RU2318840C2 - Обработка потоков отходов, содержащих тетрахлорид титана - Google Patents

Обработка потоков отходов, содержащих тетрахлорид титана Download PDF

Info

Publication number
RU2318840C2
RU2318840C2 RU2004129576/15A RU2004129576A RU2318840C2 RU 2318840 C2 RU2318840 C2 RU 2318840C2 RU 2004129576/15 A RU2004129576/15 A RU 2004129576/15A RU 2004129576 A RU2004129576 A RU 2004129576A RU 2318840 C2 RU2318840 C2 RU 2318840C2
Authority
RU
Russia
Prior art keywords
waste
heat treatment
ticl
stage
halogen
Prior art date
Application number
RU2004129576/15A
Other languages
English (en)
Other versions
RU2004129576A (ru
Inventor
НЕЙЕНХЕЙС Марселлинус Антониус Мария ТЕ
Эрик Антониус Якобус Вильхельмус КУППЕН
Original Assignee
Акцо Нобель Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акцо Нобель Н.В. filed Critical Акцо Нобель Н.В.
Publication of RU2004129576A publication Critical patent/RU2004129576A/ru
Application granted granted Critical
Publication of RU2318840C2 publication Critical patent/RU2318840C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B1/00Dumping solid waste
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/02Halides of titanium
    • C01G23/022Titanium tetrachloride
    • C01G23/024Purification of tetrachloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Изобретение может быть использовано при переработке отходов, образующихся в процессе производства катализаторов на основе титана. Поток отходов содержит, по меньшей мере, тетрахлорид титана, возможно один или более обычных электрондоноров и, по меньшей мере, один или более (галоген)алкоксидов титана формулы TiXx(OR)z, где Х является галогеном, R является алкилом, предпочтительно низшим алкилом с числом атомов углерода от 1 до 10, х=0-3, z=l-4 и 2≤x+z≤4. Способ обработки потока отходов включает термообработку, условия которой выбраны так, что конечный продукт представляет собой отходы в виде материала из дискретных частиц при температуре 20°С. Изобретение позволяет повысить извлечение рециркулируемого ценного сырья, снизить количество отходов и их опасность. 12 з.п. ф-лы.

Description

Описание
Изобретение относится к способу, позволяющему рециркулировать ценные химические реагенты из потока отходов для снижения количества отходов и/или уменьшения источников опасности, связанных с конечными отходами. Указанный поток отходов образуется при производстве катализаторов на основе Ti и обычно содержит указанные отходы, указанные ценные химические реагенты, а также другие материалы, такие как алкоксилированные и/или содержащие спирт вещества. Катализаторы на основе Ti находят широкое применение в способе (co)полимеризации олефинов по Циглеру-Натта.
Способ получения катализатора Циглера-Натта на основе Ti для полимеризации олефинов известен давно. В настоящее время основная часть полипропилена производится с таким типом катализатора. Примерами патентов, раскрывающих способы получения и применения катализаторов на основе Ti, являются US 3993588, US 4115319, US 4452912, US 4468477, US 4727051, US 4876321, US 4981826, US 5221650, US 5420090, EP-A-0491566, EP-A-0700936, EP-A-0717052, EP-A-0743326 и WO 97/36939. Как правило, в таких способах образуется большой поток отходов, содержащий, кроме прочего, непрореагировавший TiCl4, необязательно, обычные электрондоноры, такие как ароматические и/или алифатические сложные (ди)эфиры, простые (ди)эфиры, и т.д., дополнительные (со)растворители, такие как ароматические углеводороды, например ксилол и/или толуол, хлорированные (со)растворители, такие как хлоралканы и монохлорбензол, простые эфиры, такие как ТГФ или дибутиловый эфир, и/или алканы, такие как гептан, и один или более (галоген)алкоксидов титана формулы TiXx(OR)z, в которой X является галогеном, R является алкилом, главным образом низшим алкилом, содержащим от 1 до 10 атомов углерода, таким как этил, изобутил, октил, изононил и т.д., x=0-3, z=1-4 и 2≤x+z≤4, предпочтительно x+z равно 3 или 4, наиболее предпочтительно, x+z равно 4, причем молекула нейтральна по заряду. По экологическим причинам и чтобы сделать возможным более экономичное получение катализатора, желательно рециркулировать различные химические реагенты из потока отходов. Химические реагенты предпочтительно извлекаются с достаточной степенью чистоты, чтобы сделать возможным их повторное использование. Кроме того, обычные потоки отходов опасны и трудны в обращении, так как TiCl4 в них при контакте с водой будет образовывать сильно коррозийный газ HCl. Соответственно, возник большой интерес к извлечению ценных химических реагентов из потока отходов и к такой обработке потока отходов, чтобы получать менее опасные отходы.
Традиционно поток отходов обрабатывался путем ректификации, предотвращая насколько возможно образование твердых веществ. Более конкретно, патент US 5242549 раскрывает добавление разделяющего растворителя к смеси и проведение первой ректификации так, чтобы, кроме прочего, TiCl4 мог рециркулировать. Разделяющий растворитель должен иметь точку кипения при атмосферном давлении выше, чем у TiCl4, и ниже, чем у самого низкокипящего из хлор(алк)оксидов титана. Разделяющий растворитель извлекается на второй ректификационной установке и рециркулируется в первую ректификационную установку. Температура на этой второй стадии ректификации такова, что, помимо прочего, хлор(алк)оксиды титана остаются растворенными в кубовых продуктах и затем отводятся. В способах такого типа температура во второй ректификационной установке должна всегда выбираться так, чтобы разделяющий растворитель извлекался, хлоралкоксиды титана оставались растворенными и предотвращалось образование твердых веществ и алкилгалогенидов. Следовательно, предпочтительны как можно более низкие температуры.
Сообщалось также о гидролизе углеводородов, содержащих Ti/V. Заявка EP-B-0771776 раскрывает улучшение способа патента US 5242549. Там поток (галоген)(алк)оксидов титана и разделяющего растворителя подвергается дальнейшей стадии гидролиза водным раствором основания или кислым раствором. На стадии гидролиза соединения титана удаляют из потока отходов осаждением.
Патент US 5948212 раскрывает способ, в котором не используется дополнительный разделяющий растворитель. Однако в этом случае требуется, чтобы на стадиях получения катализатора применялся разбавитель реакционной смеси, у которого, опять же, точка кипения является промежуточной между точкой кипения TiCl4 и (галоген)алкоксидов титана, сложных эфиров и их комплексов. На первой стадии ректификации извлекается TiCl4, а разбавитель реакционной смеси извлекается с верхней (головной) части второй ректификационной установки. (Галоген)алкоксиды титана, сложные эфиры и их комплексы являются кубовым продуктом второй ректификационной установки. Эти отходы могут содержать немного разбавителя, чтобы предотвратить образование твердого вещества.
Патент US 4683215 раскрывает реакцию галогенида органической кислоты, такого как бензоилхлорид с хлор(алк)оксидами титана, чтобы удалить указанные загрязняющие примеси хлоралкоксида титана из потока, содержащего TiCl4. Полагают, что этот способ является экономически оправданным, и предпочтительные способы согласно изобретению не включают применение хлоридов органической кислоты.
Патент US 4914257 раскрывает способ, в котором комплекс TiCl4/ТГФ осаждается из потока отходов, позволяя извлечь из него толуол и TiCl4 или ТГФ. В зависимости от состава потока отходов для образования комплекса, который выпадает в осадок и затем удаляется, добавляют ТГФ или TiCl4.
Имеются и другие ссылки, раскрывающие способы, в которых поток отходов сначала контактирует с водой для гидролиза и затем обрабатывается далее, как, например, в патенте JP-A-2001-261340. Отмечают, что способы согласно настоящему изобретению не содержат стадии гидролиза до стадии термообработки.
Во всех этих способах обычно требуется использовать очень специфические разбавители/растворители или добавлять дополнительные химические реагенты в поток отходов, чтобы способствовать разделению одного или более его компонентов. Более того, было обнаружено, что количество полученного из потока отходов или рециркулированного TiCl4 не является максимально возможным. Хотя, таким образом извлекают один или более химических реагентов, нагрузка на окружающую среду (т.е., количество конечных отходов), стоимость и опасность, связанная с результирующими конечными отходами, все еще являются огромной проблемой, а гибкость при выборе растворителя в способе получения катализатора ограничена.
В результате интенсивных исследовательских усилий авторами был открыт новый способ обработки отходов, такой, при котором i) извлекается значительно большее количество ценного сырья, которое может быть рециркулировано в один или более обычных процессов, ii) количество отходов уменьшается, iii) риск от оставшихся отходов значительно снижен, iv) дается возможность достичь большей гибкости в способе получения катализатора, например, потому, что не требуются разделение и/или сорастворители, и v) устраняется необходимость добавлять в поток отходов химические реагенты.
Таким образом, данное изобретение относится к способу обработки потока отходов от способа получения катализатора Циглера-Натта на основе Ti, содержащего непрореагировавший TiCl4 и один или более (галоген)алкоксидов титана формулы TiXx(OR)z, в которой X является галогеном, R является алкилом, предпочтительно низшим алкилом с числом атомов углерода от 1 до 10, x=0-3, z=1-4 и 2≤x+z≤4, причем молекула нейтральна по заряду. Более предпочтительно R выбран из группы, состоящей из этила, н-пропила, изопропила, н-бутила, втор-бутила, изобутила, трет-бутила, н-амила, изоамила, трет-амила, и втор-изоамила. Наиболее предпочтительно R является группой первичного алкила. Предпочтительно X является хлором, бромом или фтором, причем хлор наиболее предпочтителен.
Настоящий способ отличается тем, что он содержит стадию термообработки, на которой условия процесса выбраны так, чтобы остаток от стадии термообработки был дискретной фазой, такой как твердые, пористые и/или полые (заполненные, например, жидкостью) частицы, кусочки, комки, агломераты, гранулы, щебень, небольшие кусочки руды, хлопья и т.д., которые все же могут содержать абсорбированную и/или адсорбированную жидкость при температуре 20°C, предпочтительно при температуре 90°C, наиболее предпочтительно при температуре термообработки. Наиболее предпочтительно остаток при этих температурах является легкосыпучим порошком. Размер частиц порошка в предпочтительном воплощении не существенен для настоящего изобретения. Предпочтительно, размер частиц лежит в интервале от 0,1 мкм до 10 см, более предпочтительно от 0,2 мкм до 4 см, чтобы облегчить манипуляции.
Следует отметить, что в зависимости от особых требований, например технических требований на рециркуляцию и/или местных постановлений по отходам, для оптимизации результатов конечные отходы должны далее обрабатываться с использованием одной или более следующих технологических стадий, в произвольном порядке: i) нейтрализация и/или гидролиз в последующей обычной обработке, например, (водным) (гидр)оксидом щелочного (щелочноземельного) металла, ii) обычное окисление, например воздухом, при повышенных температурах для окисления (органических) соединений; если условия выбраны правильно, единственным остаточным соединением Ti является TiO2, iii) введение отходов в твердую, предпочтительно неорганическую матрицу, такую как стекло, обычными методами инкапсуляции, плавлением и/или методом спекания, iv) пиролиз органических соединений обычным образом, v) пирогидролиз, термообработка в присутствии воды и в отсутствие кислорода, vi) смешивание с другими отходами, vii) рециркулирование твердых отходов в процесс, в котором отходы могут служить источником Ti, такой как процессы, в которых получаются соли и/или окислы Ti, и viii) разбавление/комбинирование с подходящим разбавителем/агентом агломерации, например, чтобы образовать растворы, суспензии, гидросмеси, пасты, агломераты и/или другие частицы, такие как таблетки, гранулы и тому подобное. По желанию каждая из дальнейших стадий обработки может проводиться в одной или более последовательных реакционных резервуарах. Однако, если это удобно, один и тот же реактор может также использоваться во всем процессе.
Отметим, что конечные отходы, полученные согласно способу настоящего изобретения, содержащему стадию термообработки и, по желанию, дополнительную стадию обработки, может, тем не менее, содержать определенное количество одного или более обычных электрондоноров или других ценных соединений в виде комплектов, которые изначально присутствовали в потоке отходов до стадии термообработки. Эти соединения могут быть извлечены различными традиционными методами, известными в данной области, такими как, например, гидролиз или экстракция.
В другом предпочтительном воплощении условия выбраны так, что почти весь TiCl4, который мог бы быть образован из отходов, действительно образуется и извлекается. Образуется практически весь TiCl4, если менее чем 10% мас./мас., предпочтительно менее чем 5% мас./мас., более предпочтительно, менее чем 1% об./об. TiCl4 выделяется из остатка, если его обрабатывать при 200°С в течение 1 часа при атмосферном давлении.
В другом предпочтительном воплощении термообработка такова, что (галоген)алкоксиды титана разлагаются с образованием значительного количества алкилгалогенида и (галоген)оксидов Ti. Количество образованного алкилгалогенида значительно, если образуется, по меньшей мере, 10 кг алкилгалогенида на 1000 кг галогеналкоксида Ti во входном потоке отходов. Более предпочтительно, по меньшей мере, 25 кг, еще более предпочтительно, по меньшей мере, 50 кг и наиболее предпочтительно, по меньшей мере, 75 кг алкилгалогенида образуется на 1000 кг галогеналкоксида Ti во входном потоке отходов.
Отметим, что новый способ, как он описан далее и поясняется в данном описании, является способом периодического типа. Однако имея представленную в данном описании информацию, специалист в данной области сможет без труда распространить эту технологию на способы, работающие в непрерывном режиме. Следовательно, следует понимать, что настоящее изобретение не ограничивается таким предпочтительным периодическим способом, как описанный ниже.
Чтобы более точно указать отличие от способов предшествующего уровня, отмечается, что обычные условия ректификации такие мягкие, что (галоген)алкоксиды титана не разлагаются полностью. Одна из причин выбора таких мягких условий - это то, что разложение (галоген)алкоксидов титана приводит к образованию твердых веществ и алкилгалогенида, который нежелателен по нескольким причинам. Возможно наиболее важной причиной было засорение ректификационной установки твердыми веществами. Известно, что такое засорение случается в обычных ректификационных колоннах, перегонных кубах и ребойлерах, вызывая много проблем. Также поток отходов обычно будет содержать целевой алкилгалогенид (RX) и продукты его разложения. В частности, если R является этилом, точка воспламенения потока отходов часто ниже нормативных пределов, что требует отнесения его к категории "жидкий, легковоспламеняющийся", со всеми связанными с этим требованиями безопасности. В предпочтительном воплощении настоящего изобретения алкилгалогенид извлекается в настоящем способе как отдельный поток.
Предпочтительно настоящий способ дает в результате конечные отходы, которые не так опасны, как традиционные отходы. Новые отходы не только выделяют меньше паров HCl на влажном воздухе (при 20°C), но они также предпочтительно имеют точку воспламенения намного выше нормативных пределов, требующих отнесения их к категории "жидкие, легковоспламеняющиеся" (в настоящее время для продуктов с точкой воспламенения 60,5°C или ниже), что резко контрастирует с обычными отходами. Следовательно, конечные отходы настоящего способа не так опасны, как традиционные отходы, со всеми вытекающими отсюда преимуществами. В предпочтительном воплощении точка воспламенения конечных отходов выше 60,5°C, более предпочтительно выше 80°C, еще более предпочтительно выше 100°C, наиболее предпочтительно выше 120°C.
Настоящий способ термообработки предпочтительно, по меньшей мере, частично проводится при температурах 160°C или выше при атмосферном давлении. В более предпочтительном воплощении способ включает одну стадию при атмосферном давлении и температуре выше 180°C, более предпочтительно выше 185°C. Более высокая температура, такая как, по меньшей мере, 200°C, может быть предпочтительна, если TiOCl2, который может быть образован на стадии термообработки, также должен быть преобразован в TiCl4. По экономическим причинам температура термообработки предпочтительно ниже 400°C. Если термообработка проводится при пониженном давлении, температура может быть соответственно снижена, как это известно в данной области. В способе согласно изобретению работать при пониженных давлениях и, соответственно, более низких температурах не является предпочтительным. Не только будет ниже скорость образования TiCl4, что потребует большего времени обработки, пока образуется и будет извлечен практически весь TiCl4, но пониженное давление представляет также потенциальный риск для безопасности, так как любая течь в оборудовании позволит войти в систему (влажному) воздуху, что приведет к образованию в ней коррозийной и очень нежелательной HCl.
Оборудование, которое используется для проведения стадии термообработки, может быть выбрано из широкого круга обычных установок, которые способны выдержать химические реагенты, используемые при указанных температурах. Предпочтительно оборудование таково, что (конечные) отходы перемешиваются или поддерживаются в движении каким-либо другим способом, чтобы облегчить переход из жидкого в твердое состояние и обеспечить достаточный теплоперенос. Подходящее оборудование включает обычные реакторы смешения, оборудованные холодильником и нижним разгрузочным отверстием, такие как соответствующие перегонные кубы с перемешиванием, но может также быть и в виде обычного сушильного оборудования, такого как роторные сушилки, сушилки с непрерывным перемешиванием, с кипящим слоем, термические сушилки, пленочные испарители и/или выпарные аппараты с падающей пленкой и им подобные. В зависимости от конкретного способа может быть предпочтительным использовать оборудование, которое является либо периодическим, либо позволяет вести работу в непрерывном режиме.
По желанию способ может содержать, по меньшей мере, одну обычную ректификационную установку и секцию термообработки. В таком способе часть конденсата с реакции термообработки может рециркулировать в указанную ректификационную установку.
Однако в наиболее простой форме настоящий способ включает именно одну стадию термообработки для обработки потока отходов, содержащего TiCl4, и один или более (галогенид)алкоксида титана, в соответствии с чем:
- оборудование и условия таковы, что практически весь TiCl4, который может быть извлечен термообработкой, действительно извлечен,
- после и/или по время указанной термообработки можно удалять твердые вещества из оборудования, и
- реакционная смесь и результирующие конечные отходы предпочтительно перемешиваются.
В зависимости от состава входящего потока отходов, TiCl4, который образуется, а также TiCl4, который необязательно присутствовал во входном потоке, может рециркулировать как таковой. Если входной поток также содержал один или более растворителей/разбавителей/загрязняющих примесей, которые кипят в приложенных условиях, эти растворители/разбавители/загрязняющие примеси также могут рециркулировать, при желании вместе с TiCl4 или, после дальнейших факультативных стадий разделения, как отдельные потоки. Результирующий конечный поток отходов, содержащий (галоген)оксид титана, предпочтительно является менее опасным потоком отходов. Если в настоящем способе образуются побочные продукты, которые могут препятствовать рециркуляции TiCl4 или потока TiCl4/растворитель/разбавитель, предпочтительна дополнительная стадия разделения.
Были обнаружены следующие благоприятные (побочные) эффекты в способе согласно изобретению, когда в обрабатываемом потоке отходов присутствует возможный электрондонор типа сложного эфира: 1) любой сложный эфир в подаваемом питании может разлагаться на соответствующую кислоту и алкилгалогенид, увеличивая количество потенциально пригодного для повторного применения алкилгалогенида, 2) комплексы таких сложных эфиров с соединениями Ti также разлагаются, увеличивая количество TiCl4, которое может рециркулировать. Следовательно, настоящее изобретение в высшей степени подходит для обработки потоков отходов от способов получения катализаторов типа Циглера-Натта.
Конечные отходы в конце стадии термообработки являются материалом в виде частиц. Предпочтительно указанный материал в виде частиц является легкосыпучим при температуре 20°C, предпочтительно при температуре 90°C. Это означает, что практически все жидкие растворители/разбавители входного потока отходов были рециркулированы в процесс. Так как предпочтительные конечные отходы, содержащие (галоген)оксид титана, практически безопасны, они при желании могут после одной или более дополнительных стадий i-viii, показанных выше, и, в зависимости от предписаний, быть удалены любыми подходящими средствами. Благодаря более низкой теперь классификации степени опасности отходов получаются существенный экономический выигрыш и выигрыш в обработке.
Количество TiCl4, которое реально может быть получено в способе, будет зависеть от состава подаваемого сырья и будет, имея в виду множество различных способов получения катализатора на основе Ti, меняться в широком диапазоне. Аналогично, количество алкилгалогенида, которое будет получено, количество растворителя, рециркулирующего в способе и количество конечных отходов, содержащих (галоген)оксид Ti, будут меняться в зависимости от условий, используемых в настоящем способе.
Изобретение поясняется следующими примерами.
Пример 1 и Сравнительный пример A
Методика патентов US 5242549 и US 5948212 была воспроизведена посредством ректификации, при абсолютном давлении 50-200 мбар, потока отходов от способа получения титанового катализатора для получения полипропилена, содержащего TiCl4, хлоралкоксиды титана и сложный эфир ароматической кислоты, причем эта смесь представляла собой коричневую суспензию при комнатной температуре, которая, далее, содержала 500 мл ортохлортолуола на 250 мл (393 г) суспензии.
Из 750 мл этой смеси на первой стадии ректификации при температуре ректификации 70-90°C получали 200 мл прозрачного красно-оранжевого дистиллята и кубовые продукты в виде коричневой суспензии.
На второй стадии ректификации при 90-128°C снова применяли давление 50-200 мбар, 680 г суспензии далее разделяли на примерно 570 г красно-оранжевого дистиллята и 80 г смолистого остатка. Указанный остаток представлял собой очень вязкую массу при температуре 120°C и смолу при 20°C.
Недостатки этой методики, как отмечено в описании, состояли в том, что применяется частичный вакуум, что смола трудна в обращении, что отходы все же содержали извлекаемый TiCl4, и что с ними нужно обращаться как с опасными химикатами, которые дымились на воздухе.
В примере 1 ту же первоначальную коричневую дисперсию, содержащую TiCl4, хлоралкоксиды титана и сложный эфир ароматической кислоты, подвергали единственной стадии термообработки с использованием реактора смешения при температуре 210°C и атмосферном давлении. Из 1000 г суспензии получали 469 г оранжеватого дистиллята и 515 г оранжево-коричневатого порошка, который представлял собой легкосыпучее вещество при 20°C. Порошок не выделял паров на влажном воздухе. Отходы, которые получали этим же способом и обрабатывали при температуре 240°C, имели точку воспламенения 200°C.
Примеры 2-6
Были приготовлены следующие образцы, где числа указывают массовые проценты от всей композиции
Пример 2 3 4 5 6
TiCl4 96,5 93 47,5 95 57
Этанол 2,5 5 3,5 3,5 2
Гептан (растворитель) 0 0 0 0 40
Толуол (растворитель) 0 0 47,5 0 0
Этилбензоат (ЭБ) 1 2 1,5 0 0
Диизобутилфталат (ДИБФ) 0 0 0 1,5 1
Масса 270 мл образца 430 420 290 430 260
После смешивания ингредиентов в инертной атмосфере (азот) полученная смесь содержала TiCl4, различные хлоридэтоксиды титана (образованные реакцией TiCl4 и этанола), необязательно, растворитель и электрондонор (ЭБ или ДИБФ). Эти смеси характерны для потоков отходов от способов получения катализаторов. Нижняя строка в приведенной выше таблице показывает массу 270 мл смеси (в граммах).
Около 270 мл смесей подвергали первой стадии, используя 500 мл круглодонную колбу с магнитной мешалкой длиной 4 см, снабженную барботером азота, и лабораторную ректификационную колонку, к которой был подключен холодильник. На этой стадии температуру пара увеличивали до 150°C при атмосферном давлении. Первый конденсат собирали в атмосфере азота. После этого кубовые продукты первой стадии подвергали термообработке при температуре 210-235°C и атмосферном давлении, используя ту же колбу и мешалку, но теперь оборудованную нормальным холодильником. Второй конденсат собирали в атмосфере азота и получали остаток в виде дискретной фазы.
Эксперимент 2 3 4 5 6
Твердые вещества (мас.%) 3,6 6,7 4,2 5,6 2,8
Первый конденсат (мас.%) 84,7 80,5 76,0 79,9 74,8
Второй конденсат (мас.%) 6,6 8,3 15,5 11,3 17,9
Суммарное процентное содержание меньше 100%, так как во время процесса отбирали пробы.
Твердые вещества представляли собой легкосыпучие порошки, которые не выделяли видимых паров на влажном воздухе. Точка воспламенения всех легкосыпучих твердых веществ составляла больше 200°C.

Claims (13)

1. Способ обработки потока отходов, содержащего, по меньшей мере, TiCl4, возможно один или более обычных электрондоноров и, по меньшей мере, один или более (галоген)алкоксидов титана формулы TiXx(OR)z, где Х является галогеном, R является алкилом, предпочтительно низшим алкилом с числом атомов углерода от 1 до 10, х=0-3, z=1-4 и 2≤x+z≤4, включающий термообработку этого потока, условия которой выбраны так, что конечный продукт представляет собой отходы в виде материала, состоящего из дискретных частиц при температуре 20°С.
2. Способ по п.1, в котором термообработка включает одну стадию при атмосферном давлении и температуре 160°С или выше, или условиях давление/температура, которые могут быть приравнены к ним.
3. Способ по п.2, в котором давление равно атмосферному или выше.
4. Способ по п.1, в котором практически весь разбавитель или растворитель, который присутствует во входном потоке отходов, извлекают.
5. Способ по п.1, в котором условия выбраны так, что, по меньшей мере, часть (галоген)алкоксидов титана разлагается с образованием одного или более (галоген)оксидов Ti и/или алкилгалогенидов.
6. Способ по п.1, в котором условия выбраны так, что практически весь TiCl4 извлекают из отходов.
7. Способ по п.1, который включает обычную стадию ректификации до указанной стадии термообработки.
8. Способ по п.7, в котором конденсат стадии термообработки рециркулируют на стадию ректификации для очистки.
9. Способ по п.7, в котором содержащий TiCl4 поток конденсата со стадии термообработки возвращают в процесс получения катализатора Циглера-Натта на основе Ti.
10. Способ по п.1, в котором извлекают алкилгалогенид, введенный или образованный в способе, с точкой кипения ниже, чем у TiCl4.
11. Способ по п.1, в котором реакционную смесь на стадии термообработки перемешивают или поддерживают в движении.
12. Способ по п.1, включающий в произвольном порядке одну или более дополнительных стадий, выбранных из группы, состоящей из: i) нейтрализации и/или гидролиза, ii) обычного окисления, iii) введения отходов в твердую матрицу, iv) пиролиза, v) пирогидролиза, vi) смешивания с другими отходами, vii) возврата твердых отходов в процесс, в котором отходы могут служить источником Ti, и viii) разбавления/комбинирования с подходящим разбавителем/агентом агломерации.
13. Способ по п.1, дополнительно включающий стадию, в которой один или более обычных электрондоноров или других ценных соединений в виде комплексов, присутствующих в конечных отходах способа, извлекают различными традиционными методами, такими как гидролиз или экстракция.
RU2004129576/15A 2002-03-04 2003-02-28 Обработка потоков отходов, содержащих тетрахлорид титана RU2318840C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02075871.0 2002-03-04
EP02075871 2002-03-04

Publications (2)

Publication Number Publication Date
RU2004129576A RU2004129576A (ru) 2005-06-10
RU2318840C2 true RU2318840C2 (ru) 2008-03-10

Family

ID=27771899

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004129576/15A RU2318840C2 (ru) 2002-03-04 2003-02-28 Обработка потоков отходов, содержащих тетрахлорид титана

Country Status (9)

Country Link
US (1) US7045480B2 (ru)
EP (1) EP1480911A1 (ru)
JP (1) JP2005518932A (ru)
KR (1) KR20040099295A (ru)
CN (1) CN1639067B (ru)
AU (1) AU2003215610A1 (ru)
CA (1) CA2478105A1 (ru)
RU (1) RU2318840C2 (ru)
WO (1) WO2003074425A1 (ru)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518932A (ja) * 2002-03-04 2005-06-30 アクゾ ノーベル ナムローゼ フェンノートシャップ 四塩化チタンを含む廃棄流の処理
DE602005019100D1 (de) * 2004-11-25 2010-03-11 Basell Poliolefine Srl Verfahren zur rückgewinnung von titantetrachlorid aus abfallflüssigkeit
US7943103B2 (en) * 2006-04-27 2011-05-17 Tronox Llc Waste solids handling
JP2008143762A (ja) * 2006-12-13 2008-06-26 Toshibumi Kageyama 触媒の廃棄物から酸化チタンを回収する方法
CN101526497B (zh) * 2009-04-15 2012-02-15 攀钢集团钢铁钒钛股份有限公司 一种制备检测四氯化钛所用样品溶液的方法
CN102452688B (zh) * 2010-10-22 2013-12-04 中国石油化工股份有限公司 一种聚烯烃催化剂滤液处理装置及方法
EP2452920A1 (en) * 2010-11-12 2012-05-16 Borealis AG A method for recovering transition metal tetrahalide and hydrocarbons from a waste stream
CN104129812B (zh) * 2013-05-03 2015-09-16 中国石油化工股份有限公司 一种含钛废液的处理方法
CN104438277B (zh) * 2013-09-16 2016-06-29 中国石油化工股份有限公司 一种含钛有机催化剂生产废渣的处理方法
CN103699146B (zh) * 2013-12-09 2016-06-29 云南冶金新立钛业有限公司 四氯化钛气体的冷凝系统及其压力控制方法
CN104874590B (zh) * 2014-02-27 2017-09-26 龚家竹 氯化废渣的资源化处理方法
CN106277046B (zh) * 2015-06-24 2018-01-02 中国石油化工股份有限公司 一种含四氯化钛废液的处理方法
CN105060340B (zh) * 2015-08-04 2017-03-15 湖北亚星电子材料有限公司 一种高纯二氧化钛的生产方法
US20190184306A1 (en) * 2016-08-03 2019-06-20 Clariant International Ltd Method for recovering titanium (halo) alkoxide from a waste liquid
CN114470606B (zh) * 2020-10-26 2023-05-09 中国石油化工股份有限公司 一种含烷基铝危废物醇解的处理方法和处理系统
CN112410582B (zh) * 2020-10-30 2022-09-20 攀钢集团攀枝花钢铁研究院有限公司 有机物精制除钒泥浆处理工艺
CN115818875A (zh) * 2022-11-30 2023-03-21 国家能源集团宁夏煤业有限责任公司 Z-n型催化滤液的分离回收系统和方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2754256A (en) * 1953-04-24 1956-07-10 Nat Lead Co Process for purifying titanium tetrachloride
GB1492174A (en) * 1973-12-13 1977-11-16 British Petroleum Co Polymerisation catalyst
IT1042711B (it) 1975-09-19 1980-01-30 Montedison Spa Compnenti di catalizzatori per la polimerizzazione di olefine
US4468477A (en) 1980-01-10 1984-08-28 Imperial Chemical Industries Plc Production of catalyst component, catalyst and use thereof
DE3223331A1 (de) * 1982-06-23 1983-12-29 Ruhrchemie Ag, 4200 Oberhausen Verfahren zur herstellung eines traegerkatalysators fuer die (co-)polymerisation von (alpha)-olefinen
GB8513000D0 (en) * 1985-05-22 1985-06-26 Shell Int Research Removing contaminants from liquid tici4 phase
US4876321A (en) 1986-01-03 1989-10-24 Mobil Oil Corporation Preparation of alpha-olefin polymers of relatively narrow molecular weight distribution
US4727051A (en) 1986-12-15 1988-02-23 Stauffer Chemical Company Production of halide-and alkoxy-containing magnesium compositions
US5221650A (en) * 1987-09-21 1993-06-22 Quantum Chemical Corporation Supported high activity polypropylene catalyst component with regular distribution of magnesium values provided utilizing a controlled drying protocol
US4914257A (en) 1988-05-23 1990-04-03 Amoco Corporation Method and apparatus for recovering high purity toluene, hexane, titanium tetrachloride and tetrahydrofuran from mixtures
GB8911074D0 (en) * 1989-05-15 1989-06-28 Shell Int Research Solid alpha-olefin polymerization catalyst components
US4981826A (en) * 1989-11-17 1991-01-01 Exxon Chemical Patents Inc. Polymerization catalyst prepared with a halogenated silane compound
FI86866C (fi) 1990-12-19 1992-10-26 Neste Oy Foerfarande foer modifiering av katalysatorer avsedda foer polymerisation av olefiner
US5231151A (en) 1991-01-18 1993-07-27 The Dow Chemical Company Silica supported transition metal catalyst
US5242549A (en) * 1991-12-06 1993-09-07 Shell Oil Company Distillation separation process of titanium tetrachloride and halohydrocarbon
TW400342B (en) 1994-09-06 2000-08-01 Chisso Corp A process for producing a solid catalyst component for olefin polymerization and a process for producing an olefin polymer
FR2728181B1 (fr) 1994-12-16 1997-01-31 Appryl Snc Composante catalytique pour la polymerisation des olefines, son procede de fabrication, et procede de polymerisation des olefines en presence de ladite composante catalytique
KR100190434B1 (ko) 1995-05-18 1999-06-01 고다 시게노리 고체티타늄촉매성분 그 제조방법, 그를 함유한 올레핀중합촉매및올레핀중합방법
US5866750A (en) 1995-11-01 1999-02-02 Union Carbide Chemicals & Plastics Technology Corporation Method for removal of metal alkoxide compounds from liquid hydrocarbon
FI102070B (fi) 1996-03-29 1998-10-15 Borealis As Uusi kompleksiyhdiste, sen valmistus ja käyttö
US5948212A (en) * 1996-10-21 1999-09-07 Union Carbide Chemicals & Plastics Technology Corporation Titanium separation process
US6419837B1 (en) * 1998-08-06 2002-07-16 Umpqua Research Company Process for destroying contaminants in contaminant-containing aqueous streams and catalysts used therefor
JP2001261340A (ja) 2000-03-22 2001-09-26 Mitsui Chemicals Inc チタン化合物の回収方法および回収したチタンの利用法
US6358372B1 (en) * 2000-07-11 2002-03-19 Union Carbide Chemicals & Plastics Technology Corporation Method of reducing formation of precipitates in solvent recovery system
US6429278B1 (en) * 2001-01-22 2002-08-06 Eastman Chemical Company Process for manufacture of polyesters based on 1,4-cyclohexanedimethanol and isophthalic acid
US6800260B2 (en) * 2002-02-11 2004-10-05 Millennium Inorganic Chemicals, Inc. Processes for treating iron-containing waste streams
JP2005518932A (ja) * 2002-03-04 2005-06-30 アクゾ ノーベル ナムローゼ フェンノートシャップ 四塩化チタンを含む廃棄流の処理

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КНУНЯНЦ И.Л. и др. Химия. Большой энциклопедический словарь. - М.: Большая Российская энциклопедия, 1998, с.346, столбец 2, строки 15-20. *

Also Published As

Publication number Publication date
US20050084433A1 (en) 2005-04-21
US7045480B2 (en) 2006-05-16
EP1480911A1 (en) 2004-12-01
RU2004129576A (ru) 2005-06-10
AU2003215610A1 (en) 2003-09-16
WO2003074425A1 (en) 2003-09-12
KR20040099295A (ko) 2004-11-26
JP2005518932A (ja) 2005-06-30
CN1639067A (zh) 2005-07-13
CN1639067B (zh) 2011-01-19
CA2478105A1 (en) 2003-09-12

Similar Documents

Publication Publication Date Title
RU2318840C2 (ru) Обработка потоков отходов, содержащих тетрахлорид титана
US7780931B2 (en) Preparation for Tio2 powders from a waste liquid containing titanium compounds
US2701180A (en) Production of titanium tetrachloride
US4070252A (en) Purification of crude titanium tetrachloride
JP2019525942A (ja) 廃液からチタン(ハロ)アルコキシドを回収するための方法
JP2005518932A5 (ru)
US5066472A (en) Method for processing the residues of a chlorosilane distillation
US20180134575A1 (en) PRODUCTION OF VCl4
DE3211052C2 (ru)
US3000919A (en) Producing organic derivatives of aluminum
US8906340B2 (en) Purification of TiCl4 through the production of new co-products
US4222823A (en) Method for processing chlorinated hydrocarbon residues
CN112704894A (zh) 一种催化剂溶剂回收方法及含钛固体
US3418074A (en) Process for chlorinating titaniferous ores
CA2381589C (en) Titanium tetrachloride production
AU2012220664B2 (en) Purification of TiCl4 through the production of new co-products
US4081507A (en) Process for removing chemisorbed and interstitial chlorine and chlorides from a hot titanium dioxide beneficiate-carbon mixture
EP2678274B1 (en) PURIFICATION OF TiCl4 THROUGH THE PRODUCTION OF NEW CO-PRODUCTS
US5866750A (en) Method for removal of metal alkoxide compounds from liquid hydrocarbon
AU2002313366B2 (en) Titanium tetrachloride production
CN117430156A (zh) 一种四氯化钛母液的处理方法及系统
US3699214A (en) Process for the manufacture of ferrocyanide compounds
GB2145401A (en) Aluminium chloride production
JP2008519750A (ja) チタン化合物を含有する廃液からTiO2粉末の製造