не является обязательным условием, так как и без того в порошок или дисперсию добавляется раствор гидроксида алюминия (AlOH). Посредством раствора гидроксида алюминия можно определять и задавать в дисперсии соотношение между массой бентонита и объемом всей суспензии. Это соотношение представляет собой величину концентрации системы межслоевых опор, т.е. величину того, сколько атомов в виде опор требуется в промежуточных слоях.
При этом содержанию алюминия по сравнению с бентонитом придается особое значение. Если в растворе присутствует слишком много алюминия по сравнению с содержанием бентонита, то это приводит к снижению удельной внутренней поверхности из-за интенсивного образования опор из атомов алюминия. Также слишком низкое содержание алюминия в растворе по сравнению с концентрацией бентонита после диспергирования приводит к тому, что промежуточный слой не обладает необходимой стойкостью, что особенно проявляется во время повышения температуры.
Следовательно, существует оптимальный диапазон соотношений между алюминием и бентонитом, который, в основном, определяется на основе полученной удельной внутренней поверхности. Само собой разумеется, что при этих опытах соотношение ОН/Al должно поддерживаться постоянным. Во всяком случае, целевые продукты оцениваются на основе удельной внутренней поверхности и полученного объема пор, который при оптимальном соотношении между алюминием и бентонитом достигает максимальной величины. Это следует из приведенной ниже таблицы, в которой соотношение между алюминием и бентонитом от около 3,0 до около 5,0 обеспечивает максимальные значения удельной внутренней поверхности и объема пор.
Таблица
Результаты при разных значениях соотношения между алюминием и бентонитом, ммол (6,8 г бентонита на 1 л)
Ммоли, Al/г Проводимость, мСм/см Объем осаждения за сутки, мл Поверхность, м2 Объем пор, мкл/г Объем микропор, мкл/г Показатель d, Å
1,0 2,3 19 109 97 60 16,9
2,0 4,3 22 136 88 75 17,0
3,0 6,2 20 309 279 143 18,6
5,0 9,7 19 290 258 131 17,5
6,8 10,5 18 246 99 135 19,1
8,0 15,1 17 128 106 116 18,5
10,0 15,2 16 125 95 66 17,5
Из приведенной таблицы можно видеть, что при упомянутом соотношении между алюминием и бентонитом, равном от около 3,0 до 5,0, уже достигается относительный максимум не только для удельной внутренней поверхности и объема пор, но и для объема микропор. Одновременно с этим принимает определенные заданные значения толщина промежуточного слоя (значение d), равная 17-19 Å, что благоприятно влияет на последующее внедрение атомов меди.
Дополнительно было установлено, что уже при указанном соотношении между алюминием и бетонитом от около 3,0 до 5,0 достигается оптимальный спектр толщин образовавшихся опор из атомов металла. Здесь имеется в виду, что с учетом более или менее постоянных показателей промежуточного слоя (значение d) варьируется количество распорок из атомов металла на единицу площади и почти следует гауссовому распределению. Этот спектр распределения толщин распорок из атомов металла способствует каталитическому действию, так как разложение окислов азота обычно протекает не в один этап, а в несколько. При этом основное значение придается небольшим порам, т.е. участкам с большой поверхностной плотностью распорок из атомов металла, с тем, чтобы NO превращалась, прежде всего, в NO2. При наличии более крупных пор, т.е. при меньшей поверхностной плотности распорок из атомов металла, происходит преимущественное превращение NO2 в азот (N2) и кислород (O2). Естественно, что распределение плотности распорок из атомов металла, установившееся при указанном соотношении между алюминием и бентонитом от около 3,0 до 5,0, способствует многоступенчатому разложению окислов азота.
Однако до того как произойдет внедрение атомов меди, проводится сушка бентонита, модифицированного распорками из атомов алюминия в промежуточном слое, в частности, таким образом, как это уже было описано. К сухому веществу примешивают в качестве соли металла нитрат или сульфат меди в сухом виде. В заключение сухую смесь нагревают до температуры 450-550°С, в результате чего диоксид азота или серы улетучивается, а оставшиеся атомы или ионы меди внедряются в ранее образовавшийся промежуточный слой с распорками из атомов алюминия.
В результате происходит модификация известных самих по себе слоистых силикатов, оказывающих каталитическое действие на поток отработанных газов и использующих при этом внедрившиеся в промежуточные слои атомы металла, например атомы меди. Такие атомы меди в электрическом поле промежуточного слоя способны вызывать разложение, в частности, окисей азота. Все это достигается с помощью относительно простых мокрых и сухих химических методов обработки и операций измельчения. Применяемый при этом слоистый силикат приобретает большую удельную поверхность.
Ввиду того, что каталитически активные катионы, находящиеся в электрическом поле, образованном окружающим промежуточным слоем, прочно встроены в кристаллическую структуру, то отрицательные явления, которые не может устранить уровень техники, здесь практически отсутствуют. Т.е. полученные в рамках настоящего изобретения каталитически активные слоистые силикаты не образуют вредных для окружающей среды и здоровья выбросов даже при повышенных температурах, присущих, как правило, катализаторам, используемым для отработанных автомобильных газов.
Образовавшееся вещество легко формуется непосредственно или после добавки связующего материала, например, методом экструзии. Следовательно, отпадает необходимость в применении сложных способов формования. Таким образом, получают основной материал катализатора, который практически не образует выбросов и, кроме того, может дешево формоваться с приданием ему почти любой конфигурации.
При этом дополнительно было установлено, что получаемый с помощью способа, согласно изобретению, модифицированный слоистый силикат не только может использоваться как основной материал катализатора, но также может служить для фильтрации сажи в автомобилях с дизельным двигателем. В этом случае промежуточные слои задерживают отдельные частицы сажи, при этом содержащиеся в отработанном газе оксиды азота (NOx) исключают забивку указанного фильтра сажей, так как оксиды азота окисляют при существующих температурах углерод сажевых частиц в двуокись углерода (СО2), проходящий в виде газа через соответствующий сажевый фильтр. Таким образом, не только происходит разложение окисей азота, но и одновременно частицы сажи фильтруются и химически преобразуются.
С помощью блок-схемы на чертеже еще раз поясняются отдельные этапы способа.
Прежде всего слоистый или исходный материал (исходный бентонит) на этапа 1.1 при необходимости просеивают и сушат. На этапе 1.1 возможно также измельчение.
После этого исходный материал диспергируют, например, в воде, как это показано для этапа 1.2. Таким образом, в приведенном примере получают бентонитовую дисперсию.
Одновременно на этапе 2.1 готовят раствор металла, при этом соль металла (соль алюминия) растворяют с добавлением натрового щелока и на этапе 2.2 получают необходимый раствор металла (раствор гидроксида алюминия).
Затем исходную или бентонитовую дисперсию этапа 1.2 и раствор металла или раствор гидроксида алюминия этапа 2.2 смешивают между собой для образования межслоевых распорок (pillaring). Для улучшения перемешивания может применяться или не применяться ультразвук, в частности, на этапе 3.1. Приготовленный при этом раствор или смесь на этапе 3.2 промывается, фильтруется и затем на этапе 4.1 сушится или кальцинируется. Это происходит, как правило, при температуре 400-600°С в течение 1-12 часов.
После этого проводится просеивание, при котором полученное на этапе 4.2 сухое вещество отделяют, а зерна размером менее 500 мкм задерживают. Сухую смесь на этапе 5.1 смешивают в совершенно сухом виде с солью металла, например меди, или с солями других металлов.
Затем каталитически активные атомы металла или переходного металла внедряют в промежуточный слой на этапе 6.1 способа, на котором сухую смесь нагревают или кальцинируют в течение 1-12 часов. В заключение проводят еще один процесс формования на этапе 6.2 с или без дополнительного применения связующих материалов или пластификаторов. Наконец получают монолитный целевой продукт в виде гранул или раствора для нанесения покрытия на носитель. В любом случае конечный продукт обладает особой устойчивостью к водяным парам, что предопределяет его использование для каталитической очистки в системе выпуска ОГ автомобиля.

Claims (15)

1. Способ получения каталитически активных слоистых силикатов для очистки отработавших газов, содержащих один или несколько промежуточных слоев, при котором на этапе (3.1) образования межслоевых опор в слоистый силикат добавляют раствор металла и полученную смесь на этапе (4.1) сушки/кальцинирования нагревают с образованием поддерживающих промежуточный слой опор из атомов металла, в приготовленное сухое вещество добавляют каталитически активную соль переходного металла с получением сухой смеси и в заключение нагревают сухую смесь до температуры свыше 300°С, в результате чего атомы каталитически активного переходного металла внедряются в промежуточный слой и одновременно происходит кальцинирование сухой смеси.
2. Способ по 1, отличающийся тем, что в качестве раствора металла применяют раствор алюминия, титана, железа, меди, хрома.
3. Способ по п.1 или 2, отличающийся тем, что сухую смесь нагревают до температуры 450-700°С.
4. Способ по п.1, отличающийся тем, что смесь из слоистого силиката и раствора металла сначала промывают, затем фильтруют и только после этого медленно нагревают, причем реакция образования опор из атомов металла проводится при комнатной температуре.
5. Способ по п.4, отличающийся тем, что после сушки вещество резко нагревают для равномерного распределения дегидратизированных опор из атомов металла в промежуточных слоях.
6. Способ по п.5, отличающийся тем, что температурный градиент при резком нагреве устанавливают таким, чтобы повышение температуры составило около 100°С/10 мин и более, например, от 100 до 500°С за 30 мин.
7. Способ по п.1, отличающийся тем, что после образования опор из атомов металла в промежуточных слоях слоистый силикат путем кислотной обработки приводится в катионное состояние, а путем щелочной обработки - в анионное, затем промывается и сушится.
8. Способ по п.1, отличающийся тем, что каталитически активную соль переходного металла получают на основе переходных металлов, таких, как, например, медь, титан, лантан.
9. Способ по п.8, отличающийся тем, что в качестве каталитически активной соли металла применяют нитрат или сульфат меди.
10. Способ по п.1, отличающийся тем, что полученное из сухой смеси вещество формуют при необходимости после добавки связующего вещества, например оксида алюминия, например, экструзией.
11. Способ по п.10, отличающийся тем, что полученный экструдат сушат.
12. Способ по п.1, отличающийся тем, что в качестве слоистого силиката применяют двухслойный и/или трехслойный минерал.
13. Способ по п.1, отличающийся тем, что внутренняя поверхность полученного слоистого силиката составляет около 300 м2/г и более.
14. Способ по п.1, отличающийся тем, что в качестве каталитически активных слоистых силикатов применяют нанокомпозитные слоистые силикаты, в частности, глины с межслоевыми опорами из Al и/или Ti.
15. Способ по п.1, отличающийся тем, что в качестве раствора металла применяют поликатионный раствор металла.
RU2005113302/04A 2002-09-30 2003-09-29 Способ получения каталитически активных слоистых силикатов RU2324537C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10245963A DE10245963A1 (de) 2002-09-30 2002-09-30 Verfahren zur Herstellung von katalytisch wirkenden Schichtsilikaten
DE10245963.0 2002-09-30

Publications (2)

Publication Number Publication Date
RU2005113302A RU2005113302A (ru) 2005-10-10
RU2324537C2 true RU2324537C2 (ru) 2008-05-20

Family

ID=32038207

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005113302/04A RU2324537C2 (ru) 2002-09-30 2003-09-29 Способ получения каталитически активных слоистых силикатов

Country Status (12)

Country Link
US (1) US7476639B2 (ru)
EP (1) EP1545770A2 (ru)
JP (1) JP2006501064A (ru)
CN (1) CN100364667C (ru)
AU (1) AU2003287954A1 (ru)
BR (1) BR0314551A (ru)
DE (1) DE10245963A1 (ru)
MX (1) MXPA05003363A (ru)
PL (1) PL376480A1 (ru)
RU (1) RU2324537C2 (ru)
WO (1) WO2004030817A2 (ru)
ZA (1) ZA200503455B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2696377C2 (ru) * 2017-03-15 2019-08-01 Георгий Иванович Лазоренко Способ получения пористого фуллеренсодержащего наноматериала на основе интеркалированного монтмориллонита

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013164B4 (de) * 2004-03-17 2006-10-12 GM Global Technology Operations, Inc., Detroit Katalysator zur Verbesserung der Wirksamkeit der NOx-Reduktion in Kraftfahrzeugen
DE102005010221A1 (de) * 2005-03-05 2006-09-07 S&B Industrial Minerals Gmbh Verfahren zum Herstellen eines katalytisch wirkenden Minerals auf Basis eines Gerüstsilikates
CN100444960C (zh) * 2005-07-08 2008-12-24 中国科学院广州地球化学研究所 一种有机修饰纳米钛柱撑粘土及其制备方法
WO2008048349A2 (en) * 2006-03-06 2008-04-24 National Institute Of Aerospace Associates Depositing nanometer-sized metal particles onto substrates
DE102007001466A1 (de) 2007-01-10 2008-07-17 S&B Industrial Minerals Gmbh Verfahren zur Herstellung eines antibakteriell bzw. antimikrobiell wirkenden keramischen Werkstoffes sowie dessen Verwendung
CN101716499B (zh) * 2009-11-27 2011-12-14 中国科学院广州地球化学研究所 介孔硅胶负载钛柱撑粘土光催化剂及其制备方法和应用
JP5956987B2 (ja) * 2010-07-02 2016-07-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 柱状化ケイ酸塩化合物及びその製造方法、並びに柱状化ケイ酸塩化合物の利用
KR101907147B1 (ko) * 2012-03-28 2018-10-12 현대중공업 주식회사 선박 배가스 정화용 금속필터
CN104437500B (zh) * 2014-11-11 2017-05-31 安徽工业大学 一种蒙脱石基金属镍纳米片催化剂及其制备方法和应用
CN105713166A (zh) * 2014-12-05 2016-06-29 中国石油化工股份有限公司 一种含有机-无机杂化材料的硬质聚氨酯泡沫及其制备方法
CN105819460B (zh) * 2015-01-04 2018-09-14 神华集团有限责任公司 一种氢型层柱皂石及其制备方法和应用
US10982023B2 (en) 2015-05-11 2021-04-20 W. R. Grace & Co.-Conn. Process to produce modified clay, supported metallocene polymerization catalyst
JP6749941B2 (ja) 2015-05-11 2020-09-02 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット 改質粘土を生成するプロセス、生成された改質粘土及びその使用
GB201705241D0 (en) 2017-03-31 2017-05-17 Johnson Matthey Catalysts (Germany) Gmbh Catalyst composition
CN108212155B (zh) * 2018-02-11 2020-04-14 中国科学院广州地球化学研究所 一种粘土矿物负载均匀分散金属离子/原子催化剂及其制备方法
CN111228932A (zh) * 2020-01-19 2020-06-05 四川永祥多晶硅有限公司 硅粉过滤系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990476A (en) * 1979-10-15 1991-02-05 Union Oil Company Of California Hydrocarbon conversion catalyst for use in selectively making middle distillates
GB2222963B (en) * 1988-09-23 1992-01-02 British Gas Plc Catalysts
JP3783875B2 (ja) * 1994-10-24 2006-06-07 バブコック日立株式会社 粘土鉱物を用いた窒素酸化物除去用触媒と排ガス処理方法
AU4967197A (en) * 1996-11-25 1998-06-22 Ecodevice Laboratory Co., Ltd. Photocatalyst having visible light activity and uses thereof
IL121877A (en) * 1997-10-01 2001-09-13 Yissum Res Dev Co Photocatalysts for the degradation of organic pollutants
US6521559B1 (en) 1999-09-27 2003-02-18 The Regents Of The University Of Michigan Superior pillared clay catalysts for selective catalytic reduction of nitrogen oxides for power plant emission control
DE60107991T2 (de) * 2000-03-31 2005-12-15 Sumitomo Chemical Co., Ltd. Verfahren zur Herstellung von Titanoxid
US7175911B2 (en) * 2002-09-18 2007-02-13 Toshiba Ceramics Co., Ltd. Titanium dioxide fine particles and method for producing the same, and method for producing visible light activatable photocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Weibin Li, Mala Sirilumpen and Ralph T. Yang. Selective catalytic reduction of nitric oxide by ethylene in the presence of oxygen over Cu2+ion-exchanged pillared clays. Applied Catalysis B: Environmental. Volume 11, Issues 3-4, 21 March 1997, pages 347-363. Yang R.T. and Li W.B. Ion-Exchanged Pillared Clays: A New Class of Catalysts for Selective Catalytic Reduction of NO by Hydrocarbons and by Ammonia. Journal of Catalysis. Volume 155, Issue 2, 1 September 1995, pages 414-417. M.Crocker, R.H.M.Herold et al. Preparation of acidic forms of montmorillonite clay via solid-state ion-exchange reactions. Catalysis Letters, vol.15, 1992, pp.339-345. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2696377C2 (ru) * 2017-03-15 2019-08-01 Георгий Иванович Лазоренко Способ получения пористого фуллеренсодержащего наноматериала на основе интеркалированного монтмориллонита

Also Published As

Publication number Publication date
US7476639B2 (en) 2009-01-13
RU2005113302A (ru) 2005-10-10
CN1694762A (zh) 2005-11-09
BR0314551A (pt) 2005-08-09
WO2004030817A3 (de) 2004-07-01
PL376480A1 (en) 2005-12-27
AU2003287954A1 (en) 2004-04-23
DE10245963A1 (de) 2004-04-22
AU2003287954A8 (en) 2004-04-23
EP1545770A2 (de) 2005-06-29
WO2004030817A2 (de) 2004-04-15
CN100364667C (zh) 2008-01-30
ZA200503455B (en) 2006-08-30
JP2006501064A (ja) 2006-01-12
MXPA05003363A (es) 2005-11-04
US20060094594A1 (en) 2006-05-04

Similar Documents

Publication Publication Date Title
RU2324537C2 (ru) Способ получения каталитически активных слоистых силикатов
US11713705B2 (en) Nitrous oxide removal catalysts for exhaust systems
JP6480053B2 (ja) 低シリカ/アルミナ比を有する菱沸石ゼオライト触媒
CA1327346C (en) Catalyst support material containing lanthanides
US6146602A (en) Mesoporous oxide molecular sieves for absorbing nitrogen oxides in oxidizing engine exhaust gas
EP0993861B1 (en) Catalyst for purifying exhaust gas from lean-burn engine
EP1256382B1 (en) Exhaust gas purification catalyst and exhaust gas purification material
JP6875615B1 (ja) 排気ガス浄化用触媒、排気ガスの浄化方法、及び排気ガス浄化用触媒の製造方法
US9468918B2 (en) Metal-supported crystalline silicoaluminophosphate NOx-reducing catalyst
JPH08229404A (ja) 排ガス浄化触媒および排ガス浄化装置
JP4063807B2 (ja) 排ガス浄化用触媒
JP5495763B2 (ja) 金属担持結晶性シリカアルミノフォスフェート触媒の製造方法および金属担持結晶性シリカアルミノフォスフェート触媒
JPH074528B2 (ja) アルコールを燃料とする内燃機関からの排気ガスの浄化用触媒の製造方法
US20210205794A1 (en) Zeolite having improved heat resistance and catalyst composite using same
JPH0810619A (ja) オゾン分解用触媒及びオゾン分解方法
EP3138622B1 (en) Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
JP5832560B2 (ja) リン酸アルミニウムで修飾された金属担持結晶性シリカアルミノフォスフェート触媒の製造方法
JPH10151325A (ja) 排気ガス浄化方法
RU2652113C1 (ru) Катализатор для очистки выхлопных газов, а также фильтр и способ очистки выхлопных газов с его использованием
JP2011177676A (ja) リン酸アルミニウム修飾金属担持結晶性シリカアルミノフォスフェート触媒およびその製造方法
JP2021065818A (ja) 排気ガス浄化用触媒、排気ガスの浄化方法、及び排気ガス浄化用触媒の製造方法
JPH0768170A (ja) 脱硝触媒

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080930