RU2185470C1 - Способ изготовления бумаги - Google Patents

Способ изготовления бумаги Download PDF

Info

Publication number
RU2185470C1
RU2185470C1 RU2000129670/12A RU2000129670A RU2185470C1 RU 2185470 C1 RU2185470 C1 RU 2185470C1 RU 2000129670/12 A RU2000129670/12 A RU 2000129670/12A RU 2000129670 A RU2000129670 A RU 2000129670A RU 2185470 C1 RU2185470 C1 RU 2185470C1
Authority
RU
Russia
Prior art keywords
polysaccharide
preceding paragraphs
suspension
anionic
dehydration
Prior art date
Application number
RU2000129670/12A
Other languages
English (en)
Other versions
RU2000129670A (ru
Inventor
Микаэль Перссон
Ханс ХЕЛЛЬСТРЕМ
Йоаким КАРЛЕН
Original Assignee
Акцо Нобель Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8236970&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2185470(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Акцо Нобель Н.В. filed Critical Акцо Нобель Н.В.
Application granted granted Critical
Publication of RU2185470C1 publication Critical patent/RU2185470C1/ru
Publication of RU2000129670A publication Critical patent/RU2000129670A/ru

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/04Addition to the pulp; After-treatment of added substances in the pulp
    • D21H23/06Controlling the addition
    • D21H23/08Controlling the addition by measuring pulp properties, e.g. zeta potential, pH
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/14Secondary fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/01Waste products, e.g. sludge
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/31Gums
    • D21H17/32Guar or other polygalactomannan gum
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • D21H17/455Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/04Addition to the pulp; After-treatment of added substances in the pulp
    • D21H23/06Controlling the addition
    • D21H23/08Controlling the addition by measuring pulp properties, e.g. zeta potential, pH
    • D21H23/10Controlling the addition by measuring pulp properties, e.g. zeta potential, pH at least two kinds of compounds being added

Landscapes

  • Paper (AREA)
  • Polarising Elements (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Способы касаются изготовления бумаги и могут быть использованы в целлюлозно-бумажной промышленности. Бумагу изготавливают из суспензии, содержащей целлюлозные волокна и необязательно наполнители. Способ включает введение в суспензию средств обезвоживания и удержания, в качестве которых используют катионный или амфотерный полисахарид, формование и обезвоживание суспензии на сетке. При этом полисахарид содержит гидрофобную группу, включающую ароматическую группу или полисахарид, имеет общую структурную формулу Р-(-А-N+(R1R3)-R2)nX-, где Р - остаток полисахарида; А - группа, присоединяющая азот к остатку полисахарида; каждый из R1 и R2 - водород или алкил, содержащий от 1 до 3 атомов углерода; R3 - гидрофобная углеводородная группа, содержащая не меньше 2 атомов углерода; n - целое число от примерно 2 до примерно 300000, или радикалы R1, R2 и R3 вместе с азотом образуют ароматическую группу, содержащую от 5 до 12 атомов углерода; и X- - анионный противоион. Предложенным техническим результатом является улучшение обезвоживания и/или удержания, а также повышение скорости бумагоделательной машины и экономичности процесса. 2 с. и 33 з.п. ф-лы, 4 табл.

Description

Изобретение относится к изготовлению бумаги, более конкретно к способу изготовления бумаги, при котором в бумажную массу добавляют катионный или амфотерный полисахарид, содержащий гидрофобный заместитель. Этот способ обеспечивает улучшенное обезвоживание и удержание, а также улучшенную прочность в сухом состоянии бумаги, полученной этим способом.
В бумажном производстве водную суспензию, содержащую целлюлозные волокна и необязательные наполнители, называемую бумажной пульпой, подают в напорную емкость, из которой пульпа выталкивается на формующую сетку. Вода дренируется из пульпы по формующей сетке, так что на этой сетке происходит формование влажного бумажного полотна, и это полотно далее обезвоживается и высушивается в сушильной зоне бумагоделательной машины. Вода, полученная в результате обезвоживания пульпы, называемая белой водой, которая обычно содержит мелкие частицы, например мелкие волокна, наполнители и добавки, обычно рециркулирует в процессе изготовления бумаги. В состав пульпы традиционно вводят добавки, облегчающие обезвоживание и удержание, чтобы ускорить процесс обезвоживания и увеличить абсорбцию мелких частиц на целлюлозных волокнах, чтобы они удерживались в этих волокнах на сетке. В качестве средств обезвоживания и удержания широко используют катионные и амфотерные полисахариды, такие как катионный крахмал и катионные гуар-смолы. Полисахариды могут быть использованы по отдельности или в сочетании с другими полимерами и/или анионными микроизмельченными материалами, такими как, например, анионные минеральные частицы, такие как коллоидный диоксид кремния. Катионные и амфотерные полисахариды широко используются в качестве агентов повышения прочности в сухом состоянии, которые вводят в состав бумажной пульпы с целью получения бумаги с улучшенной прочностью в сухом состоянии.
Катионные полисахариды обычно получают по реакции полисахарида с агентом кватернизации, например 3-хлор-2-гидроксипропилтриметиламмонийхлоридом, 2,3-эпоксипропилтриметиламмонийхлоридом и 2-хлорэтилтриметиламмонийхлоридом.
Патенты США 4388150; 4755259; 4961825; 5127994; 5643414; 5447604; 5277764; 5607552; 5603805 и 5858174 и Европейский патент 500770 раскрывают применение катионных и амфотерных полисахаридов и анионных минеральных частиц в качестве добавок к пульпе в бумажном производстве. Сейчас эти добавки входят в число наиболее эффективных используемых средств обезвоживания и удержания.
В соответствии с настоящим изобретением было установлено, что улучшенное обезвоживание и удержание могут быть достигнуты при изготовлении бумаги за счет использования средства для обезвоживания и удержания, включающего катионный и/или амфотерный полисахарид, содержащий гидрофобную заместительную группу, т. е. гидрофоб. Было также установлено, что катионный и/или амфотерный полисахарид, содержащий гидрофобную группу, обеспечивает улучшенную прочность бумаги в сухом состоянии. В частности, настоящее изобретение относится к способу изготовления бумаги из суспензии, содержащей целлюлозные волокна и необязательные наполнители, который включает добавление к суспензии обезвоживающего и удерживающего средства, включающего катионный или амфотерный полисахарид, формование и обезвоживание суспензии на сетке, при этом полисахарид содержит гидрофобную группу. Настоящее изобретение также относится к способу изготовления бумаги из суспензии, содержащей целлюлозные волокна и необязательные наполнители, который включает добавление к суспензии агента повышения прочности бумаги в сухом состоянии, включающего катионный или амфотерный полисахарид, формование и обезвоживание суспензии на сетке, при этом полисахарид содержит гидрофобную группу. В предпочтительном аспекте изобретения этот способ также включает формование и обезвоживание суспензии на сетке с целью получения влажного бумажного полотна, содержащего целлюлозные волокна, или бумаги, и белой воды, рециркуляцию белой воды и необязательно введение свежей воды для получения суспензии, содержащей целлюлозные волокна и необязательные наполнители и подлежащей обезвоживанию с целью получения бумаги, при этом количество вводимой свежей воды составляет меньше 30 тонн на тонну сухой полученной бумаги. Таким образом, настоящее изобретение относится к способу, далее определенному в формуле изобретения.
Результатом настоящего изобретения являются улучшенные обезвоживание и/или удержание, и, следовательно, настоящее изобретение позволяет увеличить скорость бумагоделательной машины и использовать более низкие дозировки добавок, обеспечивающих соответствующий эффект обезвоживания и/или удержания, приводя в итоге к улучшенному процессу изготовления бумаги и экономическим выгодам. Другие преимущества, наблюдаемые при осуществлении настоящего изобретения, включают улучшенную прочность бумаги в сухом состоянии, полученной с использованием полисахарида, содержащего гидрофобную группу. Здесь также возможно применение меньшего количества агента, повышающего прочность бумаги в сухом состоянии для обеспечения необходимой прочности. Способ по изобретению также пригоден для обработки целлюлозных суспензий в закрытых производствах, где белая вода повторно рециркулирует с введением только небольших количеств свежей воды. Настоящий способ также приемлемо применим к процессам изготовления бумаги, предусматривающим использование целлюлозных суспензий, имеющих высокое содержание солей и имеющих, таким образом, высокие уровни удельной проводимости, например процессам с экстенсивной рециркуляцией белой воды и ограниченной подачей свежей воды, и/или процессам, предусматривающим использование свежей воды, имеющей высокое содержание солей.
Полисахарид настоящего изобретения может быть выбран из любых известных полисахаридов, включая, например, крахмалы, гуар-смолы, целлюлозы, хитины, хитозаны, гликаны, галактаны, глюканы, ксантановые смолы, пектины, маннаны, декстрины, предпочтительно крахмалы и гуар-смолы. Примеры пригодных для использования крахмалов включают картофель, кукурузу, пшеницу, тапиоку, рис, маис восковой спелости и т.д. Приемлемо, когда катионный полисахарид является вододиспергируемым или, что предпочтительнее, водорастворимым. В предпочтительном варианте осуществления настоящего изобретения полисахарид может действовать как средство (агент) обезвоживания и удержания. Термин "средство обезвоживания и удержания", использованный в настоящем описании, относится к одному или нескольким компонентам (средствам, агентам или добавкам), которые, будучи введенными в пульпу, обеспечивают лучшее обезвоживание и/или удержание по сравнению с тем случаем, когда указанный один или несколько компонентов не вводят в пульпу. В другом предпочтительном варианте осуществления настоящего изобретения полисахарид может действовать как агент повышения прочности в сухом состоянии. Использованный в данном описании термин "агент повышения прочности в сухом состоянии" относится, по крайней мере, к одному компоненту (средству, агенту или добавке), который при введении в пульпу обеспечивает лучшие показатели прочности бумаги в сухом состоянии по сравнению с пульпами, в которые указанный компонент не введен.
Полисахарид представляет собой замещенный гидрофоб, катионный или амфотерный, т.е. полисахарид, содержащий одну или несколько гидрофобных групп и одну или несколько катионных групп, катионные группы приемлемо представляют собой третичные аминогруппы или, что предпочтительно, четвертичные аммониевые группы. Полисахарид также может содержать одну или несколько анионных групп, которыми могут быть, например, фосфатные, фосфонатные, сульфатные, сульфонатные или карбоксильные группы, и предпочтительно они представляют собой фосфатные группы. Анионные группы, если они присутствуют, могут быть нативными или введенными с помощью химической обработки известными способами; природный картофельный крахмал содержит значительное количество ковалентно связанных фосфатных групп сложного моноэфира. В амфотерных полисахаридах катионные группы предпочтительно содержатся в преобладающем количестве.
Гидрофобная группа полисахарида может быть присоединена к гетероатому, такому как кислород, содержащемуся в полисахариде. Предпочтительно, когда гидрофобная группа присоединена к гетероатому, например азоту или кислороду, гетероатом необязательно имеет заряд, например, когда это атом азота или группа, включающая такой гетероатом, например амидная, сложноэфирная или простая эфирная, которые, в свою очередь, могут быть присоединены к полисахаридной цепи (основной цепи), например, через цепочку атомов. Гидрофобная группа содержит не менее 2, обычно не менее 3, приемлемо не менее 4 и предпочтительно не менее 6 атомов углерода; и обычно примерно до 20, приемлемо до 14 и предпочтительно до 12 атомов углерода. Гидрофобная группа может быть выбрана из ароматических (арил) групп, алифатических углеводородных групп и смесей таких групп. Примеры пригодных для использования гидрофобных алифатических групп включают линейные, разветвленные и циклические алкильные группы, такие как этил; пропил, например н-пропил и изопропил; бутил, например н-бутил, изобутил и t-бутил; пентил, например н-пентил, неопентил и изопентил; гексил, например н-гексил и циклогексил; октил, например н-октил; децил, например н-децил; и додецил, например, н-додецил; и тетрадецил. Примеры пригодных для использования ароматических групп и групп, включающих ароматическую группу, включают арильные и аралкильные группы, например фенил, фенилен, нафтил, фенилен, ксилилен, бензил и фенилэтил; азотсодержащие ароматические (арил) группы, например пиридиний и хинолиний, а также производные этих групп, один или несколько заместителей, присоединенных к указанным ароматическим группам, могут быть выбраны из числа таких групп, как гидроксил, галогениды, например хлорид, нитро и углеводородных групп, содержащих от 1 до 14 атомов углерода.
Особенно пригодные для использования полисахариды настоящего изобретения включают те, которые описываются общей формулой (I):
Figure 00000001

где Р означает остаток полисахарида; А означает группу, присоединяющую азот к остатку полисахарида, приемлемо цепочку атомов, включающих атомы углерода и водорода, и необязательно атомы кислорода и/или азота, обычно алкиленовую группу, содержащую от 2 до 18 и приемлемо от 2 до 8 атомов углерода, необязательно прерванную или замещенную одним или несколькими гетероатомами, например кислорода или азота, например алкиленоксигруппа или гидроксипропиленовая группа (-CH2-СН(ОН)-СН2-); каждый из радикалов R1 и R2 представляет собой водород или, что предпочтительно, углеводородную группу, приемлемо алкил, содержащий от 1 до 3 атомов углерода, приемлемо 1 или 2 атома углерода; радикал R3 представляет собой гидрофобную углеводородную группу, содержащую не меньше 2 атомов углерода, приемлемо 4-14 и предпочтительно 6-12 атомов углерода, гидрофобная группа приемлемо представляет собой группу, определенную выше, предпочтительно группу, выбранную из алкильных и аралкильных групп, например бензильную и фенилэтильную группы; n - целое число примерно от 2 до примерно 300000, приемлемо от 5 до 200000 и предпочтительно от 6 до 125000, или наоборот, радикалы R1, R2 и R3 вместе с атомом азота образуют ароматическую группу, содержащую от 5 до 12 атомов углерода; и X- означает анионный противоион, обычно галогенида, такого как хлорид.
Модифицированный гидрофобной группой катионный или амфотерный полисахарид может иметь степень замещения в широком диапазоне значений; степень катионного замещения (DSc) может составлять от 0,01 до 0,5, приемлемо от 0,02 до 0,3, предпочтительно от 0,025 до 0,2, степень гидрофобного замещения (DSн) может составлять от 0,01 до 0,5, приемлемо от 0,02 до 0,3, предпочтительно от 0,025 до 0,2, и степень анионного замещения (DSA) может составлять от 0 до 0,2, приемлемо от 0 до 0,1, предпочтительно от 0 до 0,05.
Полисахариды настоящего изобретения могут быть получены путем катионной и гидрофобной модификации полисахарида известным способом с использованием одного или нескольких агентов, содержащих катионную группу и/или гидрофобную группу, например, по реакции этого агента с полисахаридом в присутствии щелочного соединения, такого как гидроксид щелочного металла или щелочноземельного металла. Полисахарид, подвергаемый катионной или гидрофобной модификации, может быть неионным, анионным, амфотерным или катионным. Пригодные для использования модифицирующие агенты включают неионные агенты, такие как, например, замещенные гидрофобом сукционовые ангидриды; алкиленоксиды, например пропиленоксид и бутиленоксид; алкилгалогениды, например децилбромид и додецилбромид; аралкилгалогениды, например бензилхлорид и бензилбромид; продукты реакции эпихлоргидрина с диалкиламинами, содержащие не меньше одного заместителя, включающего гидрофобную группу, определенную выше, включая 3-диалкиламино-1,2-эпоксипропаны; катионные агенты, такие как, например, продукт реакции эпихлоргидрина и третичных аминов, содержащий не менее одного заместителя, включающего гидрофобную группу, определенную выше, включая триалкиламины, алкарилдиалкиламины, например диметилбензиламин; ариламины, например пиридин и хинолин. Пригодные для использования катионные агенты этого типа включают 2,3-эпоксипропилтриалкиламмонийгалогениды и галогидроксипропилтриалкиламмонийгалогениды, например N-(3-хлор-2-гидроксипропил)-N-(гидрофобный алкил)-N, N-ди(низший алкил)аммонийхлорид и N-глицидил-N-(гидрофобный алкил)-N, N-ди(низший алкил)аммонийхлорид, где гидрофобная алкильная группа - это та, что определена выше, в основном октил, децил и додецил, и низшим алкилом является метил или этил; и галогидроксипропил-N,N-диалкил-N-алкариламмонийгалогениды и N-глицидил-N-(алкарил)-N,N-диалкиламмонийхлорид, например N-(3-хлор-2-гидроксипропил)-N-(алкарил)-N,N-ди(низший алкил)аммонийхлорид, где алкарил и низшие алкильные группы - те, что определены выше, особенно N-(3-хлор-2-гидроксипропил)-N-бензил-N,N-диметил-аммонийхлорид; и N-(3-хлор-2-гидроксипропил)пиридиний-хлорид. Обычно, когда использован неионный гидрофобный агент, полисахарид приемлемо становится катионным при использовании любых известных катионных агентов до или после гидрофобной модификации. Примеры пригодных для использования катионных и/или гидрофобных модифицирующих агентов, модифицированных гидрофобной группой полисахаридов, и способы их получения включают те, что описаны в патентах США 4687519 и 5463127; международной патентной заявке WO 94/24169, Европейской патентной заявке 189935; и S.P. Patel, R.G. Patel and V.S. Patel, Starch/Starke, 41 (1989), No 5, pp. 192-196, которые введены в данную заявку в качестве ссылки.
В предпочтительном варианте осуществления полисахариды настоящего изобретения используют в сочетании, по крайней мере, с одной дополнительной добавкой к пульпе, в особенности для дальнейшего улучшения обезвоживания и/или удержания, обеспечивая таким образом средство обезвоживания и удержания, содержащее два или несколько компонентов, обычно называемых средствами обезвоживания и удержания. Используемый в настоящем описании термин "средства обезвоживания и удержания" относится к двум или нескольким компонентам (средствам, агентам или добавкам), которые при введении в пульпу дают лучшее обезвоживание и/или удержание, чем достигаемое без добавления этих компонентов. Примеры пригодных для использования добавок пульпы этого типа включают анионные микроизмельченные материалы, например анионные органические частицы и анионные минеральные частицы, водорастворимые анионные виниловые полимеры присоединения, низкомолекулярные катионные органические полимеры, соединения алюминия и их комбинации. В предпочтительном аспекте осуществления настоящего изобретения полисахарид используют в сочетании с анионным микроизмельченным материалом, в основном с анионными минеральными частицами. В другом предпочтительном варианте осуществления полисахарид используют в сочетании с анионными минеральными частицами и низкомолекулярным катионным органическим полимером. И еще в одном предпочтительном варианте осуществления полисахарид используют в сочетании с анионными минеральными частицами и соединением алюминия. Анионный микроизмельченный материал согласно настоящему изобретению может быть выбран из минеральных и органических частиц.
Анионные минеральные частицы, которые могут быть использованы согласно настоящему изобретению, включают анионные частицы на основе диоксида кремния и глины смектитного типа. Предпочтительно, чтобы анионные минеральные частицы находились в диапазоне размера коллоидных частиц. Анионные частицы на основе диоксида кремния, т.е. частицы на основе SiO2 или кремниевой кислоты, используют предпочтительно, и такие частицы обычно поставляются в форме водных коллоидных дисперсий, так называемых золей. Примеры пригодных для использования частиц на основе диоксида кремния включают коллоидный диоксид кремния и различные типы поликремниевой кислоты. Золи на основе диоксида кремния также могут быть модифицированы и содержать другие элементы, например алюминий и/или бор, которые могут содержаться в водной фазе и/или в частицах на основе диоксида кремния. Пригодные для использования частицы на основе диоксида кремния этого типа включают коллоидный, модифицированный алюминием диоксид кремния и силикаты алюминия. Могут быть также использованы смеси таких пригодных для использования частиц на основе диоксида кремния. Средства обезвоживания и удержания, включающие пригодные для использования анионные частицы на основе диоксида кремния, раскрыты в патентах США 4388150; 4927498; 4954220; 4961825; 4980025; 5127994; 5176891; 5368833; 5447604; 5470435; 5543014; 5571494; 5573674; 5584966; 5603805; 5688482 и 5707493, которые включены в настоящую заявку путем ссылки.
Анионные частицы на основе диоксида кремния приемлемо имеют средний размер частиц меньше примерно 50 нм, предпочтительно меньше примерно 20 нм и более предпочтительно - в диапазоне величин от примерно 1 до примерно 10 нм. Как принято в химии диоксида кремния, размер частиц относится к среднему размеру первичных частиц, которые могут быть агрегированы или не агрегированы. Удельная поверхность частиц на основе диоксида кремния приемлемо составляет примерно 50 м2/г и предпочтительно - более 100 м2/г. Обычно удельная поверхность может составлять примерно до 1700 м2/г и предпочтительно - до 1000 м2/г. Удельную поверхность можно измерять с помощью титрования NaOH известным способом, например, как описано Sears в Analytical Chemistry 28(1956):12, 1981- 1983 и в патенте США 5176891. Таким образом, данная величина удельной поверхности представляет собой среднюю удельную поверхность частиц.
В предпочтительном варианте осуществления настоящего изобретения анионные минеральные частицы представляют собой частицы на основе диоксида кремния, имеющие удельную поверхность в диапазоне от 50 до 1000 м2/г, предпочтительно - от 100 до 950 м2/г. Золи частиц на основе диоксида кремния этого типа также охватывают модифицированные золи, такие как алюминийсодержащие золи на основе диоксида кремния и боросодержащие золи на основе диоксида кремния. Предпочтительно, когда частицы на основе диоксида кремния присутствуют в золе, имеющем S-величину в диапазоне от 8 до 45%, предпочтительно от 10 до 30%, и содержащем частицы на основе диоксида кремния с удельной поверхностью в диапазоне от 300 до 1000 м2/г, приемлемо от 500 до 950 м2/г и предпочтительно от 750 до 950 м2/г, как отмечено выше, такие золи могут быть модифицированы алюминием и/или бором. Например, поверхность частиц может быть модифицирована алюминием в степени от 2 до 25% замещения атомов кремния. S-величина может быть измерена и рассчитана, как описано Iler & Dalton в J. Phys. Chem. 60(1956),955-957. S-величина указывает степень агрегирования или образования микрогеля, и более низкие S-величины свидетельствуют о более высокой степени агрегирования.
В другом предпочтительном варианте осуществления настоящего изобретения частицы на основе диоксида кремния выбирают из поликремниевой кислоты и модифицированной поликремниевой кислоты, имеющей высокую удельную поверхность, приемлемо свыше примерно 1000 м2/г. Удельная поверхность может находиться в диапазоне величин от 1000 до 1700 м2/г и предпочтительно от 1050 до 1600 м2/г. Золи модифицированной поликремниевой кислоты могут содержать другие элементы, например алюминий и/или бор, которые могут находиться в водной фазе и/или в частицах на основе диоксида кремния. В этой области химии поликремниевую кислоту также относят к полимерной кремниевой кислоте, микрогелю поликремниевой кислоты, полисиликату и микрогелю полисиликата, которые все охватываются используемым в настоящей заявке термином поликремниевая кислота. Алюминийсодержащие соединения этого типа часто также называют полиалюминосиликатом и микрогелем полиалюминосиликата, которые оба охватываются используемыми в настоящем описании терминами коллоидный, модифицированный алюминием диоксид кремния и силикат алюминия.
Глины смектитного типа, которые могут быть использованы в способе настоящего изобретения, известны и включают природные, синтетические и химически обработанные материалы. Примеры пригодных для использования смектитных глин включают монтмориллонит/бентонит, гекторит, беиделит, нонтронит и сапонит, предпочтительно бентонит и особенно такой бентонит, который после набухания предпочтительно имеет удельную поверхность от 400 до 800 м2/г. Пригодные для использования глины раскрыты в патентах США 4753710; 5071512 и 5607552, которые включены в данную заявку в виде ссылок.
Анионные органические частицы, которые могут быть использованы согласно настоящему изобретению, включают анионные виниловые полимеры присоединения с высокой степенью поперечного сшивания, приемлемо сополимеры, включающие анионный мономер, такой как акриловая кислота, метакриловая кислота, и сульфированные или фосфонированные виниловые мономеры, полимеризующиеся по механизму присоединения, обычно сополимеризуемые с неионными мономерами, такими как (мет)акриламид, алкил(мет)акрилаты и т.д. Пригодные для использования анионные органические частицы также включают анионные конденсационные полимеры, например золи меламинсульфоновой кислоты.
Низкомолекулярные (далее по тексту НММ) катионные органические полимеры, которые могут быть использованы согласно настоящему изобретению, включают те, что обычно называют и используют как анионные мусороуловители (АМУ). АМУ известны как нейтрализирующие и/или фиксирующие агенты для вредных анионных веществ, присутствующих в пульпе, и их использование в сочетании с обезвоживающими и удерживающими средствами часто обеспечивает дальнейшее улучшение обезвоживания и удержания. НММ катионный органический полимер может быть природным или синтетическим, и предпочтительно им является НММ синтетический полимер. Пригодные для использования органические полимеры этого типа включают НММ катионные органические полимеры с высоким зарядом, такие как полиамины, полиамидоамины, полиэтиленимины, гомо- и сополимеры на основе диаллилдиметиламмонийхлорида, (мет)акриламиды и (мет)акрилаты. Молекулярная масса НММ катионного органического полимера приемлемо составляет не меньше 2000 и предпочтительно не меньше 10000. Верхний предел молекулярной массы обычно составляет величину примерно 700,000, приемлемо примерно 500,000 и обычно примерно 200,000.
Соединения алюминия, которые могут быть использованы согласно настоящему изобретению, включают квасцы, алюминаты, хлорид алюминия, нитрат алюминия и полиалюминиевые соединения, такие как хлориды полиалюминия, сульфаты полиалюминия, полиалюминиевые соединения, содержащие оба иона - хлорид и сульфат, силикат-сульфаты полиалюминия и их смеси. Полиалюминиевые соединения также могут содержать другие анионы, отличные от хлорид-иона, например анионы от серной кислоты, фосфорной кислоты, органических кислот, таких как лимонная кислота и щавелевая кислота.
Компоненты обезвоживающих и удерживающих средств согласно настоящему изобретению могут быть добавлены к пульпе обычным способом и в любом порядке. При использовании анионного микроизмельченного материала предпочтительно вводить замещенный гидрофобом катионный или амфотерный полисахарид в пульпу до введения микроизмельченного материала, даже если можно использовать обратный порядок введения. Также предпочтительно вводить полисахарид до стадии сдвига, которую можно выбирать из операций перекачивания, смешения, осветления и т. д., и вводить анионные частицы после такой стадии сдвига. Когда применяют НММ катионный органический полимер или соединение алюминия, такие компоненты предпочтительно вводить в пульпу до введения полисахарида и анионного микроизмельченного материала, если таковые используют. И наоборот, НММ катионный органический полимер и полисахарид можно вводить в пульпу практически одновременно, либо по отдельности, либо в смеси, например, как раскрыто в патенте США 5858174, который включен в настоящее описание путем ссылки.
Агент повышения прочности бумаги в сухом состоянии и средства обезвоживания и удержания согласно настоящему изобретению вводят в подлежащую обезвоживанию пульпу в количествах, которые могут меняться в широких пределах, в зависимости от, inter alia, типа и числа компонентов, типа пульпы, содержания наполнителя, типа наполнителя, точки введения, содержания соли и т. д. Обычно эти компонент(ы) добавляют в количествах, которые обеспечивают достижение лучших показателей прочности бумаги в сухом состоянии и/или обезвоживания и/или удержания, чем достигаемых в отсутствие этих компонент(ов). Замещенный гидрофобом катионный или амфотерный полисахарид обычно добавляют в количестве не менее 0,01%, часто - не менее 0,1% по массе в расчете на массу сухого вещества пульпы, а верхний предел обычно составляет 10% и приемлемо 2% по массе. Когда используют анионный микроизмельченный материал, то обычно его добавляют в количестве не менее 0,001% по массе, часто - не менее 0,005% по массе, в расчете на сухой остаток пульпы, а верхний предел составляет обычно 1,0% и приемлемо 0,6% по массе. Когда используют анионные частицы на основе диоксида кремния, общее вводимое количество их приемлемо составляет величину в диапазоне от 0,005 до 0,5% по массе, в расчете на SiО2 по массе сухого остатка пульпы, предпочтительно - в диапазоне от 0,01 до 0,2% по массе. При использовании в данном способе НММ катионного органического полимера его можно вводить в количестве не менее 0,05% в расчете на массу сухого остатка подлежащей обезвоживанию пульпы. Приемлемо, когда это количество составляет величину, лежащую в диапазоне значений от 0,07 до 0,5%, предпочтительно в диапазоне значений от 0,1 до 0,35%. В том случае, когда при осуществлении настоящего способа используют соединение алюминия, то общее количество его, вводимое в подлежащую обезвоживанию пульпу, зависит от типа используемого соединения алюминия и других ожидаемых эффектов. Например, хорошо известно об использовании соединений алюминия в качестве осадителей для проклеивающих агентов на основе канифоли. Обычно суммарное вводимое количество составляет не меньше 0,05%, в расчете на А12О3 и массу сухого вещества. Приемлемо, когда это количество составляет величину, лежащую в диапазоне значений от 0,5 до 3,0%, предпочтительно в диапазоне от 0,1 до 2,0%.
Способ настоящего изобретения предпочтительно используют при изготовлении бумаги из суспензии, содержащей целлюлозные волокна и необязательные наполнители и имеющей высокую удельную проводимость. Обычно удельная проводимость пульпы, которая обезвоживается на сетке, составляет не меньше 0,75 мС/см, приемлемо не меньше 2,0 мС/см и предпочтительно не меньше 3,5 мС/см. Очень хорошие результаты по обезвоживанию и удержанию наблюдались при уровнях удельной проводимости примерно 5,0 мС/см и даже свыше 7,5 мС/см. Удельную проводимость можно измерить на стандартном оборудовании, таком как, например, прибор WTW LF 539, поставляемый Christian Berner. Указанные выше величины приемлемо определены путем измерения удельной проводимости целлюлозной суспензии, которая подается в напорную емкость или которая находится в напорной емкости бумагоделательной машины, или, наоборот, путем измерения удельной проводимости белой воды, полученной при обезвоживании суспензии. Высокие уровни удельной проводимости свидетельствуют о высоком содержании солей (электролитов), при этом различные соли могут быть на основе одно-, двух- и многовалентных катионов, таких как катионы щелочных металлов, например Na+ и К+, щелочноземельных металлов, например Са2+ и Mg2+, ионов алюминия, например А13+, А1(ОН)2+ и ионов полиалюминия, и одно-, двух- и многовалентных анионов, таких как галогениды, например С1-, сульфатов, например SО42- и HSО4-, карбонатов, например СО32- и НСО3-, силикатов и низших органических кислот. Настоящее изобретение особенно применимо в производстве бумаги из пульп, имеющих высокое содержание солей двух- и многовалентных катионов, и обычно содержание катионов составляет не меньше 200 частей на млн. , приемлемо не меньше 300 частей на млн. и предпочтительно не меньше 400 частей на млн. Источником солей могут быть целлюлозные волокна и наполнители, используемые для получения пульпы, в частности, на отдельных заводах, где концентрированные водные суспензии волокна из бумагоделательного завода обычно смешивают с водой и получают разбавленную суспензию, пригодную для изготовления бумаги на бумажном заводе. Источником соли могут быть также различные добавки, вводимые в пульпу, свежая вода, подаваемая в процесс, и они могут быть добавлены преднамеренно и т.д. Кроме того, содержание солей обычно выше в тех процессах, в которых осуществляется экстенсивная рециркуляция белой воды, что может привести к значительному аккумулированию солей в воде, циркулирующей в процессе.
Далее, настоящее изобретение охватывает способы изготовления бумаги, в которых широко рециркулирует белая вода, т.е. с высокой степенью использования белой воды, например, где используют от 0 до 30 тонн свежей воды на тонну полученной сухой бумаги, обычно меньше 20, приемлемо меньше 15, предпочтительно меньше 10 и заметно меньше 5 тонн свежей воды на тонну бумаги. Рециркуляция белой воды, полученной в процессе, приемлемо включает смешение белой воды с целлюлозными волокнами и/или необязательными наполнителями с образованием суспензии, подлежащей обезвоживанию; предпочтительно, когда она включает смешение белой воды с суспензией, содержащей целлюлозные волокна и необязательные наполнители, перед тем, как суспензия попадет на формующую сетку для обезвоживания. Белая вода может быть смешана с суспензией до, между, одновременно с или после введения обезвоживающих и удерживающих средств, если таковые используются; и до, одновременно с или после введения полисахарида. Свежую воду можно ввести в процесс на любой стадии; например, она может быть смешана с целлюлозными волокнами для того, чтобы получить суспензию, и она может быть смешана с содержащей целлюлозные волокна суспензией с целью ее разбавления, так, чтобы образовалась суспензия, подлежащая обезвоживанию, до или после смешения пульпы с белой водой и до, между, одновременно с или после введения компонентов обезвоживающих и удерживающих средств, если таковые используются; и до, одновременно с или после введения полисахарида.
Безусловно, другие добавки, которые традиционны для бумагоделательной промышленности, могут быть использованы в сочетании с добавками настоящего изобретения, такие как, например, агенты увеличения прочности в сухом состоянии, агенты увеличения прочности во влажном состоянии, агенты оптического осветления, проклеивающие агенты, например проклеивающие агенты на основе канифоли, димеры кетена и ангидриды кислот, оптические осветлители, красители и т.д. Целлюлозная суспензия, или пульпа, также может содержать минеральные наполнители традиционного типа, такие как, например, каолин, китайская глина, диоксид титана, гипс, тальк и природные и синтетические карбонаты кальция, такие как мел, измельченный мрамор и осажденный карбонат кальция.
Способ настоящего изобретения используется для изготовления бумаги. Использованный в настоящем описании термин "бумага", безусловно, включает не только бумагу и ее производство, но также другие листовые или рулонные продукты, такие как, например, картон (массой до 250 г/см3) и тонкий картон, и их производство. Этот способ может быть использован для изготовления бумаги из различных типов суспензий целлюлозосодержащих волокон, и такие суспензии должны приемлемо содержать не меньше 25% по массе и предпочтительно не меньше 50% по массе таких волокон в расчете на сухой остаток. Эти суспензии могут быть основаны на волокнах из химической пульпы, например сульфатной, сульфитной и органозольной пульп, механической пульпы, такой как термомеханическая пульпа, хемо-термомеханической пульпы, рафинерной пульпы и древесно-волокнистой пульпы как из хвойных, так и лиственных пород древесины, а также может быть основана на волокнах вторичной обработки необязательно из древесных масс после удаления краски и их смесей. Настоящее изобретение особенно пригодно для изготовления бумаги из суспензий на основе пульп, включающих волокна вторичной переработки, и пульп после удаления краски, и содержание целлюлозных волокон такого происхождения может составлять до 100%, приемлемо от 20 до 100%.
Далее настоящее изобретение проиллюстрировано с помощью следующих примеров, которые, однако, не ограничивают объема его притязаний. Части и % относятся к частям по массе и % по массе соответственно, если нет специальных указаний.
Пример 1. Катионные полисахариды получают по реакции природного картофельного крахмала с агентом кватернизации в соответствии с общей методикой, описанной в Европейской патентной заявке 189935. Агенты кватернизации поставляет промышленности, например, фирма Degussa, или их можно приготовить по общей методике, описанной в патенте США 5463127. Крахмалы растворяют в воде и используют в виде 0,5% водных растворов.
Полисахариды настоящего изобретения, от Р1 до Р3, и полисахариды, предназначенные для сравнительных целей, Ref. l и Ref.2, готовят из следующих исходных материалов:
Р1: Катионный крахмал, полученный кватернизацией природного картофельного крахмала с помощью 3-хлор-2-гидроксипропилдиметилбензиламмонийхлорида до 0,8% N.
Р2: Катионный крахмал, полученный кватернизацией природного картофельного крахмала с помощью 3-хлор-2-гидроксипропилдиметилбензиламмонийхлорида до 1,3% N.
Р3: Катионный крахмал, полученный кватернизацией природного картофельного крахмала с помощью 3-хлор-2-гидроксипропилдиметилоктиламмонийхлорида до 0,9% N.
Ref. l: Катионный крахмал, полученный кватернизацией природного картофельного крахмала с помощью 3-хлор-2-гидроксипропилтриметиламмонийхлорида до 0,8% N.
Ref. 2: Катионный крахмал, полученный кватернизацией природного картофельного крахмала с помощью 2,3-эпоксипропилтриметиламмонийхлорида до 1,3% N.
Пример 2. Эффект обезвоживания и удержания оценивают с помощью динамического анализатора обезвоживания Dinamic Drainage Analyser (DDA), поставляемого фирмой Akribi, Sweden, который позволяет измерить время обезвоживания определенного объема пульпы, проходящей через сетку, после удаления пробки и создания вакуума на той стороне сетки, которая противоположна стороне, на которой находится пульпа. Удержание при первом пропуске пульпы оценивают с помощью нефелометра путем измерения мутности фильтрата, белой воды, образующейся при обезвоживании пульпы.
Используют композицию бумаги в расчете на 56% по массе отбеленной пероксидом TMP/SGW пульпы (80/20), 14% по массе отбеленной березово/сосновой сульфатной (60/40) пульпы, облагороженной до 200oCSF, и 30% по массе китайской глины. К пульпе добавляют 40 г/л коллоидной фракции, осветленной воды с SC завода, профильтрованной через сетчатую решетку калибром 5 мкм и сконцентрированной на УФ фильтре, фракция 200000. Объем бумажной смеси составляет 800 мл и рН примерно 7. К пульпе добавляют хлорид кальция, чтобы довести величину удельной проводимости до 5,0 мС/см (Опыты 1-3) и 7,5 мС/см (Опыты 4-6).
Смесь перемешивают в емкости с турбулизатором потока со скоростью 1500 об/мин в течение всего опыта, а химические добавки вводят следующим образом: i) вводят полисахарид в смесь с последующим перемешиванием в течение 30 секунд, ii) вводят анионные минеральные частицы в смесь с последующим перемешиванием в течение 15 секунд, iii) обезвоживают смесь и автоматически записывают время обезвоживания.
Полисахариды, используемые в серии опытов, представляют собой Р1 и Ref. l, что и в примере 1. Используемые анионные минеральные частицы являются частицами на основе диоксида кремния типа, раскрытого в патенте США 5368833. Золь имеет 3-величину порядка 25% и содержит частицы диоксида кремния с удельной поверхностью порядка 900 м2/г, которые поверхностно модифицированы алюминием до степени 5%.
Таблица 1 показывает эффект обезвоживания и удержания при различных дозировках катионного крахмала, рассчитанных на сухой крахмал сухого остатка пульпы, и частиц на основе диоксида кремния, в расчете на SiО2 по сухому остатку пульпы.
Пример 3. В этой серии опытов эффект обезвоживания оценивают по методике, описанной в примере 2.
Используют ту же композицию бумаги, что и в примере 2. Объем загрузки составляет 800 мл и рН примерно 7. В бумажную смесь добавляют хлорид кальция, чтобы довести величину удельной проводимости до 1,5 мС/см (Опыты 1-3); 3,5 мС/см (Опыты 4-5); и 5,0 мС/см (Опыты 6-7).
В этой серии опытов используют полисахариды Р2 и Ref.2, что и в примере 1. В этой серии опытов аналогично используют анионные минеральные частицы, что и в примере 2.
В таблице 2 показан эффект обезвоживания при различных дозировках средств обезвоживания и удержания в расчете на сухой крахмал и SiO2 по сухому остатку бумажной массы.
Пример 4. В этой серии опытов эффект обезвоживания оценивают по методике, описанной в примере 2, за исключением того, что средства обезвоживания и удержания также включают низкомолекулярный катионный полиамин; АМУ. В пульпу добавляют полиамин, а затем перемешивают в течение 30 секунд до введения катионного полисахарида, а затем анионных минеральных частиц.
Используют бумажную композицию на основе 70% пульпы после удаления краски, 15% по массе отбеленной пероксидом TMP/SGW пульпы (80/20) и 15% по массе отбеленной березово/сосновой сульфатной пульпы (60/40), облагороженной до 200oCSF. Объем смеси составил 800 мл и рН примерно 7. В смесь добавляют хлорид кальция, чтобы довести величину удельной проводимости до 1,0 мС/см (Опыт 1), 2,0 мС/см (Опыт 2), 4,0 мС/см (Опыты 3-4) и 7,5 мС/см (Опыт 5).
В этой серии опытов используют полисахариды P1, Р2, Ref.l и Ref.2, что и в примере 1. Аналогично используют анионные минеральные частицы, что и примере 2.
Таблица 3 показывает эффект обезвоживания при различных дозировках средств обезвоживания и удержания в расчете на сухой полиамин, крахмал и SiО2 по сухому остатку смеси.
Пример 5. Прочность бумаги в сухом состоянии оценивают с помощью Dynamic Sheet Former (Formette Dynamique), поставляемого фирмой Fibertech AB, Sweden, и динамометра Tensile Strength Tester, поставляемого фирмой Lorentzen & Wettre, Sweden. Эффект обезвоживания оценивают по методике, описанной в примере 4.
Используют композицию бумаги, что и примере 2. Консистентность смеси составляет 0,3%. Удельную проводимость смеси регулируют путем добавления хлорида кальция. В этой серии опытов используют те же добавки и порядок их введения, что и в примере 4. Полиамид добавляют в количестве 3 кг/т, в расчете на сухой полиамид по сухому остатку смеси. Частицы на основе диоксида кремния добавляют в количестве 3 кг/т, в расчете на SiO2 по сухому остатку смеси.
Бумажные листы формуют в Dynamic Sheet Former путем добавления химических добавок к смеси в смесительной камере, прокачивания смеси через движущееся сопло во вращающийся барабан на водяную пленку на верхней части сетки, обезвоживания смеси и формирования листа, прессования и высушивания листа. Листы нарезают на полоски, на которых проводят измерения на динамометре Tensile Strength Tester. Рассчитывают и сравнивают среднеквадратичное значение показателя предела прочности при разрыве машины и поперечное сечение бумажных листов.
В таблице 4 представлены показатели времени обезвоживания и предела прочности при разрыве листов, полученных при различных дозировках крахмала, в расчете на сухой крахмал по сухому остатку смеси.

Claims (35)

1. Способ изготовления бумаги из суспензии, содержащей целлюлозные волокна и необязательно наполнители, включающий добавление к суспензии средства обезвоживания и удержания, включающего катионный или амфотерный полисахарид, формование и обезвоживание суспензии на сетке, отличающийся тем, что полисахарид содержит гидрофобную группу, которая включает ароматическую группу.
2. Способ по п. 1, отличающийся тем, что гидрофобной группой является бензильная группа.
3. Способ по любому из предшествующих пунктов, отличающийся тем, что гидрофобная группа содержит от 4 до 14 атомов углерода.
4. Способ по любому из предшествующих пунктов, отличающийся тем, что гидрофобная группа содержит от 6 до 12 атомов углерода.
5. Способ по любому из предшествующих пунктов, отличающийся тем, что полисахарид выбирают из крахмалов и гуар-смол.
6. Способ по любому из предшествующих пунктов, отличающийся тем, что полисахарид содержит одну или несколько анионных групп.
7. Способ по любому из предшествующих пунктов, отличающийся тем, что полисахарид добавляют в количестве не меньше 0,1% по массе в расчете на сухой остаток смеси.
8. Способ по любому из предшествующих пунктов, отличающийся тем, что средство обезвоживания и удержания включает анионный микроизмельченный материал.
9. Способ по п. 8, отличающийся тем, что анионный микроизмельченный материал выбирают из частиц на основе диоксида кремния или бентонита.
10. Способ по п. 8 или 9, отличающийся тем, что анионный микроизмельченный материал выбирают из частиц на основе диоксида кремния, имеющих удельную поверхность свыше 50 м2/г.
11. Способ по любому из предшествующих пунктов, отличающийся тем, что средство обезвоживания и удержания также включает низкомолекулярный катионный органический полимер.
12. Способ по любому из предшествующих пунктов, отличающийся тем, что суспензия включает целлюлозные волокна вторичной переработки.
13. Способ по любому из предшествующих пунктов, отличающийся тем, что суспензия включает пульпу после удаления краски.
14. Способ по любому из предшествующих пунктов, отличающийся тем, что обезвоживаемая на сетке суспензия имеет удельную проводимость по меньшей мере 0,75 мС/см.
15. Способ по п. 14 отличающийся тем, что обезвоживаемая на сетке суспензия имеет удельную проводимость по меньшей мере 2 мС/см.
16. Способ по любому из предшествующих пунктов, отличающийся тем, что дополнительно включает обезвоживание суспензии на сетке для получения влажного бумажного полотна и белой воды, рециркуляцию белой воды и необязательно введение свежей воды для получения суспензии, содержащей целлюлозные волокна и необязательно наполнители и подлежащей обезвоживанию, при этом количество вводимой свежей воды меньше 30 т на 1 т полученной сухой бумаги.
17. Способ изготовления бумаги из суспензии, содержащей целлюлозные волокна и необязательно наполнители, включающий добавление к суспензии средства обезвоживания и удержания, включающего катионный или амфотерный полисахарид и компонент, выбранный из анионных микроизмельченных материалов, водорастворимых анионных виниловых полимеров присоединения и их комбинаций, формование и обезвоживание суспензии на сетке, отличающийся тем, что полисахарид содержит гидрофобную группу, включающую ароматическую группу, или полисахарид имеет общую структурную формулу (I):
Figure 00000002

где Р - остаток полисахарида;
А - группа, присоединяющая азот к остатку полисахарида;
R1 и R2 - водород или алкил, содержащий от 1 до 3 атомов углерода;
R3 - гидрофобная углеводородная группа, содержащая не меньше 2 атомов углерода;
n -целое число от примерно 2 до примерно 300000;
R1, R2 и R3 вместе с азотом образуют ароматическую группу, содержащую от 5 до 12 атомов углерода;
X- - анионный противоион.
18. Способ по п. 17, отличающийся тем, что гидрофобная группа включает ароматическую группу.
19. Способ по любому из п. 17 или 18, отличающийся тем, что гидрофобной группой является бензильная группа.
20. Способ по п. 17, отличающийся тем, что гидрофобная группа включает алкильную группу.
21. Способ по п. 20, отличающийся тем, что гидрофобной группой является бутил, пентил, гексил, октил или децил.
22. Способ по любому из предшествующих пунктов, отличающийся тем, что гидофобная группа содержит от 4 до 14 атомов углерода.
23. Способ по любому из предшествующих пунктов, отличающийся тем, что гидрофобная группа содержит от 6 до 12 атомов углерода.
24. Способ по любому из предшествующих пунктов, отличающийся тем, что полисахарид выбирают из крахмалов и гуар-смол.
25. Способ по любому из предшествующих пунктов, отличающийся тем, что полисахарид содержит одну или несколько анионных групп.
26. Способ по любому из предшествующих пунктов, отличающийся тем, что полисахарид добавляют в количестве не меньше 0,1 % по массе в расчете на сухой остаток смеси.
27. Способ по любому из предшествующих пунктов, отличающийся тем, что средство обезвоживания и удержания включает анионный микроизмельченный материал.
28. Способ по п. 27, отличающийся тем, что анионный микроизмельченный материал выбирают из частиц на основе диоксида кремния или бентонита.
29. Способ по п. 27 или 28, отличающийся тем, что анионный микроизмельченный материал выбирают из частиц на основе диоксида кремния, имеющих удельную поверхность свыше 50 м2/г.
30. Способ по любому из предшествующих пунктов, отличающийся тем, что средство обезвоживания и удержания также включает низкомолекулярный катионный органический полимер.
31. Способ по любому из предшествующих пунктов, отличающийся тем, что суспензия включает целлюлозные волокна вторичной переработки.
32. Способ по любому из предшествующих пунктов, отличающийся тем, что суспензия включает пульпу после удаления краски.
33. Способ по любому из предшествующих пунктов, отличающийся тем, что обезвоживаемая на сетке суспензия имеет удельную проводимость по меньшей мере 0,75 мС/см.
34. Способ по п. 33, отличающийся тем, что обезвоживаемая на сетке суспензия имеет удельную проводимость по меньшей мере 2 мС/см.
35. Способ по любому из предшествующих пунктов, отличающийся тем, что дополнительно включает обезвоживание суспензии на сетке для получения влажного бумажного полотна и белой воды, рециркуляцию белой воды и необязательно введение свежей воды для получения суспензии, содержащей целлюлозные волокна и необязательно наполнители и подлежащей обезвоживанию, при этом количество вводимой свежей воды меньше 30 т на 1 т полученной сухой бумаги.
RU2000129670/12A 1998-04-27 1999-04-26 Способ изготовления бумаги RU2185470C1 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US8325398P 1998-04-27 1998-04-27
US60/083,253 1998-04-27
EP98850067.4 1998-04-27
EP98850067A EP0953680A1 (en) 1998-04-27 1998-04-27 A process for the production of paper

Publications (2)

Publication Number Publication Date
RU2185470C1 true RU2185470C1 (ru) 2002-07-20
RU2000129670A RU2000129670A (ru) 2004-03-27

Family

ID=8236970

Family Applications (3)

Application Number Title Priority Date Filing Date
RU2000129668/12A RU2194106C2 (ru) 1998-04-27 1999-04-26 Способ изготовления бумаги
RU2000129670/12A RU2185470C1 (ru) 1998-04-27 1999-04-26 Способ изготовления бумаги
RU2000129669/12A RU2194818C2 (ru) 1998-04-27 1999-04-26 Способ изготовления бумаги

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2000129668/12A RU2194106C2 (ru) 1998-04-27 1999-04-26 Способ изготовления бумаги

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2000129669/12A RU2194818C2 (ru) 1998-04-27 1999-04-26 Способ изготовления бумаги

Country Status (18)

Country Link
EP (4) EP0953680A1 (ru)
JP (3) JP3890194B2 (ru)
CN (3) CN1205386C (ru)
AT (3) ATE243282T1 (ru)
AU (3) AU750335B2 (ru)
BR (3) BR9909946B1 (ru)
CA (3) CA2329028C (ru)
CZ (3) CZ301092B6 (ru)
DE (3) DE69908938T2 (ru)
DK (3) DK1080271T3 (ru)
ES (3) ES2196815T3 (ru)
ID (3) ID27490A (ru)
NZ (3) NZ507605A (ru)
PL (3) PL200673B1 (ru)
PT (3) PT1084295E (ru)
RU (3) RU2194106C2 (ru)
WO (3) WO1999055965A1 (ru)
ZA (3) ZA200005552B (ru)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403839B1 (ko) * 1998-04-27 2003-11-01 악조 노벨 엔.브이. 제지 방법
US6417268B1 (en) 1999-12-06 2002-07-09 Hercules Incorporated Method for making hydrophobically associative polymers, methods of use and compositions
ATE553259T1 (de) 2000-08-07 2012-04-15 Akzo Nobel Nv Verfahren zur papierherstellung
US6846384B2 (en) 2000-08-07 2005-01-25 Akzo Nobel N.V. Process for sizing paper
GB0019415D0 (en) * 2000-08-09 2000-09-27 Ciba Spec Chem Water Treat Ltd Noval monomers, polymers thereof and the use of the polymers
WO2002025013A1 (en) 2000-09-20 2002-03-28 Akzo Nobel N.V. A process for the production of paper
DE10113998A1 (de) * 2001-03-22 2002-09-26 Voith Paper Patent Gmbh Verfahren zum Beladen von in einer Faserstoffsuspension enthaltenen Fasern mit einem Hilfsstoff
US7156955B2 (en) * 2001-12-21 2007-01-02 Akzo Nobel N.V. Papermaking process using a specified NSF to silica-based particle ratio
KR20040068321A (ko) 2001-12-21 2004-07-30 악조 노벨 엔.브이. 수성 실리카-함유 조성물 그리고 종이의 제조 공정
WO2003064767A1 (en) * 2002-01-31 2003-08-07 Akzo Nobel N.V. Process for manufacturing paper
WO2004031478A1 (en) * 2002-10-01 2004-04-15 Akzo Nobel N.V. Cationised polysaccharide product
US20040084162A1 (en) 2002-11-06 2004-05-06 Shannon Thomas Gerard Low slough tissue products and method for making same
US7303654B2 (en) 2002-11-19 2007-12-04 Akzo Nobel N.V. Cellulosic product and process for its production
JP2006506549A (ja) * 2002-11-19 2006-02-23 アクゾ ノーベル エヌ.ブイ. セルロース製品及びその製造方法
JP4179913B2 (ja) * 2003-03-31 2008-11-12 ソマール株式会社 紙の製造方法
KR20050058785A (ko) * 2003-12-12 2005-06-17 김재봉 벤토나이트를 함유하는 수용성 중합체 분산액 및 그의제조방법
BRPI0509227B1 (pt) * 2004-04-07 2016-07-12 Akzo Nobel Nv processo para produzir um sol aquoso à base de sílica.
GB0425101D0 (en) * 2004-11-15 2004-12-15 Ciba Spec Chem Water Treat Ltd Papermaking process
CN102226324B (zh) * 2004-12-22 2013-04-17 阿克佐诺贝尔公司 生产纸张的方法
US7955473B2 (en) * 2004-12-22 2011-06-07 Akzo Nobel N.V. Process for the production of paper
US20060254464A1 (en) 2005-05-16 2006-11-16 Akzo Nobel N.V. Process for the production of paper
KR101318317B1 (ko) 2005-12-30 2013-10-15 아크조 노벨 엔.브이. 종이의 제조 방법
US8273216B2 (en) 2005-12-30 2012-09-25 Akzo Nobel N.V. Process for the production of paper
US20070215301A1 (en) * 2006-03-17 2007-09-20 Weyerhaeuser Co. Method for making a low density multi-ply paperboard with high internal bond strength
EP1936032A1 (en) 2006-12-18 2008-06-25 Akzo Nobel N.V. Method of producing a paper product
EP2199462A1 (en) * 2008-12-18 2010-06-23 Coöperatie Avebe U.A. A process for making paper
WO2011113119A1 (en) 2010-03-19 2011-09-22 Fibria Celulose S/A Process for the treatment of cellulose pulps, cellulose pulp thus obtained and use of biopolymer for treating cellulose pulps
EP2402503A1 (en) 2010-06-30 2012-01-04 Akzo Nobel Chemicals International B.V. Process for the production of a cellulosic product
WO2012007363A1 (en) * 2010-07-12 2012-01-19 Akzo Nobel Chemicals International B.V. Cellulosic fibre composition
FI125713B (fi) * 2010-10-01 2016-01-15 Upm Kymmene Corp Menetelmä märän paperirainan ajettavuuden parantamiseksi ja paperi
RU2483151C1 (ru) * 2011-11-10 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ изготовления бумаги для печати
CN104822714B (zh) * 2012-12-07 2017-10-13 日本曹达株式会社 聚合物的制造方法
EP3059739A1 (de) 2015-02-20 2016-08-24 Wicor Holding AG Isolationselement mit geringer elektrischer Leitfähigkeit zur elektrischen Isolation im Hochspannungsbereich
EP3288041A1 (de) 2016-08-23 2018-02-28 Wicor Holding AG Isolationselement mit chemiefasern zur elektrischen isolation im hochspannungsbereich
WO2018046794A1 (en) * 2016-09-07 2018-03-15 Kemira Oyj Method for manufacture of paper, board or the like and use of the composition
ES2836770T3 (es) * 2016-12-16 2021-06-28 Kemira Oyj Composición de polímero y sus usos
CA3056849A1 (en) * 2017-03-29 2018-10-04 Kemira Oyj Method for producing paper or board
WO2019004950A1 (en) * 2017-06-30 2019-01-03 Scg Packaging Public Company Limited HIGH STRENGTH SHEET MATERIAL
RU2671752C1 (ru) * 2017-12-14 2018-11-06 Общество с ограниченной ответственностью "ПАННА" Водорастворимая бумага со схемой для вышивания и способ ее производства
CN109594402A (zh) * 2018-12-28 2019-04-09 江苏理文造纸有限公司 一种利用废水污泥制备牛皮挂面箱板纸的方法
CN109942721B (zh) * 2019-03-20 2021-04-02 淮海工学院 一种羟甲基脲改性阳离子多糖的水溶液
AT525216A1 (de) * 2021-07-15 2023-01-15 Berndorf Band Gmbh Pressvorrichtung mit einer Druckrolle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4250269A (en) * 1979-11-26 1981-02-10 Buckman Laboratories, Inc. Water-soluble mixtures of quaternary ammonium polymers, nonionic and/or cationic vinyl-addition polymers, and nonionic and/or cationic surfactants
SE432951B (sv) * 1980-05-28 1984-04-30 Eka Ab Pappersprodukt innehallande cellulosafibrer och ett bindemedelssystem som omfattar kolloidal kiselsyra och katjonisk sterkelse samt forfarande for framstellning av pappersprodukten
AU577735B2 (en) * 1984-01-27 1988-09-29 Nalco Chemical Company Emulsion for paper sizing
US4687519A (en) * 1985-12-20 1987-08-18 National Starch And Chemical Corporation Paper size compositions
EP0335575B2 (en) * 1988-03-28 2000-08-23 Ciba Specialty Chemicals Water Treatments Limited Production of paper and paper board
US5098520A (en) * 1991-01-25 1992-03-24 Nalco Chemcial Company Papermaking process with improved retention and drainage
GB9313956D0 (en) * 1993-07-06 1993-08-18 Allied Colloids Ltd Production of paper
WO1995002288A1 (en) * 1993-07-07 1995-01-19 Picturetel Corporation Reduction of background noise for speech enhancement
SE9502522D0 (sv) * 1995-07-07 1995-07-07 Eka Nobel Ab A process for the production of paper
AU729008B2 (en) * 1996-05-01 2001-01-25 Nalco Chemical Company Improved papermaking process

Also Published As

Publication number Publication date
BR9909947A (pt) 2000-12-26
EP0953680A1 (en) 1999-11-03
PT1080272E (pt) 2003-10-31
DE69914078D1 (de) 2004-02-12
ZA200005550B (en) 2001-05-11
NZ507605A (en) 2003-01-31
CA2329027A1 (en) 1999-11-04
ATE243282T1 (de) 2003-07-15
WO1999055962A3 (en) 1999-12-16
WO1999055965A1 (en) 1999-11-04
BR9909946B1 (pt) 2009-12-01
PT1080271E (pt) 2003-10-31
WO1999055964A1 (en) 1999-11-04
EP1080272B1 (en) 2003-06-18
DK1080272T3 (da) 2003-10-06
CZ301092B6 (cs) 2009-11-04
CZ301693B6 (cs) 2010-05-26
ID27899A (id) 2001-05-03
PL344079A1 (en) 2001-09-24
CN1205386C (zh) 2005-06-08
CA2329027C (en) 2005-02-15
CA2329191A1 (en) 1999-11-04
PL200811B1 (pl) 2009-02-27
JP2002513104A (ja) 2002-05-08
ES2211166T3 (es) 2004-07-01
ID27490A (id) 2001-04-12
DE69908938T2 (de) 2003-12-18
AU4301499A (en) 1999-11-16
BR9909945B1 (pt) 2009-08-11
ZA200005552B (en) 2001-05-11
CA2329028A1 (en) 1999-11-04
AU748735B2 (en) 2002-06-13
RU2000129670A (ru) 2004-03-27
EP1084295A2 (en) 2001-03-21
DK1080271T3 (da) 2003-09-22
AU4401599A (en) 1999-11-16
DE69908938D1 (de) 2003-07-24
AU750335B2 (en) 2002-07-18
DE69908939D1 (de) 2003-07-24
CN1300332A (zh) 2001-06-20
DE69914078T2 (de) 2004-10-14
CN1139691C (zh) 2004-02-25
NZ507604A (en) 2003-09-26
PL200673B1 (pl) 2009-01-30
AU4401699A (en) 1999-11-16
ES2196815T3 (es) 2003-12-16
JP3890194B2 (ja) 2007-03-07
EP1080271A1 (en) 2001-03-07
NZ507606A (en) 2003-07-25
RU2194818C2 (ru) 2002-12-20
CZ20003939A3 (cs) 2001-12-12
EP1084295B1 (en) 2004-01-07
PT1084295E (pt) 2004-04-30
EP1080271B1 (en) 2003-06-18
PL344053A1 (en) 2001-09-24
CN1298466A (zh) 2001-06-06
RU2194106C2 (ru) 2002-12-10
DK1084295T3 (da) 2004-04-26
ES2201725T3 (es) 2004-03-16
EP1080272A1 (en) 2001-03-07
ATE257530T1 (de) 2004-01-15
AU747089B2 (en) 2002-05-09
PL344040A1 (en) 2001-09-24
ATE243281T1 (de) 2003-07-15
JP4307721B2 (ja) 2009-08-05
CA2329191C (en) 2006-06-27
CN1299425A (zh) 2001-06-13
WO1999055962A2 (en) 1999-11-04
JP2002513103A (ja) 2002-05-08
ID27307A (id) 2001-03-22
JP2002513102A (ja) 2002-05-08
PL201054B1 (pl) 2009-03-31
DE69908939T2 (de) 2004-05-13
BR9909946A (pt) 2001-03-06
CZ20003938A3 (cs) 2001-07-11
ZA200005551B (en) 2001-05-11
CN1155754C (zh) 2004-06-30
BR9909945A (pt) 2000-12-26
CA2329028C (en) 2005-11-22
CZ20003937A3 (cs) 2001-12-12

Similar Documents

Publication Publication Date Title
RU2185470C1 (ru) Способ изготовления бумаги
ES2360860T3 (es) Soles basados en sílice y su producción y uso.
RU2404317C2 (ru) Способ получения бумаги
FI114724B (fi) Menetelmä paperin valmistamiseksi
JP2004506105A (ja) 紙の製造方法
RU2277142C2 (ru) Водная композиция для производства бумаги и способ ее получения
KR100403840B1 (ko) 제지 방법
CA2500545A1 (en) Cationised polysaccharide product
US20020139502A1 (en) Process for the production of paper
US20040138438A1 (en) Cationised polysaccharide product
MXPA00010570A (es) Proceso para la produccion de papel
ES2611470T3 (es) Soles basados en sílice y su producción y uso
RU2237014C2 (ru) Золи на основе двуокиси кремния
US20040104004A1 (en) Cationised polysaccharide product

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090427