RU2311690C2 - Способ определения местоположения движущегося объекта в навигационной системе - Google Patents

Способ определения местоположения движущегося объекта в навигационной системе

Info

Publication number
RU2311690C2
RU2311690C2 RU2003129925/11A RU2003129925A RU2311690C2 RU 2311690 C2 RU2311690 C2 RU 2311690C2 RU 2003129925/11 A RU2003129925/11 A RU 2003129925/11A RU 2003129925 A RU2003129925 A RU 2003129925A RU 2311690 C2 RU2311690 C2 RU 2311690C2
Authority
RU
Russia
Prior art keywords
moving object
location
chord
distance
gps
Prior art date
Application number
RU2003129925/11A
Other languages
English (en)
Other versions
RU2003129925A (ru
Inventor
Ман Хо ДЖАНГ (KR)
Ман Хо ДЖАНГ
Мун Джеунг ДЖО (KR)
Мун Джеунг ДЖО
Ёнг Хьюн ПАРК (KR)
Ёнг Хьюн ПАРК
Сеонг Чен БЬЮН (KR)
Сеонг Чен БЬЮН
Original Assignee
Эл Джи Электроникс Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эл Джи Электроникс Инк. filed Critical Эл Джи Электроникс Инк.
Publication of RU2003129925A publication Critical patent/RU2003129925A/ru
Application granted granted Critical
Publication of RU2311690C2 publication Critical patent/RU2311690C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Группа изобретений относится к области регулирования движения транспортных средств. Способ определения местоположения движущегося объекта в навигационной системе включает операции: (а) получение данных GPS о местоположении от движущегося объекта; (b) определение зоны отсутствия приема сигналов GPS с использованием полученных данных GPS о местоположении; (с) вычисление дистанции прямолинейного перемещения движущегося объекта относительно последних данных GPS о местоположении в зонах приема сигналов, когда движущийся объект находится в зоне отсутствия приема сигналов GPS; (d) вычисление данных виртуального местоположения с использованием вычисленной дистанции прямолинейного перемещения движущегося объекта; и (е) вычисление на цифровой карте расчетного местоположения, ближайшего по своим данным к виртуальному положению, и осуществление согласования с картой для навигационного обеспечения. Группа изобретений позволяет точно определить местоположение объекта в зоне отсутствия приема сигналов GPS при осуществлении навигационного обеспечения. 2 н. и 12 з.п. ф-лы, 6 ил.

Description

Область техники изобретения
[0001] Настоящее изобретение относится к способу определения местоположения движущегося объекта в навигационной системе, позволяющему точно определить последующее местоположение объекта с использованием скорости движущегося объекта и направления хорды на цифровой карте, в частности, когда движущийся объект (например, транспортное средство) находится в зоне отсутствия приема сигналов.
Предшествующий уровень техники
[0002] Обычно в навигационной системе информацию о местоположении движущегося объекта обеспечивают непрерывно в режиме реального времени в пределах допустимой погрешности и используют для отображения текущего местоположения движущегося объекта, управления маршрутом движения и распознавания окружающей среды. Однако неточное или периодическое определение местоположения может серьезно повлиять на передвижение движущегося объекта. Следовательно, определение местоположения движущегося объекта очень важно.
[0003] Способ определения местоположения движущегося объекта описан в корейском патенте №216535 (Заявка №1997 - 24564).
[0004] Согласно корейскому патенту №216535 текущее местоположение движущегося объекта определяют методом счисления пути с использованием данных, получаемых от датчика направления и дальности, прикрепленного к движущемуся объекту и задающего первое местоположение в движении. По хорде на цифровой карте осуществляют коррекцию картографическим методом с сопоставлением первого местоположения в движении с данными на карте и принимают скорректированное местоположение в качестве второго местоположения в движении. Текущее местоположение в движении определяют с использованием информации о местоположении, получаемой от GPS (GPS - сокращ. от Global Positioning System - глобальная спутниковая система определения местоположения, примеч. перев.), и принимают в качестве третьего местоположения в движении. По хорде на цифровой карте осуществляют коррекцию обзорно-сравнительным методом с сопоставлением местоположения с данными на карте и принимают третье местоположение в качестве четвертого местоположения в движении. Находят схемы движения на короткие расстояния для четырех местоположений в движении и сравнивают между собой сходные признаки, показывающие, насколько схемы движения на короткие расстояния для четырех местоположений согласуются со схемой хорд. Местоположение в движении, обладающее наибольшим сходством, определяют в качестве окончательного текущего местоположения.
[0005] При таком способе определения местоположение движущегося объекта определяют методом счисления пути с использованием сигнала датчика и данных о местоположении, полученных от GPS.
[0006] Без использования метода счисления пути датчики направления, такие как гироскопический и электронный компасы, могут иметь погрешности, зависящие от направления поворота. В направлении движения могут быть отклонения или изменения, возникающие при остановке движущегося объекта. Следовательно, расчетное направление движения может содержать погрешность. Определение пройденного расстояния с помощью колесных датчиков имеет погрешности, вызванные внешними факторами, такими как давление воздуха и условия на улице. Поэтому очень трудно избежать нестабильности при определении местоположения и обеспечить помощь в навигации, такую как отображение местоположения на карте в зонах отсутствия приема сигналов GPS с помощью навигационной системы без какого-либо датчика направления.
[0007] Нелегко определить местоположение такого движущегося объекта, как мобильный телефон, который не имеет датчиков направления, подобных гироскопическому и электронному компасам, а также движущихся объектов, находящихся в зонах отсутствия приема сигналов, где данные GPS не принимаются, или в зонах ненадежного приема, наподобие туннелей и подземных переходов, в которых качество данных о местоположении, полученных от GPS, резко снижается, хотя такие данные и получают. Очень трудно точно определить местоположение движущегося объекта из-за погрешностей, возникающих в процессе определения, даже если местоположение движущегося объекта и может быть определено.
Краткое изложение сущности изобретения
[0008] Соответственно настоящее изобретение представляет собой способ определения местоположения движущегося объекта с помощью навигационной системы, позволяющий по существу решить одну или более проблем, связанных с ограничениями и недостатками существующих средств.
[0009] Целью настоящего изобретения является создание способа определения местоположения движущегося объекта в навигационной системе, позволяющего точно определить местоположение движущегося объекта, используя скорость движущегося объекта и цифровую карту, в зонах отсутствия приема сигналов GPS о местоположении, таких, например, как туннель или подземный переход.
[0010] Другой целью настоящего изобретения является создание способа определения местоположения движущегося объекта с помощью навигационной системы, позволяющего точно определить местоположение движущегося объекта по его скорости применительно к недорогим движущимся объектам, не имеющим датчиков направления, таких как гироскопический и электронный компасы для систем счисления пути в зонах отсутствия приема сигналов GPS.
[0011] Дополнительные преимущества, цели и признаки изобретения будут частью изложены в описании, которое приводится ниже, а частью будут очевидны после изучения нижеследующего или после практического применения настоящего изобретения. Цели и другие преимущества изобретения могут быть реализованы и достигнуты в структуре, особо выделенной в описании и формуле изобретения, а также в прилагаемых чертежах.
[0012] Для достижения этих целей и иных преимуществ, а также в соответствии с целью настоящего изобретения, воплощенного в примерах осуществления и в общих чертах описанного ниже, способ определения местоположения движущегося объекта в навигационной системе включает операции: (а) получение данных GPS о местоположении от движущегося объекта; (b) определение зоны отсутствия приема сигналов GPS с использованием полученных данных GPS о местоположении; (с) вычисление дистанции прямолинейного перемещения движущегося объекта по последним данным GPS о местоположении в зонах приема сигналов, когда движущийся объект находится в зоне отсутствия приема сигналов GPS; (d) определение данных виртуального местоположения с использованием вычисленной дистанции прямолинейного перемещения движущегося объекта; и (е) определение на цифровой карте расчетного местоположения, ближайшего по своим данным к виртуальному местоположению, и осуществление согласования с картой для навигационного обеспечения.
[0013] Согласно другому аспекту настоящего изобретения способ определения местоположения движущегося объекта в навигационной системе включает следующие операции: (а) получение данных GPS о местоположении; (b) определение зоны отсутствия приема сигналов GPS с использованием полученных данных GPS о местоположении; (с) получение результата согласования с картой значения последних данных GPS о местоположении в зонах приема сигналов, когда движущийся объект находится в зоне отсутствия приема сигналов GPS, и вычисление дистанции прямолинейного перемещения движущегося объекта относительно результата согласования с картой; (d) нахождение интерполированных точек и хорды местоположения, принятых в качестве вычисленной дистанции прямолинейного перемещения движущегося объекта; (е) уточнение нахождения движущегося объекта на найденной хорде; и (f) определение местоположения в движении с использованием остатка длины хорды, координат интерполированной точки, скорости движущегося объекта и длины хорды, если движущийся объект находится на найденной хорде.
[0014] В настоящем изобретении местоположение движущегося объекта в зоне отсутствия приема сигналов более точно определяют при использовании таких параметров, как скорость движущегося объекта, направляющегося в зону отсутствия приема сигналов, направление хорды в последнем местоположении, согласованном с цифровой картой, а также хорда и интерполированная точка на цифровой карте.
[0015] Необходимо понимать, что как вышеприведенное общее описание, так и нижеследующее подробное описание настоящего изобретения являются примерными и поясняющими и предназначены для дальнейшего объяснения настоящего изобретения в соответствии с формулой изобретения.
Краткое описание чертежей
[0016] Чертежи, прилагаемые для более ясного понимания сущности изобретения и включенные в состав данной заявки, иллюстрируют примеры осуществления изобретения и вместе с настоящим описанием служат для объяснения его принципов. На чертежах изображено:
[0017] на фиг.1 - навигационная система в соответствии с настоящим изобретением;
[0018] на фиг.2 - блок-схема, поясняющая способ определения местоположения движущегося объекта в навигационной системе согласно первому примеру осуществления настоящего изобретения;
[0019] на фиг.3 - схема примерного процесса определения местоположения движущегося объекта согласно способу определения местоположения движущегося объекта, показанному на фиг.2;
[0020] на фиг.4 - блок-схема, поясняющая способ определения местоположения движущегося объекта в навигационной системе согласно второму примеру осуществления настоящего изобретения; и
[0021] на фиг.5 и 6 - иллюстрации, поясняющие второй пример осуществления настоящего изобретения.
Подробное описание изобретения
[0022] Далее следует подробное рассмотрение предпочтительных примеров осуществления настоящего изобретения со ссылками на прилагаемые чертежи. По мере возможности, те же самые номера позиций будут использоваться на всех чертежах в отношении одних и тех же или подобных деталей.
[0023] Далее будет описана навигационная система согласно настоящему изобретению.
[0024] Фиг.1 иллюстрирует навигационную систему, выполненную согласно настоящему изобретению.
[0025] Как показано на фиг.1, навигационная система включает:
GPS-приемник 102 для получения данных о местоположении от трех или более спутников GPS 100 с помощью антенны АНТ; датчик 104 для определения пройденного расстояния и скорости движущегося объекта; блок ввода 106 для получения пункта назначения движущегося объекта от пользователя;
запоминающее устройство для картографических данных 108 с целью хранения картографических данных на носителе, например компакт-диске; основной блок управления 110 для определения текущего местоположения движущегося объекта по полученному сигналу GPS-приемника 102, получения пункта назначения с помощью блока ввода 106, установки и запоминания маршрута движения до пункта назначения от текущего местоположения движущегося объекта относительно картографических данных, хранящихся в запоминающем устройстве 108, установки направляющего объекта, расположенного на маршруте движения и контроля функции направления маршрута движения в месте расположения направляющего объекта; дисплей 112 для отображения текущего местоположения движущегося объекта вместе с картографическими данными на экране 114 в соответствии с управляющим воздействием основного блока управления 110; и блок речевого управления 116 для управления маршрутом движущегося объекта по речевому сигналу, подаваемому через громкоговоритель 118, управляемый от основного блока управления 110.
[0026] Сначала GPS-приемник 102 получает заданные данные о местоположении от множества спутников GPS 100 и передает эти данные в основной блок управления 110 для использования в навигационном обеспечении. Датчик 104 определяет скорость движущегося объекта и пройденное им расстояние и передает их в основной блок управления 110.
[0027] Основной блок управления 110 определяет текущее местоположение движущегося объекта по полученному сигналу GPS-приемника 102 и сопоставляет определенное текущее местоположение движущегося объекта с картографическими данными, хранящимися в запоминающем устройстве для картографических данных 108. Когда движущийся объект перемещается из текущего местоположения в зону отсутствия приема сигналов, датчик 104 вычисляет дистанцию прямолинейного перемещения, которую движущийся объект может пройти, чтобы определить следующее местоположение движущегося объекта.
[0028] Другими словами, когда есть возможность создать обеспечение, позволяющее управлять маршрутом движущегося объекта и сообщать информацию о текущем местоположении в соответствии с перемещением движущегося объекта с использованием полученного сигнала GPS-приемника 102, такое обеспечение создают путем определения расстояния, которое нужно пройти. Для этого при входе движущегося объекта в зону отсутствия приема сигналов вычисляют расстояние, пройденное движущимся объектом, и определяют следующее местоположение движущегося объекта в зоне отсутствия приема сигналов с использованием скорости и расстояния, пройденного движущимся объектом, и угла хорды относительно последнего местоположения движущегося объекта в зоне приема сигналов.
[0029] При введении пользователем движущегося объекта пункта назначения с помощью блока ввода 106 основной блок управления 110 обращается к картографическим данным, хранящимся в запоминающем устройстве для картографических данных 108, осуществляет поиск маршрута движения от текущего местоположения движущегося объекта до пункта назначения и управляет маршрутом движения движущегося объекта путем отображения найденного маршрута движения на экране 114 дисплея 112 и одновременной подачи через громкоговоритель 118 речевого сигнала управления с помощью блока речевого управления 116.
[0030] Далее будет описан способ определения местоположения движущегося объекта с помощью навигационной системы согласно настоящему изобретению.
[0031] <Первый пример осуществления изобретения>
[0032] Фиг.2 и 3 иллюстрируют первый пример осуществления настоящего изобретения.
[0033] Как показано на фиг.2, движущийся объект в основном получает данные GPS о местоположении от множества спутников GPS с помощью GPS-приемников (S100) и определяет, находится ли движущийся объект в зоне приема сигналов или в зоне отсутствия приема сигналов, с использованием для этого данных GPS о местоположении, полученных с помощью GPS-приемника (S102).
[0034] В данном случае критерием, определяющим нахождение движущегося объекта в зоне приема или в зоне отсутствия приема сигналов GPS с данными о местоположении, является величина, характеризующая достоверность полученных данных GPS о местоположении. Данную величину, характеризующую достоверность полученных данных GPS о местоположении, вычисляют как код горизонтального фактора снижения точности (ГФСТ) с использованием расчетного алгоритма в формате NMEA-0283. Вычисленный код ГФСТ сравнивают с заданной величиной. Если при сравнении ГФСТ оказывается меньше заданной величины, то зону определяют как зону приема сигналов. Если ГФСТ больше или равен заданной величине, то зону определяют как зону отсутствия приема сигналов.
[0035] Если согласно результату определения на шаге S102 движущийся объект находится в зоне приема сигналов GPS о местоположении, то с использованием данных о местоположении, полученных с помощью GPS, и метода счисления пути осуществляют картографирование и навигационное обеспечение (S104). После этого процесс завершают или переходят к шагу S100 в соответствии с передачей пользователем сообщения об окончании, а данные GPS о текущем местоположении, куда передвинулся движущийся объект, принимают и осуществляют навигационное обеспечение с использованием полученных данных GPS о местоположении (S106).
[0036] Однако если согласно результату определения на шаге S102 движущийся объект находится в зоне отсутствия приема сигналов GPS о местоположении, то предыдущие согласованные с картой данные о местоположении движущегося объекта принимают за исходную точку местоположения движущегося объекта (S108). Текущую скорость вводят от датчика (S110).
[0037] После этого определяют, равна ли скорость движущегося объекта нулю (S112). Если согласно результату определения скорость движущегося объекта равна нулю, считают, что движущийся объект остановился, и процесс завершают. Если скорость движущегося объекта не равна нулю, считают, что движущийся объект передвигается в зоне приема сигналов, и тогда вычисляют дистанцию прямолинейного перемещения, проходимую за единицу расчетного времени (S114). Например, если расчетное время равно 1 секунде, а текущая скорость движущегося объекта равна 30 м/с, дистанция прямолинейного перемещения, которую движущийся объект может пройти в направлении движения, равна 30 метрам за секунду. Направление прямолинейного перемещения определяют по взятому относительно направления точно на север углу наклона хорды, расположенной в направлении движения в последнем согласованном с картой местоположении в зоне приема сигналов.
[0038] Если дистанцию прямолинейного перемещения вычисляют за расчетное время (S114), то соответствующие данные местоположения (долгота, широта), отстоящего от последнего согласованного с картой местоположения (исходной точки) в зоне приема сигналов, будут вычислять по уравнению 1 (S116) с учетом расстояния прямолинейного перемещения. Предыдущие согласованные с картой координаты (долгота, широта) являются долготой и широтой последнего согласованного с картой местоположения перед входом движущегося объекта в зону отсутствия приема сигналов.
[0039] [Уравнение 1]
Долгота = долгота предыдущей согласованной с картой координаты + скорость движущегося объекта · cos (угол наклона предыдущего согласованного с картой местоположения) · время (с);
Широта = широта предыдущей согласованной с картой координаты + дистанция прямолинейного перемещения движущегося объекта · sin (угол наклона предыдущего согласованного с картой местоположения),
где дистанция прямолинейного перемещения движущегося объекта = скорость движущегося объекта · время (с), а угол предыдущего согласованного с картой местоположения получают как угол между направлением точно на север и продолжением предыдущей согласованной с картой хорды.
[0040] Аналогично, если данные о местоположении (то есть виртуальном местоположении) на дистанции прямолинейного перемещения движущегося объекта определяли от исходной точки, то они и являются согласованными с картой на кратчайшем расстоянии по цифровой карте в соответствии с данными о местоположении (S118). Иными словами, данные о действительном местоположении движущегося объекта сводятся к местоположению расчетной дистанции прямолинейного перемещения, дороге на цифровой карте и кратчайшему расстоянию и согласованию с картой, так что можно определить следующее местоположение движущегося объекта.
[0041] Определяют, находится ли движущийся объект в зоне отсутствия приема сигналов GPS о местоположении. Если движущийся объект находится в зоне отсутствия приема сигналов GPS о местоположении, дистанцию прямолинейного перемещения вычисляют по скорости движущегося объекта относительно данных о местоположении, полученных на шаге S118. Данные о виртуальном местоположении получают с использованием угла наклона хорды к направлению точно на север, принимаемого за базу отсчета, и согласования с картой местоположения кратчайшего расстояния с тем, чтобы получить данные о втором местоположении, а затем по ним получить данные третьего местоположения.
[0042] Например, как показано на фиг.4, если движущийся объект М перемещается через зону приема сигналов А, зону отсутствия приема сигналов В, такую как туннель, и зону приема сигналов С по своему направлению движения, то первое местоположение Р1, согласованное с картой последним в зоне приема сигналов А, принимают за базу отсчета, когда движущийся объект входит в зону отсутствия приема сигналов В.
[0043] Предположим, что скорость движущегося объекта, определяемая датчиком, равна 10 м/с, тогда расстояние Dm между первым местоположением Р1 и произвольно перемещающимся местоположением Рх, являющимся продолжением первого местоположения Р1 по прямой, равно 10 м. В данном случае единица расчетного времени равна 1 с.
[0044] Данные о местоположении перемещающегося местоположения Рх, отстоящего от первого местоположения на дистанцию прямолинейного перемещения, можно вычислить с помощью уравнения 2.
[0045] [Уравнение 2]
Долгота = долгота Р1+10 м·cos(Θ1 для Р1)
Широта = широта Р1+10 м·sin(Θ1 для Р1)
где Θ1 - взятый от направления точно на север угол наклона хорды, расположенной на продолжении направления движения движущегося объекта в первом местоположении и угол наклона предыдущего согласованного с картой местоположения.
[0046] Следует отметить, что уравнение 2 аналогично уравнению 1.
[0047] Если вычисляют данные о местоположении для произвольно определенного местоположения, то второе местоположение Р2 на цифровой карте, то есть кратчайшее расстояние Min D (мин. D) от местоположения, упомянутого первым, является согласованным с картой местоположением, и уже согласованное с картой местоположение Р2 определяют как местоположение, к которому движущийся объект перемещался за расчетную единицу времени.
[0048] Принимая согласованное с картой второе местоположение Р2 в качестве исходного, определяют третье местоположение, используя координаты второго местоположения, дистанцию прямолинейного перемещения, пройденную за расчетное время, и угол наклона хорды второго местоположения относительно направления точно на север. Эту операцию осуществляют шаг за шагом в соответствии с кодом ГФСТ, передаваемым от спутника GPS до тех пор, пока движущийся объект не распознает зону С надежного приема данных о местоположении со спутников GPS.
[0049] <Второй пример осуществления изобретения>
[0050] Фиг.4-6 иллюстрируют второй пример осуществления настоящего изобретения.
[0051] Как показано на фиг.4, движущийся объект в основном получает данные GPS о местоположении от множества спутников GPS (S200) и определяет, находится ли движущийся объект в зоне приема сигналов или в зоне отсутствия приема сигналов с использованием полученных данных GPS о местоположении (S202).
[0052] В данном примере осуществления изобретения реализован способ движения с целью установления нахождения движущегося объекта в зоне приема сигналов или в зоне отсутствия приема сигналов путем использования данных GPS о местоположении, полученных от GPS. Например, код ГФСТ (горизонтального фактора снижения точности) вычисляют с помощью расчетного алгоритма в формате NMEA-0283. Если ГФСТ меньше заданной величины, считают, что движущийся объект находится в зоне приема сигналов. Если ГФСТ больше или равно заданной величине, считают, что движущийся объект находится в зоне отсутствия приема сигналов.
[0053] Если движущийся объект находится в зоне приема сигналов GPS о местоположении, местоположение движущегося объекта фиксируют на улице, показанной на цифровой карте, с использованием данных о местоположении, полученных от GPS и методом счисления пути, и осуществляют навигационное обеспечение (S204). Если пользователь вводит сообщение об окончании работы, навигационное обеспечение прекращается (S206).
[0054] С другой стороны, если движущийся объект находится в зоне отсутствия приема сигналов GPS о местоположении, как это было определено на шаге S202, то получают последние согласованные с картой значения данных GPS о местоположении (S208). Здесь последними согласованными с картой величинами являются координаты (долгота, широта), соответствующие данным GPS о местоположении, и взятый относительно направления точно на север угол наклона соответствующей согласованной с картой хорды, по которому можно установить направление движения движущегося объекта.
[0055] Последнее согласованное с картой местоположение для данных GPS о местоположении в зоне приема сигналов принимают в качестве исходного для определения местоположения движущегося объекта в зоне отсутствия приема сигналов (S210).
[0056] Затем измеряют скорость движущегося объекта и определяют, равна ли текущая скорость движущегося объекта нулю (S214). Если согласно результату определения скорость движущегося объекта равна нулю, считают, что движущийся объект остановился, и процесс завершают. Однако, если скорость движущегося объекта не равна нулю, то вычисляют дистанцию прямолинейного перемещения в течение заданной расчетной единицы времени (S216). Находят и, соответственно, определяют интерполированную точку и хорду на вычисленной дистанции прямолинейного перемещения и находят остаток длины хорды (S218).
[0057] В частности, как показано на фиг.5, если движущийся объект М перемещается через зону приема сигналов А, зону отсутствия приема сигналов В и зону приема сигналов С в направлении движения движущегося объекта, вычисляют длину (d1+d2=Ld1) хорды L1 между произвольными интерполированными точками Ра и Pb, расположенными в направлении движения движущегося объекта (Pm->Pm′), и расстояние между предыдущей интерполированной точкой Ра и исходной точкой Pm вычитают (Ld1-d1=d2) из длины (d1+d2) хорды, чтобы получить остаток длины (d2) хорды. В данном случае остаток длины (d2) хорды представляет собой расстояние от опорной точки Pm до интерполированной точки Pb и служит критерием для определения, находится ли движущийся объект на хорде L1 или между двумя интерполированными точками Ра и Pb. Здесь две интерполированные точки соединены хордой, а интерполированная точка - это точка, принадлежащая двум хордам. Длина хорды - это расстояние между интерполированными точками, а остаток длины хорды равен расстоянию между интерполированными точками, или может быть как больше нуля, так и равен нулю.
[0058] Определяют, находится ли движущийся объект Pm', перемещающийся в зоне В, на хорде L1 (S220). Иначе говоря, остаток длины d2 хорды сравнивают с дистанцией прямолинейного перемещения d2+d3 движущегося объекта. Если остаток длины d2 хорды больше или равен дистанции прямолинейного перемещения d2+d3 движущегося объекта, считают, что движущийся объект М находится на соответствующей хорде L1. Если остаток длины d2 хорды меньше дистанции прямолинейного перемещения d2+d3 движущегося объекта, считают, что движущийся объект М находится не на соответствующей хорде L1, а на другой хорде, то есть L2, или используют другие интерполированные точки, Pb и Рс, чтобы можно было четко определить, находится ли движущийся объект на следующей хорде L2.
[0059] Если движущийся объект не находится на хорде, величину, получаемую вычитанием остатка длины d2 хорды из дистанции прямолинейного перемещения (=d2+d3), принимают в качестве остатка дистанции прямолинейного перемещения (=d3) движущегося объекта (S222). Иначе говоря, вычисляют дистанцию прямолинейного перемещения (= дистанция прямолинейного перемещения - остаток длины хорды) и осуществляют переход к шагу S218. Определяют интерполированные точки Pb и Рс в вычисленном остатке дистанции прямолинейного перемещения d3 и другую хорду L2 и находят расстояние до интерполированных точек Pb и Рс (S218). Расстояние до следующей интерполированной точки соответствует длине (Ld2) хорды, соединяющей интерполированные точки Pb и Рс, которые не являются исходными точками.
[0060] Определяют, находится ли движущийся объект на следующей хорде L2 (S220). Другими словами, остаток дистанции прямолинейного перемещения (d3) движущегося объекта сравнивают с длиной (Ld2) новой хорды. Если длина (Ld2) следующей хорды больше или равна остатку дистанции прямолинейного перемещения (d3) движущегося объекта, считают, что движущийся объект находится на соответствующей хорде. Однако, если движущийся объект не находится на соответствующей хорде, то вновь определяют, находится ли движущийся объект на другой хорде в остатке дистанции прямолинейного перемещения движущегося объекта, т.е. полученном путем вычитания остатка длины соответствующей хорды, как описано выше.
[0061] Если установлено, что движущийся объект находится на определяемой хорде L2, то находят данные о местоположении (координаты) интерполированных точек Pb и Рс, принадлежащих соответствующей хорде Ld2, и вычисляют координаты найденных интерполированных точек и угла наклона определяемой хорды (S216).
[0062] Находят две интерполированные точки Pb и Рс, принадлежащие хорде L2, на которой определяют местоположение движущегося объекта, например, предыдущую интерполированную точку Pb, лежащую на переднем конце хорды в направлении движения движущегося объекта, и последующую интерполированную точку Рс, лежащую на заднем конце хорды в направлении передвижения движущегося объекта. Вычисляют соответствующие данные о местоположении (долготу, широту) по уравнению 3 с использованием соответствующих координат положения предыдущей и последующей интерполированных точек, угол наклона хорды и скорость движущегося объекта.
[0063] [Уравнение 3]
Долгота = долгота предыдущей интерполированной точки + скорость движущегося объекта · sin (угол наклона хорды) · время (с)
Широта = широта предыдущей интерполированной точки+скорость движущегося объекта · cos (угол наклона хорды) · время (с),
где долготу и широту в определяемых данных можно получить из долготы и широты последующей интерполированной точки при движении в обратном направлении.
[0064] Данные движущегося объекта о местоположении в движении в зоне отсутствия приема сигналов можно рассчитать, используя координаты интерполированных точек, остаток дистанции прямолинейного перемещения (d3) движущегося объекта, длины (Ld2) хорды и угла наклона (Θ2) хорды (S228). Полученные расчетные данные о местоположении принимают в качестве исходных для определения другого местоположения в движении (S230), так что можно определить местоположение при передвижении движущегося объекта в зоне отсутствия приема сигналов, используя скорость в течение другого времени определения, дистанцию прямолинейного перемещения, расчетные интерполированную точку и хорду и угол наклона расчетной хорды.
[0065] Более подробно настоящее изобретение будет описано ниже со ссылками на фиг.5 и 6.
[0066] Как показано на фиг.5 и 6, если движущийся объект М перемещается из зоны приема сигналов А в зону отсутствия приема сигналов В, первая интерполированная точка Ра находится в зоне приема сигналов А, а вторая интерполированная точка Pb находится в зоне отсутствия приема сигналов В. Третья интерполированная точка Рс находится в зоне приема сигналов С. Это тот случай, когда движущийся объект перемещается в зону отсутствия приема сигналов (Pm->Pm′). Первая хорда (L1), соединяющая первую интерполированную точку Ра и вторую интерполированную точку Pb, вторая хорда (L2), соединяющая вторую интерполированную точку Pb и третью интерполированную точку Рс, координаты интерполированных точек Ра, Pb и Рс и длины (Ld1 и Ld2) хорд L1 и L2 структурированы таким образом, чтобы служить базой данных на цифровой карте.
[0067] Следовательно, когда движущийся объект попадает в зону отсутствия приема сигналов В, получают последнее согласованное с картой местоположение Pm в зоне приема сигналов и принимают его в качестве исходной точки. Определяют дистанцию прямолинейного перемещения, которую может пройти движущийся объект (Pm->Pm') за единицу времени. Часть длины хорды (d1) от исходной точки Pm движущегося объекта до первой интерполированной точки Ра вычитают из длины (Ld1) первой хорды L1 для получения остатка длины (d2) первой хорды. Остаток длины (d2) первой хорды сравнивают с дистанцией прямолинейного перемещения (d2+d3) движущегося объекта, так что можно определить, находится ли расчетное местоположение движущегося объекта на первой хорде.
[0068] Если движущийся объект не находится на первой хорде, остаток длины (d2) первой хорды вычитают из дистанции прямолинейного перемещения (d2+d3) движущегося объекта, чтобы получить остаток дистанции прямолинейного перемещения (d3). Получают вторую хорду Ld2, соединенную со второй интерполированной точкой Pb, и третью интерполированную точку Рс, являющуюся концом второй хорды Ld2. Остаток дистанции прямолинейного перемещения (d3) сравнивают с длиной (Ld2) второй хорды L2. Если длина (Ld2) второй хорды L2 больше или равна остатку дистанции прямолинейного перемещения (d3), считают, что движущийся объект Pm' находится на второй хорде L2.
[0069] Затем данные о местоположении движущегося объекта вычисляют, используя остаток дистанции (d3) движения движущегося объекта Pm', длину (Ld2) расчетной второй хорды, координаты второй и третьей интерполированных точек Pb и Рс и угол наклона второй хорды относительно направления точно на север, как показано на фиг.6. Теперь расчетное местоположение принимают за исходную точку.
[0070] Иными словами, если предположить, что длина первой хорды, длина второй хорды и расстояние от первой интерполированной точки до последнего согласованного с картой местоположения равны 5 м, 8 м и 2 м соответственно, а скорость движущегося объекта равна 10 м/с, то расстояние между последним согласованным с картой местоположением и второй интерполированной точкой равно d2=5м-2м=3м. Поскольку d2 (=3 м) меньше, чем дистанция прямолинейного перемещения (10 м), определяют, находится ли движущийся объект на другой хорде с остатком дистанции прямолинейного перемещения (=d3), полученным путем вычитания остатка длины (d2) первой хорды L1.
[0071] Поскольку остаток дистанции перемещения (d3=7 м) меньше, чем длина (8 м) второй хорды, определяют, находится ли движущийся объект Pm' на второй хорде. Для этого находят координаты соответствующих интерполированных точек, а именно второй интерполированной точки Pb и третьей интерполированной точки Рс, принадлежащих второй хорде L2. Вычисляют соответствующие данные о местоположении (долготу, широту) движущегося объекта, используя соответствующие координаты найденных интерполированных точек, угол наклона второй хорды L2 и скорость движущегося объекта. Метод вычисления будет описан подробно со ссылкой на фиг.6.
[0072] Как показано на фиг.6, остаток дистанции (d3), который движущийся объект проходит от второй интерполированной точки Pb, вычисляют, используя скорость движущегося объекта во второй интерполированной точке Pb. Вычисляют угол Θ2 между направлением точно на север и второй хордой L2. Соответствующие данные о местоположении (долгота, широта) вычисляют подстановкой вычисленных дистанции (d3) и угла наклона в [Уравнение 4] следующим образом.
[0073] [Уравнение 4]
Долгота = долгота Pb + дистанция перемещения (d3)·cos(Θ2);
Широта = широта Рс + дистанция перемещения (d3)·sin(Θ2),
причем расчет можно осуществлять относительно третьей интерполированной точки Рс, имеющей иные данные и местоположение по сравнению со второй интерполированной точкой Pb.
[0074] Аналогичным образом в настоящем изобретении при расчете местоположения движущегося объекта в процессе его перемещения из зоны приема сигналов в зону отсутствия приема сигналов местоположение движущегося объекта, перемещающегося в зону отсутствия приема сигналов, можно рассчитать поэтапно, используя такие параметры, как данные о последнем согласованном с картой местоположении в зоне приема сигналов, угол наклона хорды, скорость движущегося объекта, интерполированные точки и длина хорды.
[0075] Как изложено выше, согласно способу по настоящему изобретению местоположение движущегося объекта рассчитывают, используя такие параметры, как дистанция перемещения согласно скорости, длина хорды, угол наклона, интерполированные точки относительно данных о последнем согласованном с картой местоположении в зоне отсутствия приема сигналов, вследствие чего может быть улучшена надежность работы навигационной системы.
[0076] Местоположение движущегося объекта в зоне отсутствия приема сигналов можно точно рассчитать, используя скорость движущегося объекта и цифровую карту. Для недорогого движущегося объекта, не имеющего датчика направления, например гироскопического или электронного компаса для счисления пути в зоне отсутствия приема сигналов, можно точно рассчитать местоположение движущегося объекта, используя скорость движущегося объекта.
[0077] Специалистам очевидно, что настоящее изобретение может иметь различные доработки и изменения. Поэтому предполагается, что настоящее изобретение охватывает различные доработки и изменения, если они входят в объем нижеприведенной формулы изобретения или эквивалентных признаков.

Claims (14)

1. Способ определения местоположения движущегося объекта в навигационной системе, включающий следующие операции:
(a) получение данных GPS о местоположении от движущегося объекта;
(b) определение зоны отсутствия приема сигналов GPS с использованием полученных данных GPS о местоположении;
(c) вычисление дистанции прямолинейного перемещения движущегося объекта относительно последних данных GPS о местоположении в зоне приема сигналов, когда движущийся объект находится в зоне отсутствия приема сигналов GPS;
(d) вычисление данных о виртуальном местоположении с использованием вычисленной дистанции прямолинейного перемещения движущегося объекта;
(e) вычисление на цифровой карте расчетного местоположения, ближайшего по своим данным к виртуальному местоположению, и осуществление согласования с картой для навигационного обеспечения.
2. Способ по п.1, отличающийся тем, что операция (b) включает следующие шаги:
(b-1) вычисление значения, идентифицирующего достоверность данных GPS о местоположении с использованием данных GPS о местоположении от множества спутников GPS;
(b-2) сравнение вычисленного идентифицирующего значения с заданным значением;
(b-3) если идентифицирующее значение больше или равно заданному значению, считают, что местоположение движущегося объекта находится в зоне отсутствия приема сигналов, а если идентифицирующее значение меньше заданного значения, считают, что движущийся объект находится в зоне приема сигналов.
3. Способ по п.2, отличающийся тем, что на шаге (b-1) значение, идентифицирующее достоверность данных GPS о местоположении, представляет собой горизонтальный фактор снижения точности (ГФСТ).
4. Способ по п.2, отличающийся тем, что на шаге (b-3) местоположение движущегося объекта определяют, используя данные GPS о местоположении или метод счисления пути, когда местоположение движущегося объекта в зоне приема сигналов считают находящимся в зоне приема сигналов с использованием данных GPS о местоположении.
5. Способ по п.1, отличающийся тем, что в процессе операции (е) вычисляют данные о виртуальном местоположении, используя исходную точку по любым последним данным GPS о местоположении в зоне приема сигналов и расчетные данные о местоположении движущегося объекта в зоне отсутствия приема сигналов, дистанцию прямолинейного перемещения, а также взятый относительно направления точно на север угол наклона линии прямолинейного перемещения или хорды.
6. Способ по п.1, отличающийся тем, что в процессе операции (е) координаты (долготу, широту) данных о виртуальном местоположении получают следующим образом:
долгота = долгота предыдущего согласованного с картой местоположения + скорость движущегося объекта · cos (угол наклона предыдущего согласованного с картой местоположения) · время (с), и
широта = широта предыдущего согласованного с картой местоположения + скорость движущегося объекта · sin (угол наклона предыдущего согласованного с картой местоположения) · время (с).
7. Способ по п.5, отличающийся тем, что взятый от направления точно на север угол наклона хорды представляет собой взятый от направления точно на север угол наклона хорды, расположенной на продолжении направления движения относительно предыдущего согласованного с картой местоположения по данным GPS.
8. Способ по п.5, отличающийся тем, что если расчетное местоположение движущегося объекта представляет собой местоположение, согласованное на цифровой карте, то после операции (е) дополнительно осуществляют операцию (f), заключающуюся в получении данных следующего виртуального местоположения движущегося объекта с использованием дистанции прямолинейного перемещения движущегося объекта и взятого от направления точно на север угла наклона соответствующей хорды относительно согласованного с картой местоположения и вычислении следующего расчетного местоположения путем согласования с картой данных следующего виртуального местоположения на кратчайшем расстоянии по цифровой карте.
9. Способ определения местоположения движущегося объекта с помощью навигационной системы, включающий следующие операции:
(a) получение данных GPS о местоположении;
(b) определение зоны отсутствия приема сигналов GPS с использованием полученных данных GPS о местоположении;
(c) получение согласованных с картой значений последних данных GPS о местоположении в зонах приема сигналов, когда движущийся объект находится в зоне отсутствия приема сигналов GPS, и вычисление дистанции прямолинейного перемещения движущегося объекта относительно согласованных с картой значений;
(d) нахождение интерполированных точек и хорды расчетного местоположения с использованием вычисленной дистанции прямолинейного перемещения движущегося объекта;
(e) уточнение нахождения движущегося объекта на найденной хорде;
(f) определение местоположения в движении с использованием остатка длины хорды, координат интерполированной точки, скорости движущегося объекта и длины хорды, если движущийся объект находится на найденной хорде.
10. Способ по п.9, отличающийся тем, что в процессе операции (d) на цифровой карте находят хорду направления движения и интерполированные точки на хорде с использованием дистанции прямолинейного перемещения, вычисленной с использованием скорости и времени движения движущегося объекта, и данных предыдущего согласованного с картой местоположения.
11. Способ по п.9, отличающийся тем, что операция (е) включает следующие шаги:
(е-1) вычисление остатка длины хорды с использованием расстояния до следующих интерполированных точек от последней согласованной с картой исходной точки;
(е-2) сравнение остатка длины хорды с дистанцией перемещения движущегося объекта, если вычисляют остаток длины хорды, установление нахождения движущегося объекта на соответствующей хорде, если остаток длины хорды больше или равен дистанции перемещения движущегося объекта, и установление нахождения движущегося объекта на другой хорде, если дистанция перемещения движущегося объекта больше остатка длины хорды;
(е-3) если движущийся объект находится на другой хорде, то вычитание остатка длины хорды из дистанции прямолинейного перемещения движущегося объекта, сравнение полученного в результате вычитания остатка дистанции прямолинейного перемещения с длиной другой хорды, и установление нахождения движущегося объекта на другой хорде.
12. Способ по п.9, отличающийся тем, что последующее местоположение движущегося объекта в зоне отсутствия приема сигналов определяют с использованием дистанции прямолинейного перемещения (или остатка дистанции прямолинейного перемещения) движущегося объекта, координат интерполированных точек на концах хорды на цифровой карте, длины хорды и взятого от направления точно на север угла наклона хорды.
13. Способ по п.12, отличающийся тем, что данные о местоположении в зоне отсутствия приема сигналов получают следующим образом:
долгота = долгота предыдущей интерполированной точки + скорость движущегося объекта · cos (расчетное направление хорды) · время (с), и
широта = широта предыдущей интерполированной точки + скорость движущегося объекта · sin (расчетное направление хорды) · время (с),
где расчетное направление хорды представляет собой взятый от направления точно на север угол наклона хорды.
14. Способ по п.12, отличающийся тем, что данные о местоположении (долгота, широта) движущегося объекта в зоне отсутствия приема сигналов можно вычислить, используя скорость и время движения движущегося объекта, расчетное направление хорды и координаты (долгота, широта) последней интерполированной точки.
RU2003129925/11A 2002-10-11 2003-10-10 Способ определения местоположения движущегося объекта в навигационной системе RU2311690C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2002-0062113A KR100498987B1 (ko) 2002-10-11 2002-10-11 Gps 위치 데이터 수신 불량 지역에서의 이동체 위치예측 방법
KR62113/2002 2002-10-11

Publications (2)

Publication Number Publication Date
RU2003129925A RU2003129925A (ru) 2005-04-10
RU2311690C2 true RU2311690C2 (ru) 2007-11-27

Family

ID=32064931

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003129925/11A RU2311690C2 (ru) 2002-10-11 2003-10-10 Способ определения местоположения движущегося объекта в навигационной системе

Country Status (3)

Country Link
US (1) US7117087B2 (ru)
KR (1) KR100498987B1 (ru)
RU (1) RU2311690C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542932C1 (ru) * 2011-06-14 2015-02-27 Краун Эквипмент Лимитед Улучшенный способ и система обработки информации карт для навигации промышленных транспортных средств
RU2574602C2 (ru) * 2010-06-01 2016-02-10 МАЙКРОСОФТ ТЕКНОЛОДЖИ ЛАЙСЕНСИНГ, ЭлЭлСи Гибридное геопозиционирование мобильного телефона
RU2608885C2 (ru) * 2014-06-30 2017-01-25 Общество С Ограниченной Ответственностью "Яндекс" Способ определения точки кривой, ближайшей к позиции на карте
RU2693021C2 (ru) * 2015-03-20 2019-07-01 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Точность определения местоположения транспортного средства

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7454290B2 (en) * 2003-09-18 2008-11-18 The Board Of Trustees Of The Leland Stanford Junior University GPS/INS vehicle attitude system
KR100626539B1 (ko) * 2004-08-17 2006-09-20 엘지전자 주식회사 네비게이션 시스템에서 이동체의 방위각 보정방법
WO2006086298A2 (en) * 2005-02-07 2006-08-17 Siemens Vdo Automotive Corporation Navigation system
US7647171B2 (en) * 2005-06-29 2010-01-12 Microsoft Corporation Learning, storing, analyzing, and reasoning about the loss of location-identifying signals
US7925995B2 (en) 2005-06-30 2011-04-12 Microsoft Corporation Integration of location logs, GPS signals, and spatial resources for identifying user activities, goals, and context
KR100742612B1 (ko) * 2005-08-19 2007-07-25 한국전자통신연구원 추측 항법과 지피에스를 이용한 복합 항법 장치 및 그 방법
US8606299B2 (en) 2006-01-09 2013-12-10 Qualcomm Incorporated Apparatus and methods for geographic position approximation of an event occurring on a wireless device
JP2008071253A (ja) * 2006-09-15 2008-03-27 Denso Corp 車載緊急通報装置及び車載緊急通報システム
US7835863B2 (en) * 2007-04-18 2010-11-16 Mitac International Corporation Method and system for navigation using GPS velocity vector
FI119663B (fi) * 2007-04-24 2009-01-30 Tracker Oy Opastava paikannusmenetelmä, paikannuslaite ja tietokoneohjelmatuote
KR20090001721A (ko) * 2007-05-14 2009-01-09 팅크웨어(주) 맵 매칭 보정 방법 및 상기 방법을 수행하는 내비게이션시스템
KR100913672B1 (ko) 2007-05-16 2009-08-26 팅크웨어(주) 가상 맵매칭 방법 및 그 시스템
US8554475B2 (en) 2007-10-01 2013-10-08 Mitac International Corporation Static and dynamic contours
KR101054770B1 (ko) * 2007-12-13 2011-08-05 현대자동차주식회사 항법 시스템에서의 경로 탐색 방법 및 장치
DE102008006445A1 (de) * 2008-01-28 2009-08-20 Navigon Ag Verfahren zum Betrieb eines Navigationsgeräts
US8046002B2 (en) * 2008-07-29 2011-10-25 Xerox Corporation Apparatus for broadcasting real time information to GPS systems
CN101344397B (zh) * 2008-08-27 2011-11-02 深圳市凯立德欣软件技术有限公司 一种导航系统及其导航方法
KR101677756B1 (ko) * 2008-11-03 2016-11-18 삼성전자주식회사 지피에스 수신 주기 및 맵 컨텐츠 자동 최적화 설정 방법 및 장치
KR101236706B1 (ko) * 2008-11-04 2013-02-25 팅크웨어(주) 실시간 가상 맵 매칭 방법 및 장치
US8059027B2 (en) * 2008-12-29 2011-11-15 Microsoft Corporation Correcting GPS through secondary sensors and signal strength
US8086364B2 (en) * 2009-03-11 2011-12-27 General Electric Company System and method for operation of electric and hybrid vehicles
KR101622579B1 (ko) * 2009-09-10 2016-05-20 삼성전자주식회사 휴대용 단말기에서 위치 정보 서비스를 제공하기 위한 장치 및 방법
US20110063166A1 (en) * 2009-09-14 2011-03-17 GTA Electronics Co., Ltd. Positioning Data Producing Unit and Position Tracking Device
CN102036368B (zh) * 2009-09-30 2015-03-25 国际商业机器公司 用于确定移动的无线通信设备的位置的方法和系统
KR101027068B1 (ko) * 2009-11-23 2011-04-11 경기대학교 산학협력단 위치 확인 정보의 보정 방법 및 그 방법을 수행하는 서버
KR101104379B1 (ko) * 2010-01-06 2012-01-16 주식회사 금영 Gps 수신불량에 따른 차량용 위치예측 시스템 및 이를 이용한 위치예측 방법
US8396661B2 (en) * 2010-01-26 2013-03-12 Hewlett-Packard Development Company, L.P. Using relative position data in a mobile computing device
KR200458166Y1 (ko) * 2010-03-24 2012-01-25 김송수 회전식 절첩 파라솔
US20110307171A1 (en) * 2010-06-10 2011-12-15 Continental Automotive Systems, Inc. GPS Location Refinement Method In Environments With Low Satellite Visibility
FR2966924B1 (fr) * 2010-10-27 2015-03-20 Peugeot Citroen Automobiles Sa Systeme telematique de localisation fiabilisee
US20130018580A1 (en) * 2011-07-14 2013-01-17 Maria Scileppi Creating a Graphic Display Based on Movement
US10151843B2 (en) 2011-11-22 2018-12-11 Radio Systems Corporation Systems and methods of tracking position and speed in GNSS applications
US9635557B2 (en) * 2012-06-14 2017-04-25 Intel Corporation Reliability for location services
US9068839B2 (en) * 2012-06-29 2015-06-30 Nokia Technologies Oy Method and apparatus for providing shadow-based location positioning
CN103415070B (zh) * 2013-07-04 2016-07-06 百度在线网络技术(北京)有限公司 基于可移动路径的定位方法及装置
US9892550B2 (en) * 2013-10-08 2018-02-13 Here Global B.V. Photorealistic rendering of scenes with dynamic content
KR20150041946A (ko) 2013-10-10 2015-04-20 현대자동차주식회사 음영지역 안내 장치 및 방법
US9593953B2 (en) 2014-01-21 2017-03-14 Telenav, Inc. Navigation system with location correction mechanism and method of operation thereof
JP6413404B2 (ja) * 2014-07-07 2018-10-31 カシオ計算機株式会社 電子機器、位置推定方法及びプログラム
KR101603609B1 (ko) * 2014-07-15 2016-03-28 현대모비스 주식회사 차량용 어라운드 뷰 모니터링 시스템 및 이의 방법
CN104504898A (zh) * 2014-12-11 2015-04-08 王东宇 基于浮动车数据的隧道路段在线地图匹配方法
KR102398320B1 (ko) * 2015-08-07 2022-05-16 삼성전자주식회사 경로 정보 제공 방법 및 그 방법을 처리하는 전자 장치
US9494694B1 (en) 2015-12-09 2016-11-15 International Business Machines Corporation Method and apparatus of road location inference for moving object
CN105551249A (zh) * 2015-12-31 2016-05-04 王东宇 基于浮动车数据的隧道路段在线地图匹配方法
TWI608448B (zh) * 2016-03-25 2017-12-11 晶睿通訊股份有限公司 計數流道設定方法、具有計數流道設定功能的影像監控系統、及其相關的電腦可讀取媒體
EP3642683B1 (en) * 2017-06-22 2022-12-14 Agjunction LLC 3-d image system for vehicle control
DE102017220551A1 (de) * 2017-11-17 2019-05-23 Robert Bosch Gmbh Verfahren zum Bestimmen einer Position eines Kraftfahrzeugs
CN108896956A (zh) * 2018-06-07 2018-11-27 邢敬宏 一种基于超宽带的自动引导车定位系统和方法
WO2021025729A1 (en) * 2019-08-07 2021-02-11 John Rankin Determining proximity and attraction of objects within a coordinate system
US11452064B2 (en) 2020-03-09 2022-09-20 Rankin Labs, Llc Locating and detecting mobile communication devices in a defined geographic area

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4796191A (en) * 1984-06-07 1989-01-03 Etak, Inc. Vehicle navigational system and method
JPH04178587A (ja) * 1990-11-13 1992-06-25 Matsushita Electric Ind Co Ltd 車両方位算出装置
EP0514887B1 (en) * 1991-05-21 1997-04-16 Matsushita Electric Industrial Co., Ltd. Vehicle position detecting apparatus
US5311195A (en) * 1991-08-30 1994-05-10 Etak, Inc. Combined relative and absolute positioning method and apparatus
KR930014147A (ko) * 1991-12-31 1993-07-22 정몽헌 Gps 수신기의 이동체 위치 표시방법
JPH06148307A (ja) * 1992-11-04 1994-05-27 Pioneer Electron Corp ナビゲーション装置
US5416712A (en) * 1993-05-28 1995-05-16 Trimble Navigation Limited Position and velocity estimation system for adaptive weighting of GPS and dead-reckoning information
JPH07286856A (ja) * 1994-04-18 1995-10-31 Zanabui Informatics:Kk 現在位置算出装置
US5948043A (en) * 1996-11-08 1999-09-07 Etak, Inc. Navigation system using GPS data
KR100330424B1 (ko) * 1996-12-31 2002-10-18 김봉택 지피에스를이용한이동물체위치식별및추적방법과그장치
KR100216535B1 (ko) 1997-06-13 1999-08-16 김영환 위치 정합도를 이용한 차량 항법용 주행 차량의 위치 측정 방법
US6324474B1 (en) * 1998-02-27 2001-11-27 Lockhead Martin Corporation Method for establishing coverage area and accuracy of a wide-area differential global positioning system
JP2000279452A (ja) * 1999-03-31 2000-10-10 Matsushita Electric Works Ltd 回転数検出装置付き車椅子
EP1309878A4 (en) * 2000-06-23 2005-01-05 Sportvision Inc MODEL OF CONTINUATION FOR DELIMITERING A GPS POSITION
US6657584B2 (en) * 2000-06-23 2003-12-02 Sportvision, Inc. Locating an object using GPS with additional data
JP2002213979A (ja) * 2001-01-12 2002-07-31 Clarion Co Ltd 測位位置/方位の修正が可能なdr機能付きgpsレシーバ
JP4746794B2 (ja) * 2001-08-21 2011-08-10 クラリオン株式会社 カーナビゲーション装置、カーナビゲーション用制御プログラムを記録した記録媒体
AU2002952041A0 (en) * 2002-10-10 2002-10-31 Neve Its Pty Ltd Method for Calculating a Figure of Merit for GPS Position Using NMEA 0183 Output

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2574602C2 (ru) * 2010-06-01 2016-02-10 МАЙКРОСОФТ ТЕКНОЛОДЖИ ЛАЙСЕНСИНГ, ЭлЭлСи Гибридное геопозиционирование мобильного телефона
RU2542932C1 (ru) * 2011-06-14 2015-02-27 Краун Эквипмент Лимитед Улучшенный способ и система обработки информации карт для навигации промышленных транспортных средств
RU2608885C2 (ru) * 2014-06-30 2017-01-25 Общество С Ограниченной Ответственностью "Яндекс" Способ определения точки кривой, ближайшей к позиции на карте
RU2693021C2 (ru) * 2015-03-20 2019-07-01 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Точность определения местоположения транспортного средства

Also Published As

Publication number Publication date
RU2003129925A (ru) 2005-04-10
KR100498987B1 (ko) 2005-07-01
US20040073364A1 (en) 2004-04-15
KR20040033181A (ko) 2004-04-21
US7117087B2 (en) 2006-10-03

Similar Documents

Publication Publication Date Title
RU2311690C2 (ru) Способ определения местоположения движущегося объекта в навигационной системе
KR100713459B1 (ko) 네비게이션 시스템 및 네비게이션 시스템에서 이동체의경로 이탈 판단 방법
US5512904A (en) Method and apparatus of establishing a vehicle azimuth
US7565241B2 (en) Automobile navigation system and road map update system
US8396659B2 (en) Navigation device, method, and program
KR100744709B1 (ko) 실시간 분산 네비게이션 시스템 방법 및 시스템
US6845322B1 (en) Method and system for distributed navigation
KR101210597B1 (ko) 이동체의 맵 매칭 장치 및 그 방법
WO2006060173A1 (en) Method and system for multiple route navigation
JP4345842B2 (ja) 車両位置情報提供装置、車両位置情報提供方法及びコンピュータプログラム
US9400182B2 (en) Probabilistic reverse geocoding
JPH0694472A (ja) 車両位置決定装置及びこの装置を有する車両
CN102147258A (zh) 基于反馈机制的车辆导航方法及系统
KR100526571B1 (ko) 오프-보드 네비게이션 시스템 및 그의 오차 보정 방법
US20080051992A1 (en) Information system, terminal device, and information center device
White Emerging requirements for digital maps for in-vehicle pathfinding and other traveller assistance
EP0394517A1 (en) Vehicle navigation system
KR20050050361A (ko) 사용자 선호 구간을 고려한 경로 안내를 위한 네비게이션시스템 및 방법
JPH09311045A (ja) ナビゲーション装置
CN114690231A (zh) 车辆定位方法
KR100216535B1 (ko) 위치 정합도를 이용한 차량 항법용 주행 차량의 위치 측정 방법
KR100526568B1 (ko) 휴대용 단말기를 이용한 네비게이션 시스템에서 휴대용단말기의 도로상 위치 검색방법
KR20120134435A (ko) 네비게이션 시스템에서 고도정보를 이용한 이동체의 시설물 진/출입 판단방법 및 장치
KR100683555B1 (ko) 네비게이션 방법, 네비게이션 시스템, 텔레매틱스 단말 및네비게이션 서버
KR20230168495A (ko) 운전자 보조 장치 및 운전자 보조 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101011